Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * ACPI support for Intel Lynxpoint LPSS.
   4 *
   5 * Copyright (C) 2013, Intel Corporation
   6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *          Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   8 */
   9
  10#include <linux/acpi.h>
  11#include <linux/clkdev.h>
  12#include <linux/clk-provider.h>
  13#include <linux/dmi.h>
  14#include <linux/err.h>
  15#include <linux/io.h>
  16#include <linux/mutex.h>
  17#include <linux/pci.h>
  18#include <linux/platform_device.h>
  19#include <linux/platform_data/x86/clk-lpss.h>
  20#include <linux/platform_data/x86/pmc_atom.h>
  21#include <linux/pm_domain.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/pwm.h>
  24#include <linux/pxa2xx_ssp.h>
  25#include <linux/suspend.h>
  26#include <linux/delay.h>
  27
  28#include "../internal.h"
  29
  30#ifdef CONFIG_X86_INTEL_LPSS
  31
  32#include <asm/cpu_device_id.h>
  33#include <asm/intel-family.h>
  34#include <asm/iosf_mbi.h>
  35
  36#define LPSS_ADDR(desc) ((unsigned long)&desc)
  37
  38#define LPSS_CLK_SIZE	0x04
  39#define LPSS_LTR_SIZE	0x18
  40
  41/* Offsets relative to LPSS_PRIVATE_OFFSET */
  42#define LPSS_CLK_DIVIDER_DEF_MASK	(BIT(1) | BIT(16))
  43#define LPSS_RESETS			0x04
  44#define LPSS_RESETS_RESET_FUNC		BIT(0)
  45#define LPSS_RESETS_RESET_APB		BIT(1)
  46#define LPSS_GENERAL			0x08
  47#define LPSS_GENERAL_LTR_MODE_SW	BIT(2)
  48#define LPSS_GENERAL_UART_RTS_OVRD	BIT(3)
  49#define LPSS_SW_LTR			0x10
  50#define LPSS_AUTO_LTR			0x14
  51#define LPSS_LTR_SNOOP_REQ		BIT(15)
  52#define LPSS_LTR_SNOOP_MASK		0x0000FFFF
  53#define LPSS_LTR_SNOOP_LAT_1US		0x800
  54#define LPSS_LTR_SNOOP_LAT_32US		0xC00
  55#define LPSS_LTR_SNOOP_LAT_SHIFT	5
  56#define LPSS_LTR_SNOOP_LAT_CUTOFF	3000
  57#define LPSS_LTR_MAX_VAL		0x3FF
  58#define LPSS_TX_INT			0x20
  59#define LPSS_TX_INT_MASK		BIT(1)
  60
  61#define LPSS_PRV_REG_COUNT		9
  62
  63/* LPSS Flags */
  64#define LPSS_CLK			BIT(0)
  65#define LPSS_CLK_GATE			BIT(1)
  66#define LPSS_CLK_DIVIDER		BIT(2)
  67#define LPSS_LTR			BIT(3)
  68#define LPSS_SAVE_CTX			BIT(4)
  69/*
  70 * For some devices the DSDT AML code for another device turns off the device
  71 * before our suspend handler runs, causing us to read/save all 1-s (0xffffffff)
  72 * as ctx register values.
  73 * Luckily these devices always use the same ctx register values, so we can
  74 * work around this by saving the ctx registers once on activation.
  75 */
  76#define LPSS_SAVE_CTX_ONCE		BIT(5)
  77#define LPSS_NO_D3_DELAY		BIT(6)
  78
  79struct lpss_private_data;
  80
  81struct lpss_device_desc {
  82	unsigned int flags;
  83	const char *clk_con_id;
  84	unsigned int prv_offset;
  85	size_t prv_size_override;
  86	const struct property_entry *properties;
  87	void (*setup)(struct lpss_private_data *pdata);
  88	bool resume_from_noirq;
  89};
  90
  91static const struct lpss_device_desc lpss_dma_desc = {
  92	.flags = LPSS_CLK,
  93};
  94
  95struct lpss_private_data {
  96	struct acpi_device *adev;
  97	void __iomem *mmio_base;
  98	resource_size_t mmio_size;
  99	unsigned int fixed_clk_rate;
 100	struct clk *clk;
 101	const struct lpss_device_desc *dev_desc;
 102	u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
 103};
 104
 105/* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
 106static u32 pmc_atom_d3_mask = 0xfe000ffe;
 107
 108/* LPSS run time quirks */
 109static unsigned int lpss_quirks;
 110
 111/*
 112 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
 113 *
 114 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
 115 * it can be powered off automatically whenever the last LPSS device goes down.
 116 * In case of no power any access to the DMA controller will hang the system.
 117 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
 118 * well as on ASuS T100TA transformer.
 119 *
 120 * This quirk overrides power state of entire LPSS island to keep DMA powered
 121 * on whenever we have at least one other device in use.
 122 */
 123#define LPSS_QUIRK_ALWAYS_POWER_ON	BIT(0)
 124
 125/* UART Component Parameter Register */
 126#define LPSS_UART_CPR			0xF4
 127#define LPSS_UART_CPR_AFCE		BIT(4)
 128
 129static void lpss_uart_setup(struct lpss_private_data *pdata)
 130{
 131	unsigned int offset;
 132	u32 val;
 133
 134	offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
 135	val = readl(pdata->mmio_base + offset);
 136	writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
 137
 138	val = readl(pdata->mmio_base + LPSS_UART_CPR);
 139	if (!(val & LPSS_UART_CPR_AFCE)) {
 140		offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
 141		val = readl(pdata->mmio_base + offset);
 142		val |= LPSS_GENERAL_UART_RTS_OVRD;
 143		writel(val, pdata->mmio_base + offset);
 144	}
 145}
 146
 147static void lpss_deassert_reset(struct lpss_private_data *pdata)
 148{
 149	unsigned int offset;
 150	u32 val;
 151
 152	offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
 153	val = readl(pdata->mmio_base + offset);
 154	val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
 155	writel(val, pdata->mmio_base + offset);
 156}
 157
 158/*
 159 * BYT PWM used for backlight control by the i915 driver on systems without
 160 * the Crystal Cove PMIC.
 161 */
 162static struct pwm_lookup byt_pwm_lookup[] = {
 163	PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
 164			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
 165			       "pwm-lpss-platform"),
 166};
 167
 168static void byt_pwm_setup(struct lpss_private_data *pdata)
 169{
 170	/* Only call pwm_add_table for the first PWM controller */
 171	if (acpi_dev_uid_match(pdata->adev, 1))
 172		pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
 173}
 174
 175#define LPSS_I2C_ENABLE			0x6c
 176
 177static void byt_i2c_setup(struct lpss_private_data *pdata)
 178{
 179	acpi_handle handle = pdata->adev->handle;
 180	unsigned long long shared_host = 0;
 181	acpi_status status;
 182	u64 uid;
 183
 184	/* Expected to always be successfull, but better safe then sorry */
 185	if (!acpi_dev_uid_to_integer(pdata->adev, &uid) && uid) {
 186		/* Detect I2C bus shared with PUNIT and ignore its d3 status */
 187		status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
 188		if (ACPI_SUCCESS(status) && shared_host)
 189			pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
 190	}
 191
 192	lpss_deassert_reset(pdata);
 193
 194	if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
 195		pdata->fixed_clk_rate = 133000000;
 196
 197	writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
 198}
 199
 200/*
 201 * BSW PWM1 is used for backlight control by the i915 driver
 202 * BSW PWM2 is used for backlight control for fixed (etched into the glass)
 203 * touch controls on some models. These touch-controls have specialized
 204 * drivers which know they need the "pwm_soc_lpss_2" con-id.
 205 */
 206static struct pwm_lookup bsw_pwm_lookup[] = {
 207	PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
 208			       "pwm_soc_backlight", 0, PWM_POLARITY_NORMAL,
 209			       "pwm-lpss-platform"),
 210	PWM_LOOKUP_WITH_MODULE("80862289:00", 0, NULL,
 211			       "pwm_soc_lpss_2", 0, PWM_POLARITY_NORMAL,
 212			       "pwm-lpss-platform"),
 213};
 214
 215static void bsw_pwm_setup(struct lpss_private_data *pdata)
 216{
 217	/* Only call pwm_add_table for the first PWM controller */
 218	if (acpi_dev_uid_match(pdata->adev, 1))
 219		pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
 220}
 221
 222static const struct property_entry lpt_spi_properties[] = {
 223	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_LPT_SSP),
 224	{ }
 225};
 226
 227static const struct lpss_device_desc lpt_spi_dev_desc = {
 228	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
 229			| LPSS_SAVE_CTX,
 230	.prv_offset = 0x800,
 231	.properties = lpt_spi_properties,
 232};
 233
 234static const struct lpss_device_desc lpt_i2c_dev_desc = {
 235	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
 236	.prv_offset = 0x800,
 237};
 238
 239static struct property_entry uart_properties[] = {
 240	PROPERTY_ENTRY_U32("reg-io-width", 4),
 241	PROPERTY_ENTRY_U32("reg-shift", 2),
 242	PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
 243	{ },
 244};
 245
 246static const struct lpss_device_desc lpt_uart_dev_desc = {
 247	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
 248			| LPSS_SAVE_CTX,
 249	.clk_con_id = "baudclk",
 250	.prv_offset = 0x800,
 251	.setup = lpss_uart_setup,
 252	.properties = uart_properties,
 253};
 254
 255static const struct lpss_device_desc lpt_sdio_dev_desc = {
 256	.flags = LPSS_LTR,
 257	.prv_offset = 0x1000,
 258	.prv_size_override = 0x1018,
 259};
 260
 261static const struct lpss_device_desc byt_pwm_dev_desc = {
 262	.flags = LPSS_SAVE_CTX,
 263	.prv_offset = 0x800,
 264	.setup = byt_pwm_setup,
 265};
 266
 267static const struct lpss_device_desc bsw_pwm_dev_desc = {
 268	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
 269	.prv_offset = 0x800,
 270	.setup = bsw_pwm_setup,
 271	.resume_from_noirq = true,
 272};
 273
 274static const struct lpss_device_desc bsw_pwm2_dev_desc = {
 275	.flags = LPSS_SAVE_CTX_ONCE | LPSS_NO_D3_DELAY,
 276	.prv_offset = 0x800,
 277	.resume_from_noirq = true,
 278};
 279
 280static const struct lpss_device_desc byt_uart_dev_desc = {
 281	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
 282	.clk_con_id = "baudclk",
 283	.prv_offset = 0x800,
 284	.setup = lpss_uart_setup,
 285	.properties = uart_properties,
 286};
 287
 288static const struct lpss_device_desc bsw_uart_dev_desc = {
 289	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
 290			| LPSS_NO_D3_DELAY,
 291	.clk_con_id = "baudclk",
 292	.prv_offset = 0x800,
 293	.setup = lpss_uart_setup,
 294	.properties = uart_properties,
 295};
 296
 297static const struct property_entry byt_spi_properties[] = {
 298	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BYT_SSP),
 299	{ }
 300};
 301
 302static const struct lpss_device_desc byt_spi_dev_desc = {
 303	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
 304	.prv_offset = 0x400,
 305	.properties = byt_spi_properties,
 306};
 307
 308static const struct lpss_device_desc byt_sdio_dev_desc = {
 309	.flags = LPSS_CLK,
 310};
 311
 312static const struct lpss_device_desc byt_i2c_dev_desc = {
 313	.flags = LPSS_CLK | LPSS_SAVE_CTX,
 314	.prv_offset = 0x800,
 315	.setup = byt_i2c_setup,
 316	.resume_from_noirq = true,
 317};
 318
 319static const struct lpss_device_desc bsw_i2c_dev_desc = {
 320	.flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
 321	.prv_offset = 0x800,
 322	.setup = byt_i2c_setup,
 323	.resume_from_noirq = true,
 324};
 325
 326static const struct property_entry bsw_spi_properties[] = {
 327	PROPERTY_ENTRY_U32("intel,spi-pxa2xx-type", LPSS_BSW_SSP),
 328	PROPERTY_ENTRY_U32("num-cs", 2),
 329	{ }
 330};
 331
 332static const struct lpss_device_desc bsw_spi_dev_desc = {
 333	.flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
 334			| LPSS_NO_D3_DELAY,
 335	.prv_offset = 0x400,
 336	.setup = lpss_deassert_reset,
 337	.properties = bsw_spi_properties,
 338};
 339
 340static const struct x86_cpu_id lpss_cpu_ids[] = {
 341	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	NULL),
 342	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	NULL),
 343	{}
 344};
 345
 346#else
 347
 348#define LPSS_ADDR(desc) (0UL)
 349
 350#endif /* CONFIG_X86_INTEL_LPSS */
 351
 352static const struct acpi_device_id acpi_lpss_device_ids[] = {
 353	/* Generic LPSS devices */
 354	{ "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
 355
 356	/* Lynxpoint LPSS devices */
 357	{ "INT33C0", LPSS_ADDR(lpt_spi_dev_desc) },
 358	{ "INT33C1", LPSS_ADDR(lpt_spi_dev_desc) },
 359	{ "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
 360	{ "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
 361	{ "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
 362	{ "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
 363	{ "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
 364
 365	/* BayTrail LPSS devices */
 366	{ "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
 367	{ "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
 368	{ "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
 369	{ "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
 370	{ "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
 371
 372	/* Braswell LPSS devices */
 373	{ "80862286", LPSS_ADDR(lpss_dma_desc) },
 374	{ "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
 375	{ "80862289", LPSS_ADDR(bsw_pwm2_dev_desc) },
 376	{ "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
 377	{ "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
 378	{ "808622C0", LPSS_ADDR(lpss_dma_desc) },
 379	{ "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
 380
 381	/* Broadwell LPSS devices */
 382	{ "INT3430", LPSS_ADDR(lpt_spi_dev_desc) },
 383	{ "INT3431", LPSS_ADDR(lpt_spi_dev_desc) },
 384	{ "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
 385	{ "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
 386	{ "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
 387	{ "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
 388	{ "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
 389
 390	/* Wildcat Point LPSS devices */
 391	{ "INT3438", LPSS_ADDR(lpt_spi_dev_desc) },
 392
 393	{ }
 394};
 395
 396#ifdef CONFIG_X86_INTEL_LPSS
 397
 398/* LPSS main clock device. */
 399static struct platform_device *lpss_clk_dev;
 400
 401static inline void lpt_register_clock_device(void)
 402{
 403	lpss_clk_dev = platform_device_register_simple("clk-lpss-atom",
 404						       PLATFORM_DEVID_NONE,
 405						       NULL, 0);
 406}
 407
 408static int register_device_clock(struct acpi_device *adev,
 409				 struct lpss_private_data *pdata)
 410{
 411	const struct lpss_device_desc *dev_desc = pdata->dev_desc;
 412	const char *devname = dev_name(&adev->dev);
 413	struct clk *clk;
 414	struct lpss_clk_data *clk_data;
 415	const char *parent, *clk_name;
 416	void __iomem *prv_base;
 417
 418	if (!lpss_clk_dev)
 419		lpt_register_clock_device();
 420
 421	if (IS_ERR(lpss_clk_dev))
 422		return PTR_ERR(lpss_clk_dev);
 423
 424	clk_data = platform_get_drvdata(lpss_clk_dev);
 425	if (!clk_data)
 426		return -ENODEV;
 427	clk = clk_data->clk;
 428
 429	if (!pdata->mmio_base
 430	    || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
 431		return -ENODATA;
 432
 433	parent = clk_data->name;
 434	prv_base = pdata->mmio_base + dev_desc->prv_offset;
 435
 436	if (pdata->fixed_clk_rate) {
 437		clk = clk_register_fixed_rate(NULL, devname, parent, 0,
 438					      pdata->fixed_clk_rate);
 439		goto out;
 440	}
 441
 442	if (dev_desc->flags & LPSS_CLK_GATE) {
 443		clk = clk_register_gate(NULL, devname, parent, 0,
 444					prv_base, 0, 0, NULL);
 445		parent = devname;
 446	}
 447
 448	if (dev_desc->flags & LPSS_CLK_DIVIDER) {
 449		/* Prevent division by zero */
 450		if (!readl(prv_base))
 451			writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
 452
 453		clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
 454		if (!clk_name)
 455			return -ENOMEM;
 456		clk = clk_register_fractional_divider(NULL, clk_name, parent,
 457						      0, prv_base, 1, 15, 16, 15,
 458						      CLK_FRAC_DIVIDER_POWER_OF_TWO_PS,
 459						      NULL);
 460		parent = clk_name;
 461
 462		clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
 463		if (!clk_name) {
 464			kfree(parent);
 465			return -ENOMEM;
 466		}
 467		clk = clk_register_gate(NULL, clk_name, parent,
 468					CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
 469					prv_base, 31, 0, NULL);
 470		kfree(parent);
 471		kfree(clk_name);
 472	}
 473out:
 474	if (IS_ERR(clk))
 475		return PTR_ERR(clk);
 476
 477	pdata->clk = clk;
 478	clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
 479	return 0;
 480}
 481
 482struct lpss_device_links {
 483	const char *supplier_hid;
 484	const char *supplier_uid;
 485	const char *consumer_hid;
 486	const char *consumer_uid;
 487	u32 flags;
 488	const struct dmi_system_id *dep_missing_ids;
 489};
 490
 491/* Please keep this list sorted alphabetically by vendor and model */
 492static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
 493	{
 494		.matches = {
 495			DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
 496			DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
 497		},
 498	},
 499	{}
 500};
 501
 502/*
 503 * The _DEP method is used to identify dependencies but instead of creating
 504 * device links for every handle in _DEP, only links in the following list are
 505 * created. That is necessary because, in the general case, _DEP can refer to
 506 * devices that might not have drivers, or that are on different buses, or where
 507 * the supplier is not enumerated until after the consumer is probed.
 508 */
 509static const struct lpss_device_links lpss_device_links[] = {
 510	/* CHT External sdcard slot controller depends on PMIC I2C ctrl */
 511	{"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
 512	/* CHT iGPU depends on PMIC I2C controller */
 513	{"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
 514	/* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
 515	{"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
 516	 i2c1_dep_missing_dmi_ids},
 517	/* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
 518	{"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
 519	/* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
 520	{"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
 521};
 522
 523static bool acpi_lpss_is_supplier(struct acpi_device *adev,
 524				  const struct lpss_device_links *link)
 525{
 526	return acpi_dev_hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
 527}
 528
 529static bool acpi_lpss_is_consumer(struct acpi_device *adev,
 530				  const struct lpss_device_links *link)
 531{
 532	return acpi_dev_hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
 533}
 534
 535struct hid_uid {
 536	const char *hid;
 537	const char *uid;
 538};
 539
 540static int match_hid_uid(struct device *dev, const void *data)
 541{
 542	struct acpi_device *adev = ACPI_COMPANION(dev);
 543	const struct hid_uid *id = data;
 544
 545	if (!adev)
 546		return 0;
 547
 548	return acpi_dev_hid_uid_match(adev, id->hid, id->uid);
 549}
 550
 551static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
 552{
 553	struct device *dev;
 554
 555	struct hid_uid data = {
 556		.hid = hid,
 557		.uid = uid,
 558	};
 559
 560	dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
 561	if (dev)
 562		return dev;
 563
 564	return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
 565}
 566
 567static void acpi_lpss_link_consumer(struct device *dev1,
 568				    const struct lpss_device_links *link)
 569{
 570	struct device *dev2;
 571
 572	dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
 573	if (!dev2)
 574		return;
 575
 576	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
 577	    || acpi_device_dep(ACPI_HANDLE(dev2), ACPI_HANDLE(dev1)))
 578		device_link_add(dev2, dev1, link->flags);
 579
 580	put_device(dev2);
 581}
 582
 583static void acpi_lpss_link_supplier(struct device *dev1,
 584				    const struct lpss_device_links *link)
 585{
 586	struct device *dev2;
 587
 588	dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
 589	if (!dev2)
 590		return;
 591
 592	if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
 593	    || acpi_device_dep(ACPI_HANDLE(dev1), ACPI_HANDLE(dev2)))
 594		device_link_add(dev1, dev2, link->flags);
 595
 596	put_device(dev2);
 597}
 598
 599static void acpi_lpss_create_device_links(struct acpi_device *adev,
 600					  struct platform_device *pdev)
 601{
 602	int i;
 603
 604	for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
 605		const struct lpss_device_links *link = &lpss_device_links[i];
 606
 607		if (acpi_lpss_is_supplier(adev, link))
 608			acpi_lpss_link_consumer(&pdev->dev, link);
 609
 610		if (acpi_lpss_is_consumer(adev, link))
 611			acpi_lpss_link_supplier(&pdev->dev, link);
 612	}
 613}
 614
 615static int acpi_lpss_create_device(struct acpi_device *adev,
 616				   const struct acpi_device_id *id)
 617{
 618	const struct lpss_device_desc *dev_desc;
 619	struct lpss_private_data *pdata;
 620	struct resource_entry *rentry;
 621	struct list_head resource_list;
 622	struct platform_device *pdev;
 623	int ret;
 624
 625	dev_desc = (const struct lpss_device_desc *)id->driver_data;
 626	if (!dev_desc)
 627		return -EINVAL;
 628
 629	pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
 630	if (!pdata)
 631		return -ENOMEM;
 632
 633	INIT_LIST_HEAD(&resource_list);
 634	ret = acpi_dev_get_memory_resources(adev, &resource_list);
 635	if (ret < 0)
 636		goto err_out;
 637
 638	rentry = list_first_entry_or_null(&resource_list, struct resource_entry, node);
 639	if (rentry) {
 640		if (dev_desc->prv_size_override)
 641			pdata->mmio_size = dev_desc->prv_size_override;
 642		else
 643			pdata->mmio_size = resource_size(rentry->res);
 644		pdata->mmio_base = ioremap(rentry->res->start, pdata->mmio_size);
 645	}
 646
 647	acpi_dev_free_resource_list(&resource_list);
 648
 649	if (!pdata->mmio_base) {
 650		/* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
 651		adev->pnp.type.platform_id = 0;
 652		goto out_free;
 653	}
 654
 655	pdata->adev = adev;
 656	pdata->dev_desc = dev_desc;
 657
 658	if (dev_desc->setup)
 659		dev_desc->setup(pdata);
 660
 661	if (dev_desc->flags & LPSS_CLK) {
 662		ret = register_device_clock(adev, pdata);
 663		if (ret)
 664			goto out_free;
 665	}
 666
 667	/*
 668	 * This works around a known issue in ACPI tables where LPSS devices
 669	 * have _PS0 and _PS3 without _PSC (and no power resources), so
 670	 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
 671	 */
 672	acpi_device_fix_up_power(adev);
 673
 674	adev->driver_data = pdata;
 675	pdev = acpi_create_platform_device(adev, dev_desc->properties);
 676	if (IS_ERR_OR_NULL(pdev)) {
 677		adev->driver_data = NULL;
 678		ret = PTR_ERR(pdev);
 679		goto err_out;
 680	}
 681
 682	acpi_lpss_create_device_links(adev, pdev);
 683	return 1;
 684
 685out_free:
 686	/* Skip the device, but continue the namespace scan */
 687	ret = 0;
 688err_out:
 689	kfree(pdata);
 690	return ret;
 691}
 692
 693static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
 694{
 695	return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
 696}
 697
 698static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
 699			     unsigned int reg)
 700{
 701	writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
 702}
 703
 704static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
 705{
 706	struct acpi_device *adev = ACPI_COMPANION(dev);
 707	struct lpss_private_data *pdata;
 708	unsigned long flags;
 709	int ret;
 710
 711	if (WARN_ON(!adev))
 712		return -ENODEV;
 713
 714	spin_lock_irqsave(&dev->power.lock, flags);
 715	if (pm_runtime_suspended(dev)) {
 716		ret = -EAGAIN;
 717		goto out;
 718	}
 719	pdata = acpi_driver_data(adev);
 720	if (WARN_ON(!pdata || !pdata->mmio_base)) {
 721		ret = -ENODEV;
 722		goto out;
 723	}
 724	*val = __lpss_reg_read(pdata, reg);
 725	ret = 0;
 726
 727 out:
 728	spin_unlock_irqrestore(&dev->power.lock, flags);
 729	return ret;
 730}
 731
 732static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
 733			     char *buf)
 734{
 735	u32 ltr_value = 0;
 736	unsigned int reg;
 737	int ret;
 738
 739	reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
 740	ret = lpss_reg_read(dev, reg, &ltr_value);
 741	if (ret)
 742		return ret;
 743
 744	return sysfs_emit(buf, "%08x\n", ltr_value);
 745}
 746
 747static ssize_t lpss_ltr_mode_show(struct device *dev,
 748				  struct device_attribute *attr, char *buf)
 749{
 750	u32 ltr_mode = 0;
 751	char *outstr;
 752	int ret;
 753
 754	ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
 755	if (ret)
 756		return ret;
 757
 758	outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
 759	return sprintf(buf, "%s\n", outstr);
 760}
 761
 762static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
 763static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
 764static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
 765
 766static struct attribute *lpss_attrs[] = {
 767	&dev_attr_auto_ltr.attr,
 768	&dev_attr_sw_ltr.attr,
 769	&dev_attr_ltr_mode.attr,
 770	NULL,
 771};
 772
 773static const struct attribute_group lpss_attr_group = {
 774	.attrs = lpss_attrs,
 775	.name = "lpss_ltr",
 776};
 777
 778static void acpi_lpss_set_ltr(struct device *dev, s32 val)
 779{
 780	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
 781	u32 ltr_mode, ltr_val;
 782
 783	ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
 784	if (val < 0) {
 785		if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
 786			ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
 787			__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
 788		}
 789		return;
 790	}
 791	ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
 792	if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
 793		ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
 794		val = LPSS_LTR_MAX_VAL;
 795	} else if (val > LPSS_LTR_MAX_VAL) {
 796		ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
 797		val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
 798	} else {
 799		ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
 800	}
 801	ltr_val |= val;
 802	__lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
 803	if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
 804		ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
 805		__lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
 806	}
 807}
 808
 809#ifdef CONFIG_PM
 810/**
 811 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
 812 * @dev: LPSS device
 813 * @pdata: pointer to the private data of the LPSS device
 814 *
 815 * Most LPSS devices have private registers which may loose their context when
 816 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
 817 * prv_reg_ctx array.
 818 */
 819static void acpi_lpss_save_ctx(struct device *dev,
 820			       struct lpss_private_data *pdata)
 821{
 822	unsigned int i;
 823
 824	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
 825		unsigned long offset = i * sizeof(u32);
 826
 827		pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
 828		dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
 829			pdata->prv_reg_ctx[i], offset);
 830	}
 831}
 832
 833/**
 834 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
 835 * @dev: LPSS device
 836 * @pdata: pointer to the private data of the LPSS device
 837 *
 838 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
 839 */
 840static void acpi_lpss_restore_ctx(struct device *dev,
 841				  struct lpss_private_data *pdata)
 842{
 843	unsigned int i;
 844
 845	for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
 846		unsigned long offset = i * sizeof(u32);
 847
 848		__lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
 849		dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
 850			pdata->prv_reg_ctx[i], offset);
 851	}
 852}
 853
 854static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
 855{
 856	/*
 857	 * The following delay is needed or the subsequent write operations may
 858	 * fail. The LPSS devices are actually PCI devices and the PCI spec
 859	 * expects 10ms delay before the device can be accessed after D3 to D0
 860	 * transition. However some platforms like BSW does not need this delay.
 861	 */
 862	unsigned int delay = 10;	/* default 10ms delay */
 863
 864	if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
 865		delay = 0;
 866
 867	msleep(delay);
 868}
 869
 870static int acpi_lpss_activate(struct device *dev)
 871{
 872	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
 873	int ret;
 874
 875	ret = acpi_dev_resume(dev);
 876	if (ret)
 877		return ret;
 878
 879	acpi_lpss_d3_to_d0_delay(pdata);
 880
 881	/*
 882	 * This is called only on ->probe() stage where a device is either in
 883	 * known state defined by BIOS or most likely powered off. Due to this
 884	 * we have to deassert reset line to be sure that ->probe() will
 885	 * recognize the device.
 886	 */
 887	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
 888		lpss_deassert_reset(pdata);
 889
 890	if (pdata->dev_desc->flags & LPSS_SAVE_CTX_ONCE)
 891		acpi_lpss_save_ctx(dev, pdata);
 892
 893	return 0;
 894}
 895
 896static void acpi_lpss_dismiss(struct device *dev)
 897{
 898	acpi_dev_suspend(dev, false);
 899}
 900
 901/* IOSF SB for LPSS island */
 902#define LPSS_IOSF_UNIT_LPIOEP		0xA0
 903#define LPSS_IOSF_UNIT_LPIO1		0xAB
 904#define LPSS_IOSF_UNIT_LPIO2		0xAC
 905
 906#define LPSS_IOSF_PMCSR			0x84
 907#define LPSS_PMCSR_D0			0
 908#define LPSS_PMCSR_D3hot		3
 909#define LPSS_PMCSR_Dx_MASK		GENMASK(1, 0)
 910
 911#define LPSS_IOSF_GPIODEF0		0x154
 912#define LPSS_GPIODEF0_DMA1_D3		BIT(2)
 913#define LPSS_GPIODEF0_DMA2_D3		BIT(3)
 914#define LPSS_GPIODEF0_DMA_D3_MASK	GENMASK(3, 2)
 915#define LPSS_GPIODEF0_DMA_LLP		BIT(13)
 916
 917static DEFINE_MUTEX(lpss_iosf_mutex);
 918static bool lpss_iosf_d3_entered = true;
 919
 920static void lpss_iosf_enter_d3_state(void)
 921{
 922	u32 value1 = 0;
 923	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
 924	u32 value2 = LPSS_PMCSR_D3hot;
 925	u32 mask2 = LPSS_PMCSR_Dx_MASK;
 926	/*
 927	 * PMC provides an information about actual status of the LPSS devices.
 928	 * Here we read the values related to LPSS power island, i.e. LPSS
 929	 * devices, excluding both LPSS DMA controllers, along with SCC domain.
 930	 */
 931	u32 func_dis, d3_sts_0, pmc_status;
 932	int ret;
 933
 934	ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
 935	if (ret)
 936		return;
 937
 938	mutex_lock(&lpss_iosf_mutex);
 939
 940	ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
 941	if (ret)
 942		goto exit;
 943
 944	/*
 945	 * Get the status of entire LPSS power island per device basis.
 946	 * Shutdown both LPSS DMA controllers if and only if all other devices
 947	 * are already in D3hot.
 948	 */
 949	pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
 950	if (pmc_status)
 951		goto exit;
 952
 953	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
 954			LPSS_IOSF_PMCSR, value2, mask2);
 955
 956	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
 957			LPSS_IOSF_PMCSR, value2, mask2);
 958
 959	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
 960			LPSS_IOSF_GPIODEF0, value1, mask1);
 961
 962	lpss_iosf_d3_entered = true;
 963
 964exit:
 965	mutex_unlock(&lpss_iosf_mutex);
 966}
 967
 968static void lpss_iosf_exit_d3_state(void)
 969{
 970	u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
 971		     LPSS_GPIODEF0_DMA_LLP;
 972	u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
 973	u32 value2 = LPSS_PMCSR_D0;
 974	u32 mask2 = LPSS_PMCSR_Dx_MASK;
 975
 976	mutex_lock(&lpss_iosf_mutex);
 977
 978	if (!lpss_iosf_d3_entered)
 979		goto exit;
 980
 981	lpss_iosf_d3_entered = false;
 982
 983	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
 984			LPSS_IOSF_GPIODEF0, value1, mask1);
 985
 986	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
 987			LPSS_IOSF_PMCSR, value2, mask2);
 988
 989	iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
 990			LPSS_IOSF_PMCSR, value2, mask2);
 991
 992exit:
 993	mutex_unlock(&lpss_iosf_mutex);
 994}
 995
 996static int acpi_lpss_suspend(struct device *dev, bool wakeup)
 997{
 998	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
 999	int ret;
1000
1001	if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1002		acpi_lpss_save_ctx(dev, pdata);
1003
1004	ret = acpi_dev_suspend(dev, wakeup);
1005
1006	/*
1007	 * This call must be last in the sequence, otherwise PMC will return
1008	 * wrong status for devices being about to be powered off. See
1009	 * lpss_iosf_enter_d3_state() for further information.
1010	 */
1011	if (acpi_target_system_state() == ACPI_STATE_S0 &&
1012	    lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1013		lpss_iosf_enter_d3_state();
1014
1015	return ret;
1016}
1017
1018static int acpi_lpss_resume(struct device *dev)
1019{
1020	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1021	int ret;
1022
1023	/*
1024	 * This call is kept first to be in symmetry with
1025	 * acpi_lpss_runtime_suspend() one.
1026	 */
1027	if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1028		lpss_iosf_exit_d3_state();
1029
1030	ret = acpi_dev_resume(dev);
1031	if (ret)
1032		return ret;
1033
1034	acpi_lpss_d3_to_d0_delay(pdata);
1035
1036	if (pdata->dev_desc->flags & (LPSS_SAVE_CTX | LPSS_SAVE_CTX_ONCE))
1037		acpi_lpss_restore_ctx(dev, pdata);
1038
1039	return 0;
1040}
1041
1042#ifdef CONFIG_PM_SLEEP
1043static int acpi_lpss_do_suspend_late(struct device *dev)
1044{
1045	int ret;
1046
1047	if (dev_pm_skip_suspend(dev))
1048		return 0;
1049
1050	ret = pm_generic_suspend_late(dev);
1051	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1052}
1053
1054static int acpi_lpss_suspend_late(struct device *dev)
1055{
1056	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1057
1058	if (pdata->dev_desc->resume_from_noirq)
1059		return 0;
1060
1061	return acpi_lpss_do_suspend_late(dev);
1062}
1063
1064static int acpi_lpss_suspend_noirq(struct device *dev)
1065{
1066	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1067	int ret;
1068
1069	if (pdata->dev_desc->resume_from_noirq) {
1070		/*
1071		 * The driver's ->suspend_late callback will be invoked by
1072		 * acpi_lpss_do_suspend_late(), with the assumption that the
1073		 * driver really wanted to run that code in ->suspend_noirq, but
1074		 * it could not run after acpi_dev_suspend() and the driver
1075		 * expected the latter to be called in the "late" phase.
1076		 */
1077		ret = acpi_lpss_do_suspend_late(dev);
1078		if (ret)
1079			return ret;
1080	}
1081
1082	return acpi_subsys_suspend_noirq(dev);
1083}
1084
1085static int acpi_lpss_do_resume_early(struct device *dev)
1086{
1087	int ret = acpi_lpss_resume(dev);
1088
1089	return ret ? ret : pm_generic_resume_early(dev);
1090}
1091
1092static int acpi_lpss_resume_early(struct device *dev)
1093{
1094	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1095
1096	if (pdata->dev_desc->resume_from_noirq)
1097		return 0;
1098
1099	if (dev_pm_skip_resume(dev))
1100		return 0;
1101
1102	return acpi_lpss_do_resume_early(dev);
1103}
1104
1105static int acpi_lpss_resume_noirq(struct device *dev)
1106{
1107	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1108	int ret;
1109
1110	/* Follow acpi_subsys_resume_noirq(). */
1111	if (dev_pm_skip_resume(dev))
1112		return 0;
1113
1114	ret = pm_generic_resume_noirq(dev);
1115	if (ret)
1116		return ret;
1117
1118	if (!pdata->dev_desc->resume_from_noirq)
1119		return 0;
1120
1121	/*
1122	 * The driver's ->resume_early callback will be invoked by
1123	 * acpi_lpss_do_resume_early(), with the assumption that the driver
1124	 * really wanted to run that code in ->resume_noirq, but it could not
1125	 * run before acpi_dev_resume() and the driver expected the latter to be
1126	 * called in the "early" phase.
1127	 */
1128	return acpi_lpss_do_resume_early(dev);
1129}
1130
1131static int acpi_lpss_do_restore_early(struct device *dev)
1132{
1133	int ret = acpi_lpss_resume(dev);
1134
1135	return ret ? ret : pm_generic_restore_early(dev);
1136}
1137
1138static int acpi_lpss_restore_early(struct device *dev)
1139{
1140	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1141
1142	if (pdata->dev_desc->resume_from_noirq)
1143		return 0;
1144
1145	return acpi_lpss_do_restore_early(dev);
1146}
1147
1148static int acpi_lpss_restore_noirq(struct device *dev)
1149{
1150	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1151	int ret;
1152
1153	ret = pm_generic_restore_noirq(dev);
1154	if (ret)
1155		return ret;
1156
1157	if (!pdata->dev_desc->resume_from_noirq)
1158		return 0;
1159
1160	/* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1161	return acpi_lpss_do_restore_early(dev);
1162}
1163
1164static int acpi_lpss_do_poweroff_late(struct device *dev)
1165{
1166	int ret = pm_generic_poweroff_late(dev);
1167
1168	return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1169}
1170
1171static int acpi_lpss_poweroff_late(struct device *dev)
1172{
1173	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1174
1175	if (dev_pm_skip_suspend(dev))
1176		return 0;
1177
1178	if (pdata->dev_desc->resume_from_noirq)
1179		return 0;
1180
1181	return acpi_lpss_do_poweroff_late(dev);
1182}
1183
1184static int acpi_lpss_poweroff_noirq(struct device *dev)
1185{
1186	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1187
1188	if (dev_pm_skip_suspend(dev))
1189		return 0;
1190
1191	if (pdata->dev_desc->resume_from_noirq) {
1192		/* This is analogous to the acpi_lpss_suspend_noirq() case. */
1193		int ret = acpi_lpss_do_poweroff_late(dev);
1194
1195		if (ret)
1196			return ret;
1197	}
1198
1199	return pm_generic_poweroff_noirq(dev);
1200}
1201#endif /* CONFIG_PM_SLEEP */
1202
1203static int acpi_lpss_runtime_suspend(struct device *dev)
1204{
1205	int ret = pm_generic_runtime_suspend(dev);
1206
1207	return ret ? ret : acpi_lpss_suspend(dev, true);
1208}
1209
1210static int acpi_lpss_runtime_resume(struct device *dev)
1211{
1212	int ret = acpi_lpss_resume(dev);
1213
1214	return ret ? ret : pm_generic_runtime_resume(dev);
1215}
1216#endif /* CONFIG_PM */
1217
1218static struct dev_pm_domain acpi_lpss_pm_domain = {
1219#ifdef CONFIG_PM
1220	.activate = acpi_lpss_activate,
1221	.dismiss = acpi_lpss_dismiss,
1222#endif
1223	.ops = {
1224#ifdef CONFIG_PM
1225#ifdef CONFIG_PM_SLEEP
1226		.prepare = acpi_subsys_prepare,
1227		.complete = acpi_subsys_complete,
1228		.suspend = acpi_subsys_suspend,
1229		.suspend_late = acpi_lpss_suspend_late,
1230		.suspend_noirq = acpi_lpss_suspend_noirq,
1231		.resume_noirq = acpi_lpss_resume_noirq,
1232		.resume_early = acpi_lpss_resume_early,
1233		.freeze = acpi_subsys_freeze,
1234		.poweroff = acpi_subsys_poweroff,
1235		.poweroff_late = acpi_lpss_poweroff_late,
1236		.poweroff_noirq = acpi_lpss_poweroff_noirq,
1237		.restore_noirq = acpi_lpss_restore_noirq,
1238		.restore_early = acpi_lpss_restore_early,
1239#endif
1240		.runtime_suspend = acpi_lpss_runtime_suspend,
1241		.runtime_resume = acpi_lpss_runtime_resume,
1242#endif
1243	},
1244};
1245
1246static int acpi_lpss_platform_notify(struct notifier_block *nb,
1247				     unsigned long action, void *data)
1248{
1249	struct platform_device *pdev = to_platform_device(data);
1250	struct lpss_private_data *pdata;
1251	struct acpi_device *adev;
1252	const struct acpi_device_id *id;
1253
1254	id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1255	if (!id || !id->driver_data)
1256		return 0;
1257
1258	adev = ACPI_COMPANION(&pdev->dev);
1259	if (!adev)
1260		return 0;
1261
1262	pdata = acpi_driver_data(adev);
1263	if (!pdata)
1264		return 0;
1265
1266	if (pdata->mmio_base &&
1267	    pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1268		dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1269		return 0;
1270	}
1271
1272	switch (action) {
1273	case BUS_NOTIFY_BIND_DRIVER:
1274		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1275		break;
1276	case BUS_NOTIFY_DRIVER_NOT_BOUND:
1277	case BUS_NOTIFY_UNBOUND_DRIVER:
1278		dev_pm_domain_set(&pdev->dev, NULL);
1279		break;
1280	case BUS_NOTIFY_ADD_DEVICE:
1281		dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1282		if (pdata->dev_desc->flags & LPSS_LTR)
1283			return sysfs_create_group(&pdev->dev.kobj,
1284						  &lpss_attr_group);
1285		break;
1286	case BUS_NOTIFY_DEL_DEVICE:
1287		if (pdata->dev_desc->flags & LPSS_LTR)
1288			sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1289		dev_pm_domain_set(&pdev->dev, NULL);
1290		break;
1291	default:
1292		break;
1293	}
1294
1295	return 0;
1296}
1297
1298static struct notifier_block acpi_lpss_nb = {
1299	.notifier_call = acpi_lpss_platform_notify,
1300};
1301
1302static void acpi_lpss_bind(struct device *dev)
1303{
1304	struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1305
1306	if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1307		return;
1308
1309	if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1310		dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1311	else
1312		dev_err(dev, "MMIO size insufficient to access LTR\n");
1313}
1314
1315static void acpi_lpss_unbind(struct device *dev)
1316{
1317	dev->power.set_latency_tolerance = NULL;
1318}
1319
1320static struct acpi_scan_handler lpss_handler = {
1321	.ids = acpi_lpss_device_ids,
1322	.attach = acpi_lpss_create_device,
1323	.bind = acpi_lpss_bind,
1324	.unbind = acpi_lpss_unbind,
1325};
1326
1327void __init acpi_lpss_init(void)
1328{
1329	const struct x86_cpu_id *id;
1330	int ret;
1331
1332	ret = lpss_atom_clk_init();
1333	if (ret)
1334		return;
1335
1336	id = x86_match_cpu(lpss_cpu_ids);
1337	if (id)
1338		lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1339
1340	bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1341	acpi_scan_add_handler(&lpss_handler);
1342}
1343
1344#else
1345
1346static struct acpi_scan_handler lpss_handler = {
1347	.ids = acpi_lpss_device_ids,
1348};
1349
1350void __init acpi_lpss_init(void)
1351{
1352	acpi_scan_add_handler(&lpss_handler);
1353}
1354
1355#endif /* CONFIG_X86_INTEL_LPSS */