Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *  Bluetooth support for Intel PCIe devices
   5 *
   6 *  Copyright (C) 2024  Intel Corporation
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/firmware.h>
  12#include <linux/pci.h>
  13#include <linux/wait.h>
  14#include <linux/delay.h>
  15#include <linux/interrupt.h>
  16
  17#include <linux/unaligned.h>
  18
  19#include <net/bluetooth/bluetooth.h>
  20#include <net/bluetooth/hci_core.h>
  21
  22#include "btintel.h"
  23#include "btintel_pcie.h"
  24
  25#define VERSION "0.1"
  26
  27#define BTINTEL_PCI_DEVICE(dev, subdev)	\
  28	.vendor = PCI_VENDOR_ID_INTEL,	\
  29	.device = (dev),		\
  30	.subvendor = PCI_ANY_ID,	\
  31	.subdevice = (subdev),		\
  32	.driver_data = 0
  33
  34#define POLL_INTERVAL_US	10
  35
  36/* Intel Bluetooth PCIe device id table */
  37static const struct pci_device_id btintel_pcie_table[] = {
  38	{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
  39	{ 0 }
  40};
  41MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
  42
  43/* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
  44#define BTINTEL_PCIE_HCI_TYPE_LEN	4
  45#define BTINTEL_PCIE_HCI_CMD_PKT	0x00000001
  46#define BTINTEL_PCIE_HCI_ACL_PKT	0x00000002
  47#define BTINTEL_PCIE_HCI_SCO_PKT	0x00000003
  48#define BTINTEL_PCIE_HCI_EVT_PKT	0x00000004
  49#define BTINTEL_PCIE_HCI_ISO_PKT	0x00000005
  50
  51/* Alive interrupt context */
  52enum {
  53	BTINTEL_PCIE_ROM,
  54	BTINTEL_PCIE_FW_DL,
  55	BTINTEL_PCIE_HCI_RESET,
  56	BTINTEL_PCIE_INTEL_HCI_RESET1,
  57	BTINTEL_PCIE_INTEL_HCI_RESET2,
  58	BTINTEL_PCIE_D0,
  59	BTINTEL_PCIE_D3
  60};
  61
  62static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
  63				     u16 queue_num)
  64{
  65	bt_dev_dbg(hdev, "IA: %s: tr-h:%02u  tr-t:%02u  cr-h:%02u  cr-t:%02u",
  66		   queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
  67		   ia->tr_hia[queue_num], ia->tr_tia[queue_num],
  68		   ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
  69}
  70
  71static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
  72				   u16 index)
  73{
  74	bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
  75		   index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
  76}
  77
  78static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
  79{
  80	u8 queue = entry->entry;
  81	struct msix_entry *entries = entry - queue;
  82
  83	return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
  84}
  85
  86/* Set the doorbell for TXQ to notify the device that @index (actually index-1)
  87 * of the TFD is updated and ready to transmit.
  88 */
  89static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index)
  90{
  91	u32 val;
  92
  93	val = index;
  94	val |= (BTINTEL_PCIE_TX_DB_VEC << 16);
  95
  96	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
  97}
  98
  99/* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer
 100 * descriptor) with the data length and the DMA address of the data buffer.
 101 */
 102static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index,
 103				    struct sk_buff *skb)
 104{
 105	struct data_buf *buf;
 106	struct tfd *tfd;
 107
 108	tfd = &txq->tfds[tfd_index];
 109	memset(tfd, 0, sizeof(*tfd));
 110
 111	buf = &txq->bufs[tfd_index];
 112
 113	tfd->size = skb->len;
 114	tfd->addr = buf->data_p_addr;
 115
 116	/* Copy the outgoing data to DMA buffer */
 117	memcpy(buf->data, skb->data, tfd->size);
 118}
 119
 120static int btintel_pcie_send_sync(struct btintel_pcie_data *data,
 121				  struct sk_buff *skb)
 122{
 123	int ret;
 124	u16 tfd_index;
 125	struct txq *txq = &data->txq;
 126
 127	tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM];
 128
 129	if (tfd_index > txq->count)
 130		return -ERANGE;
 131
 132	/* Prepare for TX. It updates the TFD with the length of data and
 133	 * address of the DMA buffer, and copy the data to the DMA buffer
 134	 */
 135	btintel_pcie_prepare_tx(txq, tfd_index, skb);
 136
 137	tfd_index = (tfd_index + 1) % txq->count;
 138	data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index;
 139
 140	/* Arm wait event condition */
 141	data->tx_wait_done = false;
 142
 143	/* Set the doorbell to notify the device */
 144	btintel_pcie_set_tx_db(data, tfd_index);
 145
 146	/* Wait for the complete interrupt - URBD0 */
 147	ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done,
 148				 msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS));
 149	if (!ret)
 150		return -ETIME;
 151
 152	return 0;
 153}
 154
 155/* Set the doorbell for RXQ to notify the device that @index (actually index-1)
 156 * is available to receive the data
 157 */
 158static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
 159{
 160	u32 val;
 161
 162	val = index;
 163	val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
 164
 165	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
 166}
 167
 168/* Update the FRBD (free buffer descriptor) with the @frbd_index and the
 169 * DMA address of the free buffer.
 170 */
 171static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
 172{
 173	struct data_buf *buf;
 174	struct frbd *frbd;
 175
 176	/* Get the buffer of the FRBD for DMA */
 177	buf = &rxq->bufs[frbd_index];
 178
 179	frbd = &rxq->frbds[frbd_index];
 180	memset(frbd, 0, sizeof(*frbd));
 181
 182	/* Update FRBD */
 183	frbd->tag = frbd_index;
 184	frbd->addr = buf->data_p_addr;
 185}
 186
 187static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
 188{
 189	u16 frbd_index;
 190	struct rxq *rxq = &data->rxq;
 191
 192	frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
 193
 194	if (frbd_index > rxq->count)
 195		return -ERANGE;
 196
 197	/* Prepare for RX submit. It updates the FRBD with the address of DMA
 198	 * buffer
 199	 */
 200	btintel_pcie_prepare_rx(rxq, frbd_index);
 201
 202	frbd_index = (frbd_index + 1) % rxq->count;
 203	data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
 204	ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
 205
 206	/* Set the doorbell to notify the device */
 207	btintel_pcie_set_rx_db(data, frbd_index);
 208
 209	return 0;
 210}
 211
 212static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
 213{
 214	int i, ret;
 215
 216	for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) {
 217		ret = btintel_pcie_submit_rx(data);
 218		if (ret)
 219			return ret;
 220	}
 221
 222	return 0;
 223}
 224
 225static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
 226{
 227	memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
 228	memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
 229	memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
 230	memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
 231}
 232
 233static int btintel_pcie_reset_bt(struct btintel_pcie_data *data)
 234{
 235	u32 reg;
 236	int retry = 3;
 237
 238	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 239
 240	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
 241			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
 242			BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
 243	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON;
 244
 245	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
 246
 247	do {
 248		reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 249		if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_STS)
 250			break;
 251		usleep_range(10000, 12000);
 252
 253	} while (--retry > 0);
 254	usleep_range(10000, 12000);
 255
 256	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 257
 258	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
 259			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
 260			BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
 261	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET;
 262	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
 263	usleep_range(10000, 12000);
 264
 265	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 266	bt_dev_dbg(data->hdev, "csr register after reset: 0x%8.8x", reg);
 267
 268	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
 269
 270	/* If shared hardware reset is success then boot stage register shall be
 271	 * set to 0
 272	 */
 273	return reg == 0 ? 0 : -ENODEV;
 274}
 275
 276/* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
 277 * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
 278 * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
 279 * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
 280 * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
 281 */
 282static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
 283{
 284	int err;
 285	u32 reg;
 286
 287	data->gp0_received = false;
 288
 289	/* Update the DMA address of CI struct to CSR */
 290	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
 291			      data->ci_p_addr & 0xffffffff);
 292	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
 293			      (u64)data->ci_p_addr >> 32);
 294
 295	/* Reset the cached value of boot stage. it is updated by the MSI-X
 296	 * gp0 interrupt handler.
 297	 */
 298	data->boot_stage_cache = 0x0;
 299
 300	/* Set MAC_INIT bit to start primary bootloader */
 301	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 302	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT |
 303			BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON |
 304			BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
 305	reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
 306			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
 307
 308	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
 309
 310	/* MAC is ready. Enable BT FUNC */
 311	btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
 312				  BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
 313
 314	btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 315
 316	/* wait for interrupt from the device after booting up to primary
 317	 * bootloader.
 318	 */
 319	data->alive_intr_ctxt = BTINTEL_PCIE_ROM;
 320	err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
 321				 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
 322	if (!err)
 323		return -ETIME;
 324
 325	/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
 326	if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
 327		return -ENODEV;
 328
 329	return 0;
 330}
 331
 332/* BIT(0) - ROM, BIT(1) - IML and BIT(3) - OP
 333 * Sometimes during firmware image switching from ROM to IML or IML to OP image,
 334 * the previous image bit is not cleared by firmware when alive interrupt is
 335 * received. Driver needs to take care of these sticky bits when deciding the
 336 * current image running on controller.
 337 * Ex: 0x10 and 0x11 - both represents that controller is running IML
 338 */
 339static inline bool btintel_pcie_in_rom(struct btintel_pcie_data *data)
 340{
 341	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM &&
 342		!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) &&
 343		!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW);
 344}
 345
 346static inline bool btintel_pcie_in_op(struct btintel_pcie_data *data)
 347{
 348	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW;
 349}
 350
 351static inline bool btintel_pcie_in_iml(struct btintel_pcie_data *data)
 352{
 353	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML &&
 354		!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW);
 355}
 356
 357static inline bool btintel_pcie_in_d3(struct btintel_pcie_data *data)
 358{
 359	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY;
 360}
 361
 362static inline bool btintel_pcie_in_d0(struct btintel_pcie_data *data)
 363{
 364	return !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY);
 365}
 366
 367static void btintel_pcie_wr_sleep_cntrl(struct btintel_pcie_data *data,
 368					u32 dxstate)
 369{
 370	bt_dev_dbg(data->hdev, "writing sleep_ctl_reg: 0x%8.8x", dxstate);
 371	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG, dxstate);
 372}
 373
 374static inline char *btintel_pcie_alivectxt_state2str(u32 alive_intr_ctxt)
 375{
 376	switch (alive_intr_ctxt) {
 377	case BTINTEL_PCIE_ROM:
 378		return "rom";
 379	case BTINTEL_PCIE_FW_DL:
 380		return "fw_dl";
 381	case BTINTEL_PCIE_D0:
 382		return "d0";
 383	case BTINTEL_PCIE_D3:
 384		return "d3";
 385	case BTINTEL_PCIE_HCI_RESET:
 386		return "hci_reset";
 387	case BTINTEL_PCIE_INTEL_HCI_RESET1:
 388		return "intel_reset1";
 389	case BTINTEL_PCIE_INTEL_HCI_RESET2:
 390		return "intel_reset2";
 391	default:
 392		return "unknown";
 393	}
 394}
 395
 396/* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
 397 * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
 398 */
 399static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
 400{
 401	bool submit_rx, signal_waitq;
 402	u32 reg, old_ctxt;
 403
 404	/* This interrupt is for three different causes and it is not easy to
 405	 * know what causes the interrupt. So, it compares each register value
 406	 * with cached value and update it before it wake up the queue.
 407	 */
 408	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
 409	if (reg != data->boot_stage_cache)
 410		data->boot_stage_cache = reg;
 411
 412	bt_dev_dbg(data->hdev, "Alive context: %s old_boot_stage: 0x%8.8x new_boot_stage: 0x%8.8x",
 413		   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt),
 414		   data->boot_stage_cache, reg);
 415	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
 416	if (reg != data->img_resp_cache)
 417		data->img_resp_cache = reg;
 418
 419	data->gp0_received = true;
 420
 421	old_ctxt = data->alive_intr_ctxt;
 422	submit_rx = false;
 423	signal_waitq = false;
 424
 425	switch (data->alive_intr_ctxt) {
 426	case BTINTEL_PCIE_ROM:
 427		data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
 428		signal_waitq = true;
 429		break;
 430	case BTINTEL_PCIE_FW_DL:
 431		/* Error case is already handled. Ideally control shall not
 432		 * reach here
 433		 */
 434		break;
 435	case BTINTEL_PCIE_INTEL_HCI_RESET1:
 436		if (btintel_pcie_in_op(data)) {
 437			submit_rx = true;
 438			break;
 439		}
 440
 441		if (btintel_pcie_in_iml(data)) {
 442			submit_rx = true;
 443			data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
 444			break;
 445		}
 446		break;
 447	case BTINTEL_PCIE_INTEL_HCI_RESET2:
 448		if (btintel_test_and_clear_flag(data->hdev, INTEL_WAIT_FOR_D0)) {
 449			btintel_wake_up_flag(data->hdev, INTEL_WAIT_FOR_D0);
 450			data->alive_intr_ctxt = BTINTEL_PCIE_D0;
 451		}
 452		break;
 453	case BTINTEL_PCIE_D0:
 454		if (btintel_pcie_in_d3(data)) {
 455			data->alive_intr_ctxt = BTINTEL_PCIE_D3;
 456			signal_waitq = true;
 457			break;
 458		}
 459		break;
 460	case BTINTEL_PCIE_D3:
 461		if (btintel_pcie_in_d0(data)) {
 462			data->alive_intr_ctxt = BTINTEL_PCIE_D0;
 463			submit_rx = true;
 464			signal_waitq = true;
 465			break;
 466		}
 467		break;
 468	case BTINTEL_PCIE_HCI_RESET:
 469		data->alive_intr_ctxt = BTINTEL_PCIE_D0;
 470		submit_rx = true;
 471		signal_waitq = true;
 472		break;
 473	default:
 474		bt_dev_err(data->hdev, "Unknown state: 0x%2.2x",
 475			   data->alive_intr_ctxt);
 476		break;
 477	}
 478
 479	if (submit_rx) {
 480		btintel_pcie_reset_ia(data);
 481		btintel_pcie_start_rx(data);
 482	}
 483
 484	if (signal_waitq) {
 485		bt_dev_dbg(data->hdev, "wake up gp0 wait_q");
 486		wake_up(&data->gp0_wait_q);
 487	}
 488
 489	if (old_ctxt != data->alive_intr_ctxt)
 490		bt_dev_dbg(data->hdev, "alive context changed: %s  ->  %s",
 491			   btintel_pcie_alivectxt_state2str(old_ctxt),
 492			   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
 493}
 494
 495/* This function handles the MSX-X interrupt for rx queue 0 which is for TX
 496 */
 497static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
 498{
 499	u16 cr_tia, cr_hia;
 500	struct txq *txq;
 501	struct urbd0 *urbd0;
 502
 503	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
 504	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
 505
 506	if (cr_tia == cr_hia)
 507		return;
 508
 509	txq = &data->txq;
 510
 511	while (cr_tia != cr_hia) {
 512		data->tx_wait_done = true;
 513		wake_up(&data->tx_wait_q);
 514
 515		urbd0 = &txq->urbd0s[cr_tia];
 516
 517		if (urbd0->tfd_index > txq->count)
 518			return;
 519
 520		cr_tia = (cr_tia + 1) % txq->count;
 521		data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
 522		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
 523	}
 524}
 525
 526static int btintel_pcie_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
 527{
 528	struct hci_event_hdr *hdr = (void *)skb->data;
 529	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
 530	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
 531
 532	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
 533	    hdr->plen > 0) {
 534		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
 535		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
 536
 537		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
 538			switch (skb->data[2]) {
 539			case 0x02:
 540				/* When switching to the operational firmware
 541				 * the device sends a vendor specific event
 542				 * indicating that the bootup completed.
 543				 */
 544				btintel_bootup(hdev, ptr, len);
 545
 546				/* If bootup event is from operational image,
 547				 * driver needs to write sleep control register to
 548				 * move into D0 state
 549				 */
 550				if (btintel_pcie_in_op(data)) {
 551					btintel_pcie_wr_sleep_cntrl(data, BTINTEL_PCIE_STATE_D0);
 552					data->alive_intr_ctxt = BTINTEL_PCIE_INTEL_HCI_RESET2;
 553					kfree_skb(skb);
 554					return 0;
 555				}
 556
 557				if (btintel_pcie_in_iml(data)) {
 558					/* In case of IML, there is no concept
 559					 * of D0 transition. Just mimic as if
 560					 * IML moved to D0 by clearing INTEL_WAIT_FOR_D0
 561					 * bit and waking up the task waiting on
 562					 * INTEL_WAIT_FOR_D0. This is required
 563					 * as intel_boot() is common function for
 564					 * both IML and OP image loading.
 565					 */
 566					if (btintel_test_and_clear_flag(data->hdev,
 567									INTEL_WAIT_FOR_D0))
 568						btintel_wake_up_flag(data->hdev,
 569								     INTEL_WAIT_FOR_D0);
 570				}
 571				kfree_skb(skb);
 572				return 0;
 573			case 0x06:
 574				/* When the firmware loading completes the
 575				 * device sends out a vendor specific event
 576				 * indicating the result of the firmware
 577				 * loading.
 578				 */
 579				btintel_secure_send_result(hdev, ptr, len);
 580				kfree_skb(skb);
 581				return 0;
 582			}
 583		}
 584
 585		/* Handle all diagnostics events separately. May still call
 586		 * hci_recv_frame.
 587		 */
 588		if (len >= sizeof(diagnostics_hdr) &&
 589		    memcmp(&skb->data[2], diagnostics_hdr,
 590			   sizeof(diagnostics_hdr)) == 0) {
 591			return btintel_diagnostics(hdev, skb);
 592		}
 593
 594		/* This is a debug event that comes from IML and OP image when it
 595		 * starts execution. There is no need pass this event to stack.
 596		 */
 597		if (skb->data[2] == 0x97)
 598			return 0;
 599	}
 600
 601	return hci_recv_frame(hdev, skb);
 602}
 603/* Process the received rx data
 604 * It check the frame header to identify the data type and create skb
 605 * and calling HCI API
 606 */
 607static int btintel_pcie_recv_frame(struct btintel_pcie_data *data,
 608				       struct sk_buff *skb)
 609{
 610	int ret;
 611	u8 pkt_type;
 612	u16 plen;
 613	u32 pcie_pkt_type;
 614	struct sk_buff *new_skb;
 615	void *pdata;
 616	struct hci_dev *hdev = data->hdev;
 617
 618	spin_lock(&data->hci_rx_lock);
 619
 620	/* The first 4 bytes indicates the Intel PCIe specific packet type */
 621	pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
 622	if (!pdata) {
 623		bt_dev_err(hdev, "Corrupted packet received");
 624		ret = -EILSEQ;
 625		goto exit_error;
 626	}
 627
 628	pcie_pkt_type = get_unaligned_le32(pdata);
 629
 630	switch (pcie_pkt_type) {
 631	case BTINTEL_PCIE_HCI_ACL_PKT:
 632		if (skb->len >= HCI_ACL_HDR_SIZE) {
 633			plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
 634			pkt_type = HCI_ACLDATA_PKT;
 635		} else {
 636			bt_dev_err(hdev, "ACL packet is too short");
 637			ret = -EILSEQ;
 638			goto exit_error;
 639		}
 640		break;
 641
 642	case BTINTEL_PCIE_HCI_SCO_PKT:
 643		if (skb->len >= HCI_SCO_HDR_SIZE) {
 644			plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
 645			pkt_type = HCI_SCODATA_PKT;
 646		} else {
 647			bt_dev_err(hdev, "SCO packet is too short");
 648			ret = -EILSEQ;
 649			goto exit_error;
 650		}
 651		break;
 652
 653	case BTINTEL_PCIE_HCI_EVT_PKT:
 654		if (skb->len >= HCI_EVENT_HDR_SIZE) {
 655			plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
 656			pkt_type = HCI_EVENT_PKT;
 657		} else {
 658			bt_dev_err(hdev, "Event packet is too short");
 659			ret = -EILSEQ;
 660			goto exit_error;
 661		}
 662		break;
 663
 664	case BTINTEL_PCIE_HCI_ISO_PKT:
 665		if (skb->len >= HCI_ISO_HDR_SIZE) {
 666			plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen);
 667			pkt_type = HCI_ISODATA_PKT;
 668		} else {
 669			bt_dev_err(hdev, "ISO packet is too short");
 670			ret = -EILSEQ;
 671			goto exit_error;
 672		}
 673		break;
 674
 675	default:
 676		bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
 677			   pcie_pkt_type);
 678		ret = -EINVAL;
 679		goto exit_error;
 680	}
 681
 682	if (skb->len < plen) {
 683		bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
 684			   pkt_type);
 685		ret = -EILSEQ;
 686		goto exit_error;
 687	}
 688
 689	bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
 690
 691	new_skb = bt_skb_alloc(plen, GFP_ATOMIC);
 692	if (!new_skb) {
 693		bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u",
 694			   skb->len);
 695		ret = -ENOMEM;
 696		goto exit_error;
 697	}
 698
 699	hci_skb_pkt_type(new_skb) = pkt_type;
 700	skb_put_data(new_skb, skb->data, plen);
 701	hdev->stat.byte_rx += plen;
 702
 703	if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
 704		ret = btintel_pcie_recv_event(hdev, new_skb);
 705	else
 706		ret = hci_recv_frame(hdev, new_skb);
 707
 708exit_error:
 709	if (ret)
 710		hdev->stat.err_rx++;
 711
 712	spin_unlock(&data->hci_rx_lock);
 713
 714	return ret;
 715}
 716
 717static void btintel_pcie_rx_work(struct work_struct *work)
 718{
 719	struct btintel_pcie_data *data = container_of(work,
 720					struct btintel_pcie_data, rx_work);
 721	struct sk_buff *skb;
 722	int err;
 723	struct hci_dev *hdev = data->hdev;
 724
 725	/* Process the sk_buf in queue and send to the HCI layer */
 726	while ((skb = skb_dequeue(&data->rx_skb_q))) {
 727		err = btintel_pcie_recv_frame(data, skb);
 728		if (err)
 729			bt_dev_err(hdev, "Failed to send received frame: %d",
 730				   err);
 731		kfree_skb(skb);
 732	}
 733}
 734
 735/* create sk_buff with data and save it to queue and start RX work */
 736static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
 737				       void *buf)
 738{
 739	int ret, len;
 740	struct rfh_hdr *rfh_hdr;
 741	struct sk_buff *skb;
 742
 743	rfh_hdr = buf;
 744
 745	len = rfh_hdr->packet_len;
 746	if (len <= 0) {
 747		ret = -EINVAL;
 748		goto resubmit;
 749	}
 750
 751	/* Remove RFH header */
 752	buf += sizeof(*rfh_hdr);
 753
 754	skb = alloc_skb(len, GFP_ATOMIC);
 755	if (!skb)
 756		goto resubmit;
 757
 758	skb_put_data(skb, buf, len);
 759	skb_queue_tail(&data->rx_skb_q, skb);
 760	queue_work(data->workqueue, &data->rx_work);
 761
 762resubmit:
 763	ret = btintel_pcie_submit_rx(data);
 764
 765	return ret;
 766}
 767
 768/* Handles the MSI-X interrupt for rx queue 1 which is for RX */
 769static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
 770{
 771	u16 cr_hia, cr_tia;
 772	struct rxq *rxq;
 773	struct urbd1 *urbd1;
 774	struct data_buf *buf;
 775	int ret;
 776	struct hci_dev *hdev = data->hdev;
 777
 778	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
 779	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
 780
 781	bt_dev_dbg(hdev, "RXQ: cr_hia: %u  cr_tia: %u", cr_hia, cr_tia);
 782
 783	/* Check CR_TIA and CR_HIA for change */
 784	if (cr_tia == cr_hia) {
 785		bt_dev_warn(hdev, "RXQ: no new CD found");
 786		return;
 787	}
 788
 789	rxq = &data->rxq;
 790
 791	/* The firmware sends multiple CD in a single MSI-X and it needs to
 792	 * process all received CDs in this interrupt.
 793	 */
 794	while (cr_tia != cr_hia) {
 795		urbd1 = &rxq->urbd1s[cr_tia];
 796		ipc_print_urbd1(data->hdev, urbd1, cr_tia);
 797
 798		buf = &rxq->bufs[urbd1->frbd_tag];
 799		if (!buf) {
 800			bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
 801				   urbd1->frbd_tag);
 802			return;
 803		}
 804
 805		ret = btintel_pcie_submit_rx_work(data, urbd1->status,
 806						  buf->data);
 807		if (ret) {
 808			bt_dev_err(hdev, "RXQ: failed to submit rx request");
 809			return;
 810		}
 811
 812		cr_tia = (cr_tia + 1) % rxq->count;
 813		data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
 814		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
 815	}
 816}
 817
 818static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
 819{
 820	return IRQ_WAKE_THREAD;
 821}
 822
 823static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
 824{
 825	struct msix_entry *entry = dev_id;
 826	struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
 827	u32 intr_fh, intr_hw;
 828
 829	spin_lock(&data->irq_lock);
 830	intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
 831	intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
 832
 833	/* Clear causes registers to avoid being handling the same cause */
 834	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
 835	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
 836	spin_unlock(&data->irq_lock);
 837
 838	if (unlikely(!(intr_fh | intr_hw))) {
 839		/* Ignore interrupt, inta == 0 */
 840		return IRQ_NONE;
 841	}
 842
 843	/* This interrupt is triggered by the firmware after updating
 844	 * boot_stage register and image_response register
 845	 */
 846	if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
 847		btintel_pcie_msix_gp0_handler(data);
 848
 849	/* For TX */
 850	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0)
 851		btintel_pcie_msix_tx_handle(data);
 852
 853	/* For RX */
 854	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1)
 855		btintel_pcie_msix_rx_handle(data);
 856
 857	/*
 858	 * Before sending the interrupt the HW disables it to prevent a nested
 859	 * interrupt. This is done by writing 1 to the corresponding bit in
 860	 * the mask register. After handling the interrupt, it should be
 861	 * re-enabled by clearing this bit. This register is defined as write 1
 862	 * clear (W1C) register, meaning that it's cleared by writing 1
 863	 * to the bit.
 864	 */
 865	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
 866			      BIT(entry->entry));
 867
 868	return IRQ_HANDLED;
 869}
 870
 871/* This function requests the irq for MSI-X and registers the handlers per irq.
 872 * Currently, it requests only 1 irq for all interrupt causes.
 873 */
 874static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
 875{
 876	int err;
 877	int num_irqs, i;
 878
 879	for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
 880		data->msix_entries[i].entry = i;
 881
 882	num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
 883					 BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
 884	if (num_irqs < 0)
 885		return num_irqs;
 886
 887	data->alloc_vecs = num_irqs;
 888	data->msix_enabled = 1;
 889	data->def_irq = 0;
 890
 891	/* setup irq handler */
 892	for (i = 0; i < data->alloc_vecs; i++) {
 893		struct msix_entry *msix_entry;
 894
 895		msix_entry = &data->msix_entries[i];
 896		msix_entry->vector = pci_irq_vector(data->pdev, i);
 897
 898		err = devm_request_threaded_irq(&data->pdev->dev,
 899						msix_entry->vector,
 900						btintel_pcie_msix_isr,
 901						btintel_pcie_irq_msix_handler,
 902						IRQF_SHARED,
 903						KBUILD_MODNAME,
 904						msix_entry);
 905		if (err) {
 906			pci_free_irq_vectors(data->pdev);
 907			data->alloc_vecs = 0;
 908			return err;
 909		}
 910	}
 911	return 0;
 912}
 913
 914struct btintel_pcie_causes_list {
 915	u32 cause;
 916	u32 mask_reg;
 917	u8 cause_num;
 918};
 919
 920static struct btintel_pcie_causes_list causes_list[] = {
 921	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x00 },
 922	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x01 },
 923	{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK,	0x20 },
 924};
 925
 926/* This function configures the interrupt masks for both HW_INT_CAUSES and
 927 * FH_INT_CAUSES which are meaningful to us.
 928 *
 929 * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
 930 * need to call this function again to configure since the masks
 931 * are reset to 0xFFFFFFFF after reset.
 932 */
 933static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
 934{
 935	int i;
 936	int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
 937
 938	/* Set Non Auto Clear Cause */
 939	for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
 940		btintel_pcie_wr_reg8(data,
 941				     BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
 942				     val);
 943		btintel_pcie_clr_reg_bits(data,
 944					  causes_list[i].mask_reg,
 945					  causes_list[i].cause);
 946	}
 947
 948	/* Save the initial interrupt mask */
 949	data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
 950	data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
 951}
 952
 953static int btintel_pcie_config_pcie(struct pci_dev *pdev,
 954				    struct btintel_pcie_data *data)
 955{
 956	int err;
 957
 958	err = pcim_enable_device(pdev);
 959	if (err)
 960		return err;
 961
 962	pci_set_master(pdev);
 963
 964	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 965	if (err) {
 966		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
 967		if (err)
 968			return err;
 969	}
 970
 971	data->base_addr = pcim_iomap_region(pdev, 0, KBUILD_MODNAME);
 972	if (IS_ERR(data->base_addr))
 973		return PTR_ERR(data->base_addr);
 974
 975	err = btintel_pcie_setup_irq(data);
 976	if (err)
 977		return err;
 978
 979	/* Configure MSI-X with causes list */
 980	btintel_pcie_config_msix(data);
 981
 982	return 0;
 983}
 984
 985static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
 986				 struct ctx_info *ci)
 987{
 988	ci->version = 0x1;
 989	ci->size = sizeof(*ci);
 990	ci->config = 0x0000;
 991	ci->addr_cr_hia = data->ia.cr_hia_p_addr;
 992	ci->addr_tr_tia = data->ia.tr_tia_p_addr;
 993	ci->addr_cr_tia = data->ia.cr_tia_p_addr;
 994	ci->addr_tr_hia = data->ia.tr_hia_p_addr;
 995	ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
 996	ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
 997	ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
 998	ci->addr_tfdq = data->txq.tfds_p_addr;
 999	ci->num_tfdq = data->txq.count;
1000	ci->num_urbdq0 = data->txq.count;
1001	ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
1002	ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
1003	ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
1004	ci->addr_frbdq = data->rxq.frbds_p_addr;
1005	ci->num_frbdq = data->rxq.count;
1006	ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
1007	ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
1008	ci->num_urbdq1 = data->rxq.count;
1009	ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
1010}
1011
1012static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
1013				       struct txq *txq)
1014{
1015	/* Free data buffers first */
1016	dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
1017			  txq->buf_v_addr, txq->buf_p_addr);
1018	kfree(txq->bufs);
1019}
1020
1021static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
1022				       struct txq *txq)
1023{
1024	int i;
1025	struct data_buf *buf;
1026
1027	/* Allocate the same number of buffers as the descriptor */
1028	txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
1029	if (!txq->bufs)
1030		return -ENOMEM;
1031
1032	/* Allocate full chunk of data buffer for DMA first and do indexing and
1033	 * initialization next, so it can be freed easily
1034	 */
1035	txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
1036					     txq->count * BTINTEL_PCIE_BUFFER_SIZE,
1037					     &txq->buf_p_addr,
1038					     GFP_KERNEL | __GFP_NOWARN);
1039	if (!txq->buf_v_addr) {
1040		kfree(txq->bufs);
1041		return -ENOMEM;
1042	}
1043
1044	/* Setup the allocated DMA buffer to bufs. Each data_buf should
1045	 * have virtual address and physical address
1046	 */
1047	for (i = 0; i < txq->count; i++) {
1048		buf = &txq->bufs[i];
1049		buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1050		buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1051	}
1052
1053	return 0;
1054}
1055
1056static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
1057				       struct rxq *rxq)
1058{
1059	/* Free data buffers first */
1060	dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
1061			  rxq->buf_v_addr, rxq->buf_p_addr);
1062	kfree(rxq->bufs);
1063}
1064
1065static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
1066				       struct rxq *rxq)
1067{
1068	int i;
1069	struct data_buf *buf;
1070
1071	/* Allocate the same number of buffers as the descriptor */
1072	rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
1073	if (!rxq->bufs)
1074		return -ENOMEM;
1075
1076	/* Allocate full chunk of data buffer for DMA first and do indexing and
1077	 * initialization next, so it can be freed easily
1078	 */
1079	rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
1080					     rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
1081					     &rxq->buf_p_addr,
1082					     GFP_KERNEL | __GFP_NOWARN);
1083	if (!rxq->buf_v_addr) {
1084		kfree(rxq->bufs);
1085		return -ENOMEM;
1086	}
1087
1088	/* Setup the allocated DMA buffer to bufs. Each data_buf should
1089	 * have virtual address and physical address
1090	 */
1091	for (i = 0; i < rxq->count; i++) {
1092		buf = &rxq->bufs[i];
1093		buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1094		buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
1095	}
1096
1097	return 0;
1098}
1099
1100static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
1101				  dma_addr_t p_addr, void *v_addr,
1102				  struct ia *ia)
1103{
1104	/* TR Head Index Array */
1105	ia->tr_hia_p_addr = p_addr;
1106	ia->tr_hia = v_addr;
1107
1108	/* TR Tail Index Array */
1109	ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
1110	ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
1111
1112	/* CR Head index Array */
1113	ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
1114	ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
1115
1116	/* CR Tail Index Array */
1117	ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
1118	ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
1119}
1120
1121static void btintel_pcie_free(struct btintel_pcie_data *data)
1122{
1123	btintel_pcie_free_rxq_bufs(data, &data->rxq);
1124	btintel_pcie_free_txq_bufs(data, &data->txq);
1125
1126	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
1127	dma_pool_destroy(data->dma_pool);
1128}
1129
1130/* Allocate tx and rx queues, any related data structures and buffers.
1131 */
1132static int btintel_pcie_alloc(struct btintel_pcie_data *data)
1133{
1134	int err = 0;
1135	size_t total;
1136	dma_addr_t p_addr;
1137	void *v_addr;
1138
1139	/* Allocate the chunk of DMA memory for descriptors, index array, and
1140	 * context information, instead of allocating individually.
1141	 * The DMA memory for data buffer is allocated while setting up the
1142	 * each queue.
1143	 *
1144	 * Total size is sum of the following
1145	 *  + size of TFD * Number of descriptors in queue
1146	 *  + size of URBD0 * Number of descriptors in queue
1147	 *  + size of FRBD * Number of descriptors in queue
1148	 *  + size of URBD1 * Number of descriptors in queue
1149	 *  + size of index * Number of queues(2) * type of index array(4)
1150	 *  + size of context information
1151	 */
1152	total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd)
1153		+ sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT;
1154
1155	/* Add the sum of size of index array and size of ci struct */
1156	total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
1157
1158	/* Allocate DMA Pool */
1159	data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
1160					 total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
1161	if (!data->dma_pool) {
1162		err = -ENOMEM;
1163		goto exit_error;
1164	}
1165
1166	v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
1167				 &p_addr);
1168	if (!v_addr) {
1169		dma_pool_destroy(data->dma_pool);
1170		err = -ENOMEM;
1171		goto exit_error;
1172	}
1173
1174	data->dma_p_addr = p_addr;
1175	data->dma_v_addr = v_addr;
1176
1177	/* Setup descriptor count */
1178	data->txq.count = BTINTEL_DESCS_COUNT;
1179	data->rxq.count = BTINTEL_DESCS_COUNT;
1180
1181	/* Setup tfds */
1182	data->txq.tfds_p_addr = p_addr;
1183	data->txq.tfds = v_addr;
1184
1185	p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
1186	v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
1187
1188	/* Setup urbd0 */
1189	data->txq.urbd0s_p_addr = p_addr;
1190	data->txq.urbd0s = v_addr;
1191
1192	p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
1193	v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
1194
1195	/* Setup FRBD*/
1196	data->rxq.frbds_p_addr = p_addr;
1197	data->rxq.frbds = v_addr;
1198
1199	p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
1200	v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
1201
1202	/* Setup urbd1 */
1203	data->rxq.urbd1s_p_addr = p_addr;
1204	data->rxq.urbd1s = v_addr;
1205
1206	p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
1207	v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
1208
1209	/* Setup data buffers for txq */
1210	err = btintel_pcie_setup_txq_bufs(data, &data->txq);
1211	if (err)
1212		goto exit_error_pool;
1213
1214	/* Setup data buffers for rxq */
1215	err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
1216	if (err)
1217		goto exit_error_txq;
1218
1219	/* Setup Index Array */
1220	btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
1221
1222	/* Setup Context Information */
1223	p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
1224	v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
1225
1226	data->ci = v_addr;
1227	data->ci_p_addr = p_addr;
1228
1229	/* Initialize the CI */
1230	btintel_pcie_init_ci(data, data->ci);
1231
1232	return 0;
1233
1234exit_error_txq:
1235	btintel_pcie_free_txq_bufs(data, &data->txq);
1236exit_error_pool:
1237	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
1238	dma_pool_destroy(data->dma_pool);
1239exit_error:
1240	return err;
1241}
1242
1243static int btintel_pcie_open(struct hci_dev *hdev)
1244{
1245	bt_dev_dbg(hdev, "");
1246
1247	return 0;
1248}
1249
1250static int btintel_pcie_close(struct hci_dev *hdev)
1251{
1252	bt_dev_dbg(hdev, "");
1253
1254	return 0;
1255}
1256
1257static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
1258{
1259	struct sk_buff *skb;
1260	struct hci_event_hdr *hdr;
1261	struct hci_ev_cmd_complete *evt;
1262
1263	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
1264	if (!skb)
1265		return -ENOMEM;
1266
1267	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
1268	hdr->evt = HCI_EV_CMD_COMPLETE;
1269	hdr->plen = sizeof(*evt) + 1;
1270
1271	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
1272	evt->ncmd = 0x01;
1273	evt->opcode = cpu_to_le16(opcode);
1274
1275	*(u8 *)skb_put(skb, 1) = 0x00;
1276
1277	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
1278
1279	return hci_recv_frame(hdev, skb);
1280}
1281
1282static int btintel_pcie_send_frame(struct hci_dev *hdev,
1283				       struct sk_buff *skb)
1284{
1285	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1286	struct hci_command_hdr *cmd;
1287	__u16 opcode = ~0;
1288	int ret;
1289	u32 type;
1290	u32 old_ctxt;
1291
1292	/* Due to the fw limitation, the type header of the packet should be
1293	 * 4 bytes unlike 1 byte for UART. In UART, the firmware can read
1294	 * the first byte to get the packet type and redirect the rest of data
1295	 * packet to the right handler.
1296	 *
1297	 * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data
1298	 * from DMA memory and by the time it reads the first 4 bytes, it has
1299	 * already consumed some part of packet. Thus the packet type indicator
1300	 * for iBT PCIe is 4 bytes.
1301	 *
1302	 * Luckily, when HCI core creates the skb, it allocates 8 bytes of
1303	 * head room for profile and driver use, and before sending the data
1304	 * to the device, append the iBT PCIe packet type in the front.
1305	 */
1306	switch (hci_skb_pkt_type(skb)) {
1307	case HCI_COMMAND_PKT:
1308		type = BTINTEL_PCIE_HCI_CMD_PKT;
1309		cmd = (void *)skb->data;
1310		opcode = le16_to_cpu(cmd->opcode);
1311		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
1312			struct hci_command_hdr *cmd = (void *)skb->data;
1313			__u16 opcode = le16_to_cpu(cmd->opcode);
1314
1315			/* When the 0xfc01 command is issued to boot into
1316			 * the operational firmware, it will actually not
1317			 * send a command complete event. To keep the flow
1318			 * control working inject that event here.
1319			 */
1320			if (opcode == 0xfc01)
1321				btintel_pcie_inject_cmd_complete(hdev, opcode);
1322		}
1323		/* Firmware raises alive interrupt on HCI_OP_RESET */
1324		if (opcode == HCI_OP_RESET)
1325			data->gp0_received = false;
1326
1327		hdev->stat.cmd_tx++;
1328		break;
1329	case HCI_ACLDATA_PKT:
1330		type = BTINTEL_PCIE_HCI_ACL_PKT;
1331		hdev->stat.acl_tx++;
1332		break;
1333	case HCI_SCODATA_PKT:
1334		type = BTINTEL_PCIE_HCI_SCO_PKT;
1335		hdev->stat.sco_tx++;
1336		break;
1337	case HCI_ISODATA_PKT:
1338		type = BTINTEL_PCIE_HCI_ISO_PKT;
1339		break;
1340	default:
1341		bt_dev_err(hdev, "Unknown HCI packet type");
1342		return -EILSEQ;
1343	}
1344	memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type,
1345	       BTINTEL_PCIE_HCI_TYPE_LEN);
1346
1347	ret = btintel_pcie_send_sync(data, skb);
1348	if (ret) {
1349		hdev->stat.err_tx++;
1350		bt_dev_err(hdev, "Failed to send frame (%d)", ret);
1351		goto exit_error;
1352	}
1353
1354	if (type == BTINTEL_PCIE_HCI_CMD_PKT &&
1355	    (opcode == HCI_OP_RESET || opcode == 0xfc01)) {
1356		old_ctxt = data->alive_intr_ctxt;
1357		data->alive_intr_ctxt =
1358			(opcode == 0xfc01 ? BTINTEL_PCIE_INTEL_HCI_RESET1 :
1359				BTINTEL_PCIE_HCI_RESET);
1360		bt_dev_dbg(data->hdev, "sent cmd: 0x%4.4x alive context changed: %s  ->  %s",
1361			   opcode, btintel_pcie_alivectxt_state2str(old_ctxt),
1362			   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
1363		if (opcode == HCI_OP_RESET) {
1364			ret = wait_event_timeout(data->gp0_wait_q,
1365						 data->gp0_received,
1366						 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
1367			if (!ret) {
1368				hdev->stat.err_tx++;
1369				bt_dev_err(hdev, "No alive interrupt received for %s",
1370					   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
1371				ret = -ETIME;
1372				goto exit_error;
1373			}
1374		}
1375	}
1376	hdev->stat.byte_tx += skb->len;
1377	kfree_skb(skb);
1378
1379exit_error:
1380	return ret;
1381}
1382
1383static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
1384{
1385	struct hci_dev *hdev;
1386
1387	hdev = data->hdev;
1388	hci_unregister_dev(hdev);
1389	hci_free_dev(hdev);
1390	data->hdev = NULL;
1391}
1392
1393static int btintel_pcie_setup_internal(struct hci_dev *hdev)
1394{
1395	const u8 param[1] = { 0xFF };
1396	struct intel_version_tlv ver_tlv;
1397	struct sk_buff *skb;
1398	int err;
1399
1400	BT_DBG("%s", hdev->name);
1401
1402	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
1403	if (IS_ERR(skb)) {
1404		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
1405			   PTR_ERR(skb));
1406		return PTR_ERR(skb);
1407	}
1408
1409	/* Check the status */
1410	if (skb->data[0]) {
1411		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
1412			   skb->data[0]);
1413		err = -EIO;
1414		goto exit_error;
1415	}
1416
1417	/* Apply the common HCI quirks for Intel device */
1418	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
1419	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1420	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
1421
1422	/* Set up the quality report callback for Intel devices */
1423	hdev->set_quality_report = btintel_set_quality_report;
1424
1425	memset(&ver_tlv, 0, sizeof(ver_tlv));
1426	/* For TLV type device, parse the tlv data */
1427	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
1428	if (err) {
1429		bt_dev_err(hdev, "Failed to parse TLV version information");
1430		goto exit_error;
1431	}
1432
1433	switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) {
1434	case 0x37:
1435		break;
1436	default:
1437		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
1438			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
1439		err = -EINVAL;
1440		goto exit_error;
1441	}
1442
1443	/* Check for supported iBT hardware variants of this firmware
1444	 * loading method.
1445	 *
1446	 * This check has been put in place to ensure correct forward
1447	 * compatibility options when newer hardware variants come
1448	 * along.
1449	 */
1450	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
1451	case 0x1e:	/* BzrI */
1452		/* Display version information of TLV type */
1453		btintel_version_info_tlv(hdev, &ver_tlv);
1454
1455		/* Apply the device specific HCI quirks for TLV based devices
1456		 *
1457		 * All TLV based devices support WBS
1458		 */
1459		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
1460
1461		/* Setup MSFT Extension support */
1462		btintel_set_msft_opcode(hdev,
1463					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
1464
1465		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
1466		if (err)
1467			goto exit_error;
1468		break;
1469	default:
1470		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
1471			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
1472		err = -EINVAL;
1473		goto exit_error;
1474		break;
1475	}
1476
1477	btintel_print_fseq_info(hdev);
1478exit_error:
1479	kfree_skb(skb);
1480
1481	return err;
1482}
1483
1484static int btintel_pcie_setup(struct hci_dev *hdev)
1485{
1486	int err, fw_dl_retry = 0;
1487	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
1488
1489	while ((err = btintel_pcie_setup_internal(hdev)) && fw_dl_retry++ < 1) {
1490		bt_dev_err(hdev, "Firmware download retry count: %d",
1491			   fw_dl_retry);
1492		err = btintel_pcie_reset_bt(data);
1493		if (err) {
1494			bt_dev_err(hdev, "Failed to do shr reset: %d", err);
1495			break;
1496		}
1497		usleep_range(10000, 12000);
1498		btintel_pcie_reset_ia(data);
1499		btintel_pcie_config_msix(data);
1500		err = btintel_pcie_enable_bt(data);
1501		if (err) {
1502			bt_dev_err(hdev, "Failed to enable hardware: %d", err);
1503			break;
1504		}
1505		btintel_pcie_start_rx(data);
1506	}
1507	return err;
1508}
1509
1510static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
1511{
1512	int err;
1513	struct hci_dev *hdev;
1514
1515	hdev = hci_alloc_dev_priv(sizeof(struct btintel_data));
1516	if (!hdev)
1517		return -ENOMEM;
1518
1519	hdev->bus = HCI_PCI;
1520	hci_set_drvdata(hdev, data);
1521
1522	data->hdev = hdev;
1523	SET_HCIDEV_DEV(hdev, &data->pdev->dev);
1524
1525	hdev->manufacturer = 2;
1526	hdev->open = btintel_pcie_open;
1527	hdev->close = btintel_pcie_close;
1528	hdev->send = btintel_pcie_send_frame;
1529	hdev->setup = btintel_pcie_setup;
1530	hdev->shutdown = btintel_shutdown_combined;
1531	hdev->hw_error = btintel_hw_error;
1532	hdev->set_diag = btintel_set_diag;
1533	hdev->set_bdaddr = btintel_set_bdaddr;
1534
1535	err = hci_register_dev(hdev);
1536	if (err < 0) {
1537		BT_ERR("Failed to register to hdev (%d)", err);
1538		goto exit_error;
1539	}
1540
1541	return 0;
1542
1543exit_error:
1544	hci_free_dev(hdev);
1545	return err;
1546}
1547
1548static int btintel_pcie_probe(struct pci_dev *pdev,
1549			      const struct pci_device_id *ent)
1550{
1551	int err;
1552	struct btintel_pcie_data *data;
1553
1554	if (!pdev)
1555		return -ENODEV;
1556
1557	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
1558	if (!data)
1559		return -ENOMEM;
1560
1561	data->pdev = pdev;
1562
1563	spin_lock_init(&data->irq_lock);
1564	spin_lock_init(&data->hci_rx_lock);
1565
1566	init_waitqueue_head(&data->gp0_wait_q);
1567	data->gp0_received = false;
1568
1569	init_waitqueue_head(&data->tx_wait_q);
1570	data->tx_wait_done = false;
1571
1572	data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
1573	if (!data->workqueue)
1574		return -ENOMEM;
1575
1576	skb_queue_head_init(&data->rx_skb_q);
1577	INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
1578
1579	data->boot_stage_cache = 0x00;
1580	data->img_resp_cache = 0x00;
1581
1582	err = btintel_pcie_config_pcie(pdev, data);
1583	if (err)
1584		goto exit_error;
1585
1586	pci_set_drvdata(pdev, data);
1587
1588	err = btintel_pcie_alloc(data);
1589	if (err)
1590		goto exit_error;
1591
1592	err = btintel_pcie_enable_bt(data);
1593	if (err)
1594		goto exit_error;
1595
1596	/* CNV information (CNVi and CNVr) is in CSR */
1597	data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
1598
1599	data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
1600
1601	err = btintel_pcie_start_rx(data);
1602	if (err)
1603		goto exit_error;
1604
1605	err = btintel_pcie_setup_hdev(data);
1606	if (err)
1607		goto exit_error;
1608
1609	bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
1610		   data->cnvr);
1611	return 0;
1612
1613exit_error:
1614	/* reset device before exit */
1615	btintel_pcie_reset_bt(data);
1616
1617	pci_clear_master(pdev);
1618
1619	pci_set_drvdata(pdev, NULL);
1620
1621	return err;
1622}
1623
1624static void btintel_pcie_remove(struct pci_dev *pdev)
1625{
1626	struct btintel_pcie_data *data;
1627
1628	data = pci_get_drvdata(pdev);
1629
1630	btintel_pcie_reset_bt(data);
1631	for (int i = 0; i < data->alloc_vecs; i++) {
1632		struct msix_entry *msix_entry;
1633
1634		msix_entry = &data->msix_entries[i];
1635		free_irq(msix_entry->vector, msix_entry);
1636	}
1637
1638	pci_free_irq_vectors(pdev);
1639
1640	btintel_pcie_release_hdev(data);
1641
1642	flush_work(&data->rx_work);
1643
1644	destroy_workqueue(data->workqueue);
1645
1646	btintel_pcie_free(data);
1647
1648	pci_clear_master(pdev);
1649
1650	pci_set_drvdata(pdev, NULL);
1651}
1652
1653static struct pci_driver btintel_pcie_driver = {
1654	.name = KBUILD_MODNAME,
1655	.id_table = btintel_pcie_table,
1656	.probe = btintel_pcie_probe,
1657	.remove = btintel_pcie_remove,
1658};
1659module_pci_driver(btintel_pcie_driver);
1660
1661MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>");
1662MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
1663MODULE_VERSION(VERSION);
1664MODULE_LICENSE("GPL");