Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
   4 * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
   5 */
   6
   7#include <linux/atomic.h>
   8#include <linux/auxiliary_bus.h>
   9#include <linux/bitfield.h>
  10#include <linux/bits.h>
  11#include <linux/clk.h>
  12#include <linux/debugfs.h>
  13#include <linux/gpio/consumer.h>
  14#include <linux/gpio/driver.h>
  15#include <linux/i2c.h>
  16#include <linux/iopoll.h>
  17#include <linux/module.h>
  18#include <linux/of_graph.h>
  19#include <linux/pm_runtime.h>
  20#include <linux/pwm.h>
  21#include <linux/regmap.h>
  22#include <linux/regulator/consumer.h>
  23
  24#include <linux/unaligned.h>
  25
  26#include <drm/display/drm_dp_aux_bus.h>
  27#include <drm/display/drm_dp_helper.h>
  28#include <drm/drm_atomic.h>
  29#include <drm/drm_atomic_helper.h>
  30#include <drm/drm_bridge.h>
  31#include <drm/drm_bridge_connector.h>
  32#include <drm/drm_edid.h>
  33#include <drm/drm_mipi_dsi.h>
  34#include <drm/drm_of.h>
  35#include <drm/drm_panel.h>
  36#include <drm/drm_print.h>
  37#include <drm/drm_probe_helper.h>
  38
  39#define SN_DEVICE_REV_REG			0x08
  40#define SN_DPPLL_SRC_REG			0x0A
  41#define  DPPLL_CLK_SRC_DSICLK			BIT(0)
  42#define  REFCLK_FREQ_MASK			GENMASK(3, 1)
  43#define  REFCLK_FREQ(x)				((x) << 1)
  44#define  DPPLL_SRC_DP_PLL_LOCK			BIT(7)
  45#define SN_PLL_ENABLE_REG			0x0D
  46#define SN_DSI_LANES_REG			0x10
  47#define  CHA_DSI_LANES_MASK			GENMASK(4, 3)
  48#define  CHA_DSI_LANES(x)			((x) << 3)
  49#define SN_DSIA_CLK_FREQ_REG			0x12
  50#define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG	0x20
  51#define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG	0x24
  52#define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG	0x2C
  53#define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG	0x2D
  54#define  CHA_HSYNC_POLARITY			BIT(7)
  55#define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG	0x30
  56#define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG	0x31
  57#define  CHA_VSYNC_POLARITY			BIT(7)
  58#define SN_CHA_HORIZONTAL_BACK_PORCH_REG	0x34
  59#define SN_CHA_VERTICAL_BACK_PORCH_REG		0x36
  60#define SN_CHA_HORIZONTAL_FRONT_PORCH_REG	0x38
  61#define SN_CHA_VERTICAL_FRONT_PORCH_REG		0x3A
  62#define SN_LN_ASSIGN_REG			0x59
  63#define  LN_ASSIGN_WIDTH			2
  64#define SN_ENH_FRAME_REG			0x5A
  65#define  VSTREAM_ENABLE				BIT(3)
  66#define  LN_POLRS_OFFSET			4
  67#define  LN_POLRS_MASK				0xf0
  68#define SN_DATA_FORMAT_REG			0x5B
  69#define  BPP_18_RGB				BIT(0)
  70#define SN_HPD_DISABLE_REG			0x5C
  71#define  HPD_DISABLE				BIT(0)
  72#define  HPD_DEBOUNCED_STATE			BIT(4)
  73#define SN_GPIO_IO_REG				0x5E
  74#define  SN_GPIO_INPUT_SHIFT			4
  75#define  SN_GPIO_OUTPUT_SHIFT			0
  76#define SN_GPIO_CTRL_REG			0x5F
  77#define  SN_GPIO_MUX_INPUT			0
  78#define  SN_GPIO_MUX_OUTPUT			1
  79#define  SN_GPIO_MUX_SPECIAL			2
  80#define  SN_GPIO_MUX_MASK			0x3
  81#define SN_AUX_WDATA_REG(x)			(0x64 + (x))
  82#define SN_AUX_ADDR_19_16_REG			0x74
  83#define SN_AUX_ADDR_15_8_REG			0x75
  84#define SN_AUX_ADDR_7_0_REG			0x76
  85#define SN_AUX_ADDR_MASK			GENMASK(19, 0)
  86#define SN_AUX_LENGTH_REG			0x77
  87#define SN_AUX_CMD_REG				0x78
  88#define  AUX_CMD_SEND				BIT(0)
  89#define  AUX_CMD_REQ(x)				((x) << 4)
  90#define SN_AUX_RDATA_REG(x)			(0x79 + (x))
  91#define SN_SSC_CONFIG_REG			0x93
  92#define  DP_NUM_LANES_MASK			GENMASK(5, 4)
  93#define  DP_NUM_LANES(x)			((x) << 4)
  94#define SN_DATARATE_CONFIG_REG			0x94
  95#define  DP_DATARATE_MASK			GENMASK(7, 5)
  96#define  DP_DATARATE(x)				((x) << 5)
  97#define SN_TRAINING_SETTING_REG			0x95
  98#define  SCRAMBLE_DISABLE			BIT(4)
  99#define SN_ML_TX_MODE_REG			0x96
 100#define  ML_TX_MAIN_LINK_OFF			0
 101#define  ML_TX_NORMAL_MODE			BIT(0)
 102#define SN_PWM_PRE_DIV_REG			0xA0
 103#define SN_BACKLIGHT_SCALE_REG			0xA1
 104#define  BACKLIGHT_SCALE_MAX			0xFFFF
 105#define SN_BACKLIGHT_REG			0xA3
 106#define SN_PWM_EN_INV_REG			0xA5
 107#define  SN_PWM_INV_MASK			BIT(0)
 108#define  SN_PWM_EN_MASK				BIT(1)
 109#define SN_AUX_CMD_STATUS_REG			0xF4
 110#define  AUX_IRQ_STATUS_AUX_RPLY_TOUT		BIT(3)
 111#define  AUX_IRQ_STATUS_AUX_SHORT		BIT(5)
 112#define  AUX_IRQ_STATUS_NAT_I2C_FAIL		BIT(6)
 113
 114#define MIN_DSI_CLK_FREQ_MHZ	40
 115
 116/* fudge factor required to account for 8b/10b encoding */
 117#define DP_CLK_FUDGE_NUM	10
 118#define DP_CLK_FUDGE_DEN	8
 119
 120/* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
 121#define SN_AUX_MAX_PAYLOAD_BYTES	16
 122
 123#define SN_REGULATOR_SUPPLY_NUM		4
 124
 125#define SN_MAX_DP_LANES			4
 126#define SN_NUM_GPIOS			4
 127#define SN_GPIO_PHYSICAL_OFFSET		1
 128
 129#define SN_LINK_TRAINING_TRIES		10
 130
 131#define SN_PWM_GPIO_IDX			3 /* 4th GPIO */
 132
 133/**
 134 * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
 135 * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
 136 * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
 137 * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
 138 * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
 139 *
 140 * @dev:          Pointer to the top level (i2c) device.
 141 * @regmap:       Regmap for accessing i2c.
 142 * @aux:          Our aux channel.
 143 * @bridge:       Our bridge.
 144 * @connector:    Our connector.
 145 * @host_node:    Remote DSI node.
 146 * @dsi:          Our MIPI DSI source.
 147 * @refclk:       Our reference clock.
 148 * @next_bridge:  The bridge on the eDP side.
 149 * @enable_gpio:  The GPIO we toggle to enable the bridge.
 150 * @supplies:     Data for bulk enabling/disabling our regulators.
 151 * @dp_lanes:     Count of dp_lanes we're using.
 152 * @ln_assign:    Value to program to the LN_ASSIGN register.
 153 * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
 154 * @comms_enabled: If true then communication over the aux channel is enabled.
 155 * @comms_mutex:   Protects modification of comms_enabled.
 156 *
 157 * @gchip:        If we expose our GPIOs, this is used.
 158 * @gchip_output: A cache of whether we've set GPIOs to output.  This
 159 *                serves double-duty of keeping track of the direction and
 160 *                also keeping track of whether we've incremented the
 161 *                pm_runtime reference count for this pin, which we do
 162 *                whenever a pin is configured as an output.  This is a
 163 *                bitmap so we can do atomic ops on it without an extra
 164 *                lock so concurrent users of our 4 GPIOs don't stomp on
 165 *                each other's read-modify-write.
 166 *
 167 * @pchip:        pwm_chip if the PWM is exposed.
 168 * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
 169 * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
 170 * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
 171 */
 172struct ti_sn65dsi86 {
 173	struct auxiliary_device		*bridge_aux;
 174	struct auxiliary_device		*gpio_aux;
 175	struct auxiliary_device		*aux_aux;
 176	struct auxiliary_device		*pwm_aux;
 177
 178	struct device			*dev;
 179	struct regmap			*regmap;
 180	struct drm_dp_aux		aux;
 181	struct drm_bridge		bridge;
 182	struct drm_connector		*connector;
 183	struct device_node		*host_node;
 184	struct mipi_dsi_device		*dsi;
 185	struct clk			*refclk;
 186	struct drm_bridge		*next_bridge;
 187	struct gpio_desc		*enable_gpio;
 188	struct regulator_bulk_data	supplies[SN_REGULATOR_SUPPLY_NUM];
 189	int				dp_lanes;
 190	u8				ln_assign;
 191	u8				ln_polrs;
 192	bool				comms_enabled;
 193	struct mutex			comms_mutex;
 194
 195#if defined(CONFIG_OF_GPIO)
 196	struct gpio_chip		gchip;
 197	DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
 198#endif
 199#if defined(CONFIG_PWM)
 200	struct pwm_chip			*pchip;
 201	bool				pwm_enabled;
 202	atomic_t			pwm_pin_busy;
 203#endif
 204	unsigned int			pwm_refclk_freq;
 205};
 206
 207static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
 208	{ .range_min = 0, .range_max = 0xFF },
 209};
 210
 211static const struct regmap_access_table ti_sn_bridge_volatile_table = {
 212	.yes_ranges = ti_sn65dsi86_volatile_ranges,
 213	.n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
 214};
 215
 216static const struct regmap_config ti_sn65dsi86_regmap_config = {
 217	.reg_bits = 8,
 218	.val_bits = 8,
 219	.volatile_table = &ti_sn_bridge_volatile_table,
 220	.cache_type = REGCACHE_NONE,
 221	.max_register = 0xFF,
 222};
 223
 224static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
 225						unsigned int reg, u16 *val)
 226{
 227	u8 buf[2];
 228	int ret;
 229
 230	ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
 231	if (ret)
 232		return ret;
 233
 234	*val = buf[0] | (buf[1] << 8);
 235
 236	return 0;
 237}
 238
 239static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
 240				   unsigned int reg, u16 val)
 241{
 242	u8 buf[2] = { val & 0xff, val >> 8 };
 243
 244	regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
 245}
 246
 247static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
 248{
 249	u32 bit_rate_khz, clk_freq_khz;
 250	struct drm_display_mode *mode =
 251		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 252
 253	bit_rate_khz = mode->clock *
 254			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 255	clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
 256
 257	return clk_freq_khz;
 258}
 259
 260/* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
 261static const u32 ti_sn_bridge_refclk_lut[] = {
 262	12000000,
 263	19200000,
 264	26000000,
 265	27000000,
 266	38400000,
 267};
 268
 269/* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
 270static const u32 ti_sn_bridge_dsiclk_lut[] = {
 271	468000000,
 272	384000000,
 273	416000000,
 274	486000000,
 275	460800000,
 276};
 277
 278static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
 279{
 280	int i;
 281	u32 refclk_rate;
 282	const u32 *refclk_lut;
 283	size_t refclk_lut_size;
 284
 285	if (pdata->refclk) {
 286		refclk_rate = clk_get_rate(pdata->refclk);
 287		refclk_lut = ti_sn_bridge_refclk_lut;
 288		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
 289		clk_prepare_enable(pdata->refclk);
 290	} else {
 291		refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
 292		refclk_lut = ti_sn_bridge_dsiclk_lut;
 293		refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
 294	}
 295
 296	/* for i equals to refclk_lut_size means default frequency */
 297	for (i = 0; i < refclk_lut_size; i++)
 298		if (refclk_lut[i] == refclk_rate)
 299			break;
 300
 301	/* avoid buffer overflow and "1" is the default rate in the datasheet. */
 302	if (i >= refclk_lut_size)
 303		i = 1;
 304
 305	regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
 306			   REFCLK_FREQ(i));
 307
 308	/*
 309	 * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
 310	 * regardless of its actual sourcing.
 311	 */
 312	pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
 313}
 314
 315static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
 316{
 317	mutex_lock(&pdata->comms_mutex);
 318
 319	/* configure bridge ref_clk */
 320	ti_sn_bridge_set_refclk_freq(pdata);
 321
 322	/*
 323	 * HPD on this bridge chip is a bit useless.  This is an eDP bridge
 324	 * so the HPD is an internal signal that's only there to signal that
 325	 * the panel is done powering up.  ...but the bridge chip debounces
 326	 * this signal by between 100 ms and 400 ms (depending on process,
 327	 * voltage, and temperate--I measured it at about 200 ms).  One
 328	 * particular panel asserted HPD 84 ms after it was powered on meaning
 329	 * that we saw HPD 284 ms after power on.  ...but the same panel said
 330	 * that instead of looking at HPD you could just hardcode a delay of
 331	 * 200 ms.  We'll assume that the panel driver will have the hardcoded
 332	 * delay in its prepare and always disable HPD.
 333	 *
 334	 * If HPD somehow makes sense on some future panel we'll have to
 335	 * change this to be conditional on someone specifying that HPD should
 336	 * be used.
 337	 */
 338	regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
 339			   HPD_DISABLE);
 340
 341	pdata->comms_enabled = true;
 342
 343	mutex_unlock(&pdata->comms_mutex);
 344}
 345
 346static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
 347{
 348	mutex_lock(&pdata->comms_mutex);
 349
 350	pdata->comms_enabled = false;
 351	clk_disable_unprepare(pdata->refclk);
 352
 353	mutex_unlock(&pdata->comms_mutex);
 354}
 355
 356static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
 357{
 358	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
 359	int ret;
 360
 361	ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 362	if (ret) {
 363		DRM_ERROR("failed to enable supplies %d\n", ret);
 364		return ret;
 365	}
 366
 367	/* td2: min 100 us after regulators before enabling the GPIO */
 368	usleep_range(100, 110);
 369
 370	gpiod_set_value_cansleep(pdata->enable_gpio, 1);
 371
 372	/*
 373	 * If we have a reference clock we can enable communication w/ the
 374	 * panel (including the aux channel) w/out any need for an input clock
 375	 * so we can do it in resume which lets us read the EDID before
 376	 * pre_enable(). Without a reference clock we need the MIPI reference
 377	 * clock so reading early doesn't work.
 378	 */
 379	if (pdata->refclk)
 380		ti_sn65dsi86_enable_comms(pdata);
 381
 382	return ret;
 383}
 384
 385static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
 386{
 387	struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
 388	int ret;
 389
 390	if (pdata->refclk)
 391		ti_sn65dsi86_disable_comms(pdata);
 392
 393	gpiod_set_value_cansleep(pdata->enable_gpio, 0);
 394
 395	ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
 396	if (ret)
 397		DRM_ERROR("failed to disable supplies %d\n", ret);
 398
 399	return ret;
 400}
 401
 402static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
 403	SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
 404	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 405				pm_runtime_force_resume)
 406};
 407
 408static int status_show(struct seq_file *s, void *data)
 409{
 410	struct ti_sn65dsi86 *pdata = s->private;
 411	unsigned int reg, val;
 412
 413	seq_puts(s, "STATUS REGISTERS:\n");
 414
 415	pm_runtime_get_sync(pdata->dev);
 416
 417	/* IRQ Status Registers, see Table 31 in datasheet */
 418	for (reg = 0xf0; reg <= 0xf8; reg++) {
 419		regmap_read(pdata->regmap, reg, &val);
 420		seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
 421	}
 422
 423	pm_runtime_put_autosuspend(pdata->dev);
 424
 425	return 0;
 426}
 427
 428DEFINE_SHOW_ATTRIBUTE(status);
 429
 430static void ti_sn65dsi86_debugfs_remove(void *data)
 431{
 432	debugfs_remove_recursive(data);
 433}
 434
 435static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
 436{
 437	struct device *dev = pdata->dev;
 438	struct dentry *debugfs;
 439	int ret;
 440
 441	debugfs = debugfs_create_dir(dev_name(dev), NULL);
 442
 443	/*
 444	 * We might get an error back if debugfs wasn't enabled in the kernel
 445	 * so let's just silently return upon failure.
 446	 */
 447	if (IS_ERR_OR_NULL(debugfs))
 448		return;
 449
 450	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
 451	if (ret)
 452		return;
 453
 454	debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
 455}
 456
 457/* -----------------------------------------------------------------------------
 458 * Auxiliary Devices (*not* AUX)
 459 */
 460
 461static void ti_sn65dsi86_uninit_aux(void *data)
 462{
 463	auxiliary_device_uninit(data);
 464}
 465
 466static void ti_sn65dsi86_delete_aux(void *data)
 467{
 468	auxiliary_device_delete(data);
 469}
 470
 471static void ti_sn65dsi86_aux_device_release(struct device *dev)
 472{
 473	struct auxiliary_device *aux = container_of(dev, struct auxiliary_device, dev);
 474
 475	kfree(aux);
 476}
 477
 478static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
 479				       struct auxiliary_device **aux_out,
 480				       const char *name)
 481{
 482	struct device *dev = pdata->dev;
 483	struct auxiliary_device *aux;
 484	int ret;
 485
 486	aux = kzalloc(sizeof(*aux), GFP_KERNEL);
 487	if (!aux)
 488		return -ENOMEM;
 489
 490	aux->name = name;
 491	aux->dev.parent = dev;
 492	aux->dev.release = ti_sn65dsi86_aux_device_release;
 493	device_set_of_node_from_dev(&aux->dev, dev);
 494	ret = auxiliary_device_init(aux);
 495	if (ret) {
 496		kfree(aux);
 497		return ret;
 498	}
 499	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
 500	if (ret)
 501		return ret;
 502
 503	ret = auxiliary_device_add(aux);
 504	if (ret)
 505		return ret;
 506	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
 507	if (!ret)
 508		*aux_out = aux;
 509
 510	return ret;
 511}
 512
 513/* -----------------------------------------------------------------------------
 514 * AUX Adapter
 515 */
 516
 517static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
 518{
 519	return container_of(aux, struct ti_sn65dsi86, aux);
 520}
 521
 522static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
 523				  struct drm_dp_aux_msg *msg)
 524{
 525	struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
 526	u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
 527	u32 request_val = AUX_CMD_REQ(msg->request);
 528	u8 *buf = msg->buffer;
 529	unsigned int len = msg->size;
 530	unsigned int short_len;
 531	unsigned int val;
 532	int ret;
 533	u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
 534
 535	if (len > SN_AUX_MAX_PAYLOAD_BYTES)
 536		return -EINVAL;
 537
 538	pm_runtime_get_sync(pdata->dev);
 539	mutex_lock(&pdata->comms_mutex);
 540
 541	/*
 542	 * If someone tries to do a DDC over AUX transaction before pre_enable()
 543	 * on a device without a dedicated reference clock then we just can't
 544	 * do it. Fail right away. This prevents non-refclk users from reading
 545	 * the EDID before enabling the panel but such is life.
 546	 */
 547	if (!pdata->comms_enabled) {
 548		ret = -EIO;
 549		goto exit;
 550	}
 551
 552	switch (request) {
 553	case DP_AUX_NATIVE_WRITE:
 554	case DP_AUX_I2C_WRITE:
 555	case DP_AUX_NATIVE_READ:
 556	case DP_AUX_I2C_READ:
 557		regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
 558		/* Assume it's good */
 559		msg->reply = 0;
 560		break;
 561	default:
 562		ret = -EINVAL;
 563		goto exit;
 564	}
 565
 566	BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
 567	put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
 568			   addr_len);
 569	regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
 570			  ARRAY_SIZE(addr_len));
 571
 572	if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
 573		regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
 574
 575	/* Clear old status bits before start so we don't get confused */
 576	regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
 577		     AUX_IRQ_STATUS_NAT_I2C_FAIL |
 578		     AUX_IRQ_STATUS_AUX_RPLY_TOUT |
 579		     AUX_IRQ_STATUS_AUX_SHORT);
 580
 581	regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
 582
 583	/* Zero delay loop because i2c transactions are slow already */
 584	ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
 585				       !(val & AUX_CMD_SEND), 0, 50 * 1000);
 586	if (ret)
 587		goto exit;
 588
 589	ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
 590	if (ret)
 591		goto exit;
 592
 593	if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
 594		/*
 595		 * The hardware tried the message seven times per the DP spec
 596		 * but it hit a timeout. We ignore defers here because they're
 597		 * handled in hardware.
 598		 */
 599		ret = -ETIMEDOUT;
 600		goto exit;
 601	}
 602
 603	if (val & AUX_IRQ_STATUS_AUX_SHORT) {
 604		ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &short_len);
 605		len = min(len, short_len);
 606		if (ret)
 607			goto exit;
 608	} else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
 609		switch (request) {
 610		case DP_AUX_I2C_WRITE:
 611		case DP_AUX_I2C_READ:
 612			msg->reply |= DP_AUX_I2C_REPLY_NACK;
 613			break;
 614		case DP_AUX_NATIVE_READ:
 615		case DP_AUX_NATIVE_WRITE:
 616			msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
 617			break;
 618		}
 619		len = 0;
 620		goto exit;
 621	}
 622
 623	if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
 624		ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
 625
 626exit:
 627	mutex_unlock(&pdata->comms_mutex);
 628	pm_runtime_mark_last_busy(pdata->dev);
 629	pm_runtime_put_autosuspend(pdata->dev);
 630
 631	if (ret)
 632		return ret;
 633	return len;
 634}
 635
 636static int ti_sn_aux_wait_hpd_asserted(struct drm_dp_aux *aux, unsigned long wait_us)
 637{
 638	/*
 639	 * The HPD in this chip is a bit useless (See comment in
 640	 * ti_sn65dsi86_enable_comms) so if our driver is expected to wait
 641	 * for HPD, we just assume it's asserted after the wait_us delay.
 642	 *
 643	 * In case we are asked to wait forever (wait_us=0) take conservative
 644	 * 500ms delay.
 645	 */
 646	if (wait_us == 0)
 647		wait_us = 500000;
 648
 649	usleep_range(wait_us, wait_us + 1000);
 650
 651	return 0;
 652}
 653
 654static int ti_sn_aux_probe(struct auxiliary_device *adev,
 655			   const struct auxiliary_device_id *id)
 656{
 657	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
 658	int ret;
 659
 660	pdata->aux.name = "ti-sn65dsi86-aux";
 661	pdata->aux.dev = &adev->dev;
 662	pdata->aux.transfer = ti_sn_aux_transfer;
 663	pdata->aux.wait_hpd_asserted = ti_sn_aux_wait_hpd_asserted;
 664	drm_dp_aux_init(&pdata->aux);
 665
 666	ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
 667	if (ret)
 668		return ret;
 669
 670	/*
 671	 * The eDP to MIPI bridge parts don't work until the AUX channel is
 672	 * setup so we don't add it in the main driver probe, we add it now.
 673	 */
 674	return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
 675}
 676
 677static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
 678	{ .name = "ti_sn65dsi86.aux", },
 679	{},
 680};
 681
 682static struct auxiliary_driver ti_sn_aux_driver = {
 683	.name = "aux",
 684	.probe = ti_sn_aux_probe,
 685	.id_table = ti_sn_aux_id_table,
 686};
 687
 688/*------------------------------------------------------------------------------
 689 * DRM Bridge
 690 */
 691
 692static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
 693{
 694	return container_of(bridge, struct ti_sn65dsi86, bridge);
 695}
 696
 697static int ti_sn_attach_host(struct auxiliary_device *adev, struct ti_sn65dsi86 *pdata)
 698{
 699	int val;
 700	struct mipi_dsi_host *host;
 701	struct mipi_dsi_device *dsi;
 702	struct device *dev = pdata->dev;
 703	const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
 704						   .channel = 0,
 705						   .node = NULL,
 706	};
 707
 708	host = of_find_mipi_dsi_host_by_node(pdata->host_node);
 709	if (!host)
 710		return -EPROBE_DEFER;
 711
 712	dsi = devm_mipi_dsi_device_register_full(&adev->dev, host, &info);
 713	if (IS_ERR(dsi))
 714		return PTR_ERR(dsi);
 715
 716	/* TODO: setting to 4 MIPI lanes always for now */
 717	dsi->lanes = 4;
 718	dsi->format = MIPI_DSI_FMT_RGB888;
 719	dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
 720
 721	/* check if continuous dsi clock is required or not */
 722	pm_runtime_get_sync(dev);
 723	regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
 724	pm_runtime_put_autosuspend(dev);
 725	if (!(val & DPPLL_CLK_SRC_DSICLK))
 726		dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
 727
 728	pdata->dsi = dsi;
 729
 730	return devm_mipi_dsi_attach(&adev->dev, dsi);
 731}
 732
 733static int ti_sn_bridge_attach(struct drm_bridge *bridge,
 734			       enum drm_bridge_attach_flags flags)
 735{
 736	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
 737	int ret;
 738
 739	pdata->aux.drm_dev = bridge->dev;
 740	ret = drm_dp_aux_register(&pdata->aux);
 741	if (ret < 0) {
 742		drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
 743		return ret;
 744	}
 745
 746	/*
 747	 * Attach the next bridge.
 748	 * We never want the next bridge to *also* create a connector.
 749	 */
 750	ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
 751				&pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
 752	if (ret < 0)
 753		goto err_initted_aux;
 754
 755	if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
 756		return 0;
 757
 758	pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
 759						     pdata->bridge.encoder);
 760	if (IS_ERR(pdata->connector)) {
 761		ret = PTR_ERR(pdata->connector);
 762		goto err_initted_aux;
 763	}
 764
 765	drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
 766
 767	return 0;
 768
 769err_initted_aux:
 770	drm_dp_aux_unregister(&pdata->aux);
 771	return ret;
 772}
 773
 774static void ti_sn_bridge_detach(struct drm_bridge *bridge)
 775{
 776	drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
 777}
 778
 779static enum drm_mode_status
 780ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
 781			const struct drm_display_info *info,
 782			const struct drm_display_mode *mode)
 783{
 784	/* maximum supported resolution is 4K at 60 fps */
 785	if (mode->clock > 594000)
 786		return MODE_CLOCK_HIGH;
 787
 788	/*
 789	 * The front and back porch registers are 8 bits, and pulse width
 790	 * registers are 15 bits, so reject any modes with larger periods.
 791	 */
 792
 793	if ((mode->hsync_start - mode->hdisplay) > 0xff)
 794		return MODE_HBLANK_WIDE;
 795
 796	if ((mode->vsync_start - mode->vdisplay) > 0xff)
 797		return MODE_VBLANK_WIDE;
 798
 799	if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
 800		return MODE_HSYNC_WIDE;
 801
 802	if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
 803		return MODE_VSYNC_WIDE;
 804
 805	if ((mode->htotal - mode->hsync_end) > 0xff)
 806		return MODE_HBLANK_WIDE;
 807
 808	if ((mode->vtotal - mode->vsync_end) > 0xff)
 809		return MODE_VBLANK_WIDE;
 810
 811	return MODE_OK;
 812}
 813
 814static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
 815					struct drm_bridge_state *old_bridge_state)
 816{
 817	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
 818
 819	/* disable video stream */
 820	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
 821}
 822
 823static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
 824{
 825	unsigned int bit_rate_mhz, clk_freq_mhz;
 826	unsigned int val;
 827	struct drm_display_mode *mode =
 828		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 829
 830	/* set DSIA clk frequency */
 831	bit_rate_mhz = (mode->clock / 1000) *
 832			mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
 833	clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
 834
 835	/* for each increment in val, frequency increases by 5MHz */
 836	val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
 837		(((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
 838	regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
 839}
 840
 841static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
 842{
 843	if (connector->display_info.bpc <= 6)
 844		return 18;
 845	else
 846		return 24;
 847}
 848
 849/*
 850 * LUT index corresponds to register value and
 851 * LUT values corresponds to dp data rate supported
 852 * by the bridge in Mbps unit.
 853 */
 854static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
 855	0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
 856};
 857
 858static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
 859{
 860	unsigned int bit_rate_khz, dp_rate_mhz;
 861	unsigned int i;
 862	struct drm_display_mode *mode =
 863		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 864
 865	/* Calculate minimum bit rate based on our pixel clock. */
 866	bit_rate_khz = mode->clock * bpp;
 867
 868	/* Calculate minimum DP data rate, taking 80% as per DP spec */
 869	dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
 870				   1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
 871
 872	for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
 873		if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
 874			break;
 875
 876	return i;
 877}
 878
 879static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
 880{
 881	unsigned int valid_rates = 0;
 882	unsigned int rate_per_200khz;
 883	unsigned int rate_mhz;
 884	u8 dpcd_val;
 885	int ret;
 886	int i, j;
 887
 888	ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
 889	if (ret != 1) {
 890		DRM_DEV_ERROR(pdata->dev,
 891			      "Can't read eDP rev (%d), assuming 1.1\n", ret);
 892		dpcd_val = DP_EDP_11;
 893	}
 894
 895	if (dpcd_val >= DP_EDP_14) {
 896		/* eDP 1.4 devices must provide a custom table */
 897		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
 898
 899		ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
 900				       sink_rates, sizeof(sink_rates));
 901
 902		if (ret != sizeof(sink_rates)) {
 903			DRM_DEV_ERROR(pdata->dev,
 904				"Can't read supported rate table (%d)\n", ret);
 905
 906			/* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
 907			memset(sink_rates, 0, sizeof(sink_rates));
 908		}
 909
 910		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
 911			rate_per_200khz = le16_to_cpu(sink_rates[i]);
 912
 913			if (!rate_per_200khz)
 914				break;
 915
 916			rate_mhz = rate_per_200khz * 200 / 1000;
 917			for (j = 0;
 918			     j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
 919			     j++) {
 920				if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
 921					valid_rates |= BIT(j);
 922			}
 923		}
 924
 925		for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
 926			if (valid_rates & BIT(i))
 927				return valid_rates;
 928		}
 929		DRM_DEV_ERROR(pdata->dev,
 930			      "No matching eDP rates in table; falling back\n");
 931	}
 932
 933	/* On older versions best we can do is use DP_MAX_LINK_RATE */
 934	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
 935	if (ret != 1) {
 936		DRM_DEV_ERROR(pdata->dev,
 937			      "Can't read max rate (%d); assuming 5.4 GHz\n",
 938			      ret);
 939		dpcd_val = DP_LINK_BW_5_4;
 940	}
 941
 942	switch (dpcd_val) {
 943	default:
 944		DRM_DEV_ERROR(pdata->dev,
 945			      "Unexpected max rate (%#x); assuming 5.4 GHz\n",
 946			      (int)dpcd_val);
 947		fallthrough;
 948	case DP_LINK_BW_5_4:
 949		valid_rates |= BIT(7);
 950		fallthrough;
 951	case DP_LINK_BW_2_7:
 952		valid_rates |= BIT(4);
 953		fallthrough;
 954	case DP_LINK_BW_1_62:
 955		valid_rates |= BIT(1);
 956		break;
 957	}
 958
 959	return valid_rates;
 960}
 961
 962static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
 963{
 964	struct drm_display_mode *mode =
 965		&pdata->bridge.encoder->crtc->state->adjusted_mode;
 966	u8 hsync_polarity = 0, vsync_polarity = 0;
 967
 968	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
 969		hsync_polarity = CHA_HSYNC_POLARITY;
 970	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
 971		vsync_polarity = CHA_VSYNC_POLARITY;
 972
 973	ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
 974			       mode->hdisplay);
 975	ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
 976			       mode->vdisplay);
 977	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
 978		     (mode->hsync_end - mode->hsync_start) & 0xFF);
 979	regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
 980		     (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
 981		     hsync_polarity);
 982	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
 983		     (mode->vsync_end - mode->vsync_start) & 0xFF);
 984	regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
 985		     (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
 986		     vsync_polarity);
 987
 988	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
 989		     (mode->htotal - mode->hsync_end) & 0xFF);
 990	regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
 991		     (mode->vtotal - mode->vsync_end) & 0xFF);
 992
 993	regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
 994		     (mode->hsync_start - mode->hdisplay) & 0xFF);
 995	regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
 996		     (mode->vsync_start - mode->vdisplay) & 0xFF);
 997
 998	usleep_range(10000, 10500); /* 10ms delay recommended by spec */
 999}
1000
1001static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
1002{
1003	u8 data;
1004	int ret;
1005
1006	ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
1007	if (ret != 1) {
1008		DRM_DEV_ERROR(pdata->dev,
1009			      "Can't read lane count (%d); assuming 4\n", ret);
1010		return 4;
1011	}
1012
1013	return data & DP_LANE_COUNT_MASK;
1014}
1015
1016static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
1017			       const char **last_err_str)
1018{
1019	unsigned int val;
1020	int ret;
1021	int i;
1022
1023	/* set dp clk frequency value */
1024	regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
1025			   DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
1026
1027	/* enable DP PLL */
1028	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
1029
1030	ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
1031				       val & DPPLL_SRC_DP_PLL_LOCK, 1000,
1032				       50 * 1000);
1033	if (ret) {
1034		*last_err_str = "DP_PLL_LOCK polling failed";
1035		goto exit;
1036	}
1037
1038	/*
1039	 * We'll try to link train several times.  As part of link training
1040	 * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1041	 * the panel isn't ready quite it might respond NAK here which means
1042	 * we need to try again.
1043	 */
1044	for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1045		/* Semi auto link training mode */
1046		regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1047		ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1048					       val == ML_TX_MAIN_LINK_OFF ||
1049					       val == ML_TX_NORMAL_MODE, 1000,
1050					       500 * 1000);
1051		if (ret) {
1052			*last_err_str = "Training complete polling failed";
1053		} else if (val == ML_TX_MAIN_LINK_OFF) {
1054			*last_err_str = "Link training failed, link is off";
1055			ret = -EIO;
1056			continue;
1057		}
1058
1059		break;
1060	}
1061
1062	/* If we saw quite a few retries, add a note about it */
1063	if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1064		DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1065
1066exit:
1067	/* Disable the PLL if we failed */
1068	if (ret)
1069		regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1070
1071	return ret;
1072}
1073
1074static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1075				       struct drm_bridge_state *old_bridge_state)
1076{
1077	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1078	struct drm_connector *connector;
1079	const char *last_err_str = "No supported DP rate";
1080	unsigned int valid_rates;
1081	int dp_rate_idx;
1082	unsigned int val;
1083	int ret = -EINVAL;
1084	int max_dp_lanes;
1085	unsigned int bpp;
1086
1087	connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1088							     bridge->encoder);
1089	if (!connector) {
1090		dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1091		return;
1092	}
1093
1094	max_dp_lanes = ti_sn_get_max_lanes(pdata);
1095	pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1096
1097	/* DSI_A lane config */
1098	val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1099	regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1100			   CHA_DSI_LANES_MASK, val);
1101
1102	regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1103	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1104			   pdata->ln_polrs << LN_POLRS_OFFSET);
1105
1106	/* set dsi clk frequency value */
1107	ti_sn_bridge_set_dsi_rate(pdata);
1108
1109	/*
1110	 * The SN65DSI86 only supports ASSR Display Authentication method and
1111	 * this method is enabled for eDP panels. An eDP panel must support this
1112	 * authentication method. We need to enable this method in the eDP panel
1113	 * at DisplayPort address 0x0010A prior to link training.
1114	 *
1115	 * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1116	 * we need to disable the scrambler.
1117	 */
1118	if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1119		drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1120				   DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1121
1122		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1123				   SCRAMBLE_DISABLE, 0);
1124	} else {
1125		regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1126				   SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1127	}
1128
1129	bpp = ti_sn_bridge_get_bpp(connector);
1130	/* Set the DP output format (18 bpp or 24 bpp) */
1131	val = bpp == 18 ? BPP_18_RGB : 0;
1132	regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1133
1134	/* DP lane config */
1135	val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1136	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1137			   val);
1138
1139	valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1140
1141	/* Train until we run out of rates */
1142	for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1143	     dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1144	     dp_rate_idx++) {
1145		if (!(valid_rates & BIT(dp_rate_idx)))
1146			continue;
1147
1148		ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1149		if (!ret)
1150			break;
1151	}
1152	if (ret) {
1153		DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1154		return;
1155	}
1156
1157	/* config video parameters */
1158	ti_sn_bridge_set_video_timings(pdata);
1159
1160	/* enable video stream */
1161	regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1162			   VSTREAM_ENABLE);
1163}
1164
1165static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1166					   struct drm_bridge_state *old_bridge_state)
1167{
1168	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1169
1170	pm_runtime_get_sync(pdata->dev);
1171
1172	if (!pdata->refclk)
1173		ti_sn65dsi86_enable_comms(pdata);
1174
1175	/* td7: min 100 us after enable before DSI data */
1176	usleep_range(100, 110);
1177}
1178
1179static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1180					     struct drm_bridge_state *old_bridge_state)
1181{
1182	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1183
1184	/* semi auto link training mode OFF */
1185	regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1186	/* Num lanes to 0 as per power sequencing in data sheet */
1187	regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1188	/* disable DP PLL */
1189	regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1190
1191	if (!pdata->refclk)
1192		ti_sn65dsi86_disable_comms(pdata);
1193
1194	pm_runtime_put_sync(pdata->dev);
1195}
1196
1197static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1198{
1199	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1200	int val = 0;
1201
1202	pm_runtime_get_sync(pdata->dev);
1203	regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1204	pm_runtime_put_autosuspend(pdata->dev);
1205
1206	return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1207					 : connector_status_disconnected;
1208}
1209
1210static const struct drm_edid *ti_sn_bridge_edid_read(struct drm_bridge *bridge,
1211						     struct drm_connector *connector)
1212{
1213	struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1214
1215	return drm_edid_read_ddc(connector, &pdata->aux.ddc);
1216}
1217
1218static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1219	.attach = ti_sn_bridge_attach,
1220	.detach = ti_sn_bridge_detach,
1221	.mode_valid = ti_sn_bridge_mode_valid,
1222	.edid_read = ti_sn_bridge_edid_read,
1223	.detect = ti_sn_bridge_detect,
1224	.atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1225	.atomic_enable = ti_sn_bridge_atomic_enable,
1226	.atomic_disable = ti_sn_bridge_atomic_disable,
1227	.atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1228	.atomic_reset = drm_atomic_helper_bridge_reset,
1229	.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1230	.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1231};
1232
1233static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1234				     struct device_node *np)
1235{
1236	u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1237	u32 lane_polarities[SN_MAX_DP_LANES] = { };
1238	struct device_node *endpoint;
1239	u8 ln_assign = 0;
1240	u8 ln_polrs = 0;
1241	int dp_lanes;
1242	int i;
1243
1244	/*
1245	 * Read config from the device tree about lane remapping and lane
1246	 * polarities.  These are optional and we assume identity map and
1247	 * normal polarity if nothing is specified.  It's OK to specify just
1248	 * data-lanes but not lane-polarities but not vice versa.
1249	 *
1250	 * Error checking is light (we just make sure we don't crash or
1251	 * buffer overrun) and we assume dts is well formed and specifying
1252	 * mappings that the hardware supports.
1253	 */
1254	endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1255	dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1256	if (dp_lanes > 0) {
1257		of_property_read_u32_array(endpoint, "data-lanes",
1258					   lane_assignments, dp_lanes);
1259		of_property_read_u32_array(endpoint, "lane-polarities",
1260					   lane_polarities, dp_lanes);
1261	} else {
1262		dp_lanes = SN_MAX_DP_LANES;
1263	}
1264	of_node_put(endpoint);
1265
1266	/*
1267	 * Convert into register format.  Loop over all lanes even if
1268	 * data-lanes had fewer elements so that we nicely initialize
1269	 * the LN_ASSIGN register.
1270	 */
1271	for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1272		ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1273		ln_polrs = ln_polrs << 1 | lane_polarities[i];
1274	}
1275
1276	/* Stash in our struct for when we power on */
1277	pdata->dp_lanes = dp_lanes;
1278	pdata->ln_assign = ln_assign;
1279	pdata->ln_polrs = ln_polrs;
1280}
1281
1282static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1283{
1284	struct device_node *np = pdata->dev->of_node;
1285
1286	pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1287
1288	if (!pdata->host_node) {
1289		DRM_ERROR("remote dsi host node not found\n");
1290		return -ENODEV;
1291	}
1292
1293	return 0;
1294}
1295
1296static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1297			      const struct auxiliary_device_id *id)
1298{
1299	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1300	struct device_node *np = pdata->dev->of_node;
1301	int ret;
1302
1303	pdata->next_bridge = devm_drm_of_get_bridge(&adev->dev, np, 1, 0);
1304	if (IS_ERR(pdata->next_bridge))
1305		return dev_err_probe(&adev->dev, PTR_ERR(pdata->next_bridge),
1306				     "failed to create panel bridge\n");
1307
1308	ti_sn_bridge_parse_lanes(pdata, np);
1309
1310	ret = ti_sn_bridge_parse_dsi_host(pdata);
1311	if (ret)
1312		return ret;
1313
1314	pdata->bridge.funcs = &ti_sn_bridge_funcs;
1315	pdata->bridge.of_node = np;
1316	pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1317			   ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1318
1319	if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1320		pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1321
1322	drm_bridge_add(&pdata->bridge);
1323
1324	ret = ti_sn_attach_host(adev, pdata);
1325	if (ret) {
1326		dev_err_probe(&adev->dev, ret, "failed to attach dsi host\n");
1327		goto err_remove_bridge;
1328	}
1329
1330	return 0;
1331
1332err_remove_bridge:
1333	drm_bridge_remove(&pdata->bridge);
1334	return ret;
1335}
1336
1337static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1338{
1339	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1340
1341	if (!pdata)
1342		return;
1343
1344	drm_bridge_remove(&pdata->bridge);
1345
1346	of_node_put(pdata->host_node);
1347}
1348
1349static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1350	{ .name = "ti_sn65dsi86.bridge", },
1351	{},
1352};
1353
1354static struct auxiliary_driver ti_sn_bridge_driver = {
1355	.name = "bridge",
1356	.probe = ti_sn_bridge_probe,
1357	.remove = ti_sn_bridge_remove,
1358	.id_table = ti_sn_bridge_id_table,
1359};
1360
1361/* -----------------------------------------------------------------------------
1362 * PWM Controller
1363 */
1364#if defined(CONFIG_PWM)
1365static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1366{
1367	return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1368}
1369
1370static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1371{
1372	atomic_set(&pdata->pwm_pin_busy, 0);
1373}
1374
1375static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1376{
1377	return pwmchip_get_drvdata(chip);
1378}
1379
1380static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1381{
1382	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1383
1384	return ti_sn_pwm_pin_request(pdata);
1385}
1386
1387static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1388{
1389	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1390
1391	ti_sn_pwm_pin_release(pdata);
1392}
1393
1394/*
1395 * Limitations:
1396 * - The PWM signal is not driven when the chip is powered down, or in its
1397 *   reset state and the driver does not implement the "suspend state"
1398 *   described in the documentation. In order to save power, state->enabled is
1399 *   interpreted as denoting if the signal is expected to be valid, and is used
1400 *   to determine if the chip needs to be kept powered.
1401 * - Changing both period and duty_cycle is not done atomically, neither is the
1402 *   multi-byte register updates, so the output might briefly be undefined
1403 *   during update.
1404 */
1405static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1406			   const struct pwm_state *state)
1407{
1408	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1409	unsigned int pwm_en_inv;
1410	unsigned int backlight;
1411	unsigned int pre_div;
1412	unsigned int scale;
1413	u64 period_max;
1414	u64 period;
1415	int ret;
1416
1417	if (!pdata->pwm_enabled) {
1418		ret = pm_runtime_resume_and_get(pwmchip_parent(chip));
1419		if (ret < 0)
1420			return ret;
1421	}
1422
1423	if (state->enabled) {
1424		if (!pdata->pwm_enabled) {
1425			/*
1426			 * The chip might have been powered down while we
1427			 * didn't hold a PM runtime reference, so mux in the
1428			 * PWM function on the GPIO pin again.
1429			 */
1430			ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1431						 SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1432						 SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1433			if (ret) {
1434				dev_err(pwmchip_parent(chip), "failed to mux in PWM function\n");
1435				goto out;
1436			}
1437		}
1438
1439		/*
1440		 * Per the datasheet the PWM frequency is given by:
1441		 *
1442		 *                          REFCLK_FREQ
1443		 *   PWM_FREQ = -----------------------------------
1444		 *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1445		 *
1446		 * However, after careful review the author is convinced that
1447		 * the documentation has lost some parenthesis around
1448		 * "BACKLIGHT_SCALE + 1".
1449		 *
1450		 * With the period T_pwm = 1/PWM_FREQ this can be written:
1451		 *
1452		 *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1453		 *
1454		 * In order to keep BACKLIGHT_SCALE within its 16 bits,
1455		 * PWM_PRE_DIV must be:
1456		 *
1457		 *                     T_pwm * REFCLK_FREQ
1458		 *   PWM_PRE_DIV >= -------------------------
1459		 *                   BACKLIGHT_SCALE_MAX + 1
1460		 *
1461		 * To simplify the search and to favour higher resolution of
1462		 * the duty cycle over accuracy of the period, the lowest
1463		 * possible PWM_PRE_DIV is used. Finally the scale is
1464		 * calculated as:
1465		 *
1466		 *                      T_pwm * REFCLK_FREQ
1467		 *   BACKLIGHT_SCALE = ---------------------- - 1
1468		 *                          PWM_PRE_DIV
1469		 *
1470		 * Here T_pwm is represented in seconds, so appropriate scaling
1471		 * to nanoseconds is necessary.
1472		 */
1473
1474		/* Minimum T_pwm is 1 / REFCLK_FREQ */
1475		if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1476			ret = -EINVAL;
1477			goto out;
1478		}
1479
1480		/*
1481		 * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1482		 * Limit period to this to avoid overflows
1483		 */
1484		period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1485				     pdata->pwm_refclk_freq);
1486		period = min(state->period, period_max);
1487
1488		pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1489					     (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1490		scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1491
1492		/*
1493		 * The documentation has the duty ratio given as:
1494		 *
1495		 *     duty          BACKLIGHT
1496		 *   ------- = ---------------------
1497		 *    period    BACKLIGHT_SCALE + 1
1498		 *
1499		 * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1500		 * to definition above and adjusting for nanosecond
1501		 * representation of duty cycle gives us:
1502		 */
1503		backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1504				      (u64)NSEC_PER_SEC * pre_div);
1505		if (backlight > scale)
1506			backlight = scale;
1507
1508		ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1509		if (ret) {
1510			dev_err(pwmchip_parent(chip), "failed to update PWM_PRE_DIV\n");
1511			goto out;
1512		}
1513
1514		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1515		ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1516	}
1517
1518	pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1519		     FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1520	ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1521	if (ret) {
1522		dev_err(pwmchip_parent(chip), "failed to update PWM_EN/PWM_INV\n");
1523		goto out;
1524	}
1525
1526	pdata->pwm_enabled = state->enabled;
1527out:
1528
1529	if (!pdata->pwm_enabled)
1530		pm_runtime_put_sync(pwmchip_parent(chip));
1531
1532	return ret;
1533}
1534
1535static int ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1536			       struct pwm_state *state)
1537{
1538	struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1539	unsigned int pwm_en_inv;
1540	unsigned int pre_div;
1541	u16 backlight;
1542	u16 scale;
1543	int ret;
1544
1545	ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1546	if (ret)
1547		return ret;
1548
1549	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1550	if (ret)
1551		return ret;
1552
1553	ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1554	if (ret)
1555		return ret;
1556
1557	ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1558	if (ret)
1559		return ret;
1560
1561	state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1562	if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1563		state->polarity = PWM_POLARITY_INVERSED;
1564	else
1565		state->polarity = PWM_POLARITY_NORMAL;
1566
1567	state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1568					 pdata->pwm_refclk_freq);
1569	state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1570					     pdata->pwm_refclk_freq);
1571
1572	if (state->duty_cycle > state->period)
1573		state->duty_cycle = state->period;
1574
1575	return 0;
1576}
1577
1578static const struct pwm_ops ti_sn_pwm_ops = {
1579	.request = ti_sn_pwm_request,
1580	.free = ti_sn_pwm_free,
1581	.apply = ti_sn_pwm_apply,
1582	.get_state = ti_sn_pwm_get_state,
1583};
1584
1585static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1586			   const struct auxiliary_device_id *id)
1587{
1588	struct pwm_chip *chip;
1589	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1590
1591	pdata->pchip = chip = devm_pwmchip_alloc(&adev->dev, 1, 0);
1592	if (IS_ERR(chip))
1593		return PTR_ERR(chip);
1594
1595	pwmchip_set_drvdata(chip, pdata);
1596
1597	chip->ops = &ti_sn_pwm_ops;
1598	chip->of_xlate = of_pwm_single_xlate;
1599
1600	devm_pm_runtime_enable(&adev->dev);
1601
1602	return pwmchip_add(chip);
1603}
1604
1605static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1606{
1607	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1608
1609	pwmchip_remove(pdata->pchip);
1610
1611	if (pdata->pwm_enabled)
1612		pm_runtime_put_sync(&adev->dev);
1613}
1614
1615static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1616	{ .name = "ti_sn65dsi86.pwm", },
1617	{},
1618};
1619
1620static struct auxiliary_driver ti_sn_pwm_driver = {
1621	.name = "pwm",
1622	.probe = ti_sn_pwm_probe,
1623	.remove = ti_sn_pwm_remove,
1624	.id_table = ti_sn_pwm_id_table,
1625};
1626
1627static int __init ti_sn_pwm_register(void)
1628{
1629	return auxiliary_driver_register(&ti_sn_pwm_driver);
1630}
1631
1632static void ti_sn_pwm_unregister(void)
1633{
1634	auxiliary_driver_unregister(&ti_sn_pwm_driver);
1635}
1636
1637#else
1638static inline int __maybe_unused ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1639static inline void __maybe_unused ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1640
1641static inline int ti_sn_pwm_register(void) { return 0; }
1642static inline void ti_sn_pwm_unregister(void) {}
1643#endif
1644
1645/* -----------------------------------------------------------------------------
1646 * GPIO Controller
1647 */
1648#if defined(CONFIG_OF_GPIO)
1649
1650static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1651				 const struct of_phandle_args *gpiospec,
1652				 u32 *flags)
1653{
1654	if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1655		return -EINVAL;
1656
1657	if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1658		return -EINVAL;
1659
1660	if (flags)
1661		*flags = gpiospec->args[1];
1662
1663	return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1664}
1665
1666static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1667					   unsigned int offset)
1668{
1669	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1670
1671	/*
1672	 * We already have to keep track of the direction because we use
1673	 * that to figure out whether we've powered the device.  We can
1674	 * just return that rather than (maybe) powering up the device
1675	 * to ask its direction.
1676	 */
1677	return test_bit(offset, pdata->gchip_output) ?
1678		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1679}
1680
1681static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1682{
1683	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1684	unsigned int val;
1685	int ret;
1686
1687	/*
1688	 * When the pin is an input we don't forcibly keep the bridge
1689	 * powered--we just power it on to read the pin.  NOTE: part of
1690	 * the reason this works is that the bridge defaults (when
1691	 * powered back on) to all 4 GPIOs being configured as GPIO input.
1692	 * Also note that if something else is keeping the chip powered the
1693	 * pm_runtime functions are lightweight increments of a refcount.
1694	 */
1695	pm_runtime_get_sync(pdata->dev);
1696	ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1697	pm_runtime_put_autosuspend(pdata->dev);
1698
1699	if (ret)
1700		return ret;
1701
1702	return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1703}
1704
1705static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1706				  int val)
1707{
1708	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1709	int ret;
1710
1711	if (!test_bit(offset, pdata->gchip_output)) {
1712		dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1713		return;
1714	}
1715
1716	val &= 1;
1717	ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1718				 BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1719				 val << (SN_GPIO_OUTPUT_SHIFT + offset));
1720	if (ret)
1721		dev_warn(pdata->dev,
1722			 "Failed to set bridge GPIO %u: %d\n", offset, ret);
1723}
1724
1725static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1726					     unsigned int offset)
1727{
1728	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1729	int shift = offset * 2;
1730	int ret;
1731
1732	if (!test_and_clear_bit(offset, pdata->gchip_output))
1733		return 0;
1734
1735	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1736				 SN_GPIO_MUX_MASK << shift,
1737				 SN_GPIO_MUX_INPUT << shift);
1738	if (ret) {
1739		set_bit(offset, pdata->gchip_output);
1740		return ret;
1741	}
1742
1743	/*
1744	 * NOTE: if nobody else is powering the device this may fully power
1745	 * it off and when it comes back it will have lost all state, but
1746	 * that's OK because the default is input and we're now an input.
1747	 */
1748	pm_runtime_put_autosuspend(pdata->dev);
1749
1750	return 0;
1751}
1752
1753static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1754					      unsigned int offset, int val)
1755{
1756	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1757	int shift = offset * 2;
1758	int ret;
1759
1760	if (test_and_set_bit(offset, pdata->gchip_output))
1761		return 0;
1762
1763	pm_runtime_get_sync(pdata->dev);
1764
1765	/* Set value first to avoid glitching */
1766	ti_sn_bridge_gpio_set(chip, offset, val);
1767
1768	/* Set direction */
1769	ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1770				 SN_GPIO_MUX_MASK << shift,
1771				 SN_GPIO_MUX_OUTPUT << shift);
1772	if (ret) {
1773		clear_bit(offset, pdata->gchip_output);
1774		pm_runtime_put_autosuspend(pdata->dev);
1775	}
1776
1777	return ret;
1778}
1779
1780static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1781{
1782	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1783
1784	if (offset == SN_PWM_GPIO_IDX)
1785		return ti_sn_pwm_pin_request(pdata);
1786
1787	return 0;
1788}
1789
1790static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1791{
1792	struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1793
1794	/* We won't keep pm_runtime if we're input, so switch there on free */
1795	ti_sn_bridge_gpio_direction_input(chip, offset);
1796
1797	if (offset == SN_PWM_GPIO_IDX)
1798		ti_sn_pwm_pin_release(pdata);
1799}
1800
1801static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1802	"GPIO1", "GPIO2", "GPIO3", "GPIO4"
1803};
1804
1805static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1806			    const struct auxiliary_device_id *id)
1807{
1808	struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1809	int ret;
1810
1811	/* Only init if someone is going to use us as a GPIO controller */
1812	if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1813		return 0;
1814
1815	pdata->gchip.label = dev_name(pdata->dev);
1816	pdata->gchip.parent = pdata->dev;
1817	pdata->gchip.owner = THIS_MODULE;
1818	pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1819	pdata->gchip.of_gpio_n_cells = 2;
1820	pdata->gchip.request = ti_sn_bridge_gpio_request;
1821	pdata->gchip.free = ti_sn_bridge_gpio_free;
1822	pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1823	pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1824	pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1825	pdata->gchip.get = ti_sn_bridge_gpio_get;
1826	pdata->gchip.set = ti_sn_bridge_gpio_set;
1827	pdata->gchip.can_sleep = true;
1828	pdata->gchip.names = ti_sn_bridge_gpio_names;
1829	pdata->gchip.ngpio = SN_NUM_GPIOS;
1830	pdata->gchip.base = -1;
1831	ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1832	if (ret)
1833		dev_err(pdata->dev, "can't add gpio chip\n");
1834
1835	return ret;
1836}
1837
1838static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1839	{ .name = "ti_sn65dsi86.gpio", },
1840	{},
1841};
1842
1843MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1844
1845static struct auxiliary_driver ti_sn_gpio_driver = {
1846	.name = "gpio",
1847	.probe = ti_sn_gpio_probe,
1848	.id_table = ti_sn_gpio_id_table,
1849};
1850
1851static int __init ti_sn_gpio_register(void)
1852{
1853	return auxiliary_driver_register(&ti_sn_gpio_driver);
1854}
1855
1856static void ti_sn_gpio_unregister(void)
1857{
1858	auxiliary_driver_unregister(&ti_sn_gpio_driver);
1859}
1860
1861#else
1862
1863static inline int ti_sn_gpio_register(void) { return 0; }
1864static inline void ti_sn_gpio_unregister(void) {}
1865
1866#endif
1867
1868/* -----------------------------------------------------------------------------
1869 * Probe & Remove
1870 */
1871
1872static void ti_sn65dsi86_runtime_disable(void *data)
1873{
1874	pm_runtime_dont_use_autosuspend(data);
1875	pm_runtime_disable(data);
1876}
1877
1878static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1879{
1880	unsigned int i;
1881	const char * const ti_sn_bridge_supply_names[] = {
1882		"vcca", "vcc", "vccio", "vpll",
1883	};
1884
1885	for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1886		pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1887
1888	return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1889				       pdata->supplies);
1890}
1891
1892static int ti_sn65dsi86_probe(struct i2c_client *client)
1893{
1894	struct device *dev = &client->dev;
1895	struct ti_sn65dsi86 *pdata;
1896	int ret;
1897
1898	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1899		DRM_ERROR("device doesn't support I2C\n");
1900		return -ENODEV;
1901	}
1902
1903	pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1904	if (!pdata)
1905		return -ENOMEM;
1906	dev_set_drvdata(dev, pdata);
1907	pdata->dev = dev;
1908
1909	mutex_init(&pdata->comms_mutex);
1910
1911	pdata->regmap = devm_regmap_init_i2c(client,
1912					     &ti_sn65dsi86_regmap_config);
1913	if (IS_ERR(pdata->regmap))
1914		return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1915				     "regmap i2c init failed\n");
1916
1917	pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1918						     GPIOD_OUT_LOW);
1919	if (IS_ERR(pdata->enable_gpio))
1920		return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1921				     "failed to get enable gpio from DT\n");
1922
1923	ret = ti_sn65dsi86_parse_regulators(pdata);
1924	if (ret)
1925		return dev_err_probe(dev, ret, "failed to parse regulators\n");
1926
1927	pdata->refclk = devm_clk_get_optional(dev, "refclk");
1928	if (IS_ERR(pdata->refclk))
1929		return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1930				     "failed to get reference clock\n");
1931
1932	pm_runtime_enable(dev);
1933	pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1934	pm_runtime_use_autosuspend(pdata->dev);
1935	ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1936	if (ret)
1937		return ret;
1938
1939	ti_sn65dsi86_debugfs_init(pdata);
1940
1941	/*
1942	 * Break ourselves up into a collection of aux devices. The only real
1943	 * motiviation here is to solve the chicken-and-egg problem of probe
1944	 * ordering. The bridge wants the panel to be there when it probes.
1945	 * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1946	 * when it probes. The panel and maybe backlight might want the DDC
1947	 * bus or the pwm_chip. Having sub-devices allows the some sub devices
1948	 * to finish probing even if others return -EPROBE_DEFER and gets us
1949	 * around the problems.
1950	 */
1951
1952	if (IS_ENABLED(CONFIG_OF_GPIO)) {
1953		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1954		if (ret)
1955			return ret;
1956	}
1957
1958	if (IS_ENABLED(CONFIG_PWM)) {
1959		ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1960		if (ret)
1961			return ret;
1962	}
1963
1964	/*
1965	 * NOTE: At the end of the AUX channel probe we'll add the aux device
1966	 * for the bridge. This is because the bridge can't be used until the
1967	 * AUX channel is there and this is a very simple solution to the
1968	 * dependency problem.
1969	 */
1970	return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1971}
1972
1973static struct i2c_device_id ti_sn65dsi86_id[] = {
1974	{ "ti,sn65dsi86", 0},
1975	{},
1976};
1977MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1978
1979static const struct of_device_id ti_sn65dsi86_match_table[] = {
1980	{.compatible = "ti,sn65dsi86"},
1981	{},
1982};
1983MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1984
1985static struct i2c_driver ti_sn65dsi86_driver = {
1986	.driver = {
1987		.name = "ti_sn65dsi86",
1988		.of_match_table = ti_sn65dsi86_match_table,
1989		.pm = &ti_sn65dsi86_pm_ops,
1990	},
1991	.probe = ti_sn65dsi86_probe,
1992	.id_table = ti_sn65dsi86_id,
1993};
1994
1995static int __init ti_sn65dsi86_init(void)
1996{
1997	int ret;
1998
1999	ret = i2c_add_driver(&ti_sn65dsi86_driver);
2000	if (ret)
2001		return ret;
2002
2003	ret = ti_sn_gpio_register();
2004	if (ret)
2005		goto err_main_was_registered;
2006
2007	ret = ti_sn_pwm_register();
2008	if (ret)
2009		goto err_gpio_was_registered;
2010
2011	ret = auxiliary_driver_register(&ti_sn_aux_driver);
2012	if (ret)
2013		goto err_pwm_was_registered;
2014
2015	ret = auxiliary_driver_register(&ti_sn_bridge_driver);
2016	if (ret)
2017		goto err_aux_was_registered;
2018
2019	return 0;
2020
2021err_aux_was_registered:
2022	auxiliary_driver_unregister(&ti_sn_aux_driver);
2023err_pwm_was_registered:
2024	ti_sn_pwm_unregister();
2025err_gpio_was_registered:
2026	ti_sn_gpio_unregister();
2027err_main_was_registered:
2028	i2c_del_driver(&ti_sn65dsi86_driver);
2029
2030	return ret;
2031}
2032module_init(ti_sn65dsi86_init);
2033
2034static void __exit ti_sn65dsi86_exit(void)
2035{
2036	auxiliary_driver_unregister(&ti_sn_bridge_driver);
2037	auxiliary_driver_unregister(&ti_sn_aux_driver);
2038	ti_sn_pwm_unregister();
2039	ti_sn_gpio_unregister();
2040	i2c_del_driver(&ti_sn65dsi86_driver);
2041}
2042module_exit(ti_sn65dsi86_exit);
2043
2044MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2045MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2046MODULE_LICENSE("GPL v2");