Loading...
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24#include <linux/vmalloc.h>
25#include <linux/ftrace.h>
26#include <linux/cpu.h>
27#include <linux/slab.h>
28
29#include <asm/head.h>
30#include <asm/ptrace.h>
31#include <linux/atomic.h>
32#include <asm/tlbflush.h>
33#include <asm/mmu_context.h>
34#include <asm/cpudata.h>
35#include <asm/hvtramp.h>
36#include <asm/io.h>
37#include <asm/timer.h>
38
39#include <asm/irq.h>
40#include <asm/irq_regs.h>
41#include <asm/page.h>
42#include <asm/pgtable.h>
43#include <asm/oplib.h>
44#include <asm/uaccess.h>
45#include <asm/starfire.h>
46#include <asm/tlb.h>
47#include <asm/sections.h>
48#include <asm/prom.h>
49#include <asm/mdesc.h>
50#include <asm/ldc.h>
51#include <asm/hypervisor.h>
52#include <asm/pcr.h>
53
54#include "cpumap.h"
55
56int sparc64_multi_core __read_mostly;
57
58DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63EXPORT_SYMBOL(cpu_core_map);
64
65static cpumask_t smp_commenced_mask;
66
67void smp_info(struct seq_file *m)
68{
69 int i;
70
71 seq_printf(m, "State:\n");
72 for_each_online_cpu(i)
73 seq_printf(m, "CPU%d:\t\tonline\n", i);
74}
75
76void smp_bogo(struct seq_file *m)
77{
78 int i;
79
80 for_each_online_cpu(i)
81 seq_printf(m,
82 "Cpu%dClkTck\t: %016lx\n",
83 i, cpu_data(i).clock_tick);
84}
85
86extern void setup_sparc64_timer(void);
87
88static volatile unsigned long callin_flag = 0;
89
90void __cpuinit smp_callin(void)
91{
92 int cpuid = hard_smp_processor_id();
93
94 __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96 if (tlb_type == hypervisor)
97 sun4v_ktsb_register();
98
99 __flush_tlb_all();
100
101 setup_sparc64_timer();
102
103 if (cheetah_pcache_forced_on)
104 cheetah_enable_pcache();
105
106 local_irq_enable();
107
108 callin_flag = 1;
109 __asm__ __volatile__("membar #Sync\n\t"
110 "flush %%g6" : : : "memory");
111
112 /* Clear this or we will die instantly when we
113 * schedule back to this idler...
114 */
115 current_thread_info()->new_child = 0;
116
117 /* Attach to the address space of init_task. */
118 atomic_inc(&init_mm.mm_count);
119 current->active_mm = &init_mm;
120
121 /* inform the notifiers about the new cpu */
122 notify_cpu_starting(cpuid);
123
124 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
125 rmb();
126
127 ipi_call_lock_irq();
128 set_cpu_online(cpuid, true);
129 ipi_call_unlock_irq();
130
131 /* idle thread is expected to have preempt disabled */
132 preempt_disable();
133}
134
135void cpu_panic(void)
136{
137 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
138 panic("SMP bolixed\n");
139}
140
141/* This tick register synchronization scheme is taken entirely from
142 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
143 *
144 * The only change I've made is to rework it so that the master
145 * initiates the synchonization instead of the slave. -DaveM
146 */
147
148#define MASTER 0
149#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
150
151#define NUM_ROUNDS 64 /* magic value */
152#define NUM_ITERS 5 /* likewise */
153
154static DEFINE_SPINLOCK(itc_sync_lock);
155static unsigned long go[SLAVE + 1];
156
157#define DEBUG_TICK_SYNC 0
158
159static inline long get_delta (long *rt, long *master)
160{
161 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
162 unsigned long tcenter, t0, t1, tm;
163 unsigned long i;
164
165 for (i = 0; i < NUM_ITERS; i++) {
166 t0 = tick_ops->get_tick();
167 go[MASTER] = 1;
168 membar_safe("#StoreLoad");
169 while (!(tm = go[SLAVE]))
170 rmb();
171 go[SLAVE] = 0;
172 wmb();
173 t1 = tick_ops->get_tick();
174
175 if (t1 - t0 < best_t1 - best_t0)
176 best_t0 = t0, best_t1 = t1, best_tm = tm;
177 }
178
179 *rt = best_t1 - best_t0;
180 *master = best_tm - best_t0;
181
182 /* average best_t0 and best_t1 without overflow: */
183 tcenter = (best_t0/2 + best_t1/2);
184 if (best_t0 % 2 + best_t1 % 2 == 2)
185 tcenter++;
186 return tcenter - best_tm;
187}
188
189void smp_synchronize_tick_client(void)
190{
191 long i, delta, adj, adjust_latency = 0, done = 0;
192 unsigned long flags, rt, master_time_stamp;
193#if DEBUG_TICK_SYNC
194 struct {
195 long rt; /* roundtrip time */
196 long master; /* master's timestamp */
197 long diff; /* difference between midpoint and master's timestamp */
198 long lat; /* estimate of itc adjustment latency */
199 } t[NUM_ROUNDS];
200#endif
201
202 go[MASTER] = 1;
203
204 while (go[MASTER])
205 rmb();
206
207 local_irq_save(flags);
208 {
209 for (i = 0; i < NUM_ROUNDS; i++) {
210 delta = get_delta(&rt, &master_time_stamp);
211 if (delta == 0)
212 done = 1; /* let's lock on to this... */
213
214 if (!done) {
215 if (i > 0) {
216 adjust_latency += -delta;
217 adj = -delta + adjust_latency/4;
218 } else
219 adj = -delta;
220
221 tick_ops->add_tick(adj);
222 }
223#if DEBUG_TICK_SYNC
224 t[i].rt = rt;
225 t[i].master = master_time_stamp;
226 t[i].diff = delta;
227 t[i].lat = adjust_latency/4;
228#endif
229 }
230 }
231 local_irq_restore(flags);
232
233#if DEBUG_TICK_SYNC
234 for (i = 0; i < NUM_ROUNDS; i++)
235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 t[i].rt, t[i].master, t[i].diff, t[i].lat);
237#endif
238
239 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240 "(last diff %ld cycles, maxerr %lu cycles)\n",
241 smp_processor_id(), delta, rt);
242}
243
244static void smp_start_sync_tick_client(int cpu);
245
246static void smp_synchronize_one_tick(int cpu)
247{
248 unsigned long flags, i;
249
250 go[MASTER] = 0;
251
252 smp_start_sync_tick_client(cpu);
253
254 /* wait for client to be ready */
255 while (!go[MASTER])
256 rmb();
257
258 /* now let the client proceed into his loop */
259 go[MASTER] = 0;
260 membar_safe("#StoreLoad");
261
262 spin_lock_irqsave(&itc_sync_lock, flags);
263 {
264 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265 while (!go[MASTER])
266 rmb();
267 go[MASTER] = 0;
268 wmb();
269 go[SLAVE] = tick_ops->get_tick();
270 membar_safe("#StoreLoad");
271 }
272 }
273 spin_unlock_irqrestore(&itc_sync_lock, flags);
274}
275
276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277/* XXX Put this in some common place. XXX */
278static unsigned long kimage_addr_to_ra(void *p)
279{
280 unsigned long val = (unsigned long) p;
281
282 return kern_base + (val - KERNBASE);
283}
284
285static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
286{
287 extern unsigned long sparc64_ttable_tl0;
288 extern unsigned long kern_locked_tte_data;
289 struct hvtramp_descr *hdesc;
290 unsigned long trampoline_ra;
291 struct trap_per_cpu *tb;
292 u64 tte_vaddr, tte_data;
293 unsigned long hv_err;
294 int i;
295
296 hdesc = kzalloc(sizeof(*hdesc) +
297 (sizeof(struct hvtramp_mapping) *
298 num_kernel_image_mappings - 1),
299 GFP_KERNEL);
300 if (!hdesc) {
301 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
302 "hvtramp_descr.\n");
303 return;
304 }
305 *descrp = hdesc;
306
307 hdesc->cpu = cpu;
308 hdesc->num_mappings = num_kernel_image_mappings;
309
310 tb = &trap_block[cpu];
311
312 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
313 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314
315 hdesc->thread_reg = thread_reg;
316
317 tte_vaddr = (unsigned long) KERNBASE;
318 tte_data = kern_locked_tte_data;
319
320 for (i = 0; i < hdesc->num_mappings; i++) {
321 hdesc->maps[i].vaddr = tte_vaddr;
322 hdesc->maps[i].tte = tte_data;
323 tte_vaddr += 0x400000;
324 tte_data += 0x400000;
325 }
326
327 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
328
329 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
330 kimage_addr_to_ra(&sparc64_ttable_tl0),
331 __pa(hdesc));
332 if (hv_err)
333 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
334 "gives error %lu\n", hv_err);
335}
336#endif
337
338extern unsigned long sparc64_cpu_startup;
339
340/* The OBP cpu startup callback truncates the 3rd arg cookie to
341 * 32-bits (I think) so to be safe we have it read the pointer
342 * contained here so we work on >4GB machines. -DaveM
343 */
344static struct thread_info *cpu_new_thread = NULL;
345
346static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
347{
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 struct task_struct *p;
353 void *descr = NULL;
354 int timeout, ret;
355
356 p = fork_idle(cpu);
357 if (IS_ERR(p))
358 return PTR_ERR(p);
359 callin_flag = 0;
360 cpu_new_thread = task_thread_info(p);
361
362 if (tlb_type == hypervisor) {
363#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364 if (ldom_domaining_enabled)
365 ldom_startcpu_cpuid(cpu,
366 (unsigned long) cpu_new_thread,
367 &descr);
368 else
369#endif
370 prom_startcpu_cpuid(cpu, entry, cookie);
371 } else {
372 struct device_node *dp = of_find_node_by_cpuid(cpu);
373
374 prom_startcpu(dp->phandle, entry, cookie);
375 }
376
377 for (timeout = 0; timeout < 50000; timeout++) {
378 if (callin_flag)
379 break;
380 udelay(100);
381 }
382
383 if (callin_flag) {
384 ret = 0;
385 } else {
386 printk("Processor %d is stuck.\n", cpu);
387 ret = -ENODEV;
388 }
389 cpu_new_thread = NULL;
390
391 kfree(descr);
392
393 return ret;
394}
395
396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397{
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460}
461
462static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
463{
464 u64 *mondo, data0, data1, data2;
465 u16 *cpu_list;
466 u64 pstate;
467 int i;
468
469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
470 cpu_list = __va(tb->cpu_list_pa);
471 mondo = __va(tb->cpu_mondo_block_pa);
472 data0 = mondo[0];
473 data1 = mondo[1];
474 data2 = mondo[2];
475 for (i = 0; i < cnt; i++)
476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477}
478
479/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480 * packet, but we have no use for that. However we do take advantage of
481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482 */
483static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
484{
485 int nack_busy_id, is_jbus, need_more;
486 u64 *mondo, pstate, ver, busy_mask;
487 u16 *cpu_list;
488
489 cpu_list = __va(tb->cpu_list_pa);
490 mondo = __va(tb->cpu_mondo_block_pa);
491
492 /* Unfortunately, someone at Sun had the brilliant idea to make the
493 * busy/nack fields hard-coded by ITID number for this Ultra-III
494 * derivative processor.
495 */
496 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
497 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498 (ver >> 32) == __SERRANO_ID);
499
500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502retry:
503 need_more = 0;
504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505 : : "r" (pstate), "i" (PSTATE_IE));
506
507 /* Setup the dispatch data registers. */
508 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
509 "stxa %1, [%4] %6\n\t"
510 "stxa %2, [%5] %6\n\t"
511 "membar #Sync\n\t"
512 : /* no outputs */
513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
514 "r" (0x40), "r" (0x50), "r" (0x60),
515 "i" (ASI_INTR_W));
516
517 nack_busy_id = 0;
518 busy_mask = 0;
519 {
520 int i;
521
522 for (i = 0; i < cnt; i++) {
523 u64 target, nr;
524
525 nr = cpu_list[i];
526 if (nr == 0xffff)
527 continue;
528
529 target = (nr << 14) | 0x70;
530 if (is_jbus) {
531 busy_mask |= (0x1UL << (nr * 2));
532 } else {
533 target |= (nack_busy_id << 24);
534 busy_mask |= (0x1UL <<
535 (nack_busy_id * 2));
536 }
537 __asm__ __volatile__(
538 "stxa %%g0, [%0] %1\n\t"
539 "membar #Sync\n\t"
540 : /* no outputs */
541 : "r" (target), "i" (ASI_INTR_W));
542 nack_busy_id++;
543 if (nack_busy_id == 32) {
544 need_more = 1;
545 break;
546 }
547 }
548 }
549
550 /* Now, poll for completion. */
551 {
552 u64 dispatch_stat, nack_mask;
553 long stuck;
554
555 stuck = 100000 * nack_busy_id;
556 nack_mask = busy_mask << 1;
557 do {
558 __asm__ __volatile__("ldxa [%%g0] %1, %0"
559 : "=r" (dispatch_stat)
560 : "i" (ASI_INTR_DISPATCH_STAT));
561 if (!(dispatch_stat & (busy_mask | nack_mask))) {
562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563 : : "r" (pstate));
564 if (unlikely(need_more)) {
565 int i, this_cnt = 0;
566 for (i = 0; i < cnt; i++) {
567 if (cpu_list[i] == 0xffff)
568 continue;
569 cpu_list[i] = 0xffff;
570 this_cnt++;
571 if (this_cnt == 32)
572 break;
573 }
574 goto retry;
575 }
576 return;
577 }
578 if (!--stuck)
579 break;
580 } while (dispatch_stat & busy_mask);
581
582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583 : : "r" (pstate));
584
585 if (dispatch_stat & busy_mask) {
586 /* Busy bits will not clear, continue instead
587 * of freezing up on this cpu.
588 */
589 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
590 smp_processor_id(), dispatch_stat);
591 } else {
592 int i, this_busy_nack = 0;
593
594 /* Delay some random time with interrupts enabled
595 * to prevent deadlock.
596 */
597 udelay(2 * nack_busy_id);
598
599 /* Clear out the mask bits for cpus which did not
600 * NACK us.
601 */
602 for (i = 0; i < cnt; i++) {
603 u64 check_mask, nr;
604
605 nr = cpu_list[i];
606 if (nr == 0xffff)
607 continue;
608
609 if (is_jbus)
610 check_mask = (0x2UL << (2*nr));
611 else
612 check_mask = (0x2UL <<
613 this_busy_nack);
614 if ((dispatch_stat & check_mask) == 0)
615 cpu_list[i] = 0xffff;
616 this_busy_nack += 2;
617 if (this_busy_nack == 64)
618 break;
619 }
620
621 goto retry;
622 }
623 }
624}
625
626/* Multi-cpu list version. */
627static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
628{
629 int retries, this_cpu, prev_sent, i, saw_cpu_error;
630 unsigned long status;
631 u16 *cpu_list;
632
633 this_cpu = smp_processor_id();
634
635 cpu_list = __va(tb->cpu_list_pa);
636
637 saw_cpu_error = 0;
638 retries = 0;
639 prev_sent = 0;
640 do {
641 int forward_progress, n_sent;
642
643 status = sun4v_cpu_mondo_send(cnt,
644 tb->cpu_list_pa,
645 tb->cpu_mondo_block_pa);
646
647 /* HV_EOK means all cpus received the xcall, we're done. */
648 if (likely(status == HV_EOK))
649 break;
650
651 /* First, see if we made any forward progress.
652 *
653 * The hypervisor indicates successful sends by setting
654 * cpu list entries to the value 0xffff.
655 */
656 n_sent = 0;
657 for (i = 0; i < cnt; i++) {
658 if (likely(cpu_list[i] == 0xffff))
659 n_sent++;
660 }
661
662 forward_progress = 0;
663 if (n_sent > prev_sent)
664 forward_progress = 1;
665
666 prev_sent = n_sent;
667
668 /* If we get a HV_ECPUERROR, then one or more of the cpus
669 * in the list are in error state. Use the cpu_state()
670 * hypervisor call to find out which cpus are in error state.
671 */
672 if (unlikely(status == HV_ECPUERROR)) {
673 for (i = 0; i < cnt; i++) {
674 long err;
675 u16 cpu;
676
677 cpu = cpu_list[i];
678 if (cpu == 0xffff)
679 continue;
680
681 err = sun4v_cpu_state(cpu);
682 if (err == HV_CPU_STATE_ERROR) {
683 saw_cpu_error = (cpu + 1);
684 cpu_list[i] = 0xffff;
685 }
686 }
687 } else if (unlikely(status != HV_EWOULDBLOCK))
688 goto fatal_mondo_error;
689
690 /* Don't bother rewriting the CPU list, just leave the
691 * 0xffff and non-0xffff entries in there and the
692 * hypervisor will do the right thing.
693 *
694 * Only advance timeout state if we didn't make any
695 * forward progress.
696 */
697 if (unlikely(!forward_progress)) {
698 if (unlikely(++retries > 10000))
699 goto fatal_mondo_timeout;
700
701 /* Delay a little bit to let other cpus catch up
702 * on their cpu mondo queue work.
703 */
704 udelay(2 * cnt);
705 }
706 } while (1);
707
708 if (unlikely(saw_cpu_error))
709 goto fatal_mondo_cpu_error;
710
711 return;
712
713fatal_mondo_cpu_error:
714 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
715 "(including %d) were in error state\n",
716 this_cpu, saw_cpu_error - 1);
717 return;
718
719fatal_mondo_timeout:
720 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
721 " progress after %d retries.\n",
722 this_cpu, retries);
723 goto dump_cpu_list_and_out;
724
725fatal_mondo_error:
726 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
727 this_cpu, status);
728 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
729 "mondo_block_pa(%lx)\n",
730 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
731
732dump_cpu_list_and_out:
733 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
734 for (i = 0; i < cnt; i++)
735 printk("%u ", cpu_list[i]);
736 printk("]\n");
737}
738
739static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
740
741static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
742{
743 struct trap_per_cpu *tb;
744 int this_cpu, i, cnt;
745 unsigned long flags;
746 u16 *cpu_list;
747 u64 *mondo;
748
749 /* We have to do this whole thing with interrupts fully disabled.
750 * Otherwise if we send an xcall from interrupt context it will
751 * corrupt both our mondo block and cpu list state.
752 *
753 * One consequence of this is that we cannot use timeout mechanisms
754 * that depend upon interrupts being delivered locally. So, for
755 * example, we cannot sample jiffies and expect it to advance.
756 *
757 * Fortunately, udelay() uses %stick/%tick so we can use that.
758 */
759 local_irq_save(flags);
760
761 this_cpu = smp_processor_id();
762 tb = &trap_block[this_cpu];
763
764 mondo = __va(tb->cpu_mondo_block_pa);
765 mondo[0] = data0;
766 mondo[1] = data1;
767 mondo[2] = data2;
768 wmb();
769
770 cpu_list = __va(tb->cpu_list_pa);
771
772 /* Setup the initial cpu list. */
773 cnt = 0;
774 for_each_cpu(i, mask) {
775 if (i == this_cpu || !cpu_online(i))
776 continue;
777 cpu_list[cnt++] = i;
778 }
779
780 if (cnt)
781 xcall_deliver_impl(tb, cnt);
782
783 local_irq_restore(flags);
784}
785
786/* Send cross call to all processors mentioned in MASK_P
787 * except self. Really, there are only two cases currently,
788 * "cpu_online_mask" and "mm_cpumask(mm)".
789 */
790static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
791{
792 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
793
794 xcall_deliver(data0, data1, data2, mask);
795}
796
797/* Send cross call to all processors except self. */
798static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
799{
800 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
801}
802
803extern unsigned long xcall_sync_tick;
804
805static void smp_start_sync_tick_client(int cpu)
806{
807 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
808 cpumask_of(cpu));
809}
810
811extern unsigned long xcall_call_function;
812
813void arch_send_call_function_ipi_mask(const struct cpumask *mask)
814{
815 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
816}
817
818extern unsigned long xcall_call_function_single;
819
820void arch_send_call_function_single_ipi(int cpu)
821{
822 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
823 cpumask_of(cpu));
824}
825
826void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
827{
828 clear_softint(1 << irq);
829 generic_smp_call_function_interrupt();
830}
831
832void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
833{
834 clear_softint(1 << irq);
835 generic_smp_call_function_single_interrupt();
836}
837
838static void tsb_sync(void *info)
839{
840 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
841 struct mm_struct *mm = info;
842
843 /* It is not valid to test "currrent->active_mm == mm" here.
844 *
845 * The value of "current" is not changed atomically with
846 * switch_mm(). But that's OK, we just need to check the
847 * current cpu's trap block PGD physical address.
848 */
849 if (tp->pgd_paddr == __pa(mm->pgd))
850 tsb_context_switch(mm);
851}
852
853void smp_tsb_sync(struct mm_struct *mm)
854{
855 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
856}
857
858extern unsigned long xcall_flush_tlb_mm;
859extern unsigned long xcall_flush_tlb_pending;
860extern unsigned long xcall_flush_tlb_kernel_range;
861extern unsigned long xcall_fetch_glob_regs;
862extern unsigned long xcall_receive_signal;
863extern unsigned long xcall_new_mmu_context_version;
864#ifdef CONFIG_KGDB
865extern unsigned long xcall_kgdb_capture;
866#endif
867
868#ifdef DCACHE_ALIASING_POSSIBLE
869extern unsigned long xcall_flush_dcache_page_cheetah;
870#endif
871extern unsigned long xcall_flush_dcache_page_spitfire;
872
873#ifdef CONFIG_DEBUG_DCFLUSH
874extern atomic_t dcpage_flushes;
875extern atomic_t dcpage_flushes_xcall;
876#endif
877
878static inline void __local_flush_dcache_page(struct page *page)
879{
880#ifdef DCACHE_ALIASING_POSSIBLE
881 __flush_dcache_page(page_address(page),
882 ((tlb_type == spitfire) &&
883 page_mapping(page) != NULL));
884#else
885 if (page_mapping(page) != NULL &&
886 tlb_type == spitfire)
887 __flush_icache_page(__pa(page_address(page)));
888#endif
889}
890
891void smp_flush_dcache_page_impl(struct page *page, int cpu)
892{
893 int this_cpu;
894
895 if (tlb_type == hypervisor)
896 return;
897
898#ifdef CONFIG_DEBUG_DCFLUSH
899 atomic_inc(&dcpage_flushes);
900#endif
901
902 this_cpu = get_cpu();
903
904 if (cpu == this_cpu) {
905 __local_flush_dcache_page(page);
906 } else if (cpu_online(cpu)) {
907 void *pg_addr = page_address(page);
908 u64 data0 = 0;
909
910 if (tlb_type == spitfire) {
911 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
912 if (page_mapping(page) != NULL)
913 data0 |= ((u64)1 << 32);
914 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
915#ifdef DCACHE_ALIASING_POSSIBLE
916 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
917#endif
918 }
919 if (data0) {
920 xcall_deliver(data0, __pa(pg_addr),
921 (u64) pg_addr, cpumask_of(cpu));
922#ifdef CONFIG_DEBUG_DCFLUSH
923 atomic_inc(&dcpage_flushes_xcall);
924#endif
925 }
926 }
927
928 put_cpu();
929}
930
931void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
932{
933 void *pg_addr;
934 u64 data0;
935
936 if (tlb_type == hypervisor)
937 return;
938
939 preempt_disable();
940
941#ifdef CONFIG_DEBUG_DCFLUSH
942 atomic_inc(&dcpage_flushes);
943#endif
944 data0 = 0;
945 pg_addr = page_address(page);
946 if (tlb_type == spitfire) {
947 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
948 if (page_mapping(page) != NULL)
949 data0 |= ((u64)1 << 32);
950 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
951#ifdef DCACHE_ALIASING_POSSIBLE
952 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
953#endif
954 }
955 if (data0) {
956 xcall_deliver(data0, __pa(pg_addr),
957 (u64) pg_addr, cpu_online_mask);
958#ifdef CONFIG_DEBUG_DCFLUSH
959 atomic_inc(&dcpage_flushes_xcall);
960#endif
961 }
962 __local_flush_dcache_page(page);
963
964 preempt_enable();
965}
966
967void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
968{
969 struct mm_struct *mm;
970 unsigned long flags;
971
972 clear_softint(1 << irq);
973
974 /* See if we need to allocate a new TLB context because
975 * the version of the one we are using is now out of date.
976 */
977 mm = current->active_mm;
978 if (unlikely(!mm || (mm == &init_mm)))
979 return;
980
981 spin_lock_irqsave(&mm->context.lock, flags);
982
983 if (unlikely(!CTX_VALID(mm->context)))
984 get_new_mmu_context(mm);
985
986 spin_unlock_irqrestore(&mm->context.lock, flags);
987
988 load_secondary_context(mm);
989 __flush_tlb_mm(CTX_HWBITS(mm->context),
990 SECONDARY_CONTEXT);
991}
992
993void smp_new_mmu_context_version(void)
994{
995 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
996}
997
998#ifdef CONFIG_KGDB
999void kgdb_roundup_cpus(unsigned long flags)
1000{
1001 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1002}
1003#endif
1004
1005void smp_fetch_global_regs(void)
1006{
1007 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1008}
1009
1010/* We know that the window frames of the user have been flushed
1011 * to the stack before we get here because all callers of us
1012 * are flush_tlb_*() routines, and these run after flush_cache_*()
1013 * which performs the flushw.
1014 *
1015 * The SMP TLB coherency scheme we use works as follows:
1016 *
1017 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1018 * space has (potentially) executed on, this is the heuristic
1019 * we use to avoid doing cross calls.
1020 *
1021 * Also, for flushing from kswapd and also for clones, we
1022 * use cpu_vm_mask as the list of cpus to make run the TLB.
1023 *
1024 * 2) TLB context numbers are shared globally across all processors
1025 * in the system, this allows us to play several games to avoid
1026 * cross calls.
1027 *
1028 * One invariant is that when a cpu switches to a process, and
1029 * that processes tsk->active_mm->cpu_vm_mask does not have the
1030 * current cpu's bit set, that tlb context is flushed locally.
1031 *
1032 * If the address space is non-shared (ie. mm->count == 1) we avoid
1033 * cross calls when we want to flush the currently running process's
1034 * tlb state. This is done by clearing all cpu bits except the current
1035 * processor's in current->mm->cpu_vm_mask and performing the
1036 * flush locally only. This will force any subsequent cpus which run
1037 * this task to flush the context from the local tlb if the process
1038 * migrates to another cpu (again).
1039 *
1040 * 3) For shared address spaces (threads) and swapping we bite the
1041 * bullet for most cases and perform the cross call (but only to
1042 * the cpus listed in cpu_vm_mask).
1043 *
1044 * The performance gain from "optimizing" away the cross call for threads is
1045 * questionable (in theory the big win for threads is the massive sharing of
1046 * address space state across processors).
1047 */
1048
1049/* This currently is only used by the hugetlb arch pre-fault
1050 * hook on UltraSPARC-III+ and later when changing the pagesize
1051 * bits of the context register for an address space.
1052 */
1053void smp_flush_tlb_mm(struct mm_struct *mm)
1054{
1055 u32 ctx = CTX_HWBITS(mm->context);
1056 int cpu = get_cpu();
1057
1058 if (atomic_read(&mm->mm_users) == 1) {
1059 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1060 goto local_flush_and_out;
1061 }
1062
1063 smp_cross_call_masked(&xcall_flush_tlb_mm,
1064 ctx, 0, 0,
1065 mm_cpumask(mm));
1066
1067local_flush_and_out:
1068 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1069
1070 put_cpu();
1071}
1072
1073void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1074{
1075 u32 ctx = CTX_HWBITS(mm->context);
1076 int cpu = get_cpu();
1077
1078 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1079 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1080 else
1081 smp_cross_call_masked(&xcall_flush_tlb_pending,
1082 ctx, nr, (unsigned long) vaddrs,
1083 mm_cpumask(mm));
1084
1085 __flush_tlb_pending(ctx, nr, vaddrs);
1086
1087 put_cpu();
1088}
1089
1090void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1091{
1092 start &= PAGE_MASK;
1093 end = PAGE_ALIGN(end);
1094 if (start != end) {
1095 smp_cross_call(&xcall_flush_tlb_kernel_range,
1096 0, start, end);
1097
1098 __flush_tlb_kernel_range(start, end);
1099 }
1100}
1101
1102/* CPU capture. */
1103/* #define CAPTURE_DEBUG */
1104extern unsigned long xcall_capture;
1105
1106static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1107static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1108static unsigned long penguins_are_doing_time;
1109
1110void smp_capture(void)
1111{
1112 int result = atomic_add_ret(1, &smp_capture_depth);
1113
1114 if (result == 1) {
1115 int ncpus = num_online_cpus();
1116
1117#ifdef CAPTURE_DEBUG
1118 printk("CPU[%d]: Sending penguins to jail...",
1119 smp_processor_id());
1120#endif
1121 penguins_are_doing_time = 1;
1122 atomic_inc(&smp_capture_registry);
1123 smp_cross_call(&xcall_capture, 0, 0, 0);
1124 while (atomic_read(&smp_capture_registry) != ncpus)
1125 rmb();
1126#ifdef CAPTURE_DEBUG
1127 printk("done\n");
1128#endif
1129 }
1130}
1131
1132void smp_release(void)
1133{
1134 if (atomic_dec_and_test(&smp_capture_depth)) {
1135#ifdef CAPTURE_DEBUG
1136 printk("CPU[%d]: Giving pardon to "
1137 "imprisoned penguins\n",
1138 smp_processor_id());
1139#endif
1140 penguins_are_doing_time = 0;
1141 membar_safe("#StoreLoad");
1142 atomic_dec(&smp_capture_registry);
1143 }
1144}
1145
1146/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1147 * set, so they can service tlb flush xcalls...
1148 */
1149extern void prom_world(int);
1150
1151void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1152{
1153 clear_softint(1 << irq);
1154
1155 preempt_disable();
1156
1157 __asm__ __volatile__("flushw");
1158 prom_world(1);
1159 atomic_inc(&smp_capture_registry);
1160 membar_safe("#StoreLoad");
1161 while (penguins_are_doing_time)
1162 rmb();
1163 atomic_dec(&smp_capture_registry);
1164 prom_world(0);
1165
1166 preempt_enable();
1167}
1168
1169/* /proc/profile writes can call this, don't __init it please. */
1170int setup_profiling_timer(unsigned int multiplier)
1171{
1172 return -EINVAL;
1173}
1174
1175void __init smp_prepare_cpus(unsigned int max_cpus)
1176{
1177}
1178
1179void __devinit smp_prepare_boot_cpu(void)
1180{
1181}
1182
1183void __init smp_setup_processor_id(void)
1184{
1185 if (tlb_type == spitfire)
1186 xcall_deliver_impl = spitfire_xcall_deliver;
1187 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1188 xcall_deliver_impl = cheetah_xcall_deliver;
1189 else
1190 xcall_deliver_impl = hypervisor_xcall_deliver;
1191}
1192
1193void __devinit smp_fill_in_sib_core_maps(void)
1194{
1195 unsigned int i;
1196
1197 for_each_present_cpu(i) {
1198 unsigned int j;
1199
1200 cpumask_clear(&cpu_core_map[i]);
1201 if (cpu_data(i).core_id == 0) {
1202 cpumask_set_cpu(i, &cpu_core_map[i]);
1203 continue;
1204 }
1205
1206 for_each_present_cpu(j) {
1207 if (cpu_data(i).core_id ==
1208 cpu_data(j).core_id)
1209 cpumask_set_cpu(j, &cpu_core_map[i]);
1210 }
1211 }
1212
1213 for_each_present_cpu(i) {
1214 unsigned int j;
1215
1216 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1217 if (cpu_data(i).proc_id == -1) {
1218 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1219 continue;
1220 }
1221
1222 for_each_present_cpu(j) {
1223 if (cpu_data(i).proc_id ==
1224 cpu_data(j).proc_id)
1225 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1226 }
1227 }
1228}
1229
1230int __cpuinit __cpu_up(unsigned int cpu)
1231{
1232 int ret = smp_boot_one_cpu(cpu);
1233
1234 if (!ret) {
1235 cpumask_set_cpu(cpu, &smp_commenced_mask);
1236 while (!cpu_online(cpu))
1237 mb();
1238 if (!cpu_online(cpu)) {
1239 ret = -ENODEV;
1240 } else {
1241 /* On SUN4V, writes to %tick and %stick are
1242 * not allowed.
1243 */
1244 if (tlb_type != hypervisor)
1245 smp_synchronize_one_tick(cpu);
1246 }
1247 }
1248 return ret;
1249}
1250
1251#ifdef CONFIG_HOTPLUG_CPU
1252void cpu_play_dead(void)
1253{
1254 int cpu = smp_processor_id();
1255 unsigned long pstate;
1256
1257 idle_task_exit();
1258
1259 if (tlb_type == hypervisor) {
1260 struct trap_per_cpu *tb = &trap_block[cpu];
1261
1262 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1263 tb->cpu_mondo_pa, 0);
1264 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1265 tb->dev_mondo_pa, 0);
1266 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1267 tb->resum_mondo_pa, 0);
1268 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1269 tb->nonresum_mondo_pa, 0);
1270 }
1271
1272 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1273 membar_safe("#Sync");
1274
1275 local_irq_disable();
1276
1277 __asm__ __volatile__(
1278 "rdpr %%pstate, %0\n\t"
1279 "wrpr %0, %1, %%pstate"
1280 : "=r" (pstate)
1281 : "i" (PSTATE_IE));
1282
1283 while (1)
1284 barrier();
1285}
1286
1287int __cpu_disable(void)
1288{
1289 int cpu = smp_processor_id();
1290 cpuinfo_sparc *c;
1291 int i;
1292
1293 for_each_cpu(i, &cpu_core_map[cpu])
1294 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1295 cpumask_clear(&cpu_core_map[cpu]);
1296
1297 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1298 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1299 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1300
1301 c = &cpu_data(cpu);
1302
1303 c->core_id = 0;
1304 c->proc_id = -1;
1305
1306 smp_wmb();
1307
1308 /* Make sure no interrupts point to this cpu. */
1309 fixup_irqs();
1310
1311 local_irq_enable();
1312 mdelay(1);
1313 local_irq_disable();
1314
1315 ipi_call_lock();
1316 set_cpu_online(cpu, false);
1317 ipi_call_unlock();
1318
1319 cpu_map_rebuild();
1320
1321 return 0;
1322}
1323
1324void __cpu_die(unsigned int cpu)
1325{
1326 int i;
1327
1328 for (i = 0; i < 100; i++) {
1329 smp_rmb();
1330 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1331 break;
1332 msleep(100);
1333 }
1334 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1335 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1336 } else {
1337#if defined(CONFIG_SUN_LDOMS)
1338 unsigned long hv_err;
1339 int limit = 100;
1340
1341 do {
1342 hv_err = sun4v_cpu_stop(cpu);
1343 if (hv_err == HV_EOK) {
1344 set_cpu_present(cpu, false);
1345 break;
1346 }
1347 } while (--limit > 0);
1348 if (limit <= 0) {
1349 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1350 hv_err);
1351 }
1352#endif
1353 }
1354}
1355#endif
1356
1357void __init smp_cpus_done(unsigned int max_cpus)
1358{
1359 pcr_arch_init();
1360}
1361
1362void smp_send_reschedule(int cpu)
1363{
1364 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1365 cpumask_of(cpu));
1366}
1367
1368void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1369{
1370 clear_softint(1 << irq);
1371 scheduler_ipi();
1372}
1373
1374/* This is a nop because we capture all other cpus
1375 * anyways when making the PROM active.
1376 */
1377void smp_send_stop(void)
1378{
1379}
1380
1381/**
1382 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1383 * @cpu: cpu to allocate for
1384 * @size: size allocation in bytes
1385 * @align: alignment
1386 *
1387 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1388 * does the right thing for NUMA regardless of the current
1389 * configuration.
1390 *
1391 * RETURNS:
1392 * Pointer to the allocated area on success, NULL on failure.
1393 */
1394static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1395 size_t align)
1396{
1397 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1398#ifdef CONFIG_NEED_MULTIPLE_NODES
1399 int node = cpu_to_node(cpu);
1400 void *ptr;
1401
1402 if (!node_online(node) || !NODE_DATA(node)) {
1403 ptr = __alloc_bootmem(size, align, goal);
1404 pr_info("cpu %d has no node %d or node-local memory\n",
1405 cpu, node);
1406 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1407 cpu, size, __pa(ptr));
1408 } else {
1409 ptr = __alloc_bootmem_node(NODE_DATA(node),
1410 size, align, goal);
1411 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1412 "%016lx\n", cpu, size, node, __pa(ptr));
1413 }
1414 return ptr;
1415#else
1416 return __alloc_bootmem(size, align, goal);
1417#endif
1418}
1419
1420static void __init pcpu_free_bootmem(void *ptr, size_t size)
1421{
1422 free_bootmem(__pa(ptr), size);
1423}
1424
1425static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1426{
1427 if (cpu_to_node(from) == cpu_to_node(to))
1428 return LOCAL_DISTANCE;
1429 else
1430 return REMOTE_DISTANCE;
1431}
1432
1433static void __init pcpu_populate_pte(unsigned long addr)
1434{
1435 pgd_t *pgd = pgd_offset_k(addr);
1436 pud_t *pud;
1437 pmd_t *pmd;
1438
1439 pud = pud_offset(pgd, addr);
1440 if (pud_none(*pud)) {
1441 pmd_t *new;
1442
1443 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1444 pud_populate(&init_mm, pud, new);
1445 }
1446
1447 pmd = pmd_offset(pud, addr);
1448 if (!pmd_present(*pmd)) {
1449 pte_t *new;
1450
1451 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1452 pmd_populate_kernel(&init_mm, pmd, new);
1453 }
1454}
1455
1456void __init setup_per_cpu_areas(void)
1457{
1458 unsigned long delta;
1459 unsigned int cpu;
1460 int rc = -EINVAL;
1461
1462 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1463 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1464 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1465 pcpu_cpu_distance,
1466 pcpu_alloc_bootmem,
1467 pcpu_free_bootmem);
1468 if (rc)
1469 pr_warning("PERCPU: %s allocator failed (%d), "
1470 "falling back to page size\n",
1471 pcpu_fc_names[pcpu_chosen_fc], rc);
1472 }
1473 if (rc < 0)
1474 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1475 pcpu_alloc_bootmem,
1476 pcpu_free_bootmem,
1477 pcpu_populate_pte);
1478 if (rc < 0)
1479 panic("cannot initialize percpu area (err=%d)", rc);
1480
1481 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1482 for_each_possible_cpu(cpu)
1483 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1484
1485 /* Setup %g5 for the boot cpu. */
1486 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1487
1488 of_fill_in_cpu_data();
1489 if (tlb_type == hypervisor)
1490 mdesc_fill_in_cpu_data(cpu_all_mask);
1491}
1// SPDX-License-Identifier: GPL-2.0
2/* smp.c: Sparc64 SMP support.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 */
6
7#include <linux/export.h>
8#include <linux/kernel.h>
9#include <linux/sched/mm.h>
10#include <linux/sched/hotplug.h>
11#include <linux/mm.h>
12#include <linux/pagemap.h>
13#include <linux/threads.h>
14#include <linux/smp.h>
15#include <linux/interrupt.h>
16#include <linux/kernel_stat.h>
17#include <linux/delay.h>
18#include <linux/init.h>
19#include <linux/spinlock.h>
20#include <linux/fs.h>
21#include <linux/seq_file.h>
22#include <linux/cache.h>
23#include <linux/jiffies.h>
24#include <linux/profile.h>
25#include <linux/memblock.h>
26#include <linux/vmalloc.h>
27#include <linux/ftrace.h>
28#include <linux/cpu.h>
29#include <linux/slab.h>
30#include <linux/kgdb.h>
31
32#include <asm/head.h>
33#include <asm/ptrace.h>
34#include <linux/atomic.h>
35#include <asm/tlbflush.h>
36#include <asm/mmu_context.h>
37#include <asm/cpudata.h>
38#include <asm/hvtramp.h>
39#include <asm/io.h>
40#include <asm/timer.h>
41#include <asm/setup.h>
42
43#include <asm/irq.h>
44#include <asm/irq_regs.h>
45#include <asm/page.h>
46#include <asm/oplib.h>
47#include <linux/uaccess.h>
48#include <asm/starfire.h>
49#include <asm/tlb.h>
50#include <asm/pgalloc.h>
51#include <asm/sections.h>
52#include <asm/prom.h>
53#include <asm/mdesc.h>
54#include <asm/ldc.h>
55#include <asm/hypervisor.h>
56#include <asm/pcr.h>
57
58#include "cpumap.h"
59#include "kernel.h"
60
61DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
64
65cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
67
68cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70
71EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72EXPORT_SYMBOL(cpu_core_map);
73EXPORT_SYMBOL(cpu_core_sib_map);
74EXPORT_SYMBOL(cpu_core_sib_cache_map);
75
76static cpumask_t smp_commenced_mask;
77
78static DEFINE_PER_CPU(bool, poke);
79static bool cpu_poke;
80
81void smp_info(struct seq_file *m)
82{
83 int i;
84
85 seq_printf(m, "State:\n");
86 for_each_online_cpu(i)
87 seq_printf(m, "CPU%d:\t\tonline\n", i);
88}
89
90void smp_bogo(struct seq_file *m)
91{
92 int i;
93
94 for_each_online_cpu(i)
95 seq_printf(m,
96 "Cpu%dClkTck\t: %016lx\n",
97 i, cpu_data(i).clock_tick);
98}
99
100extern void setup_sparc64_timer(void);
101
102static volatile unsigned long callin_flag = 0;
103
104void smp_callin(void)
105{
106 int cpuid = hard_smp_processor_id();
107
108 __local_per_cpu_offset = __per_cpu_offset(cpuid);
109
110 if (tlb_type == hypervisor)
111 sun4v_ktsb_register();
112
113 __flush_tlb_all();
114
115 setup_sparc64_timer();
116
117 if (cheetah_pcache_forced_on)
118 cheetah_enable_pcache();
119
120 callin_flag = 1;
121 __asm__ __volatile__("membar #Sync\n\t"
122 "flush %%g6" : : : "memory");
123
124 /* Clear this or we will die instantly when we
125 * schedule back to this idler...
126 */
127 current_thread_info()->new_child = 0;
128
129 /* Attach to the address space of init_task. */
130 mmgrab(&init_mm);
131 current->active_mm = &init_mm;
132
133 /* inform the notifiers about the new cpu */
134 notify_cpu_starting(cpuid);
135
136 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
137 rmb();
138
139 set_cpu_online(cpuid, true);
140
141 local_irq_enable();
142
143 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
144}
145
146void cpu_panic(void)
147{
148 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149 panic("SMP bolixed\n");
150}
151
152/* This tick register synchronization scheme is taken entirely from
153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154 *
155 * The only change I've made is to rework it so that the master
156 * initiates the synchonization instead of the slave. -DaveM
157 */
158
159#define MASTER 0
160#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162#define NUM_ROUNDS 64 /* magic value */
163#define NUM_ITERS 5 /* likewise */
164
165static DEFINE_RAW_SPINLOCK(itc_sync_lock);
166static unsigned long go[SLAVE + 1];
167
168#define DEBUG_TICK_SYNC 0
169
170static inline long get_delta (long *rt, long *master)
171{
172 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173 unsigned long tcenter, t0, t1, tm;
174 unsigned long i;
175
176 for (i = 0; i < NUM_ITERS; i++) {
177 t0 = tick_ops->get_tick();
178 go[MASTER] = 1;
179 membar_safe("#StoreLoad");
180 while (!(tm = go[SLAVE]))
181 rmb();
182 go[SLAVE] = 0;
183 wmb();
184 t1 = tick_ops->get_tick();
185
186 if (t1 - t0 < best_t1 - best_t0)
187 best_t0 = t0, best_t1 = t1, best_tm = tm;
188 }
189
190 *rt = best_t1 - best_t0;
191 *master = best_tm - best_t0;
192
193 /* average best_t0 and best_t1 without overflow: */
194 tcenter = (best_t0/2 + best_t1/2);
195 if (best_t0 % 2 + best_t1 % 2 == 2)
196 tcenter++;
197 return tcenter - best_tm;
198}
199
200void smp_synchronize_tick_client(void)
201{
202 long i, delta, adj, adjust_latency = 0, done = 0;
203 unsigned long flags, rt, master_time_stamp;
204#if DEBUG_TICK_SYNC
205 struct {
206 long rt; /* roundtrip time */
207 long master; /* master's timestamp */
208 long diff; /* difference between midpoint and master's timestamp */
209 long lat; /* estimate of itc adjustment latency */
210 } t[NUM_ROUNDS];
211#endif
212
213 go[MASTER] = 1;
214
215 while (go[MASTER])
216 rmb();
217
218 local_irq_save(flags);
219 {
220 for (i = 0; i < NUM_ROUNDS; i++) {
221 delta = get_delta(&rt, &master_time_stamp);
222 if (delta == 0)
223 done = 1; /* let's lock on to this... */
224
225 if (!done) {
226 if (i > 0) {
227 adjust_latency += -delta;
228 adj = -delta + adjust_latency/4;
229 } else
230 adj = -delta;
231
232 tick_ops->add_tick(adj);
233 }
234#if DEBUG_TICK_SYNC
235 t[i].rt = rt;
236 t[i].master = master_time_stamp;
237 t[i].diff = delta;
238 t[i].lat = adjust_latency/4;
239#endif
240 }
241 }
242 local_irq_restore(flags);
243
244#if DEBUG_TICK_SYNC
245 for (i = 0; i < NUM_ROUNDS; i++)
246 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247 t[i].rt, t[i].master, t[i].diff, t[i].lat);
248#endif
249
250 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251 "(last diff %ld cycles, maxerr %lu cycles)\n",
252 smp_processor_id(), delta, rt);
253}
254
255static void smp_start_sync_tick_client(int cpu);
256
257static void smp_synchronize_one_tick(int cpu)
258{
259 unsigned long flags, i;
260
261 go[MASTER] = 0;
262
263 smp_start_sync_tick_client(cpu);
264
265 /* wait for client to be ready */
266 while (!go[MASTER])
267 rmb();
268
269 /* now let the client proceed into his loop */
270 go[MASTER] = 0;
271 membar_safe("#StoreLoad");
272
273 raw_spin_lock_irqsave(&itc_sync_lock, flags);
274 {
275 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
276 while (!go[MASTER])
277 rmb();
278 go[MASTER] = 0;
279 wmb();
280 go[SLAVE] = tick_ops->get_tick();
281 membar_safe("#StoreLoad");
282 }
283 }
284 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
285}
286
287#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
288static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289 void **descrp)
290{
291 extern unsigned long sparc64_ttable_tl0;
292 extern unsigned long kern_locked_tte_data;
293 struct hvtramp_descr *hdesc;
294 unsigned long trampoline_ra;
295 struct trap_per_cpu *tb;
296 u64 tte_vaddr, tte_data;
297 unsigned long hv_err;
298 int i;
299
300 hdesc = kzalloc(struct_size(hdesc, maps, num_kernel_image_mappings),
301 GFP_KERNEL);
302 if (!hdesc) {
303 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
304 "hvtramp_descr.\n");
305 return;
306 }
307 *descrp = hdesc;
308
309 hdesc->cpu = cpu;
310 hdesc->num_mappings = num_kernel_image_mappings;
311
312 tb = &trap_block[cpu];
313
314 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
315 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
316
317 hdesc->thread_reg = thread_reg;
318
319 tte_vaddr = (unsigned long) KERNBASE;
320 tte_data = kern_locked_tte_data;
321
322 for (i = 0; i < hdesc->num_mappings; i++) {
323 hdesc->maps[i].vaddr = tte_vaddr;
324 hdesc->maps[i].tte = tte_data;
325 tte_vaddr += 0x400000;
326 tte_data += 0x400000;
327 }
328
329 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
330
331 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
332 kimage_addr_to_ra(&sparc64_ttable_tl0),
333 __pa(hdesc));
334 if (hv_err)
335 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
336 "gives error %lu\n", hv_err);
337}
338#endif
339
340extern unsigned long sparc64_cpu_startup;
341
342/* The OBP cpu startup callback truncates the 3rd arg cookie to
343 * 32-bits (I think) so to be safe we have it read the pointer
344 * contained here so we work on >4GB machines. -DaveM
345 */
346static struct thread_info *cpu_new_thread = NULL;
347
348static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
349{
350 unsigned long entry =
351 (unsigned long)(&sparc64_cpu_startup);
352 unsigned long cookie =
353 (unsigned long)(&cpu_new_thread);
354 void *descr = NULL;
355 int timeout, ret;
356
357 callin_flag = 0;
358 cpu_new_thread = task_thread_info(idle);
359
360 if (tlb_type == hypervisor) {
361#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
362 if (ldom_domaining_enabled)
363 ldom_startcpu_cpuid(cpu,
364 (unsigned long) cpu_new_thread,
365 &descr);
366 else
367#endif
368 prom_startcpu_cpuid(cpu, entry, cookie);
369 } else {
370 struct device_node *dp = of_find_node_by_cpuid(cpu);
371
372 prom_startcpu(dp->phandle, entry, cookie);
373 }
374
375 for (timeout = 0; timeout < 50000; timeout++) {
376 if (callin_flag)
377 break;
378 udelay(100);
379 }
380
381 if (callin_flag) {
382 ret = 0;
383 } else {
384 printk("Processor %d is stuck.\n", cpu);
385 ret = -ENODEV;
386 }
387 cpu_new_thread = NULL;
388
389 kfree(descr);
390
391 return ret;
392}
393
394static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
395{
396 u64 result, target;
397 int stuck, tmp;
398
399 if (this_is_starfire) {
400 /* map to real upaid */
401 cpu = (((cpu & 0x3c) << 1) |
402 ((cpu & 0x40) >> 4) |
403 (cpu & 0x3));
404 }
405
406 target = (cpu << 14) | 0x70;
407again:
408 /* Ok, this is the real Spitfire Errata #54.
409 * One must read back from a UDB internal register
410 * after writes to the UDB interrupt dispatch, but
411 * before the membar Sync for that write.
412 * So we use the high UDB control register (ASI 0x7f,
413 * ADDR 0x20) for the dummy read. -DaveM
414 */
415 tmp = 0x40;
416 __asm__ __volatile__(
417 "wrpr %1, %2, %%pstate\n\t"
418 "stxa %4, [%0] %3\n\t"
419 "stxa %5, [%0+%8] %3\n\t"
420 "add %0, %8, %0\n\t"
421 "stxa %6, [%0+%8] %3\n\t"
422 "membar #Sync\n\t"
423 "stxa %%g0, [%7] %3\n\t"
424 "membar #Sync\n\t"
425 "mov 0x20, %%g1\n\t"
426 "ldxa [%%g1] 0x7f, %%g0\n\t"
427 "membar #Sync"
428 : "=r" (tmp)
429 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
430 "r" (data0), "r" (data1), "r" (data2), "r" (target),
431 "r" (0x10), "0" (tmp)
432 : "g1");
433
434 /* NOTE: PSTATE_IE is still clear. */
435 stuck = 100000;
436 do {
437 __asm__ __volatile__("ldxa [%%g0] %1, %0"
438 : "=r" (result)
439 : "i" (ASI_INTR_DISPATCH_STAT));
440 if (result == 0) {
441 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
442 : : "r" (pstate));
443 return;
444 }
445 stuck -= 1;
446 if (stuck == 0)
447 break;
448 } while (result & 0x1);
449 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 : : "r" (pstate));
451 if (stuck == 0) {
452 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
453 smp_processor_id(), result);
454 } else {
455 udelay(2);
456 goto again;
457 }
458}
459
460static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
461{
462 u64 *mondo, data0, data1, data2;
463 u16 *cpu_list;
464 u64 pstate;
465 int i;
466
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468 cpu_list = __va(tb->cpu_list_pa);
469 mondo = __va(tb->cpu_mondo_block_pa);
470 data0 = mondo[0];
471 data1 = mondo[1];
472 data2 = mondo[2];
473 for (i = 0; i < cnt; i++)
474 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
475}
476
477/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
478 * packet, but we have no use for that. However we do take advantage of
479 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
480 */
481static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
482{
483 int nack_busy_id, is_jbus, need_more;
484 u64 *mondo, pstate, ver, busy_mask;
485 u16 *cpu_list;
486
487 cpu_list = __va(tb->cpu_list_pa);
488 mondo = __va(tb->cpu_mondo_block_pa);
489
490 /* Unfortunately, someone at Sun had the brilliant idea to make the
491 * busy/nack fields hard-coded by ITID number for this Ultra-III
492 * derivative processor.
493 */
494 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
495 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
496 (ver >> 32) == __SERRANO_ID);
497
498 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
499
500retry:
501 need_more = 0;
502 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
503 : : "r" (pstate), "i" (PSTATE_IE));
504
505 /* Setup the dispatch data registers. */
506 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
507 "stxa %1, [%4] %6\n\t"
508 "stxa %2, [%5] %6\n\t"
509 "membar #Sync\n\t"
510 : /* no outputs */
511 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
512 "r" (0x40), "r" (0x50), "r" (0x60),
513 "i" (ASI_INTR_W));
514
515 nack_busy_id = 0;
516 busy_mask = 0;
517 {
518 int i;
519
520 for (i = 0; i < cnt; i++) {
521 u64 target, nr;
522
523 nr = cpu_list[i];
524 if (nr == 0xffff)
525 continue;
526
527 target = (nr << 14) | 0x70;
528 if (is_jbus) {
529 busy_mask |= (0x1UL << (nr * 2));
530 } else {
531 target |= (nack_busy_id << 24);
532 busy_mask |= (0x1UL <<
533 (nack_busy_id * 2));
534 }
535 __asm__ __volatile__(
536 "stxa %%g0, [%0] %1\n\t"
537 "membar #Sync\n\t"
538 : /* no outputs */
539 : "r" (target), "i" (ASI_INTR_W));
540 nack_busy_id++;
541 if (nack_busy_id == 32) {
542 need_more = 1;
543 break;
544 }
545 }
546 }
547
548 /* Now, poll for completion. */
549 {
550 u64 dispatch_stat, nack_mask;
551 long stuck;
552
553 stuck = 100000 * nack_busy_id;
554 nack_mask = busy_mask << 1;
555 do {
556 __asm__ __volatile__("ldxa [%%g0] %1, %0"
557 : "=r" (dispatch_stat)
558 : "i" (ASI_INTR_DISPATCH_STAT));
559 if (!(dispatch_stat & (busy_mask | nack_mask))) {
560 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
561 : : "r" (pstate));
562 if (unlikely(need_more)) {
563 int i, this_cnt = 0;
564 for (i = 0; i < cnt; i++) {
565 if (cpu_list[i] == 0xffff)
566 continue;
567 cpu_list[i] = 0xffff;
568 this_cnt++;
569 if (this_cnt == 32)
570 break;
571 }
572 goto retry;
573 }
574 return;
575 }
576 if (!--stuck)
577 break;
578 } while (dispatch_stat & busy_mask);
579
580 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
581 : : "r" (pstate));
582
583 if (dispatch_stat & busy_mask) {
584 /* Busy bits will not clear, continue instead
585 * of freezing up on this cpu.
586 */
587 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
588 smp_processor_id(), dispatch_stat);
589 } else {
590 int i, this_busy_nack = 0;
591
592 /* Delay some random time with interrupts enabled
593 * to prevent deadlock.
594 */
595 udelay(2 * nack_busy_id);
596
597 /* Clear out the mask bits for cpus which did not
598 * NACK us.
599 */
600 for (i = 0; i < cnt; i++) {
601 u64 check_mask, nr;
602
603 nr = cpu_list[i];
604 if (nr == 0xffff)
605 continue;
606
607 if (is_jbus)
608 check_mask = (0x2UL << (2*nr));
609 else
610 check_mask = (0x2UL <<
611 this_busy_nack);
612 if ((dispatch_stat & check_mask) == 0)
613 cpu_list[i] = 0xffff;
614 this_busy_nack += 2;
615 if (this_busy_nack == 64)
616 break;
617 }
618
619 goto retry;
620 }
621 }
622}
623
624#define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
625#define MONDO_USEC_WAIT_MIN 2
626#define MONDO_USEC_WAIT_MAX 100
627#define MONDO_RETRY_LIMIT 500000
628
629/* Multi-cpu list version.
630 *
631 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
632 * Sometimes not all cpus receive the mondo, requiring us to re-send
633 * the mondo until all cpus have received, or cpus are truly stuck
634 * unable to receive mondo, and we timeout.
635 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
636 * perform guest service, such as PCIe error handling. Consider the
637 * service time, 1 second overall wait is reasonable for 1 cpu.
638 * Here two in-between mondo check wait time are defined: 2 usec for
639 * single cpu quick turn around and up to 100usec for large cpu count.
640 * Deliver mondo to large number of cpus could take longer, we adjusts
641 * the retry count as long as target cpus are making forward progress.
642 */
643static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
644{
645 int this_cpu, tot_cpus, prev_sent, i, rem;
646 int usec_wait, retries, tot_retries;
647 u16 first_cpu = 0xffff;
648 unsigned long xc_rcvd = 0;
649 unsigned long status;
650 int ecpuerror_id = 0;
651 int enocpu_id = 0;
652 u16 *cpu_list;
653 u16 cpu;
654
655 this_cpu = smp_processor_id();
656 cpu_list = __va(tb->cpu_list_pa);
657 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
658 if (usec_wait > MONDO_USEC_WAIT_MAX)
659 usec_wait = MONDO_USEC_WAIT_MAX;
660 retries = tot_retries = 0;
661 tot_cpus = cnt;
662 prev_sent = 0;
663
664 do {
665 int n_sent, mondo_delivered, target_cpu_busy;
666
667 status = sun4v_cpu_mondo_send(cnt,
668 tb->cpu_list_pa,
669 tb->cpu_mondo_block_pa);
670
671 /* HV_EOK means all cpus received the xcall, we're done. */
672 if (likely(status == HV_EOK))
673 goto xcall_done;
674
675 /* If not these non-fatal errors, panic */
676 if (unlikely((status != HV_EWOULDBLOCK) &&
677 (status != HV_ECPUERROR) &&
678 (status != HV_ENOCPU)))
679 goto fatal_errors;
680
681 /* First, see if we made any forward progress.
682 *
683 * Go through the cpu_list, count the target cpus that have
684 * received our mondo (n_sent), and those that did not (rem).
685 * Re-pack cpu_list with the cpus remain to be retried in the
686 * front - this simplifies tracking the truly stalled cpus.
687 *
688 * The hypervisor indicates successful sends by setting
689 * cpu list entries to the value 0xffff.
690 *
691 * EWOULDBLOCK means some target cpus did not receive the
692 * mondo and retry usually helps.
693 *
694 * ECPUERROR means at least one target cpu is in error state,
695 * it's usually safe to skip the faulty cpu and retry.
696 *
697 * ENOCPU means one of the target cpu doesn't belong to the
698 * domain, perhaps offlined which is unexpected, but not
699 * fatal and it's okay to skip the offlined cpu.
700 */
701 rem = 0;
702 n_sent = 0;
703 for (i = 0; i < cnt; i++) {
704 cpu = cpu_list[i];
705 if (likely(cpu == 0xffff)) {
706 n_sent++;
707 } else if ((status == HV_ECPUERROR) &&
708 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
709 ecpuerror_id = cpu + 1;
710 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
711 enocpu_id = cpu + 1;
712 } else {
713 cpu_list[rem++] = cpu;
714 }
715 }
716
717 /* No cpu remained, we're done. */
718 if (rem == 0)
719 break;
720
721 /* Otherwise, update the cpu count for retry. */
722 cnt = rem;
723
724 /* Record the overall number of mondos received by the
725 * first of the remaining cpus.
726 */
727 if (first_cpu != cpu_list[0]) {
728 first_cpu = cpu_list[0];
729 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
730 }
731
732 /* Was any mondo delivered successfully? */
733 mondo_delivered = (n_sent > prev_sent);
734 prev_sent = n_sent;
735
736 /* or, was any target cpu busy processing other mondos? */
737 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
738 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
739
740 /* Retry count is for no progress. If we're making progress,
741 * reset the retry count.
742 */
743 if (likely(mondo_delivered || target_cpu_busy)) {
744 tot_retries += retries;
745 retries = 0;
746 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
747 goto fatal_mondo_timeout;
748 }
749
750 /* Delay a little bit to let other cpus catch up on
751 * their cpu mondo queue work.
752 */
753 if (!mondo_delivered)
754 udelay(usec_wait);
755
756 retries++;
757 } while (1);
758
759xcall_done:
760 if (unlikely(ecpuerror_id > 0)) {
761 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
762 this_cpu, ecpuerror_id - 1);
763 } else if (unlikely(enocpu_id > 0)) {
764 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
765 this_cpu, enocpu_id - 1);
766 }
767 return;
768
769fatal_errors:
770 /* fatal errors include bad alignment, etc */
771 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
772 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
773 panic("Unexpected SUN4V mondo error %lu\n", status);
774
775fatal_mondo_timeout:
776 /* some cpus being non-responsive to the cpu mondo */
777 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
778 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
779 panic("SUN4V mondo timeout panic\n");
780}
781
782static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
783
784static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
785{
786 struct trap_per_cpu *tb;
787 int this_cpu, i, cnt;
788 unsigned long flags;
789 u16 *cpu_list;
790 u64 *mondo;
791
792 /* We have to do this whole thing with interrupts fully disabled.
793 * Otherwise if we send an xcall from interrupt context it will
794 * corrupt both our mondo block and cpu list state.
795 *
796 * One consequence of this is that we cannot use timeout mechanisms
797 * that depend upon interrupts being delivered locally. So, for
798 * example, we cannot sample jiffies and expect it to advance.
799 *
800 * Fortunately, udelay() uses %stick/%tick so we can use that.
801 */
802 local_irq_save(flags);
803
804 this_cpu = smp_processor_id();
805 tb = &trap_block[this_cpu];
806
807 mondo = __va(tb->cpu_mondo_block_pa);
808 mondo[0] = data0;
809 mondo[1] = data1;
810 mondo[2] = data2;
811 wmb();
812
813 cpu_list = __va(tb->cpu_list_pa);
814
815 /* Setup the initial cpu list. */
816 cnt = 0;
817 for_each_cpu(i, mask) {
818 if (i == this_cpu || !cpu_online(i))
819 continue;
820 cpu_list[cnt++] = i;
821 }
822
823 if (cnt)
824 xcall_deliver_impl(tb, cnt);
825
826 local_irq_restore(flags);
827}
828
829/* Send cross call to all processors mentioned in MASK_P
830 * except self. Really, there are only two cases currently,
831 * "cpu_online_mask" and "mm_cpumask(mm)".
832 */
833static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
834{
835 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
836
837 xcall_deliver(data0, data1, data2, mask);
838}
839
840/* Send cross call to all processors except self. */
841static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
842{
843 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
844}
845
846extern unsigned long xcall_sync_tick;
847
848static void smp_start_sync_tick_client(int cpu)
849{
850 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
851 cpumask_of(cpu));
852}
853
854extern unsigned long xcall_call_function;
855
856void arch_send_call_function_ipi_mask(const struct cpumask *mask)
857{
858 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
859}
860
861extern unsigned long xcall_call_function_single;
862
863void arch_send_call_function_single_ipi(int cpu)
864{
865 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
866 cpumask_of(cpu));
867}
868
869void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
870{
871 clear_softint(1 << irq);
872 irq_enter();
873 generic_smp_call_function_interrupt();
874 irq_exit();
875}
876
877void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
878{
879 clear_softint(1 << irq);
880 irq_enter();
881 generic_smp_call_function_single_interrupt();
882 irq_exit();
883}
884
885static void tsb_sync(void *info)
886{
887 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
888 struct mm_struct *mm = info;
889
890 /* It is not valid to test "current->active_mm == mm" here.
891 *
892 * The value of "current" is not changed atomically with
893 * switch_mm(). But that's OK, we just need to check the
894 * current cpu's trap block PGD physical address.
895 */
896 if (tp->pgd_paddr == __pa(mm->pgd))
897 tsb_context_switch(mm);
898}
899
900void smp_tsb_sync(struct mm_struct *mm)
901{
902 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
903}
904
905extern unsigned long xcall_flush_tlb_mm;
906extern unsigned long xcall_flush_tlb_page;
907extern unsigned long xcall_flush_tlb_kernel_range;
908extern unsigned long xcall_fetch_glob_regs;
909extern unsigned long xcall_fetch_glob_pmu;
910extern unsigned long xcall_fetch_glob_pmu_n4;
911extern unsigned long xcall_receive_signal;
912extern unsigned long xcall_new_mmu_context_version;
913#ifdef CONFIG_KGDB
914extern unsigned long xcall_kgdb_capture;
915#endif
916
917#ifdef DCACHE_ALIASING_POSSIBLE
918extern unsigned long xcall_flush_dcache_page_cheetah;
919#endif
920extern unsigned long xcall_flush_dcache_page_spitfire;
921
922static inline void __local_flush_dcache_folio(struct folio *folio)
923{
924 unsigned int i, nr = folio_nr_pages(folio);
925
926#ifdef DCACHE_ALIASING_POSSIBLE
927 for (i = 0; i < nr; i++)
928 __flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
929 ((tlb_type == spitfire) &&
930 folio_flush_mapping(folio) != NULL));
931#else
932 if (folio_flush_mapping(folio) != NULL &&
933 tlb_type == spitfire) {
934 unsigned long pfn = folio_pfn(folio)
935 for (i = 0; i < nr; i++)
936 __flush_icache_page((pfn + i) * PAGE_SIZE);
937 }
938#endif
939}
940
941void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
942{
943 int this_cpu;
944
945 if (tlb_type == hypervisor)
946 return;
947
948#ifdef CONFIG_DEBUG_DCFLUSH
949 atomic_inc(&dcpage_flushes);
950#endif
951
952 this_cpu = get_cpu();
953
954 if (cpu == this_cpu) {
955 __local_flush_dcache_folio(folio);
956 } else if (cpu_online(cpu)) {
957 void *pg_addr = folio_address(folio);
958 u64 data0 = 0;
959
960 if (tlb_type == spitfire) {
961 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
962 if (folio_flush_mapping(folio) != NULL)
963 data0 |= ((u64)1 << 32);
964 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
965#ifdef DCACHE_ALIASING_POSSIBLE
966 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
967#endif
968 }
969 if (data0) {
970 unsigned int i, nr = folio_nr_pages(folio);
971
972 for (i = 0; i < nr; i++) {
973 xcall_deliver(data0, __pa(pg_addr),
974 (u64) pg_addr, cpumask_of(cpu));
975#ifdef CONFIG_DEBUG_DCFLUSH
976 atomic_inc(&dcpage_flushes_xcall);
977#endif
978 pg_addr += PAGE_SIZE;
979 }
980 }
981 }
982
983 put_cpu();
984}
985
986void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
987{
988 void *pg_addr;
989 u64 data0;
990
991 if (tlb_type == hypervisor)
992 return;
993
994 preempt_disable();
995
996#ifdef CONFIG_DEBUG_DCFLUSH
997 atomic_inc(&dcpage_flushes);
998#endif
999 data0 = 0;
1000 pg_addr = folio_address(folio);
1001 if (tlb_type == spitfire) {
1002 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1003 if (folio_flush_mapping(folio) != NULL)
1004 data0 |= ((u64)1 << 32);
1005 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1006#ifdef DCACHE_ALIASING_POSSIBLE
1007 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1008#endif
1009 }
1010 if (data0) {
1011 unsigned int i, nr = folio_nr_pages(folio);
1012
1013 for (i = 0; i < nr; i++) {
1014 xcall_deliver(data0, __pa(pg_addr),
1015 (u64) pg_addr, cpu_online_mask);
1016#ifdef CONFIG_DEBUG_DCFLUSH
1017 atomic_inc(&dcpage_flushes_xcall);
1018#endif
1019 pg_addr += PAGE_SIZE;
1020 }
1021 }
1022 __local_flush_dcache_folio(folio);
1023
1024 preempt_enable();
1025}
1026
1027#ifdef CONFIG_KGDB
1028void kgdb_roundup_cpus(void)
1029{
1030 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1031}
1032#endif
1033
1034void smp_fetch_global_regs(void)
1035{
1036 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1037}
1038
1039void smp_fetch_global_pmu(void)
1040{
1041 if (tlb_type == hypervisor &&
1042 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1043 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1044 else
1045 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1046}
1047
1048/* We know that the window frames of the user have been flushed
1049 * to the stack before we get here because all callers of us
1050 * are flush_tlb_*() routines, and these run after flush_cache_*()
1051 * which performs the flushw.
1052 *
1053 * mm->cpu_vm_mask is a bit mask of which cpus an address
1054 * space has (potentially) executed on, this is the heuristic
1055 * we use to limit cross calls.
1056 */
1057
1058/* This currently is only used by the hugetlb arch pre-fault
1059 * hook on UltraSPARC-III+ and later when changing the pagesize
1060 * bits of the context register for an address space.
1061 */
1062void smp_flush_tlb_mm(struct mm_struct *mm)
1063{
1064 u32 ctx = CTX_HWBITS(mm->context);
1065
1066 get_cpu();
1067
1068 smp_cross_call_masked(&xcall_flush_tlb_mm,
1069 ctx, 0, 0,
1070 mm_cpumask(mm));
1071
1072 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074 put_cpu();
1075}
1076
1077struct tlb_pending_info {
1078 unsigned long ctx;
1079 unsigned long nr;
1080 unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085 struct tlb_pending_info *t = info;
1086
1087 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092 u32 ctx = CTX_HWBITS(mm->context);
1093 struct tlb_pending_info info;
1094
1095 get_cpu();
1096
1097 info.ctx = ctx;
1098 info.nr = nr;
1099 info.vaddrs = vaddrs;
1100
1101 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1102 &info, 1);
1103
1104 __flush_tlb_pending(ctx, nr, vaddrs);
1105
1106 put_cpu();
1107}
1108
1109void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1110{
1111 unsigned long context = CTX_HWBITS(mm->context);
1112
1113 get_cpu();
1114
1115 smp_cross_call_masked(&xcall_flush_tlb_page,
1116 context, vaddr, 0,
1117 mm_cpumask(mm));
1118
1119 __flush_tlb_page(context, vaddr);
1120
1121 put_cpu();
1122}
1123
1124void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1125{
1126 start &= PAGE_MASK;
1127 end = PAGE_ALIGN(end);
1128 if (start != end) {
1129 smp_cross_call(&xcall_flush_tlb_kernel_range,
1130 0, start, end);
1131
1132 __flush_tlb_kernel_range(start, end);
1133 }
1134}
1135
1136/* CPU capture. */
1137/* #define CAPTURE_DEBUG */
1138extern unsigned long xcall_capture;
1139
1140static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1141static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1142static unsigned long penguins_are_doing_time;
1143
1144void smp_capture(void)
1145{
1146 int result = atomic_add_return(1, &smp_capture_depth);
1147
1148 if (result == 1) {
1149 int ncpus = num_online_cpus();
1150
1151#ifdef CAPTURE_DEBUG
1152 printk("CPU[%d]: Sending penguins to jail...",
1153 smp_processor_id());
1154#endif
1155 penguins_are_doing_time = 1;
1156 atomic_inc(&smp_capture_registry);
1157 smp_cross_call(&xcall_capture, 0, 0, 0);
1158 while (atomic_read(&smp_capture_registry) != ncpus)
1159 rmb();
1160#ifdef CAPTURE_DEBUG
1161 printk("done\n");
1162#endif
1163 }
1164}
1165
1166void smp_release(void)
1167{
1168 if (atomic_dec_and_test(&smp_capture_depth)) {
1169#ifdef CAPTURE_DEBUG
1170 printk("CPU[%d]: Giving pardon to "
1171 "imprisoned penguins\n",
1172 smp_processor_id());
1173#endif
1174 penguins_are_doing_time = 0;
1175 membar_safe("#StoreLoad");
1176 atomic_dec(&smp_capture_registry);
1177 }
1178}
1179
1180/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1181 * set, so they can service tlb flush xcalls...
1182 */
1183extern void prom_world(int);
1184
1185void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1186{
1187 clear_softint(1 << irq);
1188
1189 preempt_disable();
1190
1191 __asm__ __volatile__("flushw");
1192 prom_world(1);
1193 atomic_inc(&smp_capture_registry);
1194 membar_safe("#StoreLoad");
1195 while (penguins_are_doing_time)
1196 rmb();
1197 atomic_dec(&smp_capture_registry);
1198 prom_world(0);
1199
1200 preempt_enable();
1201}
1202
1203void __init smp_prepare_cpus(unsigned int max_cpus)
1204{
1205}
1206
1207void __init smp_setup_processor_id(void)
1208{
1209 if (tlb_type == spitfire)
1210 xcall_deliver_impl = spitfire_xcall_deliver;
1211 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1212 xcall_deliver_impl = cheetah_xcall_deliver;
1213 else
1214 xcall_deliver_impl = hypervisor_xcall_deliver;
1215}
1216
1217void smp_fill_in_sib_core_maps(void)
1218{
1219 unsigned int i;
1220
1221 for_each_present_cpu(i) {
1222 unsigned int j;
1223
1224 cpumask_clear(&cpu_core_map[i]);
1225 if (cpu_data(i).core_id == 0) {
1226 cpumask_set_cpu(i, &cpu_core_map[i]);
1227 continue;
1228 }
1229
1230 for_each_present_cpu(j) {
1231 if (cpu_data(i).core_id ==
1232 cpu_data(j).core_id)
1233 cpumask_set_cpu(j, &cpu_core_map[i]);
1234 }
1235 }
1236
1237 for_each_present_cpu(i) {
1238 unsigned int j;
1239
1240 for_each_present_cpu(j) {
1241 if (cpu_data(i).max_cache_id ==
1242 cpu_data(j).max_cache_id)
1243 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1244
1245 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1246 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1247 }
1248 }
1249
1250 for_each_present_cpu(i) {
1251 unsigned int j;
1252
1253 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1254 if (cpu_data(i).proc_id == -1) {
1255 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1256 continue;
1257 }
1258
1259 for_each_present_cpu(j) {
1260 if (cpu_data(i).proc_id ==
1261 cpu_data(j).proc_id)
1262 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1263 }
1264 }
1265}
1266
1267int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1268{
1269 int ret = smp_boot_one_cpu(cpu, tidle);
1270
1271 if (!ret) {
1272 cpumask_set_cpu(cpu, &smp_commenced_mask);
1273 while (!cpu_online(cpu))
1274 mb();
1275 if (!cpu_online(cpu)) {
1276 ret = -ENODEV;
1277 } else {
1278 /* On SUN4V, writes to %tick and %stick are
1279 * not allowed.
1280 */
1281 if (tlb_type != hypervisor)
1282 smp_synchronize_one_tick(cpu);
1283 }
1284 }
1285 return ret;
1286}
1287
1288#ifdef CONFIG_HOTPLUG_CPU
1289void cpu_play_dead(void)
1290{
1291 int cpu = smp_processor_id();
1292 unsigned long pstate;
1293
1294 idle_task_exit();
1295
1296 if (tlb_type == hypervisor) {
1297 struct trap_per_cpu *tb = &trap_block[cpu];
1298
1299 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1300 tb->cpu_mondo_pa, 0);
1301 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1302 tb->dev_mondo_pa, 0);
1303 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1304 tb->resum_mondo_pa, 0);
1305 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1306 tb->nonresum_mondo_pa, 0);
1307 }
1308
1309 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1310 membar_safe("#Sync");
1311
1312 local_irq_disable();
1313
1314 __asm__ __volatile__(
1315 "rdpr %%pstate, %0\n\t"
1316 "wrpr %0, %1, %%pstate"
1317 : "=r" (pstate)
1318 : "i" (PSTATE_IE));
1319
1320 while (1)
1321 barrier();
1322}
1323
1324int __cpu_disable(void)
1325{
1326 int cpu = smp_processor_id();
1327 cpuinfo_sparc *c;
1328 int i;
1329
1330 for_each_cpu(i, &cpu_core_map[cpu])
1331 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1332 cpumask_clear(&cpu_core_map[cpu]);
1333
1334 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1335 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1336 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1337
1338 c = &cpu_data(cpu);
1339
1340 c->core_id = 0;
1341 c->proc_id = -1;
1342
1343 smp_wmb();
1344
1345 /* Make sure no interrupts point to this cpu. */
1346 fixup_irqs();
1347
1348 local_irq_enable();
1349 mdelay(1);
1350 local_irq_disable();
1351
1352 set_cpu_online(cpu, false);
1353
1354 cpu_map_rebuild();
1355
1356 return 0;
1357}
1358
1359void __cpu_die(unsigned int cpu)
1360{
1361 int i;
1362
1363 for (i = 0; i < 100; i++) {
1364 smp_rmb();
1365 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1366 break;
1367 msleep(100);
1368 }
1369 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1370 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1371 } else {
1372#if defined(CONFIG_SUN_LDOMS)
1373 unsigned long hv_err;
1374 int limit = 100;
1375
1376 do {
1377 hv_err = sun4v_cpu_stop(cpu);
1378 if (hv_err == HV_EOK) {
1379 set_cpu_present(cpu, false);
1380 break;
1381 }
1382 } while (--limit > 0);
1383 if (limit <= 0) {
1384 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1385 hv_err);
1386 }
1387#endif
1388 }
1389}
1390#endif
1391
1392void __init smp_cpus_done(unsigned int max_cpus)
1393{
1394}
1395
1396static void send_cpu_ipi(int cpu)
1397{
1398 xcall_deliver((u64) &xcall_receive_signal,
1399 0, 0, cpumask_of(cpu));
1400}
1401
1402void scheduler_poke(void)
1403{
1404 if (!cpu_poke)
1405 return;
1406
1407 if (!__this_cpu_read(poke))
1408 return;
1409
1410 __this_cpu_write(poke, false);
1411 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1412}
1413
1414static unsigned long send_cpu_poke(int cpu)
1415{
1416 unsigned long hv_err;
1417
1418 per_cpu(poke, cpu) = true;
1419 hv_err = sun4v_cpu_poke(cpu);
1420 if (hv_err != HV_EOK) {
1421 per_cpu(poke, cpu) = false;
1422 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1423 __func__, hv_err);
1424 }
1425
1426 return hv_err;
1427}
1428
1429void arch_smp_send_reschedule(int cpu)
1430{
1431 if (cpu == smp_processor_id()) {
1432 WARN_ON_ONCE(preemptible());
1433 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1434 return;
1435 }
1436
1437 /* Use cpu poke to resume idle cpu if supported. */
1438 if (cpu_poke && idle_cpu(cpu)) {
1439 unsigned long ret;
1440
1441 ret = send_cpu_poke(cpu);
1442 if (ret == HV_EOK)
1443 return;
1444 }
1445
1446 /* Use IPI in following cases:
1447 * - cpu poke not supported
1448 * - cpu not idle
1449 * - send_cpu_poke() returns with error
1450 */
1451 send_cpu_ipi(cpu);
1452}
1453
1454void smp_init_cpu_poke(void)
1455{
1456 unsigned long major;
1457 unsigned long minor;
1458 int ret;
1459
1460 if (tlb_type != hypervisor)
1461 return;
1462
1463 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1464 if (ret) {
1465 pr_debug("HV_GRP_CORE is not registered\n");
1466 return;
1467 }
1468
1469 if (major == 1 && minor >= 6) {
1470 /* CPU POKE is registered. */
1471 cpu_poke = true;
1472 return;
1473 }
1474
1475 pr_debug("CPU_POKE not supported\n");
1476}
1477
1478void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1479{
1480 clear_softint(1 << irq);
1481 scheduler_ipi();
1482}
1483
1484static void stop_this_cpu(void *dummy)
1485{
1486 set_cpu_online(smp_processor_id(), false);
1487 prom_stopself();
1488}
1489
1490void smp_send_stop(void)
1491{
1492 int cpu;
1493
1494 if (tlb_type == hypervisor) {
1495 int this_cpu = smp_processor_id();
1496#ifdef CONFIG_SERIAL_SUNHV
1497 sunhv_migrate_hvcons_irq(this_cpu);
1498#endif
1499 for_each_online_cpu(cpu) {
1500 if (cpu == this_cpu)
1501 continue;
1502
1503 set_cpu_online(cpu, false);
1504#ifdef CONFIG_SUN_LDOMS
1505 if (ldom_domaining_enabled) {
1506 unsigned long hv_err;
1507 hv_err = sun4v_cpu_stop(cpu);
1508 if (hv_err)
1509 printk(KERN_ERR "sun4v_cpu_stop() "
1510 "failed err=%lu\n", hv_err);
1511 } else
1512#endif
1513 prom_stopcpu_cpuid(cpu);
1514 }
1515 } else
1516 smp_call_function(stop_this_cpu, NULL, 0);
1517}
1518
1519static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1520{
1521 if (cpu_to_node(from) == cpu_to_node(to))
1522 return LOCAL_DISTANCE;
1523 else
1524 return REMOTE_DISTANCE;
1525}
1526
1527static int __init pcpu_cpu_to_node(int cpu)
1528{
1529 return cpu_to_node(cpu);
1530}
1531
1532void __init setup_per_cpu_areas(void)
1533{
1534 unsigned long delta;
1535 unsigned int cpu;
1536 int rc = -EINVAL;
1537
1538 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541 pcpu_cpu_distance,
1542 pcpu_cpu_to_node);
1543 if (rc)
1544 pr_warn("PERCPU: %s allocator failed (%d), "
1545 "falling back to page size\n",
1546 pcpu_fc_names[pcpu_chosen_fc], rc);
1547 }
1548 if (rc < 0)
1549 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1550 pcpu_cpu_to_node);
1551 if (rc < 0)
1552 panic("cannot initialize percpu area (err=%d)", rc);
1553
1554 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1555 for_each_possible_cpu(cpu)
1556 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1557
1558 /* Setup %g5 for the boot cpu. */
1559 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1560
1561 of_fill_in_cpu_data();
1562 if (tlb_type == hypervisor)
1563 mdesc_fill_in_cpu_data(cpu_all_mask);
1564}