Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2010 Google, Inc.
  4 *
  5 * Author:
  6 *	Colin Cross <ccross@google.com>
  7 */
  8
  9#define pr_fmt(fmt)	"tegra-timer: " fmt
 10
 11#include <linux/clk.h>
 12#include <linux/clockchips.h>
 13#include <linux/cpu.h>
 14#include <linux/cpumask.h>
 15#include <linux/delay.h>
 16#include <linux/err.h>
 17#include <linux/interrupt.h>
 18#include <linux/of_address.h>
 19#include <linux/of_irq.h>
 20#include <linux/percpu.h>
 21#include <linux/sched_clock.h>
 22#include <linux/time.h>
 23
 24#include "timer-of.h"
 25
 26#define RTC_SECONDS		0x08
 27#define RTC_SHADOW_SECONDS	0x0c
 28#define RTC_MILLISECONDS	0x10
 29
 30#define TIMERUS_CNTR_1US	0x10
 31#define TIMERUS_USEC_CFG	0x14
 32#define TIMERUS_CNTR_FREEZE	0x4c
 33
 34#define TIMER_PTV		0x0
 35#define TIMER_PTV_EN		BIT(31)
 36#define TIMER_PTV_PER		BIT(30)
 37#define TIMER_PCR		0x4
 38#define TIMER_PCR_INTR_CLR	BIT(30)
 39
 40#define TIMER1_BASE		0x00
 41#define TIMER2_BASE		0x08
 42#define TIMER3_BASE		0x50
 43#define TIMER4_BASE		0x58
 44#define TIMER10_BASE		0x90
 45
 46#define TIMER1_IRQ_IDX		0
 47#define TIMER10_IRQ_IDX		10
 48
 49#define TIMER_1MHz		1000000
 50
 51static u32 usec_config;
 52static void __iomem *timer_reg_base;
 53
 54static int tegra_timer_set_next_event(unsigned long cycles,
 55				      struct clock_event_device *evt)
 56{
 57	void __iomem *reg_base = timer_of_base(to_timer_of(evt));
 58
 59	/*
 60	 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will
 61	 * fire after one tick if 0 is loaded.
 62	 *
 63	 * The minimum and maximum numbers of oneshot ticks are defined
 64	 * by clockevents_config_and_register(1, 0x1fffffff + 1) invocation
 65	 * below in the code. Hence the cycles (ticks) can't be outside of
 66	 * a range supportable by hardware.
 67	 */
 68	writel_relaxed(TIMER_PTV_EN | (cycles - 1), reg_base + TIMER_PTV);
 69
 70	return 0;
 71}
 72
 73static int tegra_timer_shutdown(struct clock_event_device *evt)
 74{
 75	void __iomem *reg_base = timer_of_base(to_timer_of(evt));
 76
 77	writel_relaxed(0, reg_base + TIMER_PTV);
 78
 79	return 0;
 80}
 81
 82static int tegra_timer_set_periodic(struct clock_event_device *evt)
 83{
 84	void __iomem *reg_base = timer_of_base(to_timer_of(evt));
 85	unsigned long period = timer_of_period(to_timer_of(evt));
 86
 87	writel_relaxed(TIMER_PTV_EN | TIMER_PTV_PER | (period - 1),
 88		       reg_base + TIMER_PTV);
 89
 90	return 0;
 91}
 92
 93static irqreturn_t tegra_timer_isr(int irq, void *dev_id)
 94{
 95	struct clock_event_device *evt = dev_id;
 96	void __iomem *reg_base = timer_of_base(to_timer_of(evt));
 97
 98	writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR);
 99	evt->event_handler(evt);
100
101	return IRQ_HANDLED;
102}
103
104static void tegra_timer_suspend(struct clock_event_device *evt)
105{
106	void __iomem *reg_base = timer_of_base(to_timer_of(evt));
107
108	writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR);
109}
110
111static void tegra_timer_resume(struct clock_event_device *evt)
112{
113	writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);
114}
115
116static DEFINE_PER_CPU(struct timer_of, tegra_to) = {
117	.flags = TIMER_OF_CLOCK | TIMER_OF_BASE,
118
119	.clkevt = {
120		.name = "tegra_timer",
121		.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC,
122		.set_next_event = tegra_timer_set_next_event,
123		.set_state_shutdown = tegra_timer_shutdown,
124		.set_state_periodic = tegra_timer_set_periodic,
125		.set_state_oneshot = tegra_timer_shutdown,
126		.tick_resume = tegra_timer_shutdown,
127		.suspend = tegra_timer_suspend,
128		.resume = tegra_timer_resume,
129	},
130};
131
132static int tegra_timer_setup(unsigned int cpu)
133{
134	struct timer_of *to = per_cpu_ptr(&tegra_to, cpu);
135
136	writel_relaxed(0, timer_of_base(to) + TIMER_PTV);
137	writel_relaxed(TIMER_PCR_INTR_CLR, timer_of_base(to) + TIMER_PCR);
138
139	irq_force_affinity(to->clkevt.irq, cpumask_of(cpu));
140	enable_irq(to->clkevt.irq);
141
142	/*
143	 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will
144	 * fire after one tick if 0 is loaded and thus minimum number of
145	 * ticks is 1. In result both of the clocksource's tick limits are
146	 * higher than a minimum and maximum that hardware register can
147	 * take by 1, this is then taken into account by set_next_event
148	 * callback.
149	 */
150	clockevents_config_and_register(&to->clkevt, timer_of_rate(to),
151					1, /* min */
152					0x1fffffff + 1); /* max 29 bits + 1 */
153
154	return 0;
155}
156
157static int tegra_timer_stop(unsigned int cpu)
158{
159	struct timer_of *to = per_cpu_ptr(&tegra_to, cpu);
160
161	disable_irq_nosync(to->clkevt.irq);
162
163	return 0;
164}
165
166static u64 notrace tegra_read_sched_clock(void)
167{
168	return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US);
169}
170
171#ifdef CONFIG_ARM
172static unsigned long tegra_delay_timer_read_counter_long(void)
173{
174	return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US);
175}
176
177static struct delay_timer tegra_delay_timer = {
178	.read_current_timer = tegra_delay_timer_read_counter_long,
179	.freq = TIMER_1MHz,
180};
181#endif
182
183static struct timer_of suspend_rtc_to = {
184	.flags = TIMER_OF_BASE | TIMER_OF_CLOCK,
185};
186
187/*
188 * tegra_rtc_read - Reads the Tegra RTC registers
189 * Care must be taken that this function is not called while the
190 * tegra_rtc driver could be executing to avoid race conditions
191 * on the RTC shadow register
192 */
193static u64 tegra_rtc_read_ms(struct clocksource *cs)
194{
195	void __iomem *reg_base = timer_of_base(&suspend_rtc_to);
196
197	u32 ms = readl_relaxed(reg_base + RTC_MILLISECONDS);
198	u32 s = readl_relaxed(reg_base + RTC_SHADOW_SECONDS);
199
200	return (u64)s * MSEC_PER_SEC + ms;
201}
202
203static struct clocksource suspend_rtc_clocksource = {
204	.name	= "tegra_suspend_timer",
205	.rating	= 200,
206	.read	= tegra_rtc_read_ms,
207	.mask	= CLOCKSOURCE_MASK(32),
208	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
209};
210
211static inline unsigned int tegra_base_for_cpu(int cpu, bool tegra20)
212{
213	if (tegra20) {
214		switch (cpu) {
215		case 0:
216			return TIMER1_BASE;
217		case 1:
218			return TIMER2_BASE;
219		case 2:
220			return TIMER3_BASE;
221		default:
222			return TIMER4_BASE;
223		}
224	}
225
226	return TIMER10_BASE + cpu * 8;
227}
228
229static inline unsigned int tegra_irq_idx_for_cpu(int cpu, bool tegra20)
230{
231	if (tegra20)
232		return TIMER1_IRQ_IDX + cpu;
233
234	return TIMER10_IRQ_IDX + cpu;
235}
236
237static inline unsigned long tegra_rate_for_timer(struct timer_of *to,
238						 bool tegra20)
239{
240	/*
241	 * TIMER1-9 are fixed to 1MHz, TIMER10-13 are running off the
242	 * parent clock.
243	 */
244	if (tegra20)
245		return TIMER_1MHz;
246
247	return timer_of_rate(to);
248}
249
250static int __init tegra_init_timer(struct device_node *np, bool tegra20,
251				   int rating)
252{
253	struct timer_of *to;
254	int cpu, ret;
255
256	to = this_cpu_ptr(&tegra_to);
257	ret = timer_of_init(np, to);
258	if (ret)
259		goto out;
260
261	timer_reg_base = timer_of_base(to);
262
263	/*
264	 * Configure microsecond timers to have 1MHz clock
265	 * Config register is 0xqqww, where qq is "dividend", ww is "divisor"
266	 * Uses n+1 scheme
267	 */
268	switch (timer_of_rate(to)) {
269	case 12000000:
270		usec_config = 0x000b; /* (11+1)/(0+1) */
271		break;
272	case 12800000:
273		usec_config = 0x043f; /* (63+1)/(4+1) */
274		break;
275	case 13000000:
276		usec_config = 0x000c; /* (12+1)/(0+1) */
277		break;
278	case 16800000:
279		usec_config = 0x0453; /* (83+1)/(4+1) */
280		break;
281	case 19200000:
282		usec_config = 0x045f; /* (95+1)/(4+1) */
283		break;
284	case 26000000:
285		usec_config = 0x0019; /* (25+1)/(0+1) */
286		break;
287	case 38400000:
288		usec_config = 0x04bf; /* (191+1)/(4+1) */
289		break;
290	case 48000000:
291		usec_config = 0x002f; /* (47+1)/(0+1) */
292		break;
293	default:
294		ret = -EINVAL;
295		goto out;
296	}
297
298	writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG);
299
300	for_each_possible_cpu(cpu) {
301		struct timer_of *cpu_to = per_cpu_ptr(&tegra_to, cpu);
302		unsigned long flags = IRQF_TIMER | IRQF_NOBALANCING;
303		unsigned long rate = tegra_rate_for_timer(to, tegra20);
304		unsigned int base = tegra_base_for_cpu(cpu, tegra20);
305		unsigned int idx = tegra_irq_idx_for_cpu(cpu, tegra20);
306		unsigned int irq = irq_of_parse_and_map(np, idx);
307
308		if (!irq) {
309			pr_err("failed to map irq for cpu%d\n", cpu);
310			ret = -EINVAL;
311			goto out_irq;
312		}
313
314		cpu_to->clkevt.irq = irq;
315		cpu_to->clkevt.rating = rating;
316		cpu_to->clkevt.cpumask = cpumask_of(cpu);
317		cpu_to->of_base.base = timer_reg_base + base;
318		cpu_to->of_clk.period = rate / HZ;
319		cpu_to->of_clk.rate = rate;
320
321		irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN);
322
323		ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr, flags,
324				  cpu_to->clkevt.name, &cpu_to->clkevt);
325		if (ret) {
326			pr_err("failed to set up irq for cpu%d: %d\n",
327			       cpu, ret);
328			irq_dispose_mapping(cpu_to->clkevt.irq);
329			cpu_to->clkevt.irq = 0;
330			goto out_irq;
331		}
332	}
333
334	sched_clock_register(tegra_read_sched_clock, 32, TIMER_1MHz);
335
336	ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US,
337				    "timer_us", TIMER_1MHz, 300, 32,
338				    clocksource_mmio_readl_up);
339	if (ret)
340		pr_err("failed to register clocksource: %d\n", ret);
341
342#ifdef CONFIG_ARM
343	register_current_timer_delay(&tegra_delay_timer);
344#endif
345
346	ret = cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING,
347				"AP_TEGRA_TIMER_STARTING", tegra_timer_setup,
348				tegra_timer_stop);
349	if (ret)
350		pr_err("failed to set up cpu hp state: %d\n", ret);
351
352	return ret;
353
354out_irq:
355	for_each_possible_cpu(cpu) {
356		struct timer_of *cpu_to;
357
358		cpu_to = per_cpu_ptr(&tegra_to, cpu);
359		if (cpu_to->clkevt.irq) {
360			free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt);
361			irq_dispose_mapping(cpu_to->clkevt.irq);
362		}
363	}
364
365	to->of_base.base = timer_reg_base;
366out:
367	timer_of_cleanup(to);
368
369	return ret;
370}
371
372static int __init tegra210_init_timer(struct device_node *np)
373{
374	/*
375	 * Arch-timer can't survive across power cycle of CPU core and
376	 * after CPUPORESET signal due to a system design shortcoming,
377	 * hence tegra-timer is more preferable on Tegra210.
378	 */
379	return tegra_init_timer(np, false, 460);
380}
381TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra210_init_timer);
382
383static int __init tegra20_init_timer(struct device_node *np)
384{
385	int rating;
386
387	/*
388	 * Tegra20 and Tegra30 have Cortex A9 CPU that has a TWD timer,
389	 * that timer runs off the CPU clock and hence is subjected to
390	 * a jitter caused by DVFS clock rate changes. Tegra-timer is
391	 * more preferable for older Tegra's, while later SoC generations
392	 * have arch-timer as a main per-CPU timer and it is not affected
393	 * by DVFS changes.
394	 */
395	if (of_machine_is_compatible("nvidia,tegra20") ||
396	    of_machine_is_compatible("nvidia,tegra30"))
397		rating = 460;
398	else
399		rating = 330;
400
401	return tegra_init_timer(np, true, rating);
402}
403TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra20_init_timer);
404
405static int __init tegra20_init_rtc(struct device_node *np)
406{
407	int ret;
408
409	ret = timer_of_init(np, &suspend_rtc_to);
410	if (ret)
411		return ret;
412
413	return clocksource_register_hz(&suspend_rtc_clocksource, 1000);
414}
415TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc);