Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * drivers/dma/imx-sdma.c
   3 *
   4 * This file contains a driver for the Freescale Smart DMA engine
   5 *
   6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
   7 *
   8 * Based on code from Freescale:
   9 *
  10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  11 *
  12 * The code contained herein is licensed under the GNU General Public
  13 * License. You may obtain a copy of the GNU General Public License
  14 * Version 2 or later at the following locations:
  15 *
  16 * http://www.opensource.org/licenses/gpl-license.html
  17 * http://www.gnu.org/copyleft/gpl.html
  18 */
  19
  20#include <linux/init.h>
 
 
  21#include <linux/types.h>
 
 
  22#include <linux/mm.h>
  23#include <linux/interrupt.h>
  24#include <linux/clk.h>
  25#include <linux/wait.h>
  26#include <linux/sched.h>
  27#include <linux/semaphore.h>
  28#include <linux/spinlock.h>
  29#include <linux/device.h>
 
  30#include <linux/dma-mapping.h>
  31#include <linux/firmware.h>
  32#include <linux/slab.h>
  33#include <linux/platform_device.h>
  34#include <linux/dmaengine.h>
  35#include <linux/of.h>
  36#include <linux/of_device.h>
 
 
  37
  38#include <asm/irq.h>
  39#include <mach/sdma.h>
  40#include <mach/dma.h>
  41#include <mach/hardware.h>
 
 
 
 
  42
  43/* SDMA registers */
  44#define SDMA_H_C0PTR		0x000
  45#define SDMA_H_INTR		0x004
  46#define SDMA_H_STATSTOP		0x008
  47#define SDMA_H_START		0x00c
  48#define SDMA_H_EVTOVR		0x010
  49#define SDMA_H_DSPOVR		0x014
  50#define SDMA_H_HOSTOVR		0x018
  51#define SDMA_H_EVTPEND		0x01c
  52#define SDMA_H_DSPENBL		0x020
  53#define SDMA_H_RESET		0x024
  54#define SDMA_H_EVTERR		0x028
  55#define SDMA_H_INTRMSK		0x02c
  56#define SDMA_H_PSW		0x030
  57#define SDMA_H_EVTERRDBG	0x034
  58#define SDMA_H_CONFIG		0x038
  59#define SDMA_ONCE_ENB		0x040
  60#define SDMA_ONCE_DATA		0x044
  61#define SDMA_ONCE_INSTR		0x048
  62#define SDMA_ONCE_STAT		0x04c
  63#define SDMA_ONCE_CMD		0x050
  64#define SDMA_EVT_MIRROR		0x054
  65#define SDMA_ILLINSTADDR	0x058
  66#define SDMA_CHN0ADDR		0x05c
  67#define SDMA_ONCE_RTB		0x060
  68#define SDMA_XTRIG_CONF1	0x070
  69#define SDMA_XTRIG_CONF2	0x074
  70#define SDMA_CHNENBL0_IMX35	0x200
  71#define SDMA_CHNENBL0_IMX31	0x080
  72#define SDMA_CHNPRI_0		0x100
 
  73
  74/*
  75 * Buffer descriptor status values.
  76 */
  77#define BD_DONE  0x01
  78#define BD_WRAP  0x02
  79#define BD_CONT  0x04
  80#define BD_INTR  0x08
  81#define BD_RROR  0x10
  82#define BD_LAST  0x20
  83#define BD_EXTD  0x80
  84
  85/*
  86 * Data Node descriptor status values.
  87 */
  88#define DND_END_OF_FRAME  0x80
  89#define DND_END_OF_XFER   0x40
  90#define DND_DONE          0x20
  91#define DND_UNUSED        0x01
  92
  93/*
  94 * IPCV2 descriptor status values.
  95 */
  96#define BD_IPCV2_END_OF_FRAME  0x40
  97
  98#define IPCV2_MAX_NODES        50
  99/*
 100 * Error bit set in the CCB status field by the SDMA,
 101 * in setbd routine, in case of a transfer error
 102 */
 103#define DATA_ERROR  0x10000000
 104
 105/*
 106 * Buffer descriptor commands.
 107 */
 108#define C0_ADDR             0x01
 109#define C0_LOAD             0x02
 110#define C0_DUMP             0x03
 111#define C0_SETCTX           0x07
 112#define C0_GETCTX           0x03
 113#define C0_SETDM            0x01
 114#define C0_SETPM            0x04
 115#define C0_GETDM            0x02
 116#define C0_GETPM            0x08
 117/*
 118 * Change endianness indicator in the BD command field
 119 */
 120#define CHANGE_ENDIANNESS   0x80
 121
 122/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 123 * Mode/Count of data node descriptors - IPCv2
 124 */
 125struct sdma_mode_count {
 
 126	u32 count   : 16; /* size of the buffer pointed by this BD */
 127	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
 128	u32 command :  8; /* command mostlky used for channel 0 */
 129};
 130
 131/*
 132 * Buffer descriptor
 133 */
 134struct sdma_buffer_descriptor {
 135	struct sdma_mode_count  mode;
 136	u32 buffer_addr;	/* address of the buffer described */
 137	u32 ext_buffer_addr;	/* extended buffer address */
 138} __attribute__ ((packed));
 139
 140/**
 141 * struct sdma_channel_control - Channel control Block
 142 *
 143 * @current_bd_ptr	current buffer descriptor processed
 144 * @base_bd_ptr		first element of buffer descriptor array
 145 * @unused		padding. The SDMA engine expects an array of 128 byte
 146 *			control blocks
 147 */
 148struct sdma_channel_control {
 149	u32 current_bd_ptr;
 150	u32 base_bd_ptr;
 151	u32 unused[2];
 152} __attribute__ ((packed));
 153
 154/**
 155 * struct sdma_state_registers - SDMA context for a channel
 156 *
 157 * @pc:		program counter
 
 158 * @t:		test bit: status of arithmetic & test instruction
 159 * @rpc:	return program counter
 
 160 * @sf:		source fault while loading data
 161 * @spc:	loop start program counter
 
 162 * @df:		destination fault while storing data
 163 * @epc:	loop end program counter
 164 * @lm:		loop mode
 165 */
 166struct sdma_state_registers {
 167	u32 pc     :14;
 168	u32 unused1: 1;
 169	u32 t      : 1;
 170	u32 rpc    :14;
 171	u32 unused0: 1;
 172	u32 sf     : 1;
 173	u32 spc    :14;
 174	u32 unused2: 1;
 175	u32 df     : 1;
 176	u32 epc    :14;
 177	u32 lm     : 2;
 178} __attribute__ ((packed));
 179
 180/**
 181 * struct sdma_context_data - sdma context specific to a channel
 182 *
 183 * @channel_state:	channel state bits
 184 * @gReg:		general registers
 185 * @mda:		burst dma destination address register
 186 * @msa:		burst dma source address register
 187 * @ms:			burst dma status register
 188 * @md:			burst dma data register
 189 * @pda:		peripheral dma destination address register
 190 * @psa:		peripheral dma source address register
 191 * @ps:			peripheral dma status register
 192 * @pd:			peripheral dma data register
 193 * @ca:			CRC polynomial register
 194 * @cs:			CRC accumulator register
 195 * @dda:		dedicated core destination address register
 196 * @dsa:		dedicated core source address register
 197 * @ds:			dedicated core status register
 198 * @dd:			dedicated core data register
 
 
 
 
 
 
 
 
 199 */
 200struct sdma_context_data {
 201	struct sdma_state_registers  channel_state;
 202	u32  gReg[8];
 203	u32  mda;
 204	u32  msa;
 205	u32  ms;
 206	u32  md;
 207	u32  pda;
 208	u32  psa;
 209	u32  ps;
 210	u32  pd;
 211	u32  ca;
 212	u32  cs;
 213	u32  dda;
 214	u32  dsa;
 215	u32  ds;
 216	u32  dd;
 217	u32  scratch0;
 218	u32  scratch1;
 219	u32  scratch2;
 220	u32  scratch3;
 221	u32  scratch4;
 222	u32  scratch5;
 223	u32  scratch6;
 224	u32  scratch7;
 225} __attribute__ ((packed));
 226
 227#define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
 228
 229struct sdma_engine;
 230
 231/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232 * struct sdma_channel - housekeeping for a SDMA channel
 233 *
 234 * @sdma		pointer to the SDMA engine for this channel
 235 * @channel		the channel number, matches dmaengine chan_id + 1
 236 * @direction		transfer type. Needed for setting SDMA script
 237 * @peripheral_type	Peripheral type. Needed for setting SDMA script
 238 * @event_id0		aka dma request line
 239 * @event_id1		for channels that use 2 events
 240 * @word_size		peripheral access size
 241 * @buf_tail		ID of the buffer that was processed
 242 * @done		channel completion
 243 * @num_bd		max NUM_BD. number of descriptors currently handling
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244 */
 245struct sdma_channel {
 
 
 246	struct sdma_engine		*sdma;
 247	unsigned int			channel;
 248	enum dma_data_direction		direction;
 
 249	enum sdma_peripheral_type	peripheral_type;
 250	unsigned int			event_id0;
 251	unsigned int			event_id1;
 252	enum dma_slave_buswidth		word_size;
 253	unsigned int			buf_tail;
 254	struct completion		done;
 255	unsigned int			num_bd;
 256	struct sdma_buffer_descriptor	*bd;
 257	dma_addr_t			bd_phys;
 258	unsigned int			pc_from_device, pc_to_device;
 
 
 259	unsigned long			flags;
 260	dma_addr_t			per_address;
 261	u32				event_mask0, event_mask1;
 262	u32				watermark_level;
 263	u32				shp_addr, per_addr;
 264	struct dma_chan			chan;
 265	spinlock_t			lock;
 266	struct dma_async_tx_descriptor	desc;
 267	dma_cookie_t			last_completed;
 268	enum dma_status			status;
 
 
 
 
 
 
 
 
 
 
 269};
 270
 271#define IMX_DMA_SG_LOOP		(1 << 0)
 272
 273#define MAX_DMA_CHANNELS 32
 274#define MXC_SDMA_DEFAULT_PRIORITY 1
 275#define MXC_SDMA_MIN_PRIORITY 1
 276#define MXC_SDMA_MAX_PRIORITY 7
 277
 278#define SDMA_FIRMWARE_MAGIC 0x414d4453
 279
 280/**
 281 * struct sdma_firmware_header - Layout of the firmware image
 282 *
 283 * @magic		"SDMA"
 284 * @version_major	increased whenever layout of struct sdma_script_start_addrs
 285 *			changes.
 286 * @version_minor	firmware minor version (for binary compatible changes)
 287 * @script_addrs_start	offset of struct sdma_script_start_addrs in this image
 288 * @num_script_addrs	Number of script addresses in this image
 289 * @ram_code_start	offset of SDMA ram image in this firmware image
 290 * @ram_code_size	size of SDMA ram image
 291 * @script_addrs	Stores the start address of the SDMA scripts
 292 *			(in SDMA memory space)
 293 */
 294struct sdma_firmware_header {
 295	u32	magic;
 296	u32	version_major;
 297	u32	version_minor;
 298	u32	script_addrs_start;
 299	u32	num_script_addrs;
 300	u32	ram_code_start;
 301	u32	ram_code_size;
 302};
 303
 304enum sdma_devtype {
 305	IMX31_SDMA,	/* runs on i.mx31 */
 306	IMX35_SDMA,	/* runs on i.mx35 and later */
 
 
 
 
 
 
 
 
 
 307};
 308
 309struct sdma_engine {
 310	struct device			*dev;
 311	struct device_dma_parameters	dma_parms;
 312	struct sdma_channel		channel[MAX_DMA_CHANNELS];
 313	struct sdma_channel_control	*channel_control;
 314	void __iomem			*regs;
 315	enum sdma_devtype		devtype;
 316	unsigned int			num_events;
 317	struct sdma_context_data	*context;
 318	dma_addr_t			context_phys;
 319	struct dma_device		dma_device;
 320	struct clk			*clk;
 
 
 
 321	struct sdma_script_start_addrs	*script_addrs;
 
 
 
 
 
 
 
 
 
 
 322};
 323
 324static struct platform_device_id sdma_devtypes[] = {
 325	{
 326		.name = "imx31-sdma",
 327		.driver_data = IMX31_SDMA,
 328	}, {
 329		.name = "imx35-sdma",
 330		.driver_data = IMX35_SDMA,
 331	}, {
 332		/* sentinel */
 333	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334};
 335MODULE_DEVICE_TABLE(platform, sdma_devtypes);
 336
 337static const struct of_device_id sdma_dt_ids[] = {
 338	{ .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
 339	{ .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
 
 
 
 
 
 
 
 340	{ /* sentinel */ }
 341};
 342MODULE_DEVICE_TABLE(of, sdma_dt_ids);
 343
 344#define SDMA_H_CONFIG_DSPDMA	(1 << 12) /* indicates if the DSPDMA is used */
 345#define SDMA_H_CONFIG_RTD_PINS	(1 << 11) /* indicates if Real-Time Debug pins are enabled */
 346#define SDMA_H_CONFIG_ACR	(1 << 4)  /* indicates if AHB freq /core freq = 2 or 1 */
 347#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
 348
 349static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
 350{
 351	u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
 352						      SDMA_CHNENBL0_IMX35);
 353	return chnenbl0 + event * 4;
 354}
 355
 356static int sdma_config_ownership(struct sdma_channel *sdmac,
 357		bool event_override, bool mcu_override, bool dsp_override)
 358{
 359	struct sdma_engine *sdma = sdmac->sdma;
 360	int channel = sdmac->channel;
 361	u32 evt, mcu, dsp;
 362
 363	if (event_override && mcu_override && dsp_override)
 364		return -EINVAL;
 365
 366	evt = __raw_readl(sdma->regs + SDMA_H_EVTOVR);
 367	mcu = __raw_readl(sdma->regs + SDMA_H_HOSTOVR);
 368	dsp = __raw_readl(sdma->regs + SDMA_H_DSPOVR);
 369
 370	if (dsp_override)
 371		dsp &= ~(1 << channel);
 372	else
 373		dsp |= (1 << channel);
 374
 375	if (event_override)
 376		evt &= ~(1 << channel);
 377	else
 378		evt |= (1 << channel);
 379
 380	if (mcu_override)
 381		mcu &= ~(1 << channel);
 382	else
 383		mcu |= (1 << channel);
 384
 385	__raw_writel(evt, sdma->regs + SDMA_H_EVTOVR);
 386	__raw_writel(mcu, sdma->regs + SDMA_H_HOSTOVR);
 387	__raw_writel(dsp, sdma->regs + SDMA_H_DSPOVR);
 388
 389	return 0;
 390}
 391
 
 
 
 
 
 
 
 
 
 
 392/*
 393 * sdma_run_channel - run a channel and wait till it's done
 394 */
 395static int sdma_run_channel(struct sdma_channel *sdmac)
 396{
 397	struct sdma_engine *sdma = sdmac->sdma;
 398	int channel = sdmac->channel;
 399	int ret;
 
 400
 401	init_completion(&sdmac->done);
 402
 403	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
 
 
 
 404
 405	ret = wait_for_completion_timeout(&sdmac->done, HZ);
 
 
 
 
 
 406
 407	return ret ? 0 : -ETIMEDOUT;
 408}
 409
 410static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
 411		u32 address)
 412{
 413	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
 414	void *buf_virt;
 415	dma_addr_t buf_phys;
 416	int ret;
 
 417
 418	buf_virt = dma_alloc_coherent(NULL,
 419			size,
 420			&buf_phys, GFP_KERNEL);
 421	if (!buf_virt)
 422		return -ENOMEM;
 423
 
 
 424	bd0->mode.command = C0_SETPM;
 425	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
 426	bd0->mode.count = size / 2;
 427	bd0->buffer_addr = buf_phys;
 428	bd0->ext_buffer_addr = address;
 429
 430	memcpy(buf_virt, buf, size);
 431
 432	ret = sdma_run_channel(&sdma->channel[0]);
 
 
 433
 434	dma_free_coherent(NULL, size, buf_virt, buf_phys);
 435
 436	return ret;
 437}
 438
 439static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
 440{
 441	struct sdma_engine *sdma = sdmac->sdma;
 442	int channel = sdmac->channel;
 443	u32 val;
 444	u32 chnenbl = chnenbl_ofs(sdma, event);
 445
 446	val = __raw_readl(sdma->regs + chnenbl);
 447	val |= (1 << channel);
 448	__raw_writel(val, sdma->regs + chnenbl);
 
 
 
 
 
 
 
 
 449}
 450
 451static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
 452{
 453	struct sdma_engine *sdma = sdmac->sdma;
 454	int channel = sdmac->channel;
 455	u32 chnenbl = chnenbl_ofs(sdma, event);
 456	u32 val;
 
 
 
 
 
 457
 458	val = __raw_readl(sdma->regs + chnenbl);
 459	val &= ~(1 << channel);
 460	__raw_writel(val, sdma->regs + chnenbl);
 461}
 462
 463static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464{
 465	struct sdma_buffer_descriptor *bd;
 
 
 466
 467	/*
 468	 * loop mode. Iterate over descriptors, re-setup them and
 469	 * call callback function.
 470	 */
 471	while (1) {
 472		bd = &sdmac->bd[sdmac->buf_tail];
 
 
 473
 474		if (bd->mode.status & BD_DONE)
 475			break;
 476
 477		if (bd->mode.status & BD_RROR)
 
 478			sdmac->status = DMA_ERROR;
 479		else
 480			sdmac->status = DMA_IN_PROGRESS;
 
 
 
 
 
 
 
 
 
 
 481
 
 
 
 
 
 
 
 
 
 
 
 482		bd->mode.status |= BD_DONE;
 483		sdmac->buf_tail++;
 484		sdmac->buf_tail %= sdmac->num_bd;
 485
 486		if (sdmac->desc.callback)
 487			sdmac->desc.callback(sdmac->desc.callback_param);
 
 
 
 
 
 
 
 
 
 488	}
 489}
 490
 491static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
 492{
 
 493	struct sdma_buffer_descriptor *bd;
 494	int i, error = 0;
 495
 
 496	/*
 497	 * non loop mode. Iterate over all descriptors, collect
 498	 * errors and call callback function
 499	 */
 500	for (i = 0; i < sdmac->num_bd; i++) {
 501		bd = &sdmac->bd[i];
 502
 503		 if (bd->mode.status & (BD_DONE | BD_RROR))
 504			error = -EIO;
 
 505	}
 506
 507	if (error)
 508		sdmac->status = DMA_ERROR;
 509	else
 510		sdmac->status = DMA_SUCCESS;
 511
 512	if (sdmac->desc.callback)
 513		sdmac->desc.callback(sdmac->desc.callback_param);
 514	sdmac->last_completed = sdmac->desc.cookie;
 515}
 516
 517static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
 518{
 519	complete(&sdmac->done);
 520
 521	/* not interested in channel 0 interrupts */
 522	if (sdmac->channel == 0)
 523		return;
 524
 525	if (sdmac->flags & IMX_DMA_SG_LOOP)
 526		sdma_handle_channel_loop(sdmac);
 527	else
 528		mxc_sdma_handle_channel_normal(sdmac);
 529}
 530
 531static irqreturn_t sdma_int_handler(int irq, void *dev_id)
 532{
 533	struct sdma_engine *sdma = dev_id;
 534	u32 stat;
 535
 536	stat = __raw_readl(sdma->regs + SDMA_H_INTR);
 537	__raw_writel(stat, sdma->regs + SDMA_H_INTR);
 
 
 538
 539	while (stat) {
 540		int channel = fls(stat) - 1;
 541		struct sdma_channel *sdmac = &sdma->channel[channel];
 
 542
 543		mxc_sdma_handle_channel(sdmac);
 
 
 
 
 
 
 
 
 
 
 
 
 
 544
 545		stat &= ~(1 << channel);
 
 546	}
 547
 548	return IRQ_HANDLED;
 549}
 550
 551/*
 552 * sets the pc of SDMA script according to the peripheral type
 553 */
 554static void sdma_get_pc(struct sdma_channel *sdmac,
 555		enum sdma_peripheral_type peripheral_type)
 556{
 557	struct sdma_engine *sdma = sdmac->sdma;
 558	int per_2_emi = 0, emi_2_per = 0;
 559	/*
 560	 * These are needed once we start to support transfers between
 561	 * two peripherals or memory-to-memory transfers
 562	 */
 563	int per_2_per = 0, emi_2_emi = 0;
 564
 565	sdmac->pc_from_device = 0;
 566	sdmac->pc_to_device = 0;
 
 
 
 567
 568	switch (peripheral_type) {
 569	case IMX_DMATYPE_MEMORY:
 570		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
 571		break;
 572	case IMX_DMATYPE_DSP:
 573		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
 574		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
 575		break;
 576	case IMX_DMATYPE_FIRI:
 577		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
 578		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
 579		break;
 580	case IMX_DMATYPE_UART:
 581		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
 582		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 583		break;
 584	case IMX_DMATYPE_UART_SP:
 585		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
 586		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 587		break;
 588	case IMX_DMATYPE_ATA:
 589		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
 590		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
 591		break;
 592	case IMX_DMATYPE_CSPI:
 
 
 
 
 
 
 
 
 
 
 
 593	case IMX_DMATYPE_EXT:
 594	case IMX_DMATYPE_SSI:
 
 595		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
 596		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
 597		break;
 
 
 
 
 
 598	case IMX_DMATYPE_SSI_SP:
 599	case IMX_DMATYPE_MMC:
 600	case IMX_DMATYPE_SDHC:
 601	case IMX_DMATYPE_CSPI_SP:
 602	case IMX_DMATYPE_ESAI:
 603	case IMX_DMATYPE_MSHC_SP:
 604		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
 605		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
 606		break;
 607	case IMX_DMATYPE_ASRC:
 608		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
 609		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
 610		per_2_per = sdma->script_addrs->per_2_per_addr;
 
 
 
 
 
 
 611		break;
 612	case IMX_DMATYPE_MSHC:
 613		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
 614		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
 615		break;
 616	case IMX_DMATYPE_CCM:
 617		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
 618		break;
 619	case IMX_DMATYPE_SPDIF:
 620		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
 621		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
 622		break;
 623	case IMX_DMATYPE_IPU_MEMORY:
 624		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
 625		break;
 626	default:
 
 
 
 
 
 
 
 
 
 
 
 627		break;
 
 
 
 
 628	}
 629
 630	sdmac->pc_from_device = per_2_emi;
 631	sdmac->pc_to_device = emi_2_per;
 
 
 
 
 632}
 633
 634static int sdma_load_context(struct sdma_channel *sdmac)
 635{
 636	struct sdma_engine *sdma = sdmac->sdma;
 637	int channel = sdmac->channel;
 638	int load_address;
 639	struct sdma_context_data *context = sdma->context;
 640	struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
 641	int ret;
 
 642
 643	if (sdmac->direction == DMA_FROM_DEVICE) {
 644		load_address = sdmac->pc_from_device;
 645	} else {
 
 
 
 
 646		load_address = sdmac->pc_to_device;
 647	}
 648
 649	if (load_address < 0)
 650		return load_address;
 651
 652	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
 653	dev_dbg(sdma->dev, "wml = 0x%08x\n", sdmac->watermark_level);
 654	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
 655	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
 656	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", sdmac->event_mask0);
 657	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", sdmac->event_mask1);
 
 
 658
 659	memset(context, 0, sizeof(*context));
 660	context->channel_state.pc = load_address;
 661
 662	/* Send by context the event mask,base address for peripheral
 663	 * and watermark level
 664	 */
 665	context->gReg[0] = sdmac->event_mask1;
 666	context->gReg[1] = sdmac->event_mask0;
 667	context->gReg[2] = sdmac->per_addr;
 668	context->gReg[6] = sdmac->shp_addr;
 669	context->gReg[7] = sdmac->watermark_level;
 
 
 
 
 
 670
 671	bd0->mode.command = C0_SETDM;
 672	bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
 673	bd0->mode.count = sizeof(*context) / 4;
 674	bd0->buffer_addr = sdma->context_phys;
 675	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
 
 676
 677	ret = sdma_run_channel(&sdma->channel[0]);
 678
 679	return ret;
 680}
 681
 682static void sdma_disable_channel(struct sdma_channel *sdmac)
 
 
 
 
 
 683{
 
 684	struct sdma_engine *sdma = sdmac->sdma;
 685	int channel = sdmac->channel;
 686
 687	__raw_writel(1 << channel, sdma->regs + SDMA_H_STATSTOP);
 688	sdmac->status = DMA_ERROR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 690
 691static int sdma_config_channel(struct sdma_channel *sdmac)
 692{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693	int ret;
 694
 695	sdma_disable_channel(sdmac);
 696
 697	sdmac->event_mask0 = 0;
 698	sdmac->event_mask1 = 0;
 699	sdmac->shp_addr = 0;
 700	sdmac->per_addr = 0;
 701
 702	if (sdmac->event_id0) {
 703		if (sdmac->event_id0 > 32)
 704			return -EINVAL;
 705		sdma_event_enable(sdmac, sdmac->event_id0);
 706	}
 707
 708	switch (sdmac->peripheral_type) {
 709	case IMX_DMATYPE_DSP:
 710		sdma_config_ownership(sdmac, false, true, true);
 711		break;
 712	case IMX_DMATYPE_MEMORY:
 713		sdma_config_ownership(sdmac, false, true, false);
 714		break;
 715	default:
 716		sdma_config_ownership(sdmac, true, true, false);
 717		break;
 718	}
 719
 720	sdma_get_pc(sdmac, sdmac->peripheral_type);
 
 
 721
 722	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
 723			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
 724		/* Handle multiple event channels differently */
 725		if (sdmac->event_id1) {
 726			sdmac->event_mask1 = 1 << (sdmac->event_id1 % 32);
 727			if (sdmac->event_id1 > 31)
 728				sdmac->watermark_level |= 1 << 31;
 729			sdmac->event_mask0 = 1 << (sdmac->event_id0 % 32);
 730			if (sdmac->event_id0 > 31)
 731				sdmac->watermark_level |= 1 << 30;
 732		} else {
 733			sdmac->event_mask0 = 1 << sdmac->event_id0;
 734			sdmac->event_mask1 = 1 << (sdmac->event_id0 - 32);
 
 
 
 735		}
 736		/* Watermark Level */
 737		sdmac->watermark_level |= sdmac->watermark_level;
 738		/* Address */
 739		sdmac->shp_addr = sdmac->per_address;
 
 740	} else {
 741		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
 742	}
 743
 744	ret = sdma_load_context(sdmac);
 745
 746	return ret;
 747}
 748
 749static int sdma_set_channel_priority(struct sdma_channel *sdmac,
 750		unsigned int priority)
 751{
 752	struct sdma_engine *sdma = sdmac->sdma;
 753	int channel = sdmac->channel;
 754
 755	if (priority < MXC_SDMA_MIN_PRIORITY
 756	    || priority > MXC_SDMA_MAX_PRIORITY) {
 757		return -EINVAL;
 758	}
 759
 760	__raw_writel(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
 761
 762	return 0;
 763}
 764
 765static int sdma_request_channel(struct sdma_channel *sdmac)
 766{
 767	struct sdma_engine *sdma = sdmac->sdma;
 768	int channel = sdmac->channel;
 769	int ret = -EBUSY;
 770
 771	sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
 772	if (!sdmac->bd) {
 
 
 
 
 
 
 
 773		ret = -ENOMEM;
 774		goto out;
 775	}
 776
 777	memset(sdmac->bd, 0, PAGE_SIZE);
 778
 779	sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
 780	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
 781
 782	clk_enable(sdma->clk);
 783
 784	sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
 785
 786	init_completion(&sdmac->done);
 787
 788	sdmac->buf_tail = 0;
 789
 
 790	return 0;
 791out:
 792
 793	return ret;
 794}
 795
 796static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
 797{
 798	__raw_writel(1 << channel, sdma->regs + SDMA_H_START);
 799}
 800
 801static dma_cookie_t sdma_assign_cookie(struct sdma_channel *sdmac)
 802{
 803	dma_cookie_t cookie = sdmac->chan.cookie;
 
 
 804
 805	if (++cookie < 0)
 806		cookie = 1;
 807
 808	sdmac->chan.cookie = cookie;
 809	sdmac->desc.cookie = cookie;
 810
 811	return cookie;
 
 
 
 
 
 812}
 813
 814static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
 815{
 816	return container_of(chan, struct sdma_channel, chan);
 
 
 
 
 
 
 817}
 818
 819static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
 820{
 821	struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
 822	struct sdma_engine *sdma = sdmac->sdma;
 823	dma_cookie_t cookie;
 824
 825	spin_lock_irq(&sdmac->lock);
 826
 827	cookie = sdma_assign_cookie(sdmac);
 828
 829	sdma_enable_channel(sdma, sdmac->channel);
 830
 831	spin_unlock_irq(&sdmac->lock);
 832
 833	return cookie;
 834}
 835
 836static int sdma_alloc_chan_resources(struct dma_chan *chan)
 837{
 838	struct sdma_channel *sdmac = to_sdma_chan(chan);
 839	struct imx_dma_data *data = chan->private;
 
 840	int prio, ret;
 841
 842	if (!data)
 843		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844
 845	switch (data->priority) {
 846	case DMA_PRIO_HIGH:
 847		prio = 3;
 848		break;
 849	case DMA_PRIO_MEDIUM:
 850		prio = 2;
 851		break;
 852	case DMA_PRIO_LOW:
 853	default:
 854		prio = 1;
 855		break;
 856	}
 857
 858	sdmac->peripheral_type = data->peripheral_type;
 859	sdmac->event_id0 = data->dma_request;
 860	ret = sdma_set_channel_priority(sdmac, prio);
 861	if (ret)
 862		return ret;
 863
 864	ret = sdma_request_channel(sdmac);
 865	if (ret)
 866		return ret;
 
 
 
 867
 868	dma_async_tx_descriptor_init(&sdmac->desc, chan);
 869	sdmac->desc.tx_submit = sdma_tx_submit;
 870	/* txd.flags will be overwritten in prep funcs */
 871	sdmac->desc.flags = DMA_CTRL_ACK;
 872
 873	return 0;
 
 
 
 
 
 
 874}
 875
 876static void sdma_free_chan_resources(struct dma_chan *chan)
 877{
 878	struct sdma_channel *sdmac = to_sdma_chan(chan);
 879	struct sdma_engine *sdma = sdmac->sdma;
 880
 881	sdma_disable_channel(sdmac);
 882
 883	if (sdmac->event_id0)
 884		sdma_event_disable(sdmac, sdmac->event_id0);
 
 885	if (sdmac->event_id1)
 886		sdma_event_disable(sdmac, sdmac->event_id1);
 887
 888	sdmac->event_id0 = 0;
 889	sdmac->event_id1 = 0;
 890
 891	sdma_set_channel_priority(sdmac, 0);
 892
 893	dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894
 895	clk_disable(sdma->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896}
 897
 898static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
 899		struct dma_chan *chan, struct scatterlist *sgl,
 900		unsigned int sg_len, enum dma_data_direction direction,
 901		unsigned long flags)
 902{
 903	struct sdma_channel *sdmac = to_sdma_chan(chan);
 904	struct sdma_engine *sdma = sdmac->sdma;
 905	int ret, i, count;
 906	int channel = sdmac->channel;
 907	struct scatterlist *sg;
 
 908
 909	if (sdmac->status == DMA_IN_PROGRESS)
 910		return NULL;
 911	sdmac->status = DMA_IN_PROGRESS;
 912
 913	sdmac->flags = 0;
 
 
 914
 915	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
 916			sg_len, channel);
 917
 918	sdmac->direction = direction;
 919	ret = sdma_load_context(sdmac);
 920	if (ret)
 921		goto err_out;
 922
 923	if (sg_len > NUM_BD) {
 924		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
 925				channel, sg_len, NUM_BD);
 926		ret = -EINVAL;
 927		goto err_out;
 928	}
 929
 930	for_each_sg(sgl, sg, sg_len, i) {
 931		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
 932		int param;
 933
 934		bd->buffer_addr = sg->dma_address;
 935
 936		count = sg->length;
 937
 938		if (count > 0xffff) {
 939			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
 940					channel, count, 0xffff);
 941			ret = -EINVAL;
 942			goto err_out;
 943		}
 944
 945		bd->mode.count = count;
 
 946
 947		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
 948			ret =  -EINVAL;
 949			goto err_out;
 950		}
 951
 952		switch (sdmac->word_size) {
 953		case DMA_SLAVE_BUSWIDTH_4_BYTES:
 954			bd->mode.command = 0;
 955			if (count & 3 || sg->dma_address & 3)
 956				return NULL;
 
 
 
 957			break;
 958		case DMA_SLAVE_BUSWIDTH_2_BYTES:
 959			bd->mode.command = 2;
 960			if (count & 1 || sg->dma_address & 1)
 961				return NULL;
 962			break;
 963		case DMA_SLAVE_BUSWIDTH_1_BYTE:
 964			bd->mode.command = 1;
 965			break;
 966		default:
 967			return NULL;
 968		}
 969
 970		param = BD_DONE | BD_EXTD | BD_CONT;
 971
 972		if (i + 1 == sg_len) {
 973			param |= BD_INTR;
 974			param |= BD_LAST;
 975			param &= ~BD_CONT;
 976		}
 977
 978		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
 979				i, count, sg->dma_address,
 980				param & BD_WRAP ? "wrap" : "",
 981				param & BD_INTR ? " intr" : "");
 982
 983		bd->mode.status = param;
 984	}
 985
 986	sdmac->num_bd = sg_len;
 987	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
 988
 989	return &sdmac->desc;
 990err_out:
 991	sdmac->status = DMA_ERROR;
 992	return NULL;
 993}
 994
 995static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
 996		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
 997		size_t period_len, enum dma_data_direction direction)
 
 998{
 999	struct sdma_channel *sdmac = to_sdma_chan(chan);
1000	struct sdma_engine *sdma = sdmac->sdma;
1001	int num_periods = buf_len / period_len;
1002	int channel = sdmac->channel;
1003	int ret, i = 0, buf = 0;
 
1004
1005	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1006
1007	if (sdmac->status == DMA_IN_PROGRESS)
1008		return NULL;
1009
1010	sdmac->status = DMA_IN_PROGRESS;
1011
1012	sdmac->flags |= IMX_DMA_SG_LOOP;
1013	sdmac->direction = direction;
1014	ret = sdma_load_context(sdmac);
1015	if (ret)
1016		goto err_out;
1017
1018	if (num_periods > NUM_BD) {
1019		dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1020				channel, num_periods, NUM_BD);
1021		goto err_out;
1022	}
1023
1024	if (period_len > 0xffff) {
1025		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1026				channel, period_len, 0xffff);
1027		goto err_out;
 
 
1028	}
1029
 
 
 
1030	while (buf < buf_len) {
1031		struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1032		int param;
1033
1034		bd->buffer_addr = dma_addr;
1035
1036		bd->mode.count = period_len;
1037
1038		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1039			goto err_out;
1040		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1041			bd->mode.command = 0;
1042		else
1043			bd->mode.command = sdmac->word_size;
1044
1045		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1046		if (i + 1 == num_periods)
1047			param |= BD_WRAP;
1048
1049		dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1050				i, period_len, dma_addr,
1051				param & BD_WRAP ? "wrap" : "",
1052				param & BD_INTR ? " intr" : "");
1053
1054		bd->mode.status = param;
1055
1056		dma_addr += period_len;
1057		buf += period_len;
1058
1059		i++;
1060	}
1061
1062	sdmac->num_bd = num_periods;
1063	sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1064
1065	return &sdmac->desc;
1066err_out:
1067	sdmac->status = DMA_ERROR;
1068	return NULL;
1069}
1070
1071static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1072		unsigned long arg)
 
1073{
1074	struct sdma_channel *sdmac = to_sdma_chan(chan);
1075	struct dma_slave_config *dmaengine_cfg = (void *)arg;
1076
1077	switch (cmd) {
1078	case DMA_TERMINATE_ALL:
1079		sdma_disable_channel(sdmac);
1080		return 0;
1081	case DMA_SLAVE_CONFIG:
1082		if (dmaengine_cfg->direction == DMA_FROM_DEVICE) {
1083			sdmac->per_address = dmaengine_cfg->src_addr;
1084			sdmac->watermark_level = dmaengine_cfg->src_maxburst;
1085			sdmac->word_size = dmaengine_cfg->src_addr_width;
1086		} else {
1087			sdmac->per_address = dmaengine_cfg->dst_addr;
1088			sdmac->watermark_level = dmaengine_cfg->dst_maxburst;
1089			sdmac->word_size = dmaengine_cfg->dst_addr_width;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090		}
1091		return sdma_config_channel(sdmac);
1092	default:
1093		return -ENOSYS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1094	}
1095
1096	return -EINVAL;
1097}
1098
1099static enum dma_status sdma_tx_status(struct dma_chan *chan,
1100					    dma_cookie_t cookie,
1101					    struct dma_tx_state *txstate)
1102{
1103	struct sdma_channel *sdmac = to_sdma_chan(chan);
1104	dma_cookie_t last_used;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105
1106	last_used = chan->cookie;
1107
1108	dma_set_tx_state(txstate, sdmac->last_completed, last_used, 0);
 
1109
1110	return sdmac->status;
1111}
1112
1113static void sdma_issue_pending(struct dma_chan *chan)
1114{
1115	/*
1116	 * Nothing to do. We only have a single descriptor
1117	 */
 
 
 
 
1118}
1119
1120#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	34
 
 
 
 
 
 
 
 
 
 
1121
1122static void sdma_add_scripts(struct sdma_engine *sdma,
1123		const struct sdma_script_start_addrs *addr)
1124{
1125	s32 *addr_arr = (u32 *)addr;
1126	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1127	int i;
1128
1129	for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
 
 
 
 
 
 
 
 
 
 
 
 
1130		if (addr_arr[i] > 0)
1131			saddr_arr[i] = addr_arr[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
1132}
1133
1134static int __init sdma_get_firmware(struct sdma_engine *sdma,
1135		const char *fw_name)
1136{
1137	const struct firmware *fw;
1138	const struct sdma_firmware_header *header;
1139	int ret;
1140	const struct sdma_script_start_addrs *addr;
1141	unsigned short *ram_code;
1142
1143	ret = request_firmware(&fw, fw_name, sdma->dev);
1144	if (ret)
1145		return ret;
 
 
1146
1147	if (fw->size < sizeof(*header))
1148		goto err_firmware;
1149
1150	header = (struct sdma_firmware_header *)fw->data;
1151
1152	if (header->magic != SDMA_FIRMWARE_MAGIC)
1153		goto err_firmware;
1154	if (header->ram_code_start + header->ram_code_size > fw->size)
1155		goto err_firmware;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156
1157	addr = (void *)header + header->script_addrs_start;
1158	ram_code = (void *)header + header->ram_code_start;
1159
1160	clk_enable(sdma->clk);
 
1161	/* download the RAM image for SDMA */
1162	sdma_load_script(sdma, ram_code,
1163			header->ram_code_size,
1164			addr->ram_code_start_addr);
1165	clk_disable(sdma->clk);
 
1166
1167	sdma_add_scripts(sdma, addr);
1168
 
 
1169	dev_info(sdma->dev, "loaded firmware %d.%d\n",
1170			header->version_major,
1171			header->version_minor);
1172
1173err_firmware:
1174	release_firmware(fw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175
1176	return ret;
1177}
1178
1179static int __init sdma_init(struct sdma_engine *sdma)
 
 
 
 
 
 
 
 
 
 
 
1180{
1181	int i, ret;
1182	dma_addr_t ccb_phys;
 
1183
1184	switch (sdma->devtype) {
1185	case IMX31_SDMA:
1186		sdma->num_events = 32;
1187		break;
1188	case IMX35_SDMA:
1189		sdma->num_events = 48;
1190		break;
1191	default:
1192		dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1193			sdma->devtype);
1194		return -ENODEV;
1195	}
1196
1197	clk_enable(sdma->clk);
 
 
1198
1199	/* Be sure SDMA has not started yet */
1200	__raw_writel(0, sdma->regs + SDMA_H_C0PTR);
1201
1202	sdma->channel_control = dma_alloc_coherent(NULL,
1203			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1204			sizeof(struct sdma_context_data),
1205			&ccb_phys, GFP_KERNEL);
 
 
 
 
1206
1207	if (!sdma->channel_control) {
1208		ret = -ENOMEM;
1209		goto err_dma_alloc;
1210	}
1211
1212	sdma->context = (void *)sdma->channel_control +
1213		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1214	sdma->context_phys = ccb_phys +
1215		MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1216
1217	/* Zero-out the CCB structures array just allocated */
1218	memset(sdma->channel_control, 0,
1219			MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1220
1221	/* disable all channels */
1222	for (i = 0; i < sdma->num_events; i++)
1223		__raw_writel(0, sdma->regs + chnenbl_ofs(sdma, i));
1224
1225	/* All channels have priority 0 */
1226	for (i = 0; i < MAX_DMA_CHANNELS; i++)
1227		__raw_writel(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1228
1229	ret = sdma_request_channel(&sdma->channel[0]);
1230	if (ret)
1231		goto err_dma_alloc;
1232
1233	sdma_config_ownership(&sdma->channel[0], false, true, false);
1234
1235	/* Set Command Channel (Channel Zero) */
1236	__raw_writel(0x4050, sdma->regs + SDMA_CHN0ADDR);
1237
1238	/* Set bits of CONFIG register but with static context switching */
1239	/* FIXME: Check whether to set ACR bit depending on clock ratios */
1240	__raw_writel(0, sdma->regs + SDMA_H_CONFIG);
1241
1242	__raw_writel(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1243
1244	/* Set bits of CONFIG register with given context switching mode */
1245	__raw_writel(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1246
1247	/* Initializes channel's priorities */
1248	sdma_set_channel_priority(&sdma->channel[0], 7);
1249
1250	clk_disable(sdma->clk);
 
1251
1252	return 0;
1253
1254err_dma_alloc:
1255	clk_disable(sdma->clk);
 
 
1256	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1257	return ret;
1258}
1259
1260static int __init sdma_probe(struct platform_device *pdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261{
1262	const struct of_device_id *of_id =
1263			of_match_device(sdma_dt_ids, &pdev->dev);
1264	struct device_node *np = pdev->dev.of_node;
 
1265	const char *fw_name;
1266	int ret;
1267	int irq;
1268	struct resource *iores;
1269	struct sdma_platform_data *pdata = pdev->dev.platform_data;
1270	int i;
1271	struct sdma_engine *sdma;
 
 
 
 
 
1272
1273	sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1274	if (!sdma)
1275		return -ENOMEM;
1276
 
 
1277	sdma->dev = &pdev->dev;
 
1278
1279	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1280	irq = platform_get_irq(pdev, 0);
1281	if (!iores || irq < 0) {
1282		ret = -EINVAL;
1283		goto err_irq;
1284	}
1285
1286	if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1287		ret = -EBUSY;
1288		goto err_request_region;
1289	}
 
 
 
 
 
 
 
1290
1291	sdma->clk = clk_get(&pdev->dev, NULL);
1292	if (IS_ERR(sdma->clk)) {
1293		ret = PTR_ERR(sdma->clk);
1294		goto err_clk;
1295	}
1296
1297	sdma->regs = ioremap(iores->start, resource_size(iores));
1298	if (!sdma->regs) {
1299		ret = -ENOMEM;
1300		goto err_ioremap;
1301	}
1302
1303	ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
 
1304	if (ret)
1305		goto err_request_irq;
 
 
1306
1307	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1308	if (!sdma->script_addrs) {
1309		ret = -ENOMEM;
1310		goto err_alloc;
1311	}
1312
1313	if (of_id)
1314		pdev->id_entry = of_id->data;
1315	sdma->devtype = pdev->id_entry->driver_data;
 
1316
1317	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1318	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
 
 
1319
1320	INIT_LIST_HEAD(&sdma->dma_device.channels);
1321	/* Initialize channel parameters */
1322	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1323		struct sdma_channel *sdmac = &sdma->channel[i];
1324
1325		sdmac->sdma = sdma;
1326		spin_lock_init(&sdmac->lock);
1327
1328		sdmac->chan.device = &sdma->dma_device;
1329		sdmac->channel = i;
1330
 
 
 
1331		/*
1332		 * Add the channel to the DMAC list. Do not add channel 0 though
1333		 * because we need it internally in the SDMA driver. This also means
1334		 * that channel 0 in dmaengine counting matches sdma channel 1.
1335		 */
1336		if (i)
1337			list_add_tail(&sdmac->chan.device_node,
1338					&sdma->dma_device.channels);
 
 
 
 
 
1339	}
1340
1341	ret = sdma_init(sdma);
1342	if (ret)
1343		goto err_init;
1344
1345	if (pdata && pdata->script_addrs)
1346		sdma_add_scripts(sdma, pdata->script_addrs);
1347
1348	if (pdata) {
1349		sdma_get_firmware(sdma, pdata->fw_name);
1350	} else {
1351		/*
1352		 * Because that device tree does not encode ROM script address,
1353		 * the RAM script in firmware is mandatory for device tree
1354		 * probe, otherwise it fails.
1355		 */
1356		ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1357					      &fw_name);
1358		if (ret) {
1359			dev_err(&pdev->dev, "failed to get firmware name\n");
1360			goto err_init;
1361		}
1362
1363		ret = sdma_get_firmware(sdma, fw_name);
1364		if (ret) {
1365			dev_err(&pdev->dev, "failed to get firmware\n");
1366			goto err_init;
1367		}
1368	}
1369
1370	sdma->dma_device.dev = &pdev->dev;
1371
1372	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1373	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1374	sdma->dma_device.device_tx_status = sdma_tx_status;
1375	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1376	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1377	sdma->dma_device.device_control = sdma_control;
 
 
 
 
 
 
 
1378	sdma->dma_device.device_issue_pending = sdma_issue_pending;
1379	sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1380	dma_set_max_seg_size(sdma->dma_device.dev, 65535);
 
 
1381
1382	ret = dma_async_device_register(&sdma->dma_device);
1383	if (ret) {
1384		dev_err(&pdev->dev, "unable to register\n");
1385		goto err_init;
1386	}
1387
1388	dev_info(sdma->dev, "initialized\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389
1390	return 0;
1391
 
 
1392err_init:
1393	kfree(sdma->script_addrs);
1394err_alloc:
1395	free_irq(irq, sdma);
1396err_request_irq:
1397	iounmap(sdma->regs);
1398err_ioremap:
1399	clk_put(sdma->clk);
1400err_clk:
1401	release_mem_region(iores->start, resource_size(iores));
1402err_request_region:
1403err_irq:
1404	kfree(sdma);
 
 
1405	return ret;
1406}
1407
1408static int __exit sdma_remove(struct platform_device *pdev)
1409{
1410	return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1411}
1412
1413static struct platform_driver sdma_driver = {
1414	.driver		= {
1415		.name	= "imx-sdma",
1416		.of_match_table = sdma_dt_ids,
1417	},
1418	.id_table	= sdma_devtypes,
1419	.remove		= __exit_p(sdma_remove),
1420};
1421
1422static int __init sdma_module_init(void)
1423{
1424	return platform_driver_probe(&sdma_driver, sdma_probe);
1425}
1426module_init(sdma_module_init);
1427
1428MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1429MODULE_DESCRIPTION("i.MX SDMA driver");
 
 
 
 
 
 
1430MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// drivers/dma/imx-sdma.c
   4//
   5// This file contains a driver for the Freescale Smart DMA engine
   6//
   7// Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
   8//
   9// Based on code from Freescale:
  10//
  11// Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
 
 
 
 
 
 
 
  12
  13#include <linux/init.h>
  14#include <linux/iopoll.h>
  15#include <linux/module.h>
  16#include <linux/types.h>
  17#include <linux/bitfield.h>
  18#include <linux/bitops.h>
  19#include <linux/mm.h>
  20#include <linux/interrupt.h>
  21#include <linux/clk.h>
  22#include <linux/delay.h>
  23#include <linux/sched.h>
  24#include <linux/semaphore.h>
  25#include <linux/spinlock.h>
  26#include <linux/device.h>
  27#include <linux/genalloc.h>
  28#include <linux/dma-mapping.h>
  29#include <linux/firmware.h>
  30#include <linux/slab.h>
  31#include <linux/platform_device.h>
  32#include <linux/dmaengine.h>
  33#include <linux/of.h>
  34#include <linux/of_address.h>
  35#include <linux/of_dma.h>
  36#include <linux/workqueue.h>
  37
  38#include <asm/irq.h>
  39#include <linux/dma/imx-dma.h>
  40#include <linux/regmap.h>
  41#include <linux/mfd/syscon.h>
  42#include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
  43
  44#include "dmaengine.h"
  45#include "virt-dma.h"
  46
  47/* SDMA registers */
  48#define SDMA_H_C0PTR		0x000
  49#define SDMA_H_INTR		0x004
  50#define SDMA_H_STATSTOP		0x008
  51#define SDMA_H_START		0x00c
  52#define SDMA_H_EVTOVR		0x010
  53#define SDMA_H_DSPOVR		0x014
  54#define SDMA_H_HOSTOVR		0x018
  55#define SDMA_H_EVTPEND		0x01c
  56#define SDMA_H_DSPENBL		0x020
  57#define SDMA_H_RESET		0x024
  58#define SDMA_H_EVTERR		0x028
  59#define SDMA_H_INTRMSK		0x02c
  60#define SDMA_H_PSW		0x030
  61#define SDMA_H_EVTERRDBG	0x034
  62#define SDMA_H_CONFIG		0x038
  63#define SDMA_ONCE_ENB		0x040
  64#define SDMA_ONCE_DATA		0x044
  65#define SDMA_ONCE_INSTR		0x048
  66#define SDMA_ONCE_STAT		0x04c
  67#define SDMA_ONCE_CMD		0x050
  68#define SDMA_EVT_MIRROR		0x054
  69#define SDMA_ILLINSTADDR	0x058
  70#define SDMA_CHN0ADDR		0x05c
  71#define SDMA_ONCE_RTB		0x060
  72#define SDMA_XTRIG_CONF1	0x070
  73#define SDMA_XTRIG_CONF2	0x074
  74#define SDMA_CHNENBL0_IMX35	0x200
  75#define SDMA_CHNENBL0_IMX31	0x080
  76#define SDMA_CHNPRI_0		0x100
  77#define SDMA_DONE0_CONFIG	0x1000
  78
  79/*
  80 * Buffer descriptor status values.
  81 */
  82#define BD_DONE  0x01
  83#define BD_WRAP  0x02
  84#define BD_CONT  0x04
  85#define BD_INTR  0x08
  86#define BD_RROR  0x10
  87#define BD_LAST  0x20
  88#define BD_EXTD  0x80
  89
  90/*
  91 * Data Node descriptor status values.
  92 */
  93#define DND_END_OF_FRAME  0x80
  94#define DND_END_OF_XFER   0x40
  95#define DND_DONE          0x20
  96#define DND_UNUSED        0x01
  97
  98/*
  99 * IPCV2 descriptor status values.
 100 */
 101#define BD_IPCV2_END_OF_FRAME  0x40
 102
 103#define IPCV2_MAX_NODES        50
 104/*
 105 * Error bit set in the CCB status field by the SDMA,
 106 * in setbd routine, in case of a transfer error
 107 */
 108#define DATA_ERROR  0x10000000
 109
 110/*
 111 * Buffer descriptor commands.
 112 */
 113#define C0_ADDR             0x01
 114#define C0_LOAD             0x02
 115#define C0_DUMP             0x03
 116#define C0_SETCTX           0x07
 117#define C0_GETCTX           0x03
 118#define C0_SETDM            0x01
 119#define C0_SETPM            0x04
 120#define C0_GETDM            0x02
 121#define C0_GETPM            0x08
 122/*
 123 * Change endianness indicator in the BD command field
 124 */
 125#define CHANGE_ENDIANNESS   0x80
 126
 127/*
 128 *  p_2_p watermark_level description
 129 *	Bits		Name			Description
 130 *	0-7		Lower WML		Lower watermark level
 131 *	8		PS			1: Pad Swallowing
 132 *						0: No Pad Swallowing
 133 *	9		PA			1: Pad Adding
 134 *						0: No Pad Adding
 135 *	10		SPDIF			If this bit is set both source
 136 *						and destination are on SPBA
 137 *	11		Source Bit(SP)		1: Source on SPBA
 138 *						0: Source on AIPS
 139 *	12		Destination Bit(DP)	1: Destination on SPBA
 140 *						0: Destination on AIPS
 141 *	13		Source FIFO		1: Source is dual FIFO
 142 *						0: Source is single FIFO
 143 *	14		Destination FIFO	1: Destination is dual FIFO
 144 *						0: Destination is single FIFO
 145 *	15		---------		MUST BE 0
 146 *	16-23		Higher WML		HWML
 147 *	24-27		N			Total number of samples after
 148 *						which Pad adding/Swallowing
 149 *						must be done. It must be odd.
 150 *	28		Lower WML Event(LWE)	SDMA events reg to check for
 151 *						LWML event mask
 152 *						0: LWE in EVENTS register
 153 *						1: LWE in EVENTS2 register
 154 *	29		Higher WML Event(HWE)	SDMA events reg to check for
 155 *						HWML event mask
 156 *						0: HWE in EVENTS register
 157 *						1: HWE in EVENTS2 register
 158 *	30		---------		MUST BE 0
 159 *	31		CONT			1: Amount of samples to be
 160 *						transferred is unknown and
 161 *						script will keep on
 162 *						transferring samples as long as
 163 *						both events are detected and
 164 *						script must be manually stopped
 165 *						by the application
 166 *						0: The amount of samples to be
 167 *						transferred is equal to the
 168 *						count field of mode word
 169 */
 170#define SDMA_WATERMARK_LEVEL_LWML	0xFF
 171#define SDMA_WATERMARK_LEVEL_PS		BIT(8)
 172#define SDMA_WATERMARK_LEVEL_PA		BIT(9)
 173#define SDMA_WATERMARK_LEVEL_SPDIF	BIT(10)
 174#define SDMA_WATERMARK_LEVEL_SP		BIT(11)
 175#define SDMA_WATERMARK_LEVEL_DP		BIT(12)
 176#define SDMA_WATERMARK_LEVEL_SD		BIT(13)
 177#define SDMA_WATERMARK_LEVEL_DD		BIT(14)
 178#define SDMA_WATERMARK_LEVEL_HWML	(0xFF << 16)
 179#define SDMA_WATERMARK_LEVEL_LWE	BIT(28)
 180#define SDMA_WATERMARK_LEVEL_HWE	BIT(29)
 181#define SDMA_WATERMARK_LEVEL_CONT	BIT(31)
 182
 183#define SDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 184				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 185				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
 186				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 187
 188#define SDMA_DMA_DIRECTIONS	(BIT(DMA_DEV_TO_MEM) | \
 189				 BIT(DMA_MEM_TO_DEV) | \
 190				 BIT(DMA_DEV_TO_DEV))
 191
 192#define SDMA_WATERMARK_LEVEL_N_FIFOS	GENMASK(15, 12)
 193#define SDMA_WATERMARK_LEVEL_OFF_FIFOS  GENMASK(19, 16)
 194#define SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO   GENMASK(31, 28)
 195#define SDMA_WATERMARK_LEVEL_SW_DONE	BIT(23)
 196
 197#define SDMA_DONE0_CONFIG_DONE_SEL	BIT(7)
 198#define SDMA_DONE0_CONFIG_DONE_DIS	BIT(6)
 199
 200/*
 201 * struct sdma_script_start_addrs - SDMA script start pointers
 202 *
 203 * start addresses of the different functions in the physical
 204 * address space of the SDMA engine.
 205 */
 206struct sdma_script_start_addrs {
 207	s32 ap_2_ap_addr;
 208	s32 ap_2_bp_addr;
 209	s32 ap_2_ap_fixed_addr;
 210	s32 bp_2_ap_addr;
 211	s32 loopback_on_dsp_side_addr;
 212	s32 mcu_interrupt_only_addr;
 213	s32 firi_2_per_addr;
 214	s32 firi_2_mcu_addr;
 215	s32 per_2_firi_addr;
 216	s32 mcu_2_firi_addr;
 217	s32 uart_2_per_addr;
 218	s32 uart_2_mcu_addr;
 219	s32 per_2_app_addr;
 220	s32 mcu_2_app_addr;
 221	s32 per_2_per_addr;
 222	s32 uartsh_2_per_addr;
 223	s32 uartsh_2_mcu_addr;
 224	s32 per_2_shp_addr;
 225	s32 mcu_2_shp_addr;
 226	s32 ata_2_mcu_addr;
 227	s32 mcu_2_ata_addr;
 228	s32 app_2_per_addr;
 229	s32 app_2_mcu_addr;
 230	s32 shp_2_per_addr;
 231	s32 shp_2_mcu_addr;
 232	s32 mshc_2_mcu_addr;
 233	s32 mcu_2_mshc_addr;
 234	s32 spdif_2_mcu_addr;
 235	s32 mcu_2_spdif_addr;
 236	s32 asrc_2_mcu_addr;
 237	s32 ext_mem_2_ipu_addr;
 238	s32 descrambler_addr;
 239	s32 dptc_dvfs_addr;
 240	s32 utra_addr;
 241	s32 ram_code_start_addr;
 242	/* End of v1 array */
 243	union {	s32 v1_end; s32 mcu_2_ssish_addr; };
 244	s32 ssish_2_mcu_addr;
 245	s32 hdmi_dma_addr;
 246	/* End of v2 array */
 247	union { s32 v2_end; s32 zcanfd_2_mcu_addr; };
 248	s32 zqspi_2_mcu_addr;
 249	s32 mcu_2_ecspi_addr;
 250	s32 mcu_2_sai_addr;
 251	s32 sai_2_mcu_addr;
 252	s32 uart_2_mcu_rom_addr;
 253	s32 uartsh_2_mcu_rom_addr;
 254	s32 i2c_2_mcu_addr;
 255	s32 mcu_2_i2c_addr;
 256	/* End of v3 array */
 257	union { s32 v3_end; s32 mcu_2_zqspi_addr; };
 258	/* End of v4 array */
 259	s32 v4_end[0];
 260};
 261
 262/*
 263 * Mode/Count of data node descriptors - IPCv2
 264 */
 265struct sdma_mode_count {
 266#define SDMA_BD_MAX_CNT	0xffff
 267	u32 count   : 16; /* size of the buffer pointed by this BD */
 268	u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
 269	u32 command :  8; /* command mostly used for channel 0 */
 270};
 271
 272/*
 273 * Buffer descriptor
 274 */
 275struct sdma_buffer_descriptor {
 276	struct sdma_mode_count  mode;
 277	u32 buffer_addr;	/* address of the buffer described */
 278	u32 ext_buffer_addr;	/* extended buffer address */
 279} __attribute__ ((packed));
 280
 281/**
 282 * struct sdma_channel_control - Channel control Block
 283 *
 284 * @current_bd_ptr:	current buffer descriptor processed
 285 * @base_bd_ptr:	first element of buffer descriptor array
 286 * @unused:		padding. The SDMA engine expects an array of 128 byte
 287 *			control blocks
 288 */
 289struct sdma_channel_control {
 290	u32 current_bd_ptr;
 291	u32 base_bd_ptr;
 292	u32 unused[2];
 293} __attribute__ ((packed));
 294
 295/**
 296 * struct sdma_state_registers - SDMA context for a channel
 297 *
 298 * @pc:		program counter
 299 * @unused1:	unused
 300 * @t:		test bit: status of arithmetic & test instruction
 301 * @rpc:	return program counter
 302 * @unused0:	unused
 303 * @sf:		source fault while loading data
 304 * @spc:	loop start program counter
 305 * @unused2:	unused
 306 * @df:		destination fault while storing data
 307 * @epc:	loop end program counter
 308 * @lm:		loop mode
 309 */
 310struct sdma_state_registers {
 311	u32 pc     :14;
 312	u32 unused1: 1;
 313	u32 t      : 1;
 314	u32 rpc    :14;
 315	u32 unused0: 1;
 316	u32 sf     : 1;
 317	u32 spc    :14;
 318	u32 unused2: 1;
 319	u32 df     : 1;
 320	u32 epc    :14;
 321	u32 lm     : 2;
 322} __attribute__ ((packed));
 323
 324/**
 325 * struct sdma_context_data - sdma context specific to a channel
 326 *
 327 * @channel_state:	channel state bits
 328 * @gReg:		general registers
 329 * @mda:		burst dma destination address register
 330 * @msa:		burst dma source address register
 331 * @ms:			burst dma status register
 332 * @md:			burst dma data register
 333 * @pda:		peripheral dma destination address register
 334 * @psa:		peripheral dma source address register
 335 * @ps:			peripheral dma status register
 336 * @pd:			peripheral dma data register
 337 * @ca:			CRC polynomial register
 338 * @cs:			CRC accumulator register
 339 * @dda:		dedicated core destination address register
 340 * @dsa:		dedicated core source address register
 341 * @ds:			dedicated core status register
 342 * @dd:			dedicated core data register
 343 * @scratch0:		1st word of dedicated ram for context switch
 344 * @scratch1:		2nd word of dedicated ram for context switch
 345 * @scratch2:		3rd word of dedicated ram for context switch
 346 * @scratch3:		4th word of dedicated ram for context switch
 347 * @scratch4:		5th word of dedicated ram for context switch
 348 * @scratch5:		6th word of dedicated ram for context switch
 349 * @scratch6:		7th word of dedicated ram for context switch
 350 * @scratch7:		8th word of dedicated ram for context switch
 351 */
 352struct sdma_context_data {
 353	struct sdma_state_registers  channel_state;
 354	u32  gReg[8];
 355	u32  mda;
 356	u32  msa;
 357	u32  ms;
 358	u32  md;
 359	u32  pda;
 360	u32  psa;
 361	u32  ps;
 362	u32  pd;
 363	u32  ca;
 364	u32  cs;
 365	u32  dda;
 366	u32  dsa;
 367	u32  ds;
 368	u32  dd;
 369	u32  scratch0;
 370	u32  scratch1;
 371	u32  scratch2;
 372	u32  scratch3;
 373	u32  scratch4;
 374	u32  scratch5;
 375	u32  scratch6;
 376	u32  scratch7;
 377} __attribute__ ((packed));
 378
 
 379
 380struct sdma_engine;
 381
 382/**
 383 * struct sdma_desc - descriptor structor for one transfer
 384 * @vd:			descriptor for virt dma
 385 * @num_bd:		number of descriptors currently handling
 386 * @bd_phys:		physical address of bd
 387 * @buf_tail:		ID of the buffer that was processed
 388 * @buf_ptail:		ID of the previous buffer that was processed
 389 * @period_len:		period length, used in cyclic.
 390 * @chn_real_count:	the real count updated from bd->mode.count
 391 * @chn_count:		the transfer count set
 392 * @sdmac:		sdma_channel pointer
 393 * @bd:			pointer of allocate bd
 394 */
 395struct sdma_desc {
 396	struct virt_dma_desc	vd;
 397	unsigned int		num_bd;
 398	dma_addr_t		bd_phys;
 399	unsigned int		buf_tail;
 400	unsigned int		buf_ptail;
 401	unsigned int		period_len;
 402	unsigned int		chn_real_count;
 403	unsigned int		chn_count;
 404	struct sdma_channel	*sdmac;
 405	struct sdma_buffer_descriptor *bd;
 406};
 407
 408/**
 409 * struct sdma_channel - housekeeping for a SDMA channel
 410 *
 411 * @vc:			virt_dma base structure
 412 * @desc:		sdma description including vd and other special member
 413 * @sdma:		pointer to the SDMA engine for this channel
 414 * @channel:		the channel number, matches dmaengine chan_id + 1
 415 * @direction:		transfer type. Needed for setting SDMA script
 416 * @slave_config:	Slave configuration
 417 * @peripheral_type:	Peripheral type. Needed for setting SDMA script
 418 * @event_id0:		aka dma request line
 419 * @event_id1:		for channels that use 2 events
 420 * @word_size:		peripheral access size
 421 * @pc_from_device:	script address for those device_2_memory
 422 * @pc_to_device:	script address for those memory_2_device
 423 * @device_to_device:	script address for those device_2_device
 424 * @pc_to_pc:		script address for those memory_2_memory
 425 * @flags:		loop mode or not
 426 * @per_address:	peripheral source or destination address in common case
 427 *                      destination address in p_2_p case
 428 * @per_address2:	peripheral source address in p_2_p case
 429 * @event_mask:		event mask used in p_2_p script
 430 * @watermark_level:	value for gReg[7], some script will extend it from
 431 *			basic watermark such as p_2_p
 432 * @shp_addr:		value for gReg[6]
 433 * @per_addr:		value for gReg[2]
 434 * @status:		status of dma channel
 435 * @data:		specific sdma interface structure
 436 * @terminate_worker:	used to call back into terminate work function
 437 * @terminated:		terminated list
 438 * @is_ram_script:	flag for script in ram
 439 * @n_fifos_src:	number of source device fifos
 440 * @n_fifos_dst:	number of destination device fifos
 441 * @sw_done:		software done flag
 442 * @stride_fifos_src:	stride for source device FIFOs
 443 * @stride_fifos_dst:	stride for destination device FIFOs
 444 * @words_per_fifo:	copy number of words one time for one FIFO
 445 */
 446struct sdma_channel {
 447	struct virt_dma_chan		vc;
 448	struct sdma_desc		*desc;
 449	struct sdma_engine		*sdma;
 450	unsigned int			channel;
 451	enum dma_transfer_direction		direction;
 452	struct dma_slave_config		slave_config;
 453	enum sdma_peripheral_type	peripheral_type;
 454	unsigned int			event_id0;
 455	unsigned int			event_id1;
 456	enum dma_slave_buswidth		word_size;
 
 
 
 
 
 457	unsigned int			pc_from_device, pc_to_device;
 458	unsigned int			device_to_device;
 459	unsigned int                    pc_to_pc;
 460	unsigned long			flags;
 461	dma_addr_t			per_address, per_address2;
 462	unsigned long			event_mask[2];
 463	unsigned long			watermark_level;
 464	u32				shp_addr, per_addr;
 
 
 
 
 465	enum dma_status			status;
 466	struct imx_dma_data		data;
 467	struct work_struct		terminate_worker;
 468	struct list_head                terminated;
 469	bool				is_ram_script;
 470	unsigned int			n_fifos_src;
 471	unsigned int			n_fifos_dst;
 472	unsigned int			stride_fifos_src;
 473	unsigned int			stride_fifos_dst;
 474	unsigned int			words_per_fifo;
 475	bool				sw_done;
 476};
 477
 478#define IMX_DMA_SG_LOOP		BIT(0)
 479
 480#define MAX_DMA_CHANNELS 32
 481#define MXC_SDMA_DEFAULT_PRIORITY 1
 482#define MXC_SDMA_MIN_PRIORITY 1
 483#define MXC_SDMA_MAX_PRIORITY 7
 484
 485#define SDMA_FIRMWARE_MAGIC 0x414d4453
 486
 487/**
 488 * struct sdma_firmware_header - Layout of the firmware image
 489 *
 490 * @magic:		"SDMA"
 491 * @version_major:	increased whenever layout of struct
 492 *			sdma_script_start_addrs changes.
 493 * @version_minor:	firmware minor version (for binary compatible changes)
 494 * @script_addrs_start:	offset of struct sdma_script_start_addrs in this image
 495 * @num_script_addrs:	Number of script addresses in this image
 496 * @ram_code_start:	offset of SDMA ram image in this firmware image
 497 * @ram_code_size:	size of SDMA ram image
 
 
 498 */
 499struct sdma_firmware_header {
 500	u32	magic;
 501	u32	version_major;
 502	u32	version_minor;
 503	u32	script_addrs_start;
 504	u32	num_script_addrs;
 505	u32	ram_code_start;
 506	u32	ram_code_size;
 507};
 508
 509struct sdma_driver_data {
 510	int chnenbl0;
 511	int num_events;
 512	struct sdma_script_start_addrs	*script_addrs;
 513	bool check_ratio;
 514	/*
 515	 * ecspi ERR009165 fixed should be done in sdma script
 516	 * and it has been fixed in soc from i.mx6ul.
 517	 * please get more information from the below link:
 518	 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
 519	 */
 520	bool ecspi_fixed;
 521};
 522
 523struct sdma_engine {
 524	struct device			*dev;
 
 525	struct sdma_channel		channel[MAX_DMA_CHANNELS];
 526	struct sdma_channel_control	*channel_control;
 527	void __iomem			*regs;
 
 
 528	struct sdma_context_data	*context;
 529	dma_addr_t			context_phys;
 530	struct dma_device		dma_device;
 531	struct clk			*clk_ipg;
 532	struct clk			*clk_ahb;
 533	spinlock_t			channel_0_lock;
 534	u32				script_number;
 535	struct sdma_script_start_addrs	*script_addrs;
 536	const struct sdma_driver_data	*drvdata;
 537	u32				spba_start_addr;
 538	u32				spba_end_addr;
 539	unsigned int			irq;
 540	dma_addr_t			bd0_phys;
 541	struct sdma_buffer_descriptor	*bd0;
 542	/* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
 543	bool				clk_ratio;
 544	bool                            fw_loaded;
 545	struct gen_pool			*iram_pool;
 546};
 547
 548static int sdma_config_write(struct dma_chan *chan,
 549		       struct dma_slave_config *dmaengine_cfg,
 550		       enum dma_transfer_direction direction);
 551
 552static struct sdma_driver_data sdma_imx31 = {
 553	.chnenbl0 = SDMA_CHNENBL0_IMX31,
 554	.num_events = 32,
 555};
 556
 557static struct sdma_script_start_addrs sdma_script_imx25 = {
 558	.ap_2_ap_addr = 729,
 559	.uart_2_mcu_addr = 904,
 560	.per_2_app_addr = 1255,
 561	.mcu_2_app_addr = 834,
 562	.uartsh_2_mcu_addr = 1120,
 563	.per_2_shp_addr = 1329,
 564	.mcu_2_shp_addr = 1048,
 565	.ata_2_mcu_addr = 1560,
 566	.mcu_2_ata_addr = 1479,
 567	.app_2_per_addr = 1189,
 568	.app_2_mcu_addr = 770,
 569	.shp_2_per_addr = 1407,
 570	.shp_2_mcu_addr = 979,
 571};
 572
 573static struct sdma_driver_data sdma_imx25 = {
 574	.chnenbl0 = SDMA_CHNENBL0_IMX35,
 575	.num_events = 48,
 576	.script_addrs = &sdma_script_imx25,
 577};
 578
 579static struct sdma_driver_data sdma_imx35 = {
 580	.chnenbl0 = SDMA_CHNENBL0_IMX35,
 581	.num_events = 48,
 582};
 583
 584static struct sdma_script_start_addrs sdma_script_imx51 = {
 585	.ap_2_ap_addr = 642,
 586	.uart_2_mcu_addr = 817,
 587	.mcu_2_app_addr = 747,
 588	.mcu_2_shp_addr = 961,
 589	.ata_2_mcu_addr = 1473,
 590	.mcu_2_ata_addr = 1392,
 591	.app_2_per_addr = 1033,
 592	.app_2_mcu_addr = 683,
 593	.shp_2_per_addr = 1251,
 594	.shp_2_mcu_addr = 892,
 595};
 596
 597static struct sdma_driver_data sdma_imx51 = {
 598	.chnenbl0 = SDMA_CHNENBL0_IMX35,
 599	.num_events = 48,
 600	.script_addrs = &sdma_script_imx51,
 601};
 602
 603static struct sdma_script_start_addrs sdma_script_imx53 = {
 604	.ap_2_ap_addr = 642,
 605	.app_2_mcu_addr = 683,
 606	.mcu_2_app_addr = 747,
 607	.uart_2_mcu_addr = 817,
 608	.shp_2_mcu_addr = 891,
 609	.mcu_2_shp_addr = 960,
 610	.uartsh_2_mcu_addr = 1032,
 611	.spdif_2_mcu_addr = 1100,
 612	.mcu_2_spdif_addr = 1134,
 613	.firi_2_mcu_addr = 1193,
 614	.mcu_2_firi_addr = 1290,
 615};
 616
 617static struct sdma_driver_data sdma_imx53 = {
 618	.chnenbl0 = SDMA_CHNENBL0_IMX35,
 619	.num_events = 48,
 620	.script_addrs = &sdma_script_imx53,
 621};
 622
 623static struct sdma_script_start_addrs sdma_script_imx6q = {
 624	.ap_2_ap_addr = 642,
 625	.uart_2_mcu_addr = 817,
 626	.mcu_2_app_addr = 747,
 627	.per_2_per_addr = 6331,
 628	.uartsh_2_mcu_addr = 1032,
 629	.mcu_2_shp_addr = 960,
 630	.app_2_mcu_addr = 683,
 631	.shp_2_mcu_addr = 891,
 632	.spdif_2_mcu_addr = 1100,
 633	.mcu_2_spdif_addr = 1134,
 634};
 635
 636static struct sdma_driver_data sdma_imx6q = {
 637	.chnenbl0 = SDMA_CHNENBL0_IMX35,
 638	.num_events = 48,
 639	.script_addrs = &sdma_script_imx6q,
 640};
 641
 642static struct sdma_driver_data sdma_imx6ul = {
 643	.chnenbl0 = SDMA_CHNENBL0_IMX35,
 644	.num_events = 48,
 645	.script_addrs = &sdma_script_imx6q,
 646	.ecspi_fixed = true,
 647};
 648
 649static struct sdma_script_start_addrs sdma_script_imx7d = {
 650	.ap_2_ap_addr = 644,
 651	.uart_2_mcu_addr = 819,
 652	.mcu_2_app_addr = 749,
 653	.uartsh_2_mcu_addr = 1034,
 654	.mcu_2_shp_addr = 962,
 655	.app_2_mcu_addr = 685,
 656	.shp_2_mcu_addr = 893,
 657	.spdif_2_mcu_addr = 1102,
 658	.mcu_2_spdif_addr = 1136,
 659};
 660
 661static struct sdma_driver_data sdma_imx7d = {
 662	.chnenbl0 = SDMA_CHNENBL0_IMX35,
 663	.num_events = 48,
 664	.script_addrs = &sdma_script_imx7d,
 665};
 666
 667static struct sdma_driver_data sdma_imx8mq = {
 668	.chnenbl0 = SDMA_CHNENBL0_IMX35,
 669	.num_events = 48,
 670	.script_addrs = &sdma_script_imx7d,
 671	.check_ratio = 1,
 672};
 
 673
 674static const struct of_device_id sdma_dt_ids[] = {
 675	{ .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
 676	{ .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
 677	{ .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
 678	{ .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
 679	{ .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
 680	{ .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
 681	{ .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
 682	{ .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
 683	{ .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
 684	{ /* sentinel */ }
 685};
 686MODULE_DEVICE_TABLE(of, sdma_dt_ids);
 687
 688#define SDMA_H_CONFIG_DSPDMA	BIT(12) /* indicates if the DSPDMA is used */
 689#define SDMA_H_CONFIG_RTD_PINS	BIT(11) /* indicates if Real-Time Debug pins are enabled */
 690#define SDMA_H_CONFIG_ACR	BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
 691#define SDMA_H_CONFIG_CSM	(3)       /* indicates which context switch mode is selected*/
 692
 693static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
 694{
 695	u32 chnenbl0 = sdma->drvdata->chnenbl0;
 
 696	return chnenbl0 + event * 4;
 697}
 698
 699static int sdma_config_ownership(struct sdma_channel *sdmac,
 700		bool event_override, bool mcu_override, bool dsp_override)
 701{
 702	struct sdma_engine *sdma = sdmac->sdma;
 703	int channel = sdmac->channel;
 704	unsigned long evt, mcu, dsp;
 705
 706	if (event_override && mcu_override && dsp_override)
 707		return -EINVAL;
 708
 709	evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
 710	mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
 711	dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
 712
 713	if (dsp_override)
 714		__clear_bit(channel, &dsp);
 715	else
 716		__set_bit(channel, &dsp);
 717
 718	if (event_override)
 719		__clear_bit(channel, &evt);
 720	else
 721		__set_bit(channel, &evt);
 722
 723	if (mcu_override)
 724		__clear_bit(channel, &mcu);
 725	else
 726		__set_bit(channel, &mcu);
 727
 728	writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
 729	writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
 730	writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
 731
 732	return 0;
 733}
 734
 735static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
 736{
 737	return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
 738}
 739
 740static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
 741{
 742	writel(BIT(channel), sdma->regs + SDMA_H_START);
 743}
 744
 745/*
 746 * sdma_run_channel0 - run a channel and wait till it's done
 747 */
 748static int sdma_run_channel0(struct sdma_engine *sdma)
 749{
 
 
 750	int ret;
 751	u32 reg;
 752
 753	sdma_enable_channel(sdma, 0);
 754
 755	ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
 756						reg, !(reg & 1), 1, 500);
 757	if (ret)
 758		dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
 759
 760	/* Set bits of CONFIG register with dynamic context switching */
 761	reg = readl(sdma->regs + SDMA_H_CONFIG);
 762	if ((reg & SDMA_H_CONFIG_CSM) == 0) {
 763		reg |= SDMA_H_CONFIG_CSM;
 764		writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
 765	}
 766
 767	return ret;
 768}
 769
 770static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
 771		u32 address)
 772{
 773	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
 774	void *buf_virt;
 775	dma_addr_t buf_phys;
 776	int ret;
 777	unsigned long flags;
 778
 779	buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
 
 
 780	if (!buf_virt)
 781		return -ENOMEM;
 782
 783	spin_lock_irqsave(&sdma->channel_0_lock, flags);
 784
 785	bd0->mode.command = C0_SETPM;
 786	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
 787	bd0->mode.count = size / 2;
 788	bd0->buffer_addr = buf_phys;
 789	bd0->ext_buffer_addr = address;
 790
 791	memcpy(buf_virt, buf, size);
 792
 793	ret = sdma_run_channel0(sdma);
 794
 795	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
 796
 797	dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
 798
 799	return ret;
 800}
 801
 802static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
 803{
 804	struct sdma_engine *sdma = sdmac->sdma;
 805	int channel = sdmac->channel;
 806	unsigned long val;
 807	u32 chnenbl = chnenbl_ofs(sdma, event);
 808
 809	val = readl_relaxed(sdma->regs + chnenbl);
 810	__set_bit(channel, &val);
 811	writel_relaxed(val, sdma->regs + chnenbl);
 812
 813	/* Set SDMA_DONEx_CONFIG is sw_done enabled */
 814	if (sdmac->sw_done) {
 815		val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
 816		val |= SDMA_DONE0_CONFIG_DONE_SEL;
 817		val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
 818		writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
 819	}
 820}
 821
 822static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
 823{
 824	struct sdma_engine *sdma = sdmac->sdma;
 825	int channel = sdmac->channel;
 826	u32 chnenbl = chnenbl_ofs(sdma, event);
 827	unsigned long val;
 828
 829	val = readl_relaxed(sdma->regs + chnenbl);
 830	__clear_bit(channel, &val);
 831	writel_relaxed(val, sdma->regs + chnenbl);
 832}
 833
 834static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
 835{
 836	return container_of(t, struct sdma_desc, vd.tx);
 837}
 838
 839static void sdma_start_desc(struct sdma_channel *sdmac)
 840{
 841	struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
 842	struct sdma_desc *desc;
 843	struct sdma_engine *sdma = sdmac->sdma;
 844	int channel = sdmac->channel;
 845
 846	if (!vd) {
 847		sdmac->desc = NULL;
 848		return;
 849	}
 850	sdmac->desc = desc = to_sdma_desc(&vd->tx);
 851
 852	list_del(&vd->node);
 853
 854	sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
 855	sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
 856	sdma_enable_channel(sdma, sdmac->channel);
 857}
 858
 859static void sdma_update_channel_loop(struct sdma_channel *sdmac)
 860{
 861	struct sdma_buffer_descriptor *bd;
 862	int error = 0;
 863	enum dma_status	old_status = sdmac->status;
 864
 865	/*
 866	 * loop mode. Iterate over descriptors, re-setup them and
 867	 * call callback function.
 868	 */
 869	while (sdmac->desc) {
 870		struct sdma_desc *desc = sdmac->desc;
 871
 872		bd = &desc->bd[desc->buf_tail];
 873
 874		if (bd->mode.status & BD_DONE)
 875			break;
 876
 877		if (bd->mode.status & BD_RROR) {
 878			bd->mode.status &= ~BD_RROR;
 879			sdmac->status = DMA_ERROR;
 880			error = -EIO;
 881		}
 882
 883	       /*
 884		* We use bd->mode.count to calculate the residue, since contains
 885		* the number of bytes present in the current buffer descriptor.
 886		*/
 887
 888		desc->chn_real_count = bd->mode.count;
 889		bd->mode.count = desc->period_len;
 890		desc->buf_ptail = desc->buf_tail;
 891		desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
 892
 893		/*
 894		 * The callback is called from the interrupt context in order
 895		 * to reduce latency and to avoid the risk of altering the
 896		 * SDMA transaction status by the time the client tasklet is
 897		 * executed.
 898		 */
 899		spin_unlock(&sdmac->vc.lock);
 900		dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
 901		spin_lock(&sdmac->vc.lock);
 902
 903		/* Assign buffer ownership to SDMA */
 904		bd->mode.status |= BD_DONE;
 
 
 905
 906		if (error)
 907			sdmac->status = old_status;
 908	}
 909
 910	/*
 911	 * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
 912	 * owned buffer is available (i.e. BD_DONE was set too late).
 913	 */
 914	if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
 915		dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
 916		sdma_enable_channel(sdmac->sdma, sdmac->channel);
 917	}
 918}
 919
 920static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
 921{
 922	struct sdma_channel *sdmac = (struct sdma_channel *) data;
 923	struct sdma_buffer_descriptor *bd;
 924	int i, error = 0;
 925
 926	sdmac->desc->chn_real_count = 0;
 927	/*
 928	 * non loop mode. Iterate over all descriptors, collect
 929	 * errors and call callback function
 930	 */
 931	for (i = 0; i < sdmac->desc->num_bd; i++) {
 932		bd = &sdmac->desc->bd[i];
 933
 934		if (bd->mode.status & (BD_DONE | BD_RROR))
 935			error = -EIO;
 936		sdmac->desc->chn_real_count += bd->mode.count;
 937	}
 938
 939	if (error)
 940		sdmac->status = DMA_ERROR;
 941	else
 942		sdmac->status = DMA_COMPLETE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943}
 944
 945static irqreturn_t sdma_int_handler(int irq, void *dev_id)
 946{
 947	struct sdma_engine *sdma = dev_id;
 948	unsigned long stat;
 949
 950	stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
 951	writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
 952	/* channel 0 is special and not handled here, see run_channel0() */
 953	stat &= ~1;
 954
 955	while (stat) {
 956		int channel = fls(stat) - 1;
 957		struct sdma_channel *sdmac = &sdma->channel[channel];
 958		struct sdma_desc *desc;
 959
 960		spin_lock(&sdmac->vc.lock);
 961		desc = sdmac->desc;
 962		if (desc) {
 963			if (sdmac->flags & IMX_DMA_SG_LOOP) {
 964				if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
 965					sdma_update_channel_loop(sdmac);
 966				else
 967					vchan_cyclic_callback(&desc->vd);
 968			} else {
 969				mxc_sdma_handle_channel_normal(sdmac);
 970				vchan_cookie_complete(&desc->vd);
 971				sdma_start_desc(sdmac);
 972			}
 973		}
 974
 975		spin_unlock(&sdmac->vc.lock);
 976		__clear_bit(channel, &stat);
 977	}
 978
 979	return IRQ_HANDLED;
 980}
 981
 982/*
 983 * sets the pc of SDMA script according to the peripheral type
 984 */
 985static int sdma_get_pc(struct sdma_channel *sdmac,
 986		enum sdma_peripheral_type peripheral_type)
 987{
 988	struct sdma_engine *sdma = sdmac->sdma;
 989	int per_2_emi = 0, emi_2_per = 0;
 990	/*
 991	 * These are needed once we start to support transfers between
 992	 * two peripherals or memory-to-memory transfers
 993	 */
 994	int per_2_per = 0, emi_2_emi = 0;
 995
 996	sdmac->pc_from_device = 0;
 997	sdmac->pc_to_device = 0;
 998	sdmac->device_to_device = 0;
 999	sdmac->pc_to_pc = 0;
1000	sdmac->is_ram_script = false;
1001
1002	switch (peripheral_type) {
1003	case IMX_DMATYPE_MEMORY:
1004		emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
1005		break;
1006	case IMX_DMATYPE_DSP:
1007		emi_2_per = sdma->script_addrs->bp_2_ap_addr;
1008		per_2_emi = sdma->script_addrs->ap_2_bp_addr;
1009		break;
1010	case IMX_DMATYPE_FIRI:
1011		per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
1012		emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
1013		break;
1014	case IMX_DMATYPE_UART:
1015		per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
1016		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1017		break;
1018	case IMX_DMATYPE_UART_SP:
1019		per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
1020		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1021		break;
1022	case IMX_DMATYPE_ATA:
1023		per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1024		emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1025		break;
1026	case IMX_DMATYPE_CSPI:
1027		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1028
1029		/* Use rom script mcu_2_app if ERR009165 fixed */
1030		if (sdmac->sdma->drvdata->ecspi_fixed) {
1031			emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1032		} else {
1033			emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1034			sdmac->is_ram_script = true;
1035		}
1036
1037		break;
1038	case IMX_DMATYPE_EXT:
1039	case IMX_DMATYPE_SSI:
1040	case IMX_DMATYPE_SAI:
1041		per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1042		emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1043		break;
1044	case IMX_DMATYPE_SSI_DUAL:
1045		per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1046		emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1047		sdmac->is_ram_script = true;
1048		break;
1049	case IMX_DMATYPE_SSI_SP:
1050	case IMX_DMATYPE_MMC:
1051	case IMX_DMATYPE_SDHC:
1052	case IMX_DMATYPE_CSPI_SP:
1053	case IMX_DMATYPE_ESAI:
1054	case IMX_DMATYPE_MSHC_SP:
1055		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1056		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1057		break;
1058	case IMX_DMATYPE_ASRC:
1059		per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1060		emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1061		per_2_per = sdma->script_addrs->per_2_per_addr;
1062		sdmac->is_ram_script = true;
1063		break;
1064	case IMX_DMATYPE_ASRC_SP:
1065		per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1066		emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1067		per_2_per = sdma->script_addrs->per_2_per_addr;
1068		break;
1069	case IMX_DMATYPE_MSHC:
1070		per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1071		emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1072		break;
1073	case IMX_DMATYPE_CCM:
1074		per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1075		break;
1076	case IMX_DMATYPE_SPDIF:
1077		per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1078		emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1079		break;
1080	case IMX_DMATYPE_IPU_MEMORY:
1081		emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1082		break;
1083	case IMX_DMATYPE_MULTI_SAI:
1084		per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1085		emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1086		break;
1087	case IMX_DMATYPE_I2C:
1088		per_2_emi = sdma->script_addrs->i2c_2_mcu_addr;
1089		emi_2_per = sdma->script_addrs->mcu_2_i2c_addr;
1090		sdmac->is_ram_script = true;
1091		break;
1092	case IMX_DMATYPE_HDMI:
1093		emi_2_per = sdma->script_addrs->hdmi_dma_addr;
1094		sdmac->is_ram_script = true;
1095		break;
1096	default:
1097		dev_err(sdma->dev, "Unsupported transfer type %d\n",
1098			peripheral_type);
1099		return -EINVAL;
1100	}
1101
1102	sdmac->pc_from_device = per_2_emi;
1103	sdmac->pc_to_device = emi_2_per;
1104	sdmac->device_to_device = per_2_per;
1105	sdmac->pc_to_pc = emi_2_emi;
1106
1107	return 0;
1108}
1109
1110static int sdma_load_context(struct sdma_channel *sdmac)
1111{
1112	struct sdma_engine *sdma = sdmac->sdma;
1113	int channel = sdmac->channel;
1114	int load_address;
1115	struct sdma_context_data *context = sdma->context;
1116	struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1117	int ret;
1118	unsigned long flags;
1119
1120	if (sdmac->direction == DMA_DEV_TO_MEM)
1121		load_address = sdmac->pc_from_device;
1122	else if (sdmac->direction == DMA_DEV_TO_DEV)
1123		load_address = sdmac->device_to_device;
1124	else if (sdmac->direction == DMA_MEM_TO_MEM)
1125		load_address = sdmac->pc_to_pc;
1126	else
1127		load_address = sdmac->pc_to_device;
 
1128
1129	if (load_address < 0)
1130		return load_address;
1131
1132	dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1133	dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1134	dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1135	dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1136	dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1137	dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1138
1139	spin_lock_irqsave(&sdma->channel_0_lock, flags);
1140
1141	memset(context, 0, sizeof(*context));
1142	context->channel_state.pc = load_address;
1143
1144	/* Send by context the event mask,base address for peripheral
1145	 * and watermark level
1146	 */
1147	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1148		context->gReg[4] = sdmac->per_addr;
1149		context->gReg[6] = sdmac->shp_addr;
1150	} else {
1151		context->gReg[0] = sdmac->event_mask[1];
1152		context->gReg[1] = sdmac->event_mask[0];
1153		context->gReg[2] = sdmac->per_addr;
1154		context->gReg[6] = sdmac->shp_addr;
1155		context->gReg[7] = sdmac->watermark_level;
1156	}
1157
1158	bd0->mode.command = C0_SETDM;
1159	bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1160	bd0->mode.count = sizeof(*context) / 4;
1161	bd0->buffer_addr = sdma->context_phys;
1162	bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1163	ret = sdma_run_channel0(sdma);
1164
1165	spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1166
1167	return ret;
1168}
1169
1170static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1171{
1172	return container_of(chan, struct sdma_channel, vc.chan);
1173}
1174
1175static int sdma_disable_channel(struct dma_chan *chan)
1176{
1177	struct sdma_channel *sdmac = to_sdma_chan(chan);
1178	struct sdma_engine *sdma = sdmac->sdma;
1179	int channel = sdmac->channel;
1180
1181	writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1182	sdmac->status = DMA_ERROR;
1183
1184	return 0;
1185}
1186static void sdma_channel_terminate_work(struct work_struct *work)
1187{
1188	struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1189						  terminate_worker);
1190	/*
1191	 * According to NXP R&D team a delay of one BD SDMA cost time
1192	 * (maximum is 1ms) should be added after disable of the channel
1193	 * bit, to ensure SDMA core has really been stopped after SDMA
1194	 * clients call .device_terminate_all.
1195	 */
1196	usleep_range(1000, 2000);
1197
1198	vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1199}
1200
1201static int sdma_terminate_all(struct dma_chan *chan)
1202{
1203	struct sdma_channel *sdmac = to_sdma_chan(chan);
1204	unsigned long flags;
1205
1206	spin_lock_irqsave(&sdmac->vc.lock, flags);
1207
1208	sdma_disable_channel(chan);
1209
1210	if (sdmac->desc) {
1211		vchan_terminate_vdesc(&sdmac->desc->vd);
1212		/*
1213		 * move out current descriptor into terminated list so that
1214		 * it could be free in sdma_channel_terminate_work alone
1215		 * later without potential involving next descriptor raised
1216		 * up before the last descriptor terminated.
1217		 */
1218		vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1219		sdmac->desc = NULL;
1220		schedule_work(&sdmac->terminate_worker);
1221	}
1222
1223	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1224
1225	return 0;
1226}
1227
1228static void sdma_channel_synchronize(struct dma_chan *chan)
1229{
1230	struct sdma_channel *sdmac = to_sdma_chan(chan);
1231
1232	vchan_synchronize(&sdmac->vc);
1233
1234	flush_work(&sdmac->terminate_worker);
1235}
1236
1237static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1238{
1239	struct sdma_engine *sdma = sdmac->sdma;
1240
1241	int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1242	int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1243
1244	set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1245	set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1246
1247	if (sdmac->event_id0 > 31)
1248		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1249
1250	if (sdmac->event_id1 > 31)
1251		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1252
1253	/*
1254	 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1255	 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1256	 * r0(event_mask[1]) and r1(event_mask[0]).
1257	 */
1258	if (lwml > hwml) {
1259		sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1260						SDMA_WATERMARK_LEVEL_HWML);
1261		sdmac->watermark_level |= hwml;
1262		sdmac->watermark_level |= lwml << 16;
1263		swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1264	}
1265
1266	if (sdmac->per_address2 >= sdma->spba_start_addr &&
1267			sdmac->per_address2 <= sdma->spba_end_addr)
1268		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1269
1270	if (sdmac->per_address >= sdma->spba_start_addr &&
1271			sdmac->per_address <= sdma->spba_end_addr)
1272		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1273
1274	sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1275
1276	/*
1277	 * Limitation: The p2p script support dual fifos in maximum,
1278	 * So when fifo number is larger than 1, force enable dual
1279	 * fifos.
1280	 */
1281	if (sdmac->n_fifos_src > 1)
1282		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SD;
1283	if (sdmac->n_fifos_dst > 1)
1284		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DD;
1285}
1286
1287static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1288{
1289	unsigned int n_fifos;
1290	unsigned int stride_fifos;
1291	unsigned int words_per_fifo;
1292
1293	if (sdmac->sw_done)
1294		sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1295
1296	if (sdmac->direction == DMA_DEV_TO_MEM) {
1297		n_fifos = sdmac->n_fifos_src;
1298		stride_fifos = sdmac->stride_fifos_src;
1299	} else {
1300		n_fifos = sdmac->n_fifos_dst;
1301		stride_fifos = sdmac->stride_fifos_dst;
1302	}
1303
1304	words_per_fifo = sdmac->words_per_fifo;
1305
1306	sdmac->watermark_level |=
1307			FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1308	sdmac->watermark_level |=
1309			FIELD_PREP(SDMA_WATERMARK_LEVEL_OFF_FIFOS, stride_fifos);
1310	if (words_per_fifo)
1311		sdmac->watermark_level |=
1312			FIELD_PREP(SDMA_WATERMARK_LEVEL_WORDS_PER_FIFO, (words_per_fifo - 1));
1313}
1314
1315static int sdma_config_channel(struct dma_chan *chan)
1316{
1317	struct sdma_channel *sdmac = to_sdma_chan(chan);
1318	int ret;
1319
1320	sdma_disable_channel(chan);
1321
1322	sdmac->event_mask[0] = 0;
1323	sdmac->event_mask[1] = 0;
1324	sdmac->shp_addr = 0;
1325	sdmac->per_addr = 0;
1326
 
 
 
 
 
 
1327	switch (sdmac->peripheral_type) {
1328	case IMX_DMATYPE_DSP:
1329		sdma_config_ownership(sdmac, false, true, true);
1330		break;
1331	case IMX_DMATYPE_MEMORY:
1332		sdma_config_ownership(sdmac, false, true, false);
1333		break;
1334	default:
1335		sdma_config_ownership(sdmac, true, true, false);
1336		break;
1337	}
1338
1339	ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1340	if (ret)
1341		return ret;
1342
1343	if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1344			(sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1345		/* Handle multiple event channels differently */
1346		if (sdmac->event_id1) {
1347			if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1348			    sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1349				sdma_set_watermarklevel_for_p2p(sdmac);
 
 
 
1350		} else {
1351			if (sdmac->peripheral_type ==
1352					IMX_DMATYPE_MULTI_SAI)
1353				sdma_set_watermarklevel_for_sais(sdmac);
1354
1355			__set_bit(sdmac->event_id0, sdmac->event_mask);
1356		}
1357
 
1358		/* Address */
1359		sdmac->shp_addr = sdmac->per_address;
1360		sdmac->per_addr = sdmac->per_address2;
1361	} else {
1362		sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1363	}
1364
1365	return 0;
 
 
1366}
1367
1368static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1369				     unsigned int priority)
1370{
1371	struct sdma_engine *sdma = sdmac->sdma;
1372	int channel = sdmac->channel;
1373
1374	if (priority < MXC_SDMA_MIN_PRIORITY
1375	    || priority > MXC_SDMA_MAX_PRIORITY) {
1376		return -EINVAL;
1377	}
1378
1379	writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1380
1381	return 0;
1382}
1383
1384static int sdma_request_channel0(struct sdma_engine *sdma)
1385{
 
 
1386	int ret = -EBUSY;
1387
1388	if (sdma->iram_pool)
1389		sdma->bd0 = gen_pool_dma_alloc(sdma->iram_pool,
1390					sizeof(struct sdma_buffer_descriptor),
1391					&sdma->bd0_phys);
1392	else
1393		sdma->bd0 = dma_alloc_coherent(sdma->dev,
1394					sizeof(struct sdma_buffer_descriptor),
1395					&sdma->bd0_phys, GFP_NOWAIT);
1396	if (!sdma->bd0) {
1397		ret = -ENOMEM;
1398		goto out;
1399	}
1400
1401	sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1402	sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
 
 
 
 
 
 
 
 
 
 
1403
1404	sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1405	return 0;
1406out:
1407
1408	return ret;
1409}
1410
 
 
 
 
1411
1412static int sdma_alloc_bd(struct sdma_desc *desc)
1413{
1414	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1415	struct sdma_engine *sdma = desc->sdmac->sdma;
1416	int ret = 0;
1417
1418	if (sdma->iram_pool)
1419		desc->bd = gen_pool_dma_alloc(sdma->iram_pool, bd_size, &desc->bd_phys);
1420	else
1421		desc->bd = dma_alloc_coherent(sdma->dev, bd_size, &desc->bd_phys, GFP_NOWAIT);
 
1422
1423	if (!desc->bd) {
1424		ret = -ENOMEM;
1425		goto out;
1426	}
1427out:
1428	return ret;
1429}
1430
1431static void sdma_free_bd(struct sdma_desc *desc)
1432{
1433	u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1434	struct sdma_engine *sdma = desc->sdmac->sdma;
1435
1436	if (sdma->iram_pool)
1437		gen_pool_free(sdma->iram_pool, (unsigned long)desc->bd, bd_size);
1438	else
1439		dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd, desc->bd_phys);
1440}
1441
1442static void sdma_desc_free(struct virt_dma_desc *vd)
1443{
1444	struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
 
 
1445
1446	sdma_free_bd(desc);
1447	kfree(desc);
 
 
 
 
 
 
 
1448}
1449
1450static int sdma_alloc_chan_resources(struct dma_chan *chan)
1451{
1452	struct sdma_channel *sdmac = to_sdma_chan(chan);
1453	struct imx_dma_data *data = chan->private;
1454	struct imx_dma_data mem_data;
1455	int prio, ret;
1456
1457	/*
1458	 * MEMCPY may never setup chan->private by filter function such as
1459	 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1460	 * Please note in any other slave case, you have to setup chan->private
1461	 * with 'struct imx_dma_data' in your own filter function if you want to
1462	 * request dma channel by dma_request_channel() rather than
1463	 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1464	 * to warn you to correct your filter function.
1465	 */
1466	if (!data) {
1467		dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1468		mem_data.priority = 2;
1469		mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1470		mem_data.dma_request = 0;
1471		mem_data.dma_request2 = 0;
1472		data = &mem_data;
1473
1474		ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1475		if (ret)
1476			return ret;
1477	}
1478
1479	switch (data->priority) {
1480	case DMA_PRIO_HIGH:
1481		prio = 3;
1482		break;
1483	case DMA_PRIO_MEDIUM:
1484		prio = 2;
1485		break;
1486	case DMA_PRIO_LOW:
1487	default:
1488		prio = 1;
1489		break;
1490	}
1491
1492	sdmac->peripheral_type = data->peripheral_type;
1493	sdmac->event_id0 = data->dma_request;
1494	sdmac->event_id1 = data->dma_request2;
 
 
1495
1496	ret = clk_enable(sdmac->sdma->clk_ipg);
1497	if (ret)
1498		return ret;
1499	ret = clk_enable(sdmac->sdma->clk_ahb);
1500	if (ret)
1501		goto disable_clk_ipg;
1502
1503	ret = sdma_set_channel_priority(sdmac, prio);
1504	if (ret)
1505		goto disable_clk_ahb;
 
1506
1507	return 0;
1508
1509disable_clk_ahb:
1510	clk_disable(sdmac->sdma->clk_ahb);
1511disable_clk_ipg:
1512	clk_disable(sdmac->sdma->clk_ipg);
1513	return ret;
1514}
1515
1516static void sdma_free_chan_resources(struct dma_chan *chan)
1517{
1518	struct sdma_channel *sdmac = to_sdma_chan(chan);
1519	struct sdma_engine *sdma = sdmac->sdma;
1520
1521	sdma_terminate_all(chan);
1522
1523	sdma_channel_synchronize(chan);
1524
1525	sdma_event_disable(sdmac, sdmac->event_id0);
1526	if (sdmac->event_id1)
1527		sdma_event_disable(sdmac, sdmac->event_id1);
1528
1529	sdmac->event_id0 = 0;
1530	sdmac->event_id1 = 0;
1531
1532	sdma_set_channel_priority(sdmac, 0);
1533
1534	clk_disable(sdma->clk_ipg);
1535	clk_disable(sdma->clk_ahb);
1536}
1537
1538static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1539				enum dma_transfer_direction direction, u32 bds)
1540{
1541	struct sdma_desc *desc;
1542
1543	if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1544		dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1545		goto err_out;
1546	}
1547
1548	desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1549	if (!desc)
1550		goto err_out;
1551
1552	sdmac->status = DMA_IN_PROGRESS;
1553	sdmac->direction = direction;
1554	sdmac->flags = 0;
1555
1556	desc->chn_count = 0;
1557	desc->chn_real_count = 0;
1558	desc->buf_tail = 0;
1559	desc->buf_ptail = 0;
1560	desc->sdmac = sdmac;
1561	desc->num_bd = bds;
1562
1563	if (bds && sdma_alloc_bd(desc))
1564		goto err_desc_out;
1565
1566	/* No slave_config called in MEMCPY case, so do here */
1567	if (direction == DMA_MEM_TO_MEM)
1568		sdma_config_ownership(sdmac, false, true, false);
1569
1570	if (sdma_load_context(sdmac))
1571		goto err_bd_out;
1572
1573	return desc;
1574
1575err_bd_out:
1576	sdma_free_bd(desc);
1577err_desc_out:
1578	kfree(desc);
1579err_out:
1580	return NULL;
1581}
1582
1583static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1584		struct dma_chan *chan, dma_addr_t dma_dst,
1585		dma_addr_t dma_src, size_t len, unsigned long flags)
1586{
1587	struct sdma_channel *sdmac = to_sdma_chan(chan);
1588	struct sdma_engine *sdma = sdmac->sdma;
1589	int channel = sdmac->channel;
1590	size_t count;
1591	int i = 0, param;
1592	struct sdma_buffer_descriptor *bd;
1593	struct sdma_desc *desc;
1594
1595	if (!chan || !len)
1596		return NULL;
1597
1598	dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1599		&dma_src, &dma_dst, len, channel);
1600
1601	desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1602					len / SDMA_BD_MAX_CNT + 1);
1603	if (!desc)
1604		return NULL;
1605
1606	do {
1607		count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1608		bd = &desc->bd[i];
1609		bd->buffer_addr = dma_src;
1610		bd->ext_buffer_addr = dma_dst;
1611		bd->mode.count = count;
1612		desc->chn_count += count;
1613		bd->mode.command = 0;
1614
1615		dma_src += count;
1616		dma_dst += count;
1617		len -= count;
1618		i++;
1619
1620		param = BD_DONE | BD_EXTD | BD_CONT;
1621		/* last bd */
1622		if (!len) {
1623			param |= BD_INTR;
1624			param |= BD_LAST;
1625			param &= ~BD_CONT;
1626		}
1627
1628		dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1629				i, count, bd->buffer_addr,
1630				param & BD_WRAP ? "wrap" : "",
1631				param & BD_INTR ? " intr" : "");
1632
1633		bd->mode.status = param;
1634	} while (len);
1635
1636	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1637}
1638
1639static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1640		struct dma_chan *chan, struct scatterlist *sgl,
1641		unsigned int sg_len, enum dma_transfer_direction direction,
1642		unsigned long flags, void *context)
1643{
1644	struct sdma_channel *sdmac = to_sdma_chan(chan);
1645	struct sdma_engine *sdma = sdmac->sdma;
1646	int i, count;
1647	int channel = sdmac->channel;
1648	struct scatterlist *sg;
1649	struct sdma_desc *desc;
1650
1651	sdma_config_write(chan, &sdmac->slave_config, direction);
 
 
1652
1653	desc = sdma_transfer_init(sdmac, direction, sg_len);
1654	if (!desc)
1655		goto err_out;
1656
1657	dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1658			sg_len, channel);
1659
 
 
 
 
 
 
 
 
 
 
 
 
1660	for_each_sg(sgl, sg, sg_len, i) {
1661		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1662		int param;
1663
1664		bd->buffer_addr = sg->dma_address;
1665
1666		count = sg_dma_len(sg);
1667
1668		if (count > SDMA_BD_MAX_CNT) {
1669			dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1670					channel, count, SDMA_BD_MAX_CNT);
1671			goto err_bd_out;
 
1672		}
1673
1674		bd->mode.count = count;
1675		desc->chn_count += count;
1676
1677		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1678			goto err_bd_out;
 
 
1679
1680		switch (sdmac->word_size) {
1681		case DMA_SLAVE_BUSWIDTH_4_BYTES:
1682			bd->mode.command = 0;
1683			if (count & 3 || sg->dma_address & 3)
1684				goto err_bd_out;
1685			break;
1686		case DMA_SLAVE_BUSWIDTH_3_BYTES:
1687			bd->mode.command = 3;
1688			break;
1689		case DMA_SLAVE_BUSWIDTH_2_BYTES:
1690			bd->mode.command = 2;
1691			if (count & 1 || sg->dma_address & 1)
1692				goto err_bd_out;
1693			break;
1694		case DMA_SLAVE_BUSWIDTH_1_BYTE:
1695			bd->mode.command = 1;
1696			break;
1697		default:
1698			goto err_bd_out;
1699		}
1700
1701		param = BD_DONE | BD_EXTD | BD_CONT;
1702
1703		if (i + 1 == sg_len) {
1704			param |= BD_INTR;
1705			param |= BD_LAST;
1706			param &= ~BD_CONT;
1707		}
1708
1709		dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1710				i, count, (u64)sg->dma_address,
1711				param & BD_WRAP ? "wrap" : "",
1712				param & BD_INTR ? " intr" : "");
1713
1714		bd->mode.status = param;
1715	}
1716
1717	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1718err_bd_out:
1719	sdma_free_bd(desc);
1720	kfree(desc);
1721err_out:
1722	sdmac->status = DMA_ERROR;
1723	return NULL;
1724}
1725
1726static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1727		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1728		size_t period_len, enum dma_transfer_direction direction,
1729		unsigned long flags)
1730{
1731	struct sdma_channel *sdmac = to_sdma_chan(chan);
1732	struct sdma_engine *sdma = sdmac->sdma;
1733	int num_periods = 0;
1734	int channel = sdmac->channel;
1735	int i = 0, buf = 0;
1736	struct sdma_desc *desc;
1737
1738	dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1739
1740	if (sdmac->peripheral_type != IMX_DMATYPE_HDMI)
1741		num_periods = buf_len / period_len;
1742
1743	sdma_config_write(chan, &sdmac->slave_config, direction);
1744
1745	desc = sdma_transfer_init(sdmac, direction, num_periods);
1746	if (!desc)
 
 
1747		goto err_out;
1748
1749	desc->period_len = period_len;
 
 
 
 
1750
1751	sdmac->flags |= IMX_DMA_SG_LOOP;
1752
1753	if (period_len > SDMA_BD_MAX_CNT) {
1754		dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1755				channel, period_len, SDMA_BD_MAX_CNT);
1756		goto err_bd_out;
1757	}
1758
1759	if (sdmac->peripheral_type == IMX_DMATYPE_HDMI)
1760		return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1761
1762	while (buf < buf_len) {
1763		struct sdma_buffer_descriptor *bd = &desc->bd[i];
1764		int param;
1765
1766		bd->buffer_addr = dma_addr;
1767
1768		bd->mode.count = period_len;
1769
1770		if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1771			goto err_bd_out;
1772		if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1773			bd->mode.command = 0;
1774		else
1775			bd->mode.command = sdmac->word_size;
1776
1777		param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1778		if (i + 1 == num_periods)
1779			param |= BD_WRAP;
1780
1781		dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1782				i, period_len, (u64)dma_addr,
1783				param & BD_WRAP ? "wrap" : "",
1784				param & BD_INTR ? " intr" : "");
1785
1786		bd->mode.status = param;
1787
1788		dma_addr += period_len;
1789		buf += period_len;
1790
1791		i++;
1792	}
1793
1794	return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1795err_bd_out:
1796	sdma_free_bd(desc);
1797	kfree(desc);
1798err_out:
1799	sdmac->status = DMA_ERROR;
1800	return NULL;
1801}
1802
1803static int sdma_config_write(struct dma_chan *chan,
1804		       struct dma_slave_config *dmaengine_cfg,
1805		       enum dma_transfer_direction direction)
1806{
1807	struct sdma_channel *sdmac = to_sdma_chan(chan);
 
1808
1809	if (direction == DMA_DEV_TO_MEM) {
1810		sdmac->per_address = dmaengine_cfg->src_addr;
1811		sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1812			dmaengine_cfg->src_addr_width;
1813		sdmac->word_size = dmaengine_cfg->src_addr_width;
1814	} else if (direction == DMA_DEV_TO_DEV) {
1815		sdmac->per_address2 = dmaengine_cfg->src_addr;
1816		sdmac->per_address = dmaengine_cfg->dst_addr;
1817		sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1818			SDMA_WATERMARK_LEVEL_LWML;
1819		sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1820			SDMA_WATERMARK_LEVEL_HWML;
1821		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1822	} else if (sdmac->peripheral_type == IMX_DMATYPE_HDMI) {
1823		sdmac->per_address = dmaengine_cfg->dst_addr;
1824		sdmac->per_address2 = dmaengine_cfg->src_addr;
1825		sdmac->watermark_level = 0;
1826	} else {
1827		sdmac->per_address = dmaengine_cfg->dst_addr;
1828		sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1829			dmaengine_cfg->dst_addr_width;
1830		sdmac->word_size = dmaengine_cfg->dst_addr_width;
1831	}
1832	sdmac->direction = direction;
1833	return sdma_config_channel(chan);
1834}
1835
1836static int sdma_config(struct dma_chan *chan,
1837		       struct dma_slave_config *dmaengine_cfg)
1838{
1839	struct sdma_channel *sdmac = to_sdma_chan(chan);
1840	struct sdma_engine *sdma = sdmac->sdma;
1841
1842	memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1843
1844	if (dmaengine_cfg->peripheral_config) {
1845		struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1846		if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1847			dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1848				dmaengine_cfg->peripheral_size,
1849				sizeof(struct sdma_peripheral_config));
1850			return -EINVAL;
1851		}
1852		sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1853		sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1854		sdmac->stride_fifos_src = sdmacfg->stride_fifos_src;
1855		sdmac->stride_fifos_dst = sdmacfg->stride_fifos_dst;
1856		sdmac->words_per_fifo = sdmacfg->words_per_fifo;
1857		sdmac->sw_done = sdmacfg->sw_done;
1858	}
1859
1860	/* Set ENBLn earlier to make sure dma request triggered after that */
1861	if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1862		return -EINVAL;
1863	sdma_event_enable(sdmac, sdmac->event_id0);
1864
1865	if (sdmac->event_id1) {
1866		if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1867			return -EINVAL;
1868		sdma_event_enable(sdmac, sdmac->event_id1);
1869	}
1870
1871	return 0;
1872}
1873
1874static enum dma_status sdma_tx_status(struct dma_chan *chan,
1875				      dma_cookie_t cookie,
1876				      struct dma_tx_state *txstate)
1877{
1878	struct sdma_channel *sdmac = to_sdma_chan(chan);
1879	struct sdma_desc *desc = NULL;
1880	u32 residue;
1881	struct virt_dma_desc *vd;
1882	enum dma_status ret;
1883	unsigned long flags;
1884
1885	ret = dma_cookie_status(chan, cookie, txstate);
1886	if (ret == DMA_COMPLETE || !txstate)
1887		return ret;
1888
1889	spin_lock_irqsave(&sdmac->vc.lock, flags);
1890
1891	vd = vchan_find_desc(&sdmac->vc, cookie);
1892	if (vd)
1893		desc = to_sdma_desc(&vd->tx);
1894	else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1895		desc = sdmac->desc;
1896
1897	if (desc) {
1898		if (sdmac->flags & IMX_DMA_SG_LOOP)
1899			residue = (desc->num_bd - desc->buf_ptail) *
1900				desc->period_len - desc->chn_real_count;
1901		else
1902			residue = desc->chn_count - desc->chn_real_count;
1903	} else {
1904		residue = 0;
1905	}
1906
1907	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1908
1909	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1910			 residue);
1911
1912	return sdmac->status;
1913}
1914
1915static void sdma_issue_pending(struct dma_chan *chan)
1916{
1917	struct sdma_channel *sdmac = to_sdma_chan(chan);
1918	unsigned long flags;
1919
1920	spin_lock_irqsave(&sdmac->vc.lock, flags);
1921	if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1922		sdma_start_desc(sdmac);
1923	spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1924}
1925
1926#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1	\
1927(offsetof(struct sdma_script_start_addrs, v1_end) / sizeof(s32))
1928
1929#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 \
1930(offsetof(struct sdma_script_start_addrs, v2_end) / sizeof(s32))
1931
1932#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 \
1933(offsetof(struct sdma_script_start_addrs, v3_end) / sizeof(s32))
1934
1935#define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 \
1936(offsetof(struct sdma_script_start_addrs, v4_end) / sizeof(s32))
1937
1938static void sdma_add_scripts(struct sdma_engine *sdma,
1939			     const struct sdma_script_start_addrs *addr)
1940{
1941	s32 *addr_arr = (u32 *)addr;
1942	s32 *saddr_arr = (u32 *)sdma->script_addrs;
1943	int i;
1944
1945	/* use the default firmware in ROM if missing external firmware */
1946	if (!sdma->script_number)
1947		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1948
1949	if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1950				  / sizeof(s32)) {
1951		dev_err(sdma->dev,
1952			"SDMA script number %d not match with firmware.\n",
1953			sdma->script_number);
1954		return;
1955	}
1956
1957	for (i = 0; i < sdma->script_number; i++)
1958		if (addr_arr[i] > 0)
1959			saddr_arr[i] = addr_arr[i];
1960
1961	/*
1962	 * For compatibility with NXP internal legacy kernel before 4.19 which
1963	 * is based on uart ram script and mainline kernel based on uart rom
1964	 * script, both uart ram/rom scripts are present in newer sdma
1965	 * firmware. Use the rom versions if they are present (V3 or newer).
1966	 */
1967	if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1968		if (addr->uart_2_mcu_rom_addr)
1969			sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1970		if (addr->uartsh_2_mcu_rom_addr)
1971			sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1972	}
1973}
1974
1975static void sdma_load_firmware(const struct firmware *fw, void *context)
 
1976{
1977	struct sdma_engine *sdma = context;
1978	const struct sdma_firmware_header *header;
 
1979	const struct sdma_script_start_addrs *addr;
1980	unsigned short *ram_code;
1981
1982	if (!fw) {
1983		dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1984		/* In this case we just use the ROM firmware. */
1985		return;
1986	}
1987
1988	if (fw->size < sizeof(*header))
1989		goto err_firmware;
1990
1991	header = (struct sdma_firmware_header *)fw->data;
1992
1993	if (header->magic != SDMA_FIRMWARE_MAGIC)
1994		goto err_firmware;
1995	if (header->ram_code_start + header->ram_code_size > fw->size)
1996		goto err_firmware;
1997	switch (header->version_major) {
1998	case 1:
1999		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
2000		break;
2001	case 2:
2002		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
2003		break;
2004	case 3:
2005		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
2006		break;
2007	case 4:
2008		sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
2009		break;
2010	default:
2011		dev_err(sdma->dev, "unknown firmware version\n");
2012		goto err_firmware;
2013	}
2014
2015	addr = (void *)header + header->script_addrs_start;
2016	ram_code = (void *)header + header->ram_code_start;
2017
2018	clk_enable(sdma->clk_ipg);
2019	clk_enable(sdma->clk_ahb);
2020	/* download the RAM image for SDMA */
2021	sdma_load_script(sdma, ram_code,
2022			 header->ram_code_size,
2023			 addr->ram_code_start_addr);
2024	clk_disable(sdma->clk_ipg);
2025	clk_disable(sdma->clk_ahb);
2026
2027	sdma_add_scripts(sdma, addr);
2028
2029	sdma->fw_loaded = true;
2030
2031	dev_info(sdma->dev, "loaded firmware %d.%d\n",
2032		 header->version_major,
2033		 header->version_minor);
2034
2035err_firmware:
2036	release_firmware(fw);
2037}
2038
2039#define EVENT_REMAP_CELLS 3
2040
2041static int sdma_event_remap(struct sdma_engine *sdma)
2042{
2043	struct device_node *np = sdma->dev->of_node;
2044	struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
2045	struct property *event_remap;
2046	struct regmap *gpr;
2047	char propname[] = "fsl,sdma-event-remap";
2048	u32 reg, val, shift, num_map, i;
2049	int ret = 0;
2050
2051	if (IS_ERR(np) || !gpr_np)
2052		goto out;
2053
2054	event_remap = of_find_property(np, propname, NULL);
2055	num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
2056	if (!num_map) {
2057		dev_dbg(sdma->dev, "no event needs to be remapped\n");
2058		goto out;
2059	} else if (num_map % EVENT_REMAP_CELLS) {
2060		dev_err(sdma->dev, "the property %s must modulo %d\n",
2061				propname, EVENT_REMAP_CELLS);
2062		ret = -EINVAL;
2063		goto out;
2064	}
2065
2066	gpr = syscon_node_to_regmap(gpr_np);
2067	if (IS_ERR(gpr)) {
2068		dev_err(sdma->dev, "failed to get gpr regmap\n");
2069		ret = PTR_ERR(gpr);
2070		goto out;
2071	}
2072
2073	for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
2074		ret = of_property_read_u32_index(np, propname, i, &reg);
2075		if (ret) {
2076			dev_err(sdma->dev, "failed to read property %s index %d\n",
2077					propname, i);
2078			goto out;
2079		}
2080
2081		ret = of_property_read_u32_index(np, propname, i + 1, &shift);
2082		if (ret) {
2083			dev_err(sdma->dev, "failed to read property %s index %d\n",
2084					propname, i + 1);
2085			goto out;
2086		}
2087
2088		ret = of_property_read_u32_index(np, propname, i + 2, &val);
2089		if (ret) {
2090			dev_err(sdma->dev, "failed to read property %s index %d\n",
2091					propname, i + 2);
2092			goto out;
2093		}
2094
2095		regmap_update_bits(gpr, reg, BIT(shift), val << shift);
2096	}
2097
2098out:
2099	if (gpr_np)
2100		of_node_put(gpr_np);
2101
2102	return ret;
2103}
2104
2105static int sdma_get_firmware(struct sdma_engine *sdma,
2106		const char *fw_name)
2107{
2108	int ret;
2109
2110	ret = firmware_request_nowait_nowarn(THIS_MODULE, fw_name, sdma->dev,
2111					GFP_KERNEL, sdma, sdma_load_firmware);
2112
2113	return ret;
2114}
2115
2116static int sdma_init(struct sdma_engine *sdma)
2117{
2118	int i, ret;
2119	dma_addr_t ccb_phys;
2120	int ccbsize;
2121
2122	ret = clk_enable(sdma->clk_ipg);
2123	if (ret)
2124		return ret;
2125	ret = clk_enable(sdma->clk_ahb);
2126	if (ret)
2127		goto disable_clk_ipg;
 
 
 
 
 
 
2128
2129	if (sdma->drvdata->check_ratio &&
2130	    (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2131		sdma->clk_ratio = 1;
2132
2133	/* Be sure SDMA has not started yet */
2134	writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2135
2136	ccbsize = MAX_DMA_CHANNELS * (sizeof(struct sdma_channel_control)
2137		  + sizeof(struct sdma_context_data));
2138
2139	if (sdma->iram_pool)
2140		sdma->channel_control = gen_pool_dma_alloc(sdma->iram_pool, ccbsize, &ccb_phys);
2141	else
2142		sdma->channel_control = dma_alloc_coherent(sdma->dev, ccbsize, &ccb_phys,
2143							   GFP_KERNEL);
2144
2145	if (!sdma->channel_control) {
2146		ret = -ENOMEM;
2147		goto err_dma_alloc;
2148	}
2149
2150	sdma->context = (void *)sdma->channel_control +
2151		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2152	sdma->context_phys = ccb_phys +
2153		MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
 
 
 
 
2154
2155	/* disable all channels */
2156	for (i = 0; i < sdma->drvdata->num_events; i++)
2157		writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2158
2159	/* All channels have priority 0 */
2160	for (i = 0; i < MAX_DMA_CHANNELS; i++)
2161		writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2162
2163	ret = sdma_request_channel0(sdma);
2164	if (ret)
2165		goto err_dma_alloc;
2166
2167	sdma_config_ownership(&sdma->channel[0], false, true, false);
2168
2169	/* Set Command Channel (Channel Zero) */
2170	writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2171
2172	/* Set bits of CONFIG register but with static context switching */
2173	if (sdma->clk_ratio)
2174		writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2175	else
2176		writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2177
2178	writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
 
2179
2180	/* Initializes channel's priorities */
2181	sdma_set_channel_priority(&sdma->channel[0], 7);
2182
2183	clk_disable(sdma->clk_ipg);
2184	clk_disable(sdma->clk_ahb);
2185
2186	return 0;
2187
2188err_dma_alloc:
2189	clk_disable(sdma->clk_ahb);
2190disable_clk_ipg:
2191	clk_disable(sdma->clk_ipg);
2192	dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2193	return ret;
2194}
2195
2196static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2197{
2198	struct sdma_channel *sdmac = to_sdma_chan(chan);
2199	struct imx_dma_data *data = fn_param;
2200
2201	if (!imx_dma_is_general_purpose(chan))
2202		return false;
2203
2204	sdmac->data = *data;
2205	chan->private = &sdmac->data;
2206
2207	return true;
2208}
2209
2210static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2211				   struct of_dma *ofdma)
2212{
2213	struct sdma_engine *sdma = ofdma->of_dma_data;
2214	dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2215	struct imx_dma_data data;
2216
2217	if (dma_spec->args_count != 3)
2218		return NULL;
2219
2220	data.dma_request = dma_spec->args[0];
2221	data.peripheral_type = dma_spec->args[1];
2222	data.priority = dma_spec->args[2];
2223	/*
2224	 * init dma_request2 to zero, which is not used by the dts.
2225	 * For P2P, dma_request2 is init from dma_request_channel(),
2226	 * chan->private will point to the imx_dma_data, and in
2227	 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2228	 * be set to sdmac->event_id1.
2229	 */
2230	data.dma_request2 = 0;
2231
2232	return __dma_request_channel(&mask, sdma_filter_fn, &data,
2233				     ofdma->of_node);
2234}
2235
2236static int sdma_probe(struct platform_device *pdev)
2237{
 
 
2238	struct device_node *np = pdev->dev.of_node;
2239	struct device_node *spba_bus;
2240	const char *fw_name;
2241	int ret;
2242	int irq;
2243	struct resource spba_res;
 
2244	int i;
2245	struct sdma_engine *sdma;
2246	s32 *saddr_arr;
2247
2248	ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2249	if (ret)
2250		return ret;
2251
2252	sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2253	if (!sdma)
2254		return -ENOMEM;
2255
2256	spin_lock_init(&sdma->channel_0_lock);
2257
2258	sdma->dev = &pdev->dev;
2259	sdma->drvdata = of_device_get_match_data(sdma->dev);
2260
 
2261	irq = platform_get_irq(pdev, 0);
2262	if (irq < 0)
2263		return irq;
 
 
2264
2265	sdma->regs = devm_platform_ioremap_resource(pdev, 0);
2266	if (IS_ERR(sdma->regs))
2267		return PTR_ERR(sdma->regs);
2268
2269	sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2270	if (IS_ERR(sdma->clk_ipg))
2271		return PTR_ERR(sdma->clk_ipg);
2272
2273	sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2274	if (IS_ERR(sdma->clk_ahb))
2275		return PTR_ERR(sdma->clk_ahb);
2276
2277	ret = clk_prepare(sdma->clk_ipg);
2278	if (ret)
2279		return ret;
 
 
2280
2281	ret = clk_prepare(sdma->clk_ahb);
2282	if (ret)
2283		goto err_clk;
 
 
2284
2285	ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0,
2286				dev_name(&pdev->dev), sdma);
2287	if (ret)
2288		goto err_irq;
2289
2290	sdma->irq = irq;
2291
2292	sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2293	if (!sdma->script_addrs) {
2294		ret = -ENOMEM;
2295		goto err_irq;
2296	}
2297
2298	/* initially no scripts available */
2299	saddr_arr = (s32 *)sdma->script_addrs;
2300	for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2301		saddr_arr[i] = -EINVAL;
2302
2303	dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2304	dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2305	dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2306	dma_cap_set(DMA_PRIVATE, sdma->dma_device.cap_mask);
2307
2308	INIT_LIST_HEAD(&sdma->dma_device.channels);
2309	/* Initialize channel parameters */
2310	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2311		struct sdma_channel *sdmac = &sdma->channel[i];
2312
2313		sdmac->sdma = sdma;
 
2314
 
2315		sdmac->channel = i;
2316		sdmac->vc.desc_free = sdma_desc_free;
2317		INIT_LIST_HEAD(&sdmac->terminated);
2318		INIT_WORK(&sdmac->terminate_worker,
2319				sdma_channel_terminate_work);
2320		/*
2321		 * Add the channel to the DMAC list. Do not add channel 0 though
2322		 * because we need it internally in the SDMA driver. This also means
2323		 * that channel 0 in dmaengine counting matches sdma channel 1.
2324		 */
2325		if (i)
2326			vchan_init(&sdmac->vc, &sdma->dma_device);
2327	}
2328
2329	if (np) {
2330		sdma->iram_pool = of_gen_pool_get(np, "iram", 0);
2331		if (sdma->iram_pool)
2332			dev_info(&pdev->dev, "alloc bd from iram.\n");
2333	}
2334
2335	ret = sdma_init(sdma);
2336	if (ret)
2337		goto err_init;
2338
2339	ret = sdma_event_remap(sdma);
2340	if (ret)
2341		goto err_init;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2342
2343	if (sdma->drvdata->script_addrs)
2344		sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
 
 
 
 
2345
2346	sdma->dma_device.dev = &pdev->dev;
2347
2348	sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2349	sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2350	sdma->dma_device.device_tx_status = sdma_tx_status;
2351	sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2352	sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2353	sdma->dma_device.device_config = sdma_config;
2354	sdma->dma_device.device_terminate_all = sdma_terminate_all;
2355	sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2356	sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2357	sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2358	sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2359	sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2360	sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2361	sdma->dma_device.device_issue_pending = sdma_issue_pending;
2362	sdma->dma_device.copy_align = 2;
2363	dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2364
2365	platform_set_drvdata(pdev, sdma);
2366
2367	ret = dma_async_device_register(&sdma->dma_device);
2368	if (ret) {
2369		dev_err(&pdev->dev, "unable to register\n");
2370		goto err_init;
2371	}
2372
2373	if (np) {
2374		ret = of_dma_controller_register(np, sdma_xlate, sdma);
2375		if (ret) {
2376			dev_err(&pdev->dev, "failed to register controller\n");
2377			goto err_register;
2378		}
2379
2380		spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2381		ret = of_address_to_resource(spba_bus, 0, &spba_res);
2382		if (!ret) {
2383			sdma->spba_start_addr = spba_res.start;
2384			sdma->spba_end_addr = spba_res.end;
2385		}
2386		of_node_put(spba_bus);
2387	}
2388
2389	/*
2390	 * Because that device tree does not encode ROM script address,
2391	 * the RAM script in firmware is mandatory for device tree
2392	 * probe, otherwise it fails.
2393	 */
2394	ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2395				      &fw_name);
2396	if (ret) {
2397		dev_warn(&pdev->dev, "failed to get firmware name\n");
2398	} else {
2399		ret = sdma_get_firmware(sdma, fw_name);
2400		if (ret)
2401			dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2402	}
2403
2404	return 0;
2405
2406err_register:
2407	dma_async_device_unregister(&sdma->dma_device);
2408err_init:
2409	kfree(sdma->script_addrs);
 
 
 
 
 
 
 
 
 
2410err_irq:
2411	clk_unprepare(sdma->clk_ahb);
2412err_clk:
2413	clk_unprepare(sdma->clk_ipg);
2414	return ret;
2415}
2416
2417static void sdma_remove(struct platform_device *pdev)
2418{
2419	struct sdma_engine *sdma = platform_get_drvdata(pdev);
2420	int i;
2421
2422	devm_free_irq(&pdev->dev, sdma->irq, sdma);
2423	dma_async_device_unregister(&sdma->dma_device);
2424	kfree(sdma->script_addrs);
2425	clk_unprepare(sdma->clk_ahb);
2426	clk_unprepare(sdma->clk_ipg);
2427	/* Kill the tasklet */
2428	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2429		struct sdma_channel *sdmac = &sdma->channel[i];
2430
2431		tasklet_kill(&sdmac->vc.task);
2432		sdma_free_chan_resources(&sdmac->vc.chan);
2433	}
2434
2435	platform_set_drvdata(pdev, NULL);
2436}
2437
2438static struct platform_driver sdma_driver = {
2439	.driver		= {
2440		.name	= "imx-sdma",
2441		.of_match_table = sdma_dt_ids,
2442	},
2443	.remove		= sdma_remove,
2444	.probe		= sdma_probe,
2445};
2446
2447module_platform_driver(sdma_driver);
 
 
 
 
2448
2449MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2450MODULE_DESCRIPTION("i.MX SDMA driver");
2451#if IS_ENABLED(CONFIG_SOC_IMX6Q)
2452MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2453#endif
2454#if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2455MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2456#endif
2457MODULE_LICENSE("GPL");