Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Functions related to setting various queue properties from drivers
  3 */
  4#include <linux/kernel.h>
  5#include <linux/module.h>
  6#include <linux/init.h>
  7#include <linux/bio.h>
  8#include <linux/blkdev.h>
  9#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
 
 10#include <linux/gcd.h>
 11#include <linux/lcm.h>
 12#include <linux/jiffies.h>
 13#include <linux/gfp.h>
 
 14
 15#include "blk.h"
 
 
 16
 17unsigned long blk_max_low_pfn;
 18EXPORT_SYMBOL(blk_max_low_pfn);
 19
 20unsigned long blk_max_pfn;
 21
 22/**
 23 * blk_queue_prep_rq - set a prepare_request function for queue
 24 * @q:		queue
 25 * @pfn:	prepare_request function
 26 *
 27 * It's possible for a queue to register a prepare_request callback which
 28 * is invoked before the request is handed to the request_fn. The goal of
 29 * the function is to prepare a request for I/O, it can be used to build a
 30 * cdb from the request data for instance.
 31 *
 32 */
 33void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
 34{
 35	q->prep_rq_fn = pfn;
 36}
 37EXPORT_SYMBOL(blk_queue_prep_rq);
 38
 39/**
 40 * blk_queue_unprep_rq - set an unprepare_request function for queue
 41 * @q:		queue
 42 * @ufn:	unprepare_request function
 43 *
 44 * It's possible for a queue to register an unprepare_request callback
 45 * which is invoked before the request is finally completed. The goal
 46 * of the function is to deallocate any data that was allocated in the
 47 * prepare_request callback.
 48 *
 
 
 49 */
 50void blk_queue_unprep_rq(struct request_queue *q, unprep_rq_fn *ufn)
 51{
 52	q->unprep_rq_fn = ufn;
 53}
 54EXPORT_SYMBOL(blk_queue_unprep_rq);
 
 
 
 
 55
 56/**
 57 * blk_queue_merge_bvec - set a merge_bvec function for queue
 58 * @q:		queue
 59 * @mbfn:	merge_bvec_fn
 60 *
 61 * Usually queues have static limitations on the max sectors or segments that
 62 * we can put in a request. Stacking drivers may have some settings that
 63 * are dynamic, and thus we have to query the queue whether it is ok to
 64 * add a new bio_vec to a bio at a given offset or not. If the block device
 65 * has such limitations, it needs to register a merge_bvec_fn to control
 66 * the size of bio's sent to it. Note that a block device *must* allow a
 67 * single page to be added to an empty bio. The block device driver may want
 68 * to use the bio_split() function to deal with these bio's. By default
 69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
 70 * honored.
 71 */
 72void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
 73{
 74	q->merge_bvec_fn = mbfn;
 75}
 76EXPORT_SYMBOL(blk_queue_merge_bvec);
 77
 78void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
 
 79{
 80	q->softirq_done_fn = fn;
 
 
 
 
 
 81}
 82EXPORT_SYMBOL(blk_queue_softirq_done);
 83
 84void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 85{
 86	q->rq_timeout = timeout;
 87}
 88EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 
 
 
 
 
 89
 90void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
 91{
 92	q->rq_timed_out_fn = fn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 93}
 94EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
 95
 96void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
 97{
 98	q->lld_busy_fn = fn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 99}
100EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
101
102/**
103 * blk_set_default_limits - reset limits to default values
104 * @lim:  the queue_limits structure to reset
105 *
106 * Description:
107 *   Returns a queue_limit struct to its default state.  Can be used by
108 *   stacking drivers like DM that stage table swaps and reuse an
109 *   existing device queue.
110 */
111void blk_set_default_limits(struct queue_limits *lim)
112{
113	lim->max_segments = BLK_MAX_SEGMENTS;
114	lim->max_integrity_segments = 0;
115	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
116	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
117	lim->max_sectors = BLK_DEF_MAX_SECTORS;
118	lim->max_hw_sectors = INT_MAX;
119	lim->max_discard_sectors = 0;
120	lim->discard_granularity = 0;
121	lim->discard_alignment = 0;
122	lim->discard_misaligned = 0;
123	lim->discard_zeroes_data = 1;
124	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
125	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
126	lim->alignment_offset = 0;
127	lim->io_opt = 0;
128	lim->misaligned = 0;
129	lim->cluster = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130}
131EXPORT_SYMBOL(blk_set_default_limits);
132
133/**
134 * blk_queue_make_request - define an alternate make_request function for a device
135 * @q:  the request queue for the device to be affected
136 * @mfn: the alternate make_request function
137 *
138 * Description:
139 *    The normal way for &struct bios to be passed to a device
140 *    driver is for them to be collected into requests on a request
141 *    queue, and then to allow the device driver to select requests
142 *    off that queue when it is ready.  This works well for many block
143 *    devices. However some block devices (typically virtual devices
144 *    such as md or lvm) do not benefit from the processing on the
145 *    request queue, and are served best by having the requests passed
146 *    directly to them.  This can be achieved by providing a function
147 *    to blk_queue_make_request().
148 *
149 * Caveat:
150 *    The driver that does this *must* be able to deal appropriately
151 *    with buffers in "highmemory". This can be accomplished by either calling
152 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
153 *    blk_queue_bounce() to create a buffer in normal memory.
154 **/
155void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
156{
 
 
 
 
157	/*
158	 * set defaults
 
159	 */
160	q->nr_requests = BLKDEV_MAX_RQ;
 
 
 
 
 
 
 
161
162	q->make_request_fn = mfn;
163	blk_queue_dma_alignment(q, 511);
164	blk_queue_congestion_threshold(q);
165	q->nr_batching = BLK_BATCH_REQ;
 
 
166
167	blk_set_default_limits(&q->limits);
168	blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
169	q->limits.discard_zeroes_data = 0;
 
 
 
170
171	/*
172	 * by default assume old behaviour and bounce for any highmem page
 
 
 
 
 
 
173	 */
174	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
175}
176EXPORT_SYMBOL(blk_queue_make_request);
 
 
 
 
 
 
177
178/**
179 * blk_queue_bounce_limit - set bounce buffer limit for queue
180 * @q: the request queue for the device
181 * @dma_mask: the maximum address the device can handle
182 *
183 * Description:
184 *    Different hardware can have different requirements as to what pages
185 *    it can do I/O directly to. A low level driver can call
186 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
187 *    buffers for doing I/O to pages residing above @dma_mask.
188 **/
189void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
190{
191	unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
192	int dma = 0;
193
194	q->bounce_gfp = GFP_NOIO;
195#if BITS_PER_LONG == 64
196	/*
197	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
198	 * some IOMMUs can handle everything, but I don't know of a
199	 * way to test this here.
200	 */
201	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
202		dma = 1;
203	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
204#else
205	if (b_pfn < blk_max_low_pfn)
206		dma = 1;
207	q->limits.bounce_pfn = b_pfn;
208#endif
209	if (dma) {
210		init_emergency_isa_pool();
211		q->bounce_gfp = GFP_NOIO | GFP_DMA;
212		q->limits.bounce_pfn = b_pfn;
213	}
214}
215EXPORT_SYMBOL(blk_queue_bounce_limit);
216
217/**
218 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
219 * @limits: the queue limits
220 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
221 *
222 * Description:
223 *    Enables a low level driver to set a hard upper limit,
224 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
225 *    the device driver based upon the combined capabilities of I/O
226 *    controller and storage device.
227 *
228 *    max_sectors is a soft limit imposed by the block layer for
229 *    filesystem type requests.  This value can be overridden on a
230 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
231 *    The soft limit can not exceed max_hw_sectors.
232 **/
233void blk_limits_max_hw_sectors(struct queue_limits *limits, unsigned int max_hw_sectors)
234{
235	if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
236		max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
237		printk(KERN_INFO "%s: set to minimum %d\n",
238		       __func__, max_hw_sectors);
239	}
240
241	limits->max_hw_sectors = max_hw_sectors;
242	limits->max_sectors = min_t(unsigned int, max_hw_sectors,
243				    BLK_DEF_MAX_SECTORS);
244}
245EXPORT_SYMBOL(blk_limits_max_hw_sectors);
246
247/**
248 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
249 * @q:  the request queue for the device
250 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
251 *
252 * Description:
253 *    See description for blk_limits_max_hw_sectors().
254 **/
255void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
256{
257	blk_limits_max_hw_sectors(&q->limits, max_hw_sectors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258}
259EXPORT_SYMBOL(blk_queue_max_hw_sectors);
260
261/**
262 * blk_queue_max_discard_sectors - set max sectors for a single discard
263 * @q:  the request queue for the device
264 * @max_discard_sectors: maximum number of sectors to discard
265 **/
266void blk_queue_max_discard_sectors(struct request_queue *q,
267		unsigned int max_discard_sectors)
268{
269	q->limits.max_discard_sectors = max_discard_sectors;
 
 
 
 
 
 
270}
271EXPORT_SYMBOL(blk_queue_max_discard_sectors);
272
273/**
274 * blk_queue_max_segments - set max hw segments for a request for this queue
275 * @q:  the request queue for the device
276 * @max_segments:  max number of segments
277 *
278 * Description:
279 *    Enables a low level driver to set an upper limit on the number of
280 *    hw data segments in a request.
281 **/
282void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 
 
283{
284	if (!max_segments) {
285		max_segments = 1;
286		printk(KERN_INFO "%s: set to minimum %d\n",
287		       __func__, max_segments);
288	}
289
290	q->limits.max_segments = max_segments;
291}
292EXPORT_SYMBOL(blk_queue_max_segments);
293
294/**
295 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
296 * @q:  the request queue for the device
297 * @max_size:  max size of segment in bytes
298 *
299 * Description:
300 *    Enables a low level driver to set an upper limit on the size of a
301 *    coalesced segment
302 **/
303void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
304{
305	if (max_size < PAGE_CACHE_SIZE) {
306		max_size = PAGE_CACHE_SIZE;
307		printk(KERN_INFO "%s: set to minimum %d\n",
308		       __func__, max_size);
309	}
 
310
311	q->limits.max_segment_size = max_size;
 
 
 
 
 
312}
313EXPORT_SYMBOL(blk_queue_max_segment_size);
314
315/**
316 * blk_queue_logical_block_size - set logical block size for the queue
317 * @q:  the request queue for the device
318 * @size:  the logical block size, in bytes
319 *
320 * Description:
321 *   This should be set to the lowest possible block size that the
322 *   storage device can address.  The default of 512 covers most
323 *   hardware.
324 **/
325void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
 
 
326{
327	q->limits.logical_block_size = size;
328
329	if (q->limits.physical_block_size < size)
330		q->limits.physical_block_size = size;
 
331
332	if (q->limits.io_min < q->limits.physical_block_size)
333		q->limits.io_min = q->limits.physical_block_size;
334}
335EXPORT_SYMBOL(blk_queue_logical_block_size);
336
337/**
338 * blk_queue_physical_block_size - set physical block size for the queue
339 * @q:  the request queue for the device
340 * @size:  the physical block size, in bytes
341 *
342 * Description:
343 *   This should be set to the lowest possible sector size that the
344 *   hardware can operate on without reverting to read-modify-write
345 *   operations.
 
346 */
347void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
348{
349	q->limits.physical_block_size = size;
350
351	if (q->limits.physical_block_size < q->limits.logical_block_size)
352		q->limits.physical_block_size = q->limits.logical_block_size;
353
354	if (q->limits.io_min < q->limits.physical_block_size)
355		q->limits.io_min = q->limits.physical_block_size;
356}
357EXPORT_SYMBOL(blk_queue_physical_block_size);
358
359/**
360 * blk_queue_alignment_offset - set physical block alignment offset
361 * @q:	the request queue for the device
362 * @offset: alignment offset in bytes
363 *
364 * Description:
365 *   Some devices are naturally misaligned to compensate for things like
366 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
367 *   should call this function for devices whose first sector is not
368 *   naturally aligned.
369 */
370void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
371{
372	q->limits.alignment_offset =
373		offset & (q->limits.physical_block_size - 1);
374	q->limits.misaligned = 0;
375}
376EXPORT_SYMBOL(blk_queue_alignment_offset);
377
378/**
379 * blk_limits_io_min - set minimum request size for a device
380 * @limits: the queue limits
381 * @min:  smallest I/O size in bytes
382 *
383 * Description:
384 *   Some devices have an internal block size bigger than the reported
385 *   hardware sector size.  This function can be used to signal the
386 *   smallest I/O the device can perform without incurring a performance
387 *   penalty.
388 */
389void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
390{
391	limits->io_min = min;
 
 
 
392
393	if (limits->io_min < limits->logical_block_size)
394		limits->io_min = limits->logical_block_size;
 
395
396	if (limits->io_min < limits->physical_block_size)
397		limits->io_min = limits->physical_block_size;
 
 
 
 
 
 
398}
399EXPORT_SYMBOL(blk_limits_io_min);
400
401/**
402 * blk_queue_io_min - set minimum request size for the queue
403 * @q:	the request queue for the device
404 * @min:  smallest I/O size in bytes
405 *
406 * Description:
407 *   Storage devices may report a granularity or preferred minimum I/O
408 *   size which is the smallest request the device can perform without
409 *   incurring a performance penalty.  For disk drives this is often the
410 *   physical block size.  For RAID arrays it is often the stripe chunk
411 *   size.  A properly aligned multiple of minimum_io_size is the
412 *   preferred request size for workloads where a high number of I/O
413 *   operations is desired.
414 */
415void blk_queue_io_min(struct request_queue *q, unsigned int min)
416{
417	blk_limits_io_min(&q->limits, min);
 
 
 
418}
419EXPORT_SYMBOL(blk_queue_io_min);
420
421/**
422 * blk_limits_io_opt - set optimal request size for a device
423 * @limits: the queue limits
424 * @opt:  smallest I/O size in bytes
425 *
426 * Description:
427 *   Storage devices may report an optimal I/O size, which is the
428 *   device's preferred unit for sustained I/O.  This is rarely reported
429 *   for disk drives.  For RAID arrays it is usually the stripe width or
430 *   the internal track size.  A properly aligned multiple of
431 *   optimal_io_size is the preferred request size for workloads where
432 *   sustained throughput is desired.
433 */
434void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
435{
436	limits->io_opt = opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437}
438EXPORT_SYMBOL(blk_limits_io_opt);
439
440/**
441 * blk_queue_io_opt - set optimal request size for the queue
442 * @q:	the request queue for the device
443 * @opt:  optimal request size in bytes
444 *
445 * Description:
446 *   Storage devices may report an optimal I/O size, which is the
447 *   device's preferred unit for sustained I/O.  This is rarely reported
448 *   for disk drives.  For RAID arrays it is usually the stripe width or
449 *   the internal track size.  A properly aligned multiple of
450 *   optimal_io_size is the preferred request size for workloads where
451 *   sustained throughput is desired.
452 */
453void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
454{
455	blk_limits_io_opt(&q->limits, opt);
 
 
 
 
 
 
 
 
 
 
 
 
456}
457EXPORT_SYMBOL(blk_queue_io_opt);
458
459/**
460 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
461 * @t:	the stacking driver (top)
462 * @b:  the underlying device (bottom)
463 **/
464void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
465{
466	blk_stack_limits(&t->limits, &b->limits, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467}
468EXPORT_SYMBOL(blk_queue_stack_limits);
469
470/**
471 * blk_stack_limits - adjust queue_limits for stacked devices
472 * @t:	the stacking driver limits (top device)
473 * @b:  the underlying queue limits (bottom, component device)
474 * @start:  first data sector within component device
475 *
476 * Description:
477 *    This function is used by stacking drivers like MD and DM to ensure
478 *    that all component devices have compatible block sizes and
479 *    alignments.  The stacking driver must provide a queue_limits
480 *    struct (top) and then iteratively call the stacking function for
481 *    all component (bottom) devices.  The stacking function will
482 *    attempt to combine the values and ensure proper alignment.
483 *
484 *    Returns 0 if the top and bottom queue_limits are compatible.  The
485 *    top device's block sizes and alignment offsets may be adjusted to
486 *    ensure alignment with the bottom device. If no compatible sizes
487 *    and alignments exist, -1 is returned and the resulting top
488 *    queue_limits will have the misaligned flag set to indicate that
489 *    the alignment_offset is undefined.
490 */
491int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
492		     sector_t start)
493{
494	unsigned int top, bottom, alignment, ret = 0;
495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 
 
497	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
498	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
 
 
 
 
499
500	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
501					    b->seg_boundary_mask);
 
 
502
503	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 
 
504	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
505						 b->max_integrity_segments);
506
507	t->max_segment_size = min_not_zero(t->max_segment_size,
508					   b->max_segment_size);
509
510	t->misaligned |= b->misaligned;
511
512	alignment = queue_limit_alignment_offset(b, start);
513
514	/* Bottom device has different alignment.  Check that it is
515	 * compatible with the current top alignment.
516	 */
517	if (t->alignment_offset != alignment) {
518
519		top = max(t->physical_block_size, t->io_min)
520			+ t->alignment_offset;
521		bottom = max(b->physical_block_size, b->io_min) + alignment;
522
523		/* Verify that top and bottom intervals line up */
524		if (max(top, bottom) & (min(top, bottom) - 1)) {
525			t->misaligned = 1;
526			ret = -1;
527		}
528	}
529
530	t->logical_block_size = max(t->logical_block_size,
531				    b->logical_block_size);
532
533	t->physical_block_size = max(t->physical_block_size,
534				     b->physical_block_size);
535
536	t->io_min = max(t->io_min, b->io_min);
537	t->io_opt = lcm(t->io_opt, b->io_opt);
 
538
539	t->cluster &= b->cluster;
540	t->discard_zeroes_data &= b->discard_zeroes_data;
 
541
542	/* Physical block size a multiple of the logical block size? */
543	if (t->physical_block_size & (t->logical_block_size - 1)) {
544		t->physical_block_size = t->logical_block_size;
545		t->misaligned = 1;
546		ret = -1;
547	}
548
549	/* Minimum I/O a multiple of the physical block size? */
550	if (t->io_min & (t->physical_block_size - 1)) {
551		t->io_min = t->physical_block_size;
552		t->misaligned = 1;
553		ret = -1;
554	}
555
556	/* Optimal I/O a multiple of the physical block size? */
557	if (t->io_opt & (t->physical_block_size - 1)) {
558		t->io_opt = 0;
559		t->misaligned = 1;
 
 
 
 
 
 
 
560		ret = -1;
561	}
562
563	/* Find lowest common alignment_offset */
564	t->alignment_offset = lcm(t->alignment_offset, alignment)
565		& (max(t->physical_block_size, t->io_min) - 1);
566
567	/* Verify that new alignment_offset is on a logical block boundary */
568	if (t->alignment_offset & (t->logical_block_size - 1)) {
569		t->misaligned = 1;
570		ret = -1;
571	}
572
 
 
 
 
573	/* Discard alignment and granularity */
574	if (b->discard_granularity) {
575		alignment = queue_limit_discard_alignment(b, start);
576
577		if (t->discard_granularity != 0 &&
578		    t->discard_alignment != alignment) {
579			top = t->discard_granularity + t->discard_alignment;
580			bottom = b->discard_granularity + alignment;
581
582			/* Verify that top and bottom intervals line up */
583			if (max(top, bottom) & (min(top, bottom) - 1))
584				t->discard_misaligned = 1;
585		}
586
587		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
588						      b->max_discard_sectors);
 
 
589		t->discard_granularity = max(t->discard_granularity,
590					     b->discard_granularity);
591		t->discard_alignment = lcm(t->discard_alignment, alignment) &
592			(t->discard_granularity - 1);
593	}
 
 
 
 
 
 
 
 
 
594
595	return ret;
596}
597EXPORT_SYMBOL(blk_stack_limits);
598
599/**
600 * bdev_stack_limits - adjust queue limits for stacked drivers
601 * @t:	the stacking driver limits (top device)
602 * @bdev:  the component block_device (bottom)
603 * @start:  first data sector within component device
604 *
605 * Description:
606 *    Merges queue limits for a top device and a block_device.  Returns
607 *    0 if alignment didn't change.  Returns -1 if adding the bottom
608 *    device caused misalignment.
609 */
610int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
611		      sector_t start)
612{
613	struct request_queue *bq = bdev_get_queue(bdev);
614
615	start += get_start_sect(bdev);
616
617	return blk_stack_limits(t, &bq->limits, start);
618}
619EXPORT_SYMBOL(bdev_stack_limits);
620
621/**
622 * disk_stack_limits - adjust queue limits for stacked drivers
623 * @disk:  MD/DM gendisk (top)
624 * @bdev:  the underlying block device (bottom)
625 * @offset:  offset to beginning of data within component device
 
626 *
627 * Description:
628 *    Merges the limits for a top level gendisk and a bottom level
629 *    block_device.
 
 
 
 
630 */
631void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
632		       sector_t offset)
633{
634	struct request_queue *t = disk->queue;
635
636	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
637		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
638
639		disk_name(disk, 0, top);
640		bdevname(bdev, bottom);
641
642		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
643		       top, bottom);
644	}
645}
646EXPORT_SYMBOL(disk_stack_limits);
647
648/**
649 * blk_queue_dma_pad - set pad mask
650 * @q:     the request queue for the device
651 * @mask:  pad mask
652 *
653 * Set dma pad mask.
654 *
655 * Appending pad buffer to a request modifies the last entry of a
656 * scatter list such that it includes the pad buffer.
657 **/
658void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
659{
660	q->dma_pad_mask = mask;
661}
662EXPORT_SYMBOL(blk_queue_dma_pad);
663
664/**
665 * blk_queue_update_dma_pad - update pad mask
666 * @q:     the request queue for the device
667 * @mask:  pad mask
668 *
669 * Update dma pad mask.
670 *
671 * Appending pad buffer to a request modifies the last entry of a
672 * scatter list such that it includes the pad buffer.
673 **/
674void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
675{
676	if (mask > q->dma_pad_mask)
677		q->dma_pad_mask = mask;
678}
679EXPORT_SYMBOL(blk_queue_update_dma_pad);
680
681/**
682 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
683 * @q:  the request queue for the device
684 * @dma_drain_needed: fn which returns non-zero if drain is necessary
685 * @buf:	physically contiguous buffer
686 * @size:	size of the buffer in bytes
687 *
688 * Some devices have excess DMA problems and can't simply discard (or
689 * zero fill) the unwanted piece of the transfer.  They have to have a
690 * real area of memory to transfer it into.  The use case for this is
691 * ATAPI devices in DMA mode.  If the packet command causes a transfer
692 * bigger than the transfer size some HBAs will lock up if there
693 * aren't DMA elements to contain the excess transfer.  What this API
694 * does is adjust the queue so that the buf is always appended
695 * silently to the scatterlist.
696 *
697 * Note: This routine adjusts max_hw_segments to make room for appending
698 * the drain buffer.  If you call blk_queue_max_segments() after calling
699 * this routine, you must set the limit to one fewer than your device
700 * can support otherwise there won't be room for the drain buffer.
701 */
702int blk_queue_dma_drain(struct request_queue *q,
703			       dma_drain_needed_fn *dma_drain_needed,
704			       void *buf, unsigned int size)
705{
706	if (queue_max_segments(q) < 2)
707		return -EINVAL;
708	/* make room for appending the drain */
709	blk_queue_max_segments(q, queue_max_segments(q) - 1);
710	q->dma_drain_needed = dma_drain_needed;
711	q->dma_drain_buffer = buf;
712	q->dma_drain_size = size;
713
714	return 0;
715}
716EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
717
718/**
719 * blk_queue_segment_boundary - set boundary rules for segment merging
720 * @q:  the request queue for the device
721 * @mask:  the memory boundary mask
722 **/
723void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
724{
725	if (mask < PAGE_CACHE_SIZE - 1) {
726		mask = PAGE_CACHE_SIZE - 1;
727		printk(KERN_INFO "%s: set to minimum %lx\n",
728		       __func__, mask);
729	}
730
731	q->limits.seg_boundary_mask = mask;
732}
733EXPORT_SYMBOL(blk_queue_segment_boundary);
734
735/**
736 * blk_queue_dma_alignment - set dma length and memory alignment
737 * @q:     the request queue for the device
738 * @mask:  alignment mask
739 *
740 * description:
741 *    set required memory and length alignment for direct dma transactions.
742 *    this is used when building direct io requests for the queue.
743 *
744 **/
745void blk_queue_dma_alignment(struct request_queue *q, int mask)
746{
747	q->dma_alignment = mask;
 
 
748}
749EXPORT_SYMBOL(blk_queue_dma_alignment);
750
751/**
752 * blk_queue_update_dma_alignment - update dma length and memory alignment
753 * @q:     the request queue for the device
754 * @mask:  alignment mask
755 *
756 * description:
757 *    update required memory and length alignment for direct dma transactions.
758 *    If the requested alignment is larger than the current alignment, then
759 *    the current queue alignment is updated to the new value, otherwise it
760 *    is left alone.  The design of this is to allow multiple objects
761 *    (driver, device, transport etc) to set their respective
762 *    alignments without having them interfere.
763 *
764 **/
765void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
766{
767	BUG_ON(mask > PAGE_SIZE);
768
769	if (mask > q->dma_alignment)
770		q->dma_alignment = mask;
771}
772EXPORT_SYMBOL(blk_queue_update_dma_alignment);
773
774/**
775 * blk_queue_flush - configure queue's cache flush capability
776 * @q:		the request queue for the device
777 * @flush:	0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
778 *
779 * Tell block layer cache flush capability of @q.  If it supports
780 * flushing, REQ_FLUSH should be set.  If it supports bypassing
781 * write cache for individual writes, REQ_FUA should be set.
782 */
783void blk_queue_flush(struct request_queue *q, unsigned int flush)
784{
785	WARN_ON_ONCE(flush & ~(REQ_FLUSH | REQ_FUA));
786
787	if (WARN_ON_ONCE(!(flush & REQ_FLUSH) && (flush & REQ_FUA)))
788		flush &= ~REQ_FUA;
789
790	q->flush_flags = flush & (REQ_FLUSH | REQ_FUA);
791}
792EXPORT_SYMBOL_GPL(blk_queue_flush);
793
794void blk_queue_flush_queueable(struct request_queue *q, bool queueable)
795{
796	q->flush_not_queueable = !queueable;
 
 
 
 
 
 
 
797}
798EXPORT_SYMBOL_GPL(blk_queue_flush_queueable);
799
800static int __init blk_settings_init(void)
801{
802	blk_max_low_pfn = max_low_pfn - 1;
803	blk_max_pfn = max_pfn - 1;
804	return 0;
 
 
 
805}
806subsys_initcall(blk_settings_init);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Functions related to setting various queue properties from drivers
  4 */
  5#include <linux/kernel.h>
  6#include <linux/module.h>
  7#include <linux/init.h>
  8#include <linux/bio.h>
  9#include <linux/blk-integrity.h>
 10#include <linux/pagemap.h>
 11#include <linux/backing-dev-defs.h>
 12#include <linux/gcd.h>
 13#include <linux/lcm.h>
 14#include <linux/jiffies.h>
 15#include <linux/gfp.h>
 16#include <linux/dma-mapping.h>
 17
 18#include "blk.h"
 19#include "blk-rq-qos.h"
 20#include "blk-wbt.h"
 21
 22void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23{
 24	q->rq_timeout = timeout;
 25}
 26EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
 27
 28/**
 29 * blk_set_stacking_limits - set default limits for stacking devices
 30 * @lim:  the queue_limits structure to reset
 
 
 
 
 
 
 31 *
 32 * Prepare queue limits for applying limits from underlying devices using
 33 * blk_stack_limits().
 34 */
 35void blk_set_stacking_limits(struct queue_limits *lim)
 36{
 37	memset(lim, 0, sizeof(*lim));
 38	lim->logical_block_size = SECTOR_SIZE;
 39	lim->physical_block_size = SECTOR_SIZE;
 40	lim->io_min = SECTOR_SIZE;
 41	lim->discard_granularity = SECTOR_SIZE;
 42	lim->dma_alignment = SECTOR_SIZE - 1;
 43	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
 44
 45	/* Inherit limits from component devices */
 46	lim->max_segments = USHRT_MAX;
 47	lim->max_discard_segments = USHRT_MAX;
 48	lim->max_hw_sectors = UINT_MAX;
 49	lim->max_segment_size = UINT_MAX;
 50	lim->max_sectors = UINT_MAX;
 51	lim->max_dev_sectors = UINT_MAX;
 52	lim->max_write_zeroes_sectors = UINT_MAX;
 53	lim->max_hw_zone_append_sectors = UINT_MAX;
 54	lim->max_user_discard_sectors = UINT_MAX;
 
 
 
 
 
 
 
 
 
 55}
 56EXPORT_SYMBOL(blk_set_stacking_limits);
 57
 58void blk_apply_bdi_limits(struct backing_dev_info *bdi,
 59		struct queue_limits *lim)
 60{
 61	/*
 62	 * For read-ahead of large files to be effective, we need to read ahead
 63	 * at least twice the optimal I/O size.
 64	 */
 65	bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
 66	bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
 67}
 
 68
 69static int blk_validate_zoned_limits(struct queue_limits *lim)
 70{
 71	if (!(lim->features & BLK_FEAT_ZONED)) {
 72		if (WARN_ON_ONCE(lim->max_open_zones) ||
 73		    WARN_ON_ONCE(lim->max_active_zones) ||
 74		    WARN_ON_ONCE(lim->zone_write_granularity) ||
 75		    WARN_ON_ONCE(lim->max_zone_append_sectors))
 76			return -EINVAL;
 77		return 0;
 78	}
 79
 80	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
 81		return -EINVAL;
 82
 83	/*
 84	 * Given that active zones include open zones, the maximum number of
 85	 * open zones cannot be larger than the maximum number of active zones.
 86	 */
 87	if (lim->max_active_zones &&
 88	    lim->max_open_zones > lim->max_active_zones)
 89		return -EINVAL;
 90
 91	if (lim->zone_write_granularity < lim->logical_block_size)
 92		lim->zone_write_granularity = lim->logical_block_size;
 93
 94	/*
 95	 * The Zone Append size is limited by the maximum I/O size and the zone
 96	 * size given that it can't span zones.
 97	 *
 98	 * If no max_hw_zone_append_sectors limit is provided, the block layer
 99	 * will emulated it, else we're also bound by the hardware limit.
100	 */
101	lim->max_zone_append_sectors =
102		min_not_zero(lim->max_hw_zone_append_sectors,
103			min(lim->chunk_sectors, lim->max_hw_sectors));
104	return 0;
105}
 
106
107static int blk_validate_integrity_limits(struct queue_limits *lim)
108{
109	struct blk_integrity *bi = &lim->integrity;
110
111	if (!bi->tuple_size) {
112		if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
113		    bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
114			pr_warn("invalid PI settings.\n");
115			return -EINVAL;
116		}
117		return 0;
118	}
119
120	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
121		pr_warn("integrity support disabled.\n");
122		return -EINVAL;
123	}
124
125	if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
126	    (bi->flags & BLK_INTEGRITY_REF_TAG)) {
127		pr_warn("ref tag not support without checksum.\n");
128		return -EINVAL;
129	}
130
131	if (!bi->interval_exp)
132		bi->interval_exp = ilog2(lim->logical_block_size);
133
134	return 0;
135}
 
136
137/*
138 * Returns max guaranteed bytes which we can fit in a bio.
 
139 *
140 * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
141 * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
142 * the first and last segments.
143 */
144static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
145{
146	unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
147	unsigned int length;
148
149	length = min(max_segments, 2) * lim->logical_block_size;
150	if (max_segments > 2)
151		length += (max_segments - 2) * PAGE_SIZE;
152
153	return length;
154}
155
156static void blk_atomic_writes_update_limits(struct queue_limits *lim)
157{
158	unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
159					blk_queue_max_guaranteed_bio(lim));
160
161	unit_limit = rounddown_pow_of_two(unit_limit);
162
163	lim->atomic_write_max_sectors =
164		min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
165			lim->max_hw_sectors);
166	lim->atomic_write_unit_min =
167		min(lim->atomic_write_hw_unit_min, unit_limit);
168	lim->atomic_write_unit_max =
169		min(lim->atomic_write_hw_unit_max, unit_limit);
170	lim->atomic_write_boundary_sectors =
171		lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
172}
173
174static void blk_validate_atomic_write_limits(struct queue_limits *lim)
175{
176	unsigned int boundary_sectors;
177
178	if (!lim->atomic_write_hw_max)
179		goto unsupported;
180
181	if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
182		goto unsupported;
183
184	if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
185		goto unsupported;
186
187	if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
188			 lim->atomic_write_hw_unit_max))
189		goto unsupported;
190
191	if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
192			 lim->atomic_write_hw_max))
193		goto unsupported;
194
195	boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
196
197	if (boundary_sectors) {
198		if (WARN_ON_ONCE(lim->atomic_write_hw_max >
199				 lim->atomic_write_hw_boundary))
200			goto unsupported;
201		/*
202		 * A feature of boundary support is that it disallows bios to
203		 * be merged which would result in a merged request which
204		 * crosses either a chunk sector or atomic write HW boundary,
205		 * even though chunk sectors may be just set for performance.
206		 * For simplicity, disallow atomic writes for a chunk sector
207		 * which is non-zero and smaller than atomic write HW boundary.
208		 * Furthermore, chunk sectors must be a multiple of atomic
209		 * write HW boundary. Otherwise boundary support becomes
210		 * complicated.
211		 * Devices which do not conform to these rules can be dealt
212		 * with if and when they show up.
213		 */
214		if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors))
215			goto unsupported;
216
217		/*
218		 * The boundary size just needs to be a multiple of unit_max
219		 * (and not necessarily a power-of-2), so this following check
220		 * could be relaxed in future.
221		 * Furthermore, if needed, unit_max could even be reduced so
222		 * that it is compliant with a !power-of-2 boundary.
223		 */
224		if (!is_power_of_2(boundary_sectors))
225			goto unsupported;
226	}
227
228	blk_atomic_writes_update_limits(lim);
229	return;
230
231unsupported:
232	lim->atomic_write_max_sectors = 0;
233	lim->atomic_write_boundary_sectors = 0;
234	lim->atomic_write_unit_min = 0;
235	lim->atomic_write_unit_max = 0;
236}
 
237
238/*
239 * Check that the limits in lim are valid, initialize defaults for unset
240 * values, and cap values based on others where needed.
241 */
242int blk_validate_limits(struct queue_limits *lim)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243{
244	unsigned int max_hw_sectors;
245	unsigned int logical_block_sectors;
246	int err;
247
248	/*
249	 * Unless otherwise specified, default to 512 byte logical blocks and a
250	 * physical block size equal to the logical block size.
251	 */
252	if (!lim->logical_block_size)
253		lim->logical_block_size = SECTOR_SIZE;
254	else if (blk_validate_block_size(lim->logical_block_size)) {
255		pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
256		return -EINVAL;
257	}
258	if (lim->physical_block_size < lim->logical_block_size)
259		lim->physical_block_size = lim->logical_block_size;
260
261	/*
262	 * The minimum I/O size defaults to the physical block size unless
263	 * explicitly overridden.
264	 */
265	if (lim->io_min < lim->physical_block_size)
266		lim->io_min = lim->physical_block_size;
267
268	/*
269	 * The optimal I/O size may not be aligned to physical block size
270	 * (because it may be limited by dma engines which have no clue about
271	 * block size of the disks attached to them), so we round it down here.
272	 */
273	lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
274
275	/*
276	 * max_hw_sectors has a somewhat weird default for historical reason,
277	 * but driver really should set their own instead of relying on this
278	 * value.
279	 *
280	 * The block layer relies on the fact that every driver can
281	 * handle at lest a page worth of data per I/O, and needs the value
282	 * aligned to the logical block size.
283	 */
284	if (!lim->max_hw_sectors)
285		lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
286	if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
287		return -EINVAL;
288	logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
289	if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
290		return -EINVAL;
291	lim->max_hw_sectors = round_down(lim->max_hw_sectors,
292			logical_block_sectors);
293
294	/*
295	 * The actual max_sectors value is a complex beast and also takes the
296	 * max_dev_sectors value (set by SCSI ULPs) and a user configurable
297	 * value into account.  The ->max_sectors value is always calculated
298	 * from these, so directly setting it won't have any effect.
299	 */
300	max_hw_sectors = min_not_zero(lim->max_hw_sectors,
301				lim->max_dev_sectors);
302	if (lim->max_user_sectors) {
303		if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
304			return -EINVAL;
305		lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
306	} else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
307		lim->max_sectors =
308			min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
309	} else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
310		lim->max_sectors =
311			min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
312	} else {
313		lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314	}
315	lim->max_sectors = round_down(lim->max_sectors,
316			logical_block_sectors);
317
318	/*
319	 * Random default for the maximum number of segments.  Driver should not
320	 * rely on this and set their own.
321	 */
322	if (!lim->max_segments)
323		lim->max_segments = BLK_MAX_SEGMENTS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324
325	lim->max_discard_sectors =
326		min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
327
328	if (!lim->max_discard_segments)
329		lim->max_discard_segments = 1;
330
331	if (lim->discard_granularity < lim->physical_block_size)
332		lim->discard_granularity = lim->physical_block_size;
333
334	/*
335	 * By default there is no limit on the segment boundary alignment,
336	 * but if there is one it can't be smaller than the page size as
337	 * that would break all the normal I/O patterns.
338	 */
339	if (!lim->seg_boundary_mask)
340		lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
341	if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
342		return -EINVAL;
343
344	/*
345	 * Stacking device may have both virtual boundary and max segment
346	 * size limit, so allow this setting now, and long-term the two
347	 * might need to move out of stacking limits since we have immutable
348	 * bvec and lower layer bio splitting is supposed to handle the two
349	 * correctly.
350	 */
351	if (lim->virt_boundary_mask) {
352		if (!lim->max_segment_size)
353			lim->max_segment_size = UINT_MAX;
354	} else {
355		/*
356		 * The maximum segment size has an odd historic 64k default that
357		 * drivers probably should override.  Just like the I/O size we
358		 * require drivers to at least handle a full page per segment.
359		 */
360		if (!lim->max_segment_size)
361			lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
362		if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
363			return -EINVAL;
364	}
365
366	/*
367	 * We require drivers to at least do logical block aligned I/O, but
368	 * historically could not check for that due to the separate calls
369	 * to set the limits.  Once the transition is finished the check
370	 * below should be narrowed down to check the logical block size.
371	 */
372	if (!lim->dma_alignment)
373		lim->dma_alignment = SECTOR_SIZE - 1;
374	if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
375		return -EINVAL;
376
377	if (lim->alignment_offset) {
378		lim->alignment_offset &= (lim->physical_block_size - 1);
379		lim->flags &= ~BLK_FLAG_MISALIGNED;
380	}
381
382	if (!(lim->features & BLK_FEAT_WRITE_CACHE))
383		lim->features &= ~BLK_FEAT_FUA;
384
385	blk_validate_atomic_write_limits(lim);
386
387	err = blk_validate_integrity_limits(lim);
388	if (err)
389		return err;
390	return blk_validate_zoned_limits(lim);
391}
392EXPORT_SYMBOL_GPL(blk_validate_limits);
393
394/*
395 * Set the default limits for a newly allocated queue.  @lim contains the
396 * initial limits set by the driver, which could be no limit in which case
397 * all fields are cleared to zero.
398 */
399int blk_set_default_limits(struct queue_limits *lim)
 
400{
401	/*
402	 * Most defaults are set by capping the bounds in blk_validate_limits,
403	 * but max_user_discard_sectors is special and needs an explicit
404	 * initialization to the max value here.
405	 */
406	lim->max_user_discard_sectors = UINT_MAX;
407	return blk_validate_limits(lim);
408}
 
409
410/**
411 * queue_limits_commit_update - commit an atomic update of queue limits
412 * @q:		queue to update
413 * @lim:	limits to apply
414 *
415 * Apply the limits in @lim that were obtained from queue_limits_start_update()
416 * and updated by the caller to @q.
417 *
418 * Returns 0 if successful, else a negative error code.
419 */
420int queue_limits_commit_update(struct request_queue *q,
421		struct queue_limits *lim)
422{
423	int error;
 
 
 
 
424
425	error = blk_validate_limits(lim);
426	if (error)
427		goto out_unlock;
428
429#ifdef CONFIG_BLK_INLINE_ENCRYPTION
430	if (q->crypto_profile && lim->integrity.tag_size) {
431		pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
432		error = -EINVAL;
433		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
434	}
435#endif
436
437	q->limits = *lim;
438	if (q->disk)
439		blk_apply_bdi_limits(q->disk->bdi, lim);
440out_unlock:
441	mutex_unlock(&q->limits_lock);
442	return error;
443}
444EXPORT_SYMBOL_GPL(queue_limits_commit_update);
445
446/**
447 * queue_limits_commit_update_frozen - commit an atomic update of queue limits
448 * @q:		queue to update
449 * @lim:	limits to apply
450 *
451 * Apply the limits in @lim that were obtained from queue_limits_start_update()
452 * and updated with the new values by the caller to @q.  Freezes the queue
453 * before the update and unfreezes it after.
454 *
455 * Returns 0 if successful, else a negative error code.
456 */
457int queue_limits_commit_update_frozen(struct request_queue *q,
458		struct queue_limits *lim)
459{
460	int ret;
461
462	blk_mq_freeze_queue(q);
463	ret = queue_limits_commit_update(q, lim);
464	blk_mq_unfreeze_queue(q);
465
466	return ret;
 
467}
468EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
469
470/**
471 * queue_limits_set - apply queue limits to queue
472 * @q:		queue to update
473 * @lim:	limits to apply
474 *
475 * Apply the limits in @lim that were freshly initialized to @q.
476 * To update existing limits use queue_limits_start_update() and
477 * queue_limits_commit_update() instead.
478 *
479 * Returns 0 if successful, else a negative error code.
480 */
481int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
482{
483	mutex_lock(&q->limits_lock);
484	return queue_limits_commit_update(q, lim);
 
 
 
 
 
485}
486EXPORT_SYMBOL_GPL(queue_limits_set);
487
488static int queue_limit_alignment_offset(const struct queue_limits *lim,
489		sector_t sector)
490{
491	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
492	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
493		<< SECTOR_SHIFT;
494
495	return (granularity + lim->alignment_offset - alignment) % granularity;
 
 
 
 
 
 
 
 
496}
 
497
498static unsigned int queue_limit_discard_alignment(
499		const struct queue_limits *lim, sector_t sector)
 
 
 
 
 
 
 
 
 
 
500{
501	unsigned int alignment, granularity, offset;
502
503	if (!lim->max_discard_sectors)
504		return 0;
505
506	/* Why are these in bytes, not sectors? */
507	alignment = lim->discard_alignment >> SECTOR_SHIFT;
508	granularity = lim->discard_granularity >> SECTOR_SHIFT;
509
510	/* Offset of the partition start in 'granularity' sectors */
511	offset = sector_div(sector, granularity);
512
513	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
514	offset = (granularity + alignment - offset) % granularity;
515
516	/* Turn it back into bytes, gaah */
517	return offset << SECTOR_SHIFT;
518}
 
519
520static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
521{
522	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
523	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
524		sectors = PAGE_SIZE >> SECTOR_SHIFT;
525	return sectors;
526}
 
527
528/* Check if second and later bottom devices are compliant */
529static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
530				struct queue_limits *b)
 
 
 
 
 
 
 
 
 
 
 
531{
532	/* We're not going to support different boundary sizes.. yet */
533	if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
534		return false;
535
536	/* Can't support this */
537	if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
538		return false;
539
540	/* Or this */
541	if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
542		return false;
543
544	t->atomic_write_hw_max = min(t->atomic_write_hw_max,
545				b->atomic_write_hw_max);
546	t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
547				b->atomic_write_hw_unit_min);
548	t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
549				b->atomic_write_hw_unit_max);
550	return true;
551}
 
552
553/* Check for valid boundary of first bottom device */
554static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t,
555				struct queue_limits *b)
 
 
 
 
 
 
 
 
 
 
 
556{
557	/*
558	 * Ensure atomic write boundary is aligned with chunk sectors. Stacked
559	 * devices store chunk sectors in t->io_min.
560	 */
561	if (b->atomic_write_hw_boundary > t->io_min &&
562	    b->atomic_write_hw_boundary % t->io_min)
563		return false;
564	if (t->io_min > b->atomic_write_hw_boundary &&
565	    t->io_min % b->atomic_write_hw_boundary)
566		return false;
567
568	t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
569	return true;
570}
 
571
572
573/* Check stacking of first bottom device */
574static bool blk_stack_atomic_writes_head(struct queue_limits *t,
575				struct queue_limits *b)
576{
577	if (b->atomic_write_hw_boundary &&
578	    !blk_stack_atomic_writes_boundary_head(t, b))
579		return false;
580
581	if (t->io_min <= SECTOR_SIZE) {
582		/* No chunk sectors, so use bottom device values directly */
583		t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
584		t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
585		t->atomic_write_hw_max = b->atomic_write_hw_max;
586		return true;
587	}
588
589	/*
590	 * Find values for limits which work for chunk size.
591	 * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
592	 * size (t->io_min), as chunk size is not restricted to a power-of-2.
593	 * So we need to find highest power-of-2 which works for the chunk
594	 * size.
595	 * As an example scenario, we could have b->unit_max = 16K and
596	 * t->io_min = 24K. For this case, reduce t->unit_max to a value
597	 * aligned with both limits, i.e. 8K in this example.
598	 */
599	t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
600	while (t->io_min % t->atomic_write_hw_unit_max)
601		t->atomic_write_hw_unit_max /= 2;
602
603	t->atomic_write_hw_unit_min = min(b->atomic_write_hw_unit_min,
604					  t->atomic_write_hw_unit_max);
605	t->atomic_write_hw_max = min(b->atomic_write_hw_max, t->io_min);
606
607	return true;
608}
609
610static void blk_stack_atomic_writes_limits(struct queue_limits *t,
611				struct queue_limits *b, sector_t start)
612{
613	if (!(t->features & BLK_FEAT_ATOMIC_WRITES_STACKED))
614		goto unsupported;
615
616	if (!b->atomic_write_unit_min)
617		goto unsupported;
618
619	if (!blk_atomic_write_start_sect_aligned(start, b))
620		goto unsupported;
621
622	/*
623	 * If atomic_write_hw_max is set, we have already stacked 1x bottom
624	 * device, so check for compliance.
625	 */
626	if (t->atomic_write_hw_max) {
627		if (!blk_stack_atomic_writes_tail(t, b))
628			goto unsupported;
629		return;
630	}
631
632	if (!blk_stack_atomic_writes_head(t, b))
633		goto unsupported;
634	return;
635
636unsupported:
637	t->atomic_write_hw_max = 0;
638	t->atomic_write_hw_unit_max = 0;
639	t->atomic_write_hw_unit_min = 0;
640	t->atomic_write_hw_boundary = 0;
641	t->features &= ~BLK_FEAT_ATOMIC_WRITES_STACKED;
642}
 
643
644/**
645 * blk_stack_limits - adjust queue_limits for stacked devices
646 * @t:	the stacking driver limits (top device)
647 * @b:  the underlying queue limits (bottom, component device)
648 * @start:  first data sector within component device
649 *
650 * Description:
651 *    This function is used by stacking drivers like MD and DM to ensure
652 *    that all component devices have compatible block sizes and
653 *    alignments.  The stacking driver must provide a queue_limits
654 *    struct (top) and then iteratively call the stacking function for
655 *    all component (bottom) devices.  The stacking function will
656 *    attempt to combine the values and ensure proper alignment.
657 *
658 *    Returns 0 if the top and bottom queue_limits are compatible.  The
659 *    top device's block sizes and alignment offsets may be adjusted to
660 *    ensure alignment with the bottom device. If no compatible sizes
661 *    and alignments exist, -1 is returned and the resulting top
662 *    queue_limits will have the misaligned flag set to indicate that
663 *    the alignment_offset is undefined.
664 */
665int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
666		     sector_t start)
667{
668	unsigned int top, bottom, alignment, ret = 0;
669
670	t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
671
672	/*
673	 * Some feaures need to be supported both by the stacking driver and all
674	 * underlying devices.  The stacking driver sets these flags before
675	 * stacking the limits, and this will clear the flags if any of the
676	 * underlying devices does not support it.
677	 */
678	if (!(b->features & BLK_FEAT_NOWAIT))
679		t->features &= ~BLK_FEAT_NOWAIT;
680	if (!(b->features & BLK_FEAT_POLL))
681		t->features &= ~BLK_FEAT_POLL;
682
683	t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
684
685	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
686	t->max_user_sectors = min_not_zero(t->max_user_sectors,
687			b->max_user_sectors);
688	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
689	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
690	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
691					b->max_write_zeroes_sectors);
692	t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
693					b->max_hw_zone_append_sectors);
694
695	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
696					    b->seg_boundary_mask);
697	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
698					    b->virt_boundary_mask);
699
700	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
701	t->max_discard_segments = min_not_zero(t->max_discard_segments,
702					       b->max_discard_segments);
703	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
704						 b->max_integrity_segments);
705
706	t->max_segment_size = min_not_zero(t->max_segment_size,
707					   b->max_segment_size);
708
 
 
709	alignment = queue_limit_alignment_offset(b, start);
710
711	/* Bottom device has different alignment.  Check that it is
712	 * compatible with the current top alignment.
713	 */
714	if (t->alignment_offset != alignment) {
715
716		top = max(t->physical_block_size, t->io_min)
717			+ t->alignment_offset;
718		bottom = max(b->physical_block_size, b->io_min) + alignment;
719
720		/* Verify that top and bottom intervals line up */
721		if (max(top, bottom) % min(top, bottom)) {
722			t->flags |= BLK_FLAG_MISALIGNED;
723			ret = -1;
724		}
725	}
726
727	t->logical_block_size = max(t->logical_block_size,
728				    b->logical_block_size);
729
730	t->physical_block_size = max(t->physical_block_size,
731				     b->physical_block_size);
732
733	t->io_min = max(t->io_min, b->io_min);
734	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
735	t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
736
737	/* Set non-power-of-2 compatible chunk_sectors boundary */
738	if (b->chunk_sectors)
739		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
740
741	/* Physical block size a multiple of the logical block size? */
742	if (t->physical_block_size & (t->logical_block_size - 1)) {
743		t->physical_block_size = t->logical_block_size;
744		t->flags |= BLK_FLAG_MISALIGNED;
745		ret = -1;
746	}
747
748	/* Minimum I/O a multiple of the physical block size? */
749	if (t->io_min & (t->physical_block_size - 1)) {
750		t->io_min = t->physical_block_size;
751		t->flags |= BLK_FLAG_MISALIGNED;
752		ret = -1;
753	}
754
755	/* Optimal I/O a multiple of the physical block size? */
756	if (t->io_opt & (t->physical_block_size - 1)) {
757		t->io_opt = 0;
758		t->flags |= BLK_FLAG_MISALIGNED;
759		ret = -1;
760	}
761
762	/* chunk_sectors a multiple of the physical block size? */
763	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
764		t->chunk_sectors = 0;
765		t->flags |= BLK_FLAG_MISALIGNED;
766		ret = -1;
767	}
768
769	/* Find lowest common alignment_offset */
770	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
771		% max(t->physical_block_size, t->io_min);
772
773	/* Verify that new alignment_offset is on a logical block boundary */
774	if (t->alignment_offset & (t->logical_block_size - 1)) {
775		t->flags |= BLK_FLAG_MISALIGNED;
776		ret = -1;
777	}
778
779	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
780	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
781	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
782
783	/* Discard alignment and granularity */
784	if (b->discard_granularity) {
785		alignment = queue_limit_discard_alignment(b, start);
786
 
 
 
 
 
 
 
 
 
 
787		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
788						      b->max_discard_sectors);
789		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
790							 b->max_hw_discard_sectors);
791		t->discard_granularity = max(t->discard_granularity,
792					     b->discard_granularity);
793		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
794			t->discard_granularity;
795	}
796	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
797						   b->max_secure_erase_sectors);
798	t->zone_write_granularity = max(t->zone_write_granularity,
799					b->zone_write_granularity);
800	if (!(t->features & BLK_FEAT_ZONED)) {
801		t->zone_write_granularity = 0;
802		t->max_zone_append_sectors = 0;
803	}
804	blk_stack_atomic_writes_limits(t, b, start);
805
806	return ret;
807}
808EXPORT_SYMBOL(blk_stack_limits);
809
810/**
811 * queue_limits_stack_bdev - adjust queue_limits for stacked devices
812 * @t:	the stacking driver limits (top device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
813 * @bdev:  the underlying block device (bottom)
814 * @offset:  offset to beginning of data within component device
815 * @pfx: prefix to use for warnings logged
816 *
817 * Description:
818 *    This function is used by stacking drivers like MD and DM to ensure
819 *    that all component devices have compatible block sizes and
820 *    alignments.  The stacking driver must provide a queue_limits
821 *    struct (top) and then iteratively call the stacking function for
822 *    all component (bottom) devices.  The stacking function will
823 *    attempt to combine the values and ensure proper alignment.
824 */
825void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
826		sector_t offset, const char *pfx)
827{
828	if (blk_stack_limits(t, bdev_limits(bdev),
829			get_start_sect(bdev) + offset))
830		pr_notice("%s: Warning: Device %pg is misaligned\n",
831			pfx, bdev);
832}
833EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
834
835/**
836 * queue_limits_stack_integrity - stack integrity profile
837 * @t: target queue limits
838 * @b: base queue limits
839 *
840 * Check if the integrity profile in the @b can be stacked into the
841 * target @t.  Stacking is possible if either:
842 *
843 *   a) does not have any integrity information stacked into it yet
844 *   b) the integrity profile in @b is identical to the one in @t
845 *
846 * If @b can be stacked into @t, return %true.  Else return %false and clear the
847 * integrity information in @t.
848 */
849bool queue_limits_stack_integrity(struct queue_limits *t,
850		struct queue_limits *b)
851{
852	struct blk_integrity *ti = &t->integrity;
853	struct blk_integrity *bi = &b->integrity;
854
855	if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
856		return true;
857
858	if (!ti->tuple_size) {
859		/* inherit the settings from the first underlying device */
860		if (!(ti->flags & BLK_INTEGRITY_STACKED)) {
861			ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE |
862				(bi->flags & BLK_INTEGRITY_REF_TAG);
863			ti->csum_type = bi->csum_type;
864			ti->tuple_size = bi->tuple_size;
865			ti->pi_offset = bi->pi_offset;
866			ti->interval_exp = bi->interval_exp;
867			ti->tag_size = bi->tag_size;
868			goto done;
869		}
870		if (!bi->tuple_size)
871			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
872	}
873
874	if (ti->tuple_size != bi->tuple_size)
875		goto incompatible;
876	if (ti->interval_exp != bi->interval_exp)
877		goto incompatible;
878	if (ti->tag_size != bi->tag_size)
879		goto incompatible;
880	if (ti->csum_type != bi->csum_type)
881		goto incompatible;
882	if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
883	    (bi->flags & BLK_INTEGRITY_REF_TAG))
884		goto incompatible;
885
886done:
887	ti->flags |= BLK_INTEGRITY_STACKED;
888	return true;
889
890incompatible:
891	memset(ti, 0, sizeof(*ti));
892	return false;
893}
894EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
895
896/**
897 * blk_set_queue_depth - tell the block layer about the device queue depth
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
898 * @q:		the request queue for the device
899 * @depth:		queue depth
900 *
 
 
 
901 */
902void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
903{
904	q->queue_depth = depth;
905	rq_qos_queue_depth_changed(q);
 
 
 
 
906}
907EXPORT_SYMBOL(blk_set_queue_depth);
908
909int bdev_alignment_offset(struct block_device *bdev)
910{
911	struct request_queue *q = bdev_get_queue(bdev);
912
913	if (q->limits.flags & BLK_FLAG_MISALIGNED)
914		return -1;
915	if (bdev_is_partition(bdev))
916		return queue_limit_alignment_offset(&q->limits,
917				bdev->bd_start_sect);
918	return q->limits.alignment_offset;
919}
920EXPORT_SYMBOL_GPL(bdev_alignment_offset);
921
922unsigned int bdev_discard_alignment(struct block_device *bdev)
923{
924	struct request_queue *q = bdev_get_queue(bdev);
925
926	if (bdev_is_partition(bdev))
927		return queue_limit_discard_alignment(&q->limits,
928				bdev->bd_start_sect);
929	return q->limits.discard_alignment;
930}
931EXPORT_SYMBOL_GPL(bdev_discard_alignment);