Linux Audio

Check our new training course

Loading...
v3.1
 
   1#ifndef _SPARC64_HYPERVISOR_H
   2#define _SPARC64_HYPERVISOR_H
   3
   4/* Sun4v hypervisor interfaces and defines.
   5 *
   6 * Hypervisor calls are made via traps to software traps number 0x80
   7 * and above.  Registers %o0 to %o5 serve as argument, status, and
   8 * return value registers.
   9 *
  10 * There are two kinds of these traps.  First there are the normal
  11 * "fast traps" which use software trap 0x80 and encode the function
  12 * to invoke by number in register %o5.  Argument and return value
  13 * handling is as follows:
  14 *
  15 * -----------------------------------------------
  16 * |  %o5  | function number |     undefined     |
  17 * |  %o0  |   argument 0    |   return status   |
  18 * |  %o1  |   argument 1    |   return value 1  |
  19 * |  %o2  |   argument 2    |   return value 2  |
  20 * |  %o3  |   argument 3    |   return value 3  |
  21 * |  %o4  |   argument 4    |   return value 4  |
  22 * -----------------------------------------------
  23 *
  24 * The second type are "hyper-fast traps" which encode the function
  25 * number in the software trap number itself.  So these use trap
  26 * numbers > 0x80.  The register usage for hyper-fast traps is as
  27 * follows:
  28 *
  29 * -----------------------------------------------
  30 * |  %o0  |   argument 0    |   return status   |
  31 * |  %o1  |   argument 1    |   return value 1  |
  32 * |  %o2  |   argument 2    |   return value 2  |
  33 * |  %o3  |   argument 3    |   return value 3  |
  34 * |  %o4  |   argument 4    |   return value 4  |
  35 * -----------------------------------------------
  36 *
  37 * Registers providing explicit arguments to the hypervisor calls
  38 * are volatile across the call.  Upon return their values are
  39 * undefined unless explicitly specified as containing a particular
  40 * return value by the specific call.  The return status is always
  41 * returned in register %o0, zero indicates a successful execution of
  42 * the hypervisor call and other values indicate an error status as
  43 * defined below.  So, for example, if a hyper-fast trap takes
  44 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across
  45 * the call and %o3, %o4, and %o5 would be preserved.
  46 *
  47 * If the hypervisor trap is invalid, or the fast trap function number
  48 * is invalid, HV_EBADTRAP will be returned in %o0.  Also, all 64-bits
  49 * of the argument and return values are significant.
  50 */
  51
  52/* Trap numbers.  */
  53#define HV_FAST_TRAP		0x80
  54#define HV_MMU_MAP_ADDR_TRAP	0x83
  55#define HV_MMU_UNMAP_ADDR_TRAP	0x84
  56#define HV_TTRACE_ADDENTRY_TRAP	0x85
  57#define HV_CORE_TRAP		0xff
  58
  59/* Error codes.  */
  60#define HV_EOK				0  /* Successful return            */
  61#define HV_ENOCPU			1  /* Invalid CPU id               */
  62#define HV_ENORADDR			2  /* Invalid real address         */
  63#define HV_ENOINTR			3  /* Invalid interrupt id         */
  64#define HV_EBADPGSZ			4  /* Invalid pagesize encoding    */
  65#define HV_EBADTSB			5  /* Invalid TSB description      */
  66#define HV_EINVAL			6  /* Invalid argument             */
  67#define HV_EBADTRAP			7  /* Invalid function number      */
  68#define HV_EBADALIGN			8  /* Invalid address alignment    */
  69#define HV_EWOULDBLOCK			9  /* Cannot complete w/o blocking */
  70#define HV_ENOACCESS			10 /* No access to resource        */
  71#define HV_EIO				11 /* I/O error                    */
  72#define HV_ECPUERROR			12 /* CPU in error state           */
  73#define HV_ENOTSUPPORTED		13 /* Function not supported       */
  74#define HV_ENOMAP			14 /* No mapping found             */
  75#define HV_ETOOMANY			15 /* Too many items specified     */
  76#define HV_ECHANNEL			16 /* Invalid LDC channel          */
  77#define HV_EBUSY			17 /* Resource busy                */
 
 
 
 
  78
  79/* mach_exit()
  80 * TRAP:	HV_FAST_TRAP
  81 * FUNCTION:	HV_FAST_MACH_EXIT
  82 * ARG0:	exit code
  83 * ERRORS:	This service does not return.
  84 *
  85 * Stop all CPUs in the virtual domain and place them into the stopped
  86 * state.  The 64-bit exit code may be passed to a service entity as
  87 * the domain's exit status.  On systems without a service entity, the
  88 * domain will undergo a reset, and the boot firmware will be
  89 * reloaded.
  90 *
  91 * This function will never return to the guest that invokes it.
  92 *
  93 * Note: By convention an exit code of zero denotes a successful exit by
  94 *       the guest code.  A non-zero exit code denotes a guest specific
  95 *       error indication.
  96 *
  97 */
  98#define HV_FAST_MACH_EXIT		0x00
  99
 100#ifndef __ASSEMBLY__
 101extern void sun4v_mach_exit(unsigned long exit_code);
 102#endif
 103
 104/* Domain services.  */
 105
 106/* mach_desc()
 107 * TRAP:	HV_FAST_TRAP
 108 * FUNCTION:	HV_FAST_MACH_DESC
 109 * ARG0:	buffer
 110 * ARG1:	length
 111 * RET0:	status
 112 * RET1:	length
 113 * ERRORS:	HV_EBADALIGN	Buffer is badly aligned
 114 *		HV_ENORADDR	Buffer is to an illegal real address.
 115 *		HV_EINVAL	Buffer length is too small for complete
 116 *				machine description.
 117 *
 118 * Copy the most current machine description into the buffer indicated
 119 * by the real address in ARG0.  The buffer provided must be 16 byte
 120 * aligned.  Upon success or HV_EINVAL, this service returns the
 121 * actual size of the machine description in the RET1 return value.
 122 *
 123 * Note: A method of determining the appropriate buffer size for the
 124 *       machine description is to first call this service with a buffer
 125 *       length of 0 bytes.
 126 */
 127#define HV_FAST_MACH_DESC		0x01
 128
 129#ifndef __ASSEMBLY__
 130extern unsigned long sun4v_mach_desc(unsigned long buffer_pa,
 131				     unsigned long buf_len,
 132				     unsigned long *real_buf_len);
 133#endif
 134
 135/* mach_sir()
 136 * TRAP:	HV_FAST_TRAP
 137 * FUNCTION:	HV_FAST_MACH_SIR
 138 * ERRORS:	This service does not return.
 139 *
 140 * Perform a software initiated reset of the virtual machine domain.
 141 * All CPUs are captured as soon as possible, all hardware devices are
 142 * returned to the entry default state, and the domain is restarted at
 143 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one
 144 * of the CPUs.  The single CPU restarted is selected as determined by
 145 * platform specific policy.  Memory is preserved across this
 146 * operation.
 147 */
 148#define HV_FAST_MACH_SIR		0x02
 149
 150#ifndef __ASSEMBLY__
 151extern void sun4v_mach_sir(void);
 152#endif
 153
 154/* mach_set_watchdog()
 155 * TRAP:	HV_FAST_TRAP
 156 * FUNCTION:	HV_FAST_MACH_SET_WATCHDOG
 157 * ARG0:	timeout in milliseconds
 158 * RET0:	status
 159 * RET1:	time remaining in milliseconds
 160 *
 161 * A guest uses this API to set a watchdog timer.  Once the gues has set
 162 * the timer, it must call the timer service again either to disable or
 163 * postpone the expiration.  If the timer expires before being reset or
 164 * disabled, then the hypervisor take a platform specific action leading
 165 * to guest termination within a bounded time period.  The platform action
 166 * may include recovery actions such as reporting the expiration to a
 167 * Service Processor, and/or automatically restarting the gues.
 168 *
 169 * The 'timeout' parameter is specified in milliseconds, however the
 170 * implementated granularity is given by the 'watchdog-resolution'
 171 * property in the 'platform' node of the guest's machine description.
 172 * The largest allowed timeout value is specified by the
 173 * 'watchdog-max-timeout' property of the 'platform' node.
 174 *
 175 * If the 'timeout' argument is not zero, the watchdog timer is set to
 176 * expire after a minimum of 'timeout' milliseconds.
 177 *
 178 * If the 'timeout' argument is zero, the watchdog timer is disabled.
 179 *
 180 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout'
 181 * property, the hypervisor leaves the watchdog timer state unchanged,
 182 * and returns a status of EINVAL.
 183 *
 184 * The 'time remaining' return value is valid regardless of whether the
 185 * return status is EOK or EINVAL.  A non-zero return value indicates the
 186 * number of milliseconds that were remaining until the timer was to expire.
 187 * If less than one millisecond remains, the return value is '1'.  If the
 188 * watchdog timer was disabled at the time of the call, the return value is
 189 * zero.
 190 *
 191 * If the hypervisor cannot support the exact timeout value requested, but
 192 * can support a larger timeout value, the hypervisor may round the actual
 193 * timeout to a value larger than the requested timeout, consequently the
 194 * 'time remaining' return value may be larger than the previously requested
 195 * timeout value.
 196 *
 197 * Any guest OS debugger should be aware that the watchdog service may be in
 198 * use.  Consequently, it is recommended that the watchdog service is
 199 * disabled upon debugger entry (e.g. reaching a breakpoint), and then
 200 * re-enabled upon returning to normal execution.  The API has been designed
 201 * with this in mind, and the 'time remaining' result of the disable call may
 202 * be used directly as the timeout argument of the re-enable call.
 203 */
 204#define HV_FAST_MACH_SET_WATCHDOG	0x05
 205
 206#ifndef __ASSEMBLY__
 207extern unsigned long sun4v_mach_set_watchdog(unsigned long timeout,
 208					     unsigned long *orig_timeout);
 209#endif
 210
 211/* CPU services.
 212 *
 213 * CPUs represent devices that can execute software threads.  A single
 214 * chip that contains multiple cores or strands is represented as
 215 * multiple CPUs with unique CPU identifiers.  CPUs are exported to
 216 * OBP via the machine description (and to the OS via the OBP device
 217 * tree).  CPUs are always in one of three states: stopped, running,
 218 * or error.
 219 *
 220 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a
 221 * CPU within a logical domain.  Operations that are to be performed
 222 * on multiple CPUs specify them via a CPU list.  A CPU list is an
 223 * array in real memory, of which each 16-bit word is a CPU ID.  CPU
 224 * lists are passed through the API as two arguments.  The first is
 225 * the number of entries (16-bit words) in the CPU list, and the
 226 * second is the (real address) pointer to the CPU ID list.
 227 */
 228
 229/* cpu_start()
 230 * TRAP:	HV_FAST_TRAP
 231 * FUNCTION:	HV_FAST_CPU_START
 232 * ARG0:	CPU ID
 233 * ARG1:	PC
 234 * ARG2:	RTBA
 235 * ARG3:	target ARG0
 236 * RET0:	status
 237 * ERRORS:	ENOCPU		Invalid CPU ID
 238 *		EINVAL		Target CPU ID is not in the stopped state
 239 *		ENORADDR	Invalid PC or RTBA real address
 240 *		EBADALIGN	Unaligned PC or unaligned RTBA
 241 *		EWOULDBLOCK	Starting resources are not available
 242 *
 243 * Start CPU with given CPU ID with PC in %pc and with a real trap
 244 * base address value of RTBA.  The indicated CPU must be in the
 245 * stopped state.  The supplied RTBA must be aligned on a 256 byte
 246 * boundary.  On successful completion, the specified CPU will be in
 247 * the running state and will be supplied with "target ARG0" in %o0
 248 * and RTBA in %tba.
 249 */
 250#define HV_FAST_CPU_START		0x10
 251
 252#ifndef __ASSEMBLY__
 253extern unsigned long sun4v_cpu_start(unsigned long cpuid,
 254				     unsigned long pc,
 255				     unsigned long rtba,
 256				     unsigned long arg0);
 257#endif
 258
 259/* cpu_stop()
 260 * TRAP:	HV_FAST_TRAP
 261 * FUNCTION:	HV_FAST_CPU_STOP
 262 * ARG0:	CPU ID
 263 * RET0:	status
 264 * ERRORS:	ENOCPU		Invalid CPU ID
 265 *		EINVAL		Target CPU ID is the current cpu
 266 *		EINVAL		Target CPU ID is not in the running state
 267 *		EWOULDBLOCK	Stopping resources are not available
 268 *		ENOTSUPPORTED	Not supported on this platform
 269 *
 270 * The specified CPU is stopped.  The indicated CPU must be in the
 271 * running state.  On completion, it will be in the stopped state.  It
 272 * is not legal to stop the current CPU.
 273 *
 274 * Note: As this service cannot be used to stop the current cpu, this service
 275 *       may not be used to stop the last running CPU in a domain.  To stop
 276 *       and exit a running domain, a guest must use the mach_exit() service.
 277 */
 278#define HV_FAST_CPU_STOP		0x11
 279
 280#ifndef __ASSEMBLY__
 281extern unsigned long sun4v_cpu_stop(unsigned long cpuid);
 282#endif
 283
 284/* cpu_yield()
 285 * TRAP:	HV_FAST_TRAP
 286 * FUNCTION:	HV_FAST_CPU_YIELD
 287 * RET0:	status
 288 * ERRORS:	No possible error.
 289 *
 290 * Suspend execution on the current CPU.  Execution will resume when
 291 * an interrupt (device, %stick_compare, or cross-call) is targeted to
 292 * the CPU.  On some CPUs, this API may be used by the hypervisor to
 293 * save power by disabling hardware strands.
 294 */
 295#define HV_FAST_CPU_YIELD		0x12
 296
 297#ifndef __ASSEMBLY__
 298extern unsigned long sun4v_cpu_yield(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299#endif
 300
 301/* cpu_qconf()
 302 * TRAP:	HV_FAST_TRAP
 303 * FUNCTION:	HV_FAST_CPU_QCONF
 304 * ARG0:	queue
 305 * ARG1:	base real address
 306 * ARG2:	number of entries
 307 * RET0:	status
 308 * ERRORS:	ENORADDR	Invalid base real address
 309 *		EINVAL		Invalid queue or number of entries is less
 310 *				than 2 or too large.
 311 *		EBADALIGN	Base real address is not correctly aligned
 312 *				for size.
 313 *
 314 * Configure the given queue to be placed at the given base real
 315 * address, with the given number of entries.  The number of entries
 316 * must be a power of 2.  The base real address must be aligned
 317 * exactly to match the queue size.  Each queue entry is 64 bytes
 318 * long, so for example a 32 entry queue must be aligned on a 2048
 319 * byte real address boundary.
 320 *
 321 * The specified queue is unconfigured if the number of entries is given
 322 * as zero.
 323 *
 324 * For the current version of this API service, the argument queue is defined
 325 * as follows:
 326 *
 327 *	queue		description
 328 *	-----		-------------------------
 329 *	0x3c		cpu mondo queue
 330 *	0x3d		device mondo queue
 331 *	0x3e		resumable error queue
 332 *	0x3f		non-resumable error queue
 333 *
 334 * Note: The maximum number of entries for each queue for a specific cpu may
 335 *       be determined from the machine description.
 336 */
 337#define HV_FAST_CPU_QCONF		0x14
 338#define  HV_CPU_QUEUE_CPU_MONDO		 0x3c
 339#define  HV_CPU_QUEUE_DEVICE_MONDO	 0x3d
 340#define  HV_CPU_QUEUE_RES_ERROR		 0x3e
 341#define  HV_CPU_QUEUE_NONRES_ERROR	 0x3f
 342
 343#ifndef __ASSEMBLY__
 344extern unsigned long sun4v_cpu_qconf(unsigned long type,
 345				     unsigned long queue_paddr,
 346				     unsigned long num_queue_entries);
 347#endif
 348
 349/* cpu_qinfo()
 350 * TRAP:	HV_FAST_TRAP
 351 * FUNCTION:	HV_FAST_CPU_QINFO
 352 * ARG0:	queue
 353 * RET0:	status
 354 * RET1:	base real address
 355 * RET1:	number of entries
 356 * ERRORS:	EINVAL		Invalid queue
 357 *
 358 * Return the configuration info for the given queue.  The base real
 359 * address and number of entries of the defined queue are returned.
 360 * The queue argument values are the same as for cpu_qconf() above.
 361 *
 362 * If the specified queue is a valid queue number, but no queue has
 363 * been defined, the number of entries will be set to zero and the
 364 * base real address returned is undefined.
 365 */
 366#define HV_FAST_CPU_QINFO		0x15
 367
 368/* cpu_mondo_send()
 369 * TRAP:	HV_FAST_TRAP
 370 * FUNCTION:	HV_FAST_CPU_MONDO_SEND
 371 * ARG0-1:	CPU list
 372 * ARG2:	data real address
 373 * RET0:	status
 374 * ERRORS:	EBADALIGN	Mondo data is not 64-byte aligned or CPU list
 375 *				is not 2-byte aligned.
 376 *		ENORADDR	Invalid data mondo address, or invalid cpu list
 377 *				address.
 378 *		ENOCPU		Invalid cpu in CPU list
 379 *		EWOULDBLOCK	Some or all of the listed CPUs did not receive
 380 *				the mondo
 381 *		ECPUERROR	One or more of the listed CPUs are in error
 382 *				state, use HV_FAST_CPU_STATE to see which ones
 383 *		EINVAL		CPU list includes caller's CPU ID
 384 *
 385 * Send a mondo interrupt to the CPUs in the given CPU list with the
 386 * 64-bytes at the given data real address.  The data must be 64-byte
 387 * aligned.  The mondo data will be delivered to the cpu_mondo queues
 388 * of the recipient CPUs.
 389 *
 390 * In all cases, error or not, the CPUs in the CPU list to which the
 391 * mondo has been successfully delivered will be indicated by having
 392 * their entry in CPU list updated with the value 0xffff.
 393 */
 394#define HV_FAST_CPU_MONDO_SEND		0x42
 395
 396#ifndef __ASSEMBLY__
 397extern unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count, unsigned long cpu_list_pa, unsigned long mondo_block_pa);
 
 
 398#endif
 399
 400/* cpu_myid()
 401 * TRAP:	HV_FAST_TRAP
 402 * FUNCTION:	HV_FAST_CPU_MYID
 403 * RET0:	status
 404 * RET1:	CPU ID
 405 * ERRORS:	No errors defined.
 406 *
 407 * Return the hypervisor ID handle for the current CPU.  Use by a
 408 * virtual CPU to discover it's own identity.
 409 */
 410#define HV_FAST_CPU_MYID		0x16
 411
 412/* cpu_state()
 413 * TRAP:	HV_FAST_TRAP
 414 * FUNCTION:	HV_FAST_CPU_STATE
 415 * ARG0:	CPU ID
 416 * RET0:	status
 417 * RET1:	state
 418 * ERRORS:	ENOCPU		Invalid CPU ID
 419 *
 420 * Retrieve the current state of the CPU with the given CPU ID.
 421 */
 422#define HV_FAST_CPU_STATE		0x17
 423#define  HV_CPU_STATE_STOPPED		 0x01
 424#define  HV_CPU_STATE_RUNNING		 0x02
 425#define  HV_CPU_STATE_ERROR		 0x03
 426
 427#ifndef __ASSEMBLY__
 428extern long sun4v_cpu_state(unsigned long cpuid);
 429#endif
 430
 431/* cpu_set_rtba()
 432 * TRAP:	HV_FAST_TRAP
 433 * FUNCTION:	HV_FAST_CPU_SET_RTBA
 434 * ARG0:	RTBA
 435 * RET0:	status
 436 * RET1:	previous RTBA
 437 * ERRORS:	ENORADDR	Invalid RTBA real address
 438 *		EBADALIGN	RTBA is incorrectly aligned for a trap table
 439 *
 440 * Set the real trap base address of the local cpu to the given RTBA.
 441 * The supplied RTBA must be aligned on a 256 byte boundary.  Upon
 442 * success the previous value of the RTBA is returned in RET1.
 443 *
 444 * Note: This service does not affect %tba
 445 */
 446#define HV_FAST_CPU_SET_RTBA		0x18
 447
 448/* cpu_set_rtba()
 449 * TRAP:	HV_FAST_TRAP
 450 * FUNCTION:	HV_FAST_CPU_GET_RTBA
 451 * RET0:	status
 452 * RET1:	previous RTBA
 453 * ERRORS:	No possible error.
 454 *
 455 * Returns the current value of RTBA in RET1.
 456 */
 457#define HV_FAST_CPU_GET_RTBA		0x19
 458
 459/* MMU services.
 460 *
 461 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls.
 462 */
 463#ifndef __ASSEMBLY__
 464struct hv_tsb_descr {
 465	unsigned short		pgsz_idx;
 466	unsigned short		assoc;
 467	unsigned int		num_ttes;	/* in TTEs */
 468	unsigned int		ctx_idx;
 469	unsigned int		pgsz_mask;
 470	unsigned long		tsb_base;
 471	unsigned long		resv;
 472};
 473#endif
 474#define HV_TSB_DESCR_PGSZ_IDX_OFFSET	0x00
 475#define HV_TSB_DESCR_ASSOC_OFFSET	0x02
 476#define HV_TSB_DESCR_NUM_TTES_OFFSET	0x04
 477#define HV_TSB_DESCR_CTX_IDX_OFFSET	0x08
 478#define HV_TSB_DESCR_PGSZ_MASK_OFFSET	0x0c
 479#define HV_TSB_DESCR_TSB_BASE_OFFSET	0x10
 480#define HV_TSB_DESCR_RESV_OFFSET	0x18
 481
 482/* Page size bitmask.  */
 483#define HV_PGSZ_MASK_8K			(1 << 0)
 484#define HV_PGSZ_MASK_64K		(1 << 1)
 485#define HV_PGSZ_MASK_512K		(1 << 2)
 486#define HV_PGSZ_MASK_4MB		(1 << 3)
 487#define HV_PGSZ_MASK_32MB		(1 << 4)
 488#define HV_PGSZ_MASK_256MB		(1 << 5)
 489#define HV_PGSZ_MASK_2GB		(1 << 6)
 490#define HV_PGSZ_MASK_16GB		(1 << 7)
 491
 492/* Page size index.  The value given in the TSB descriptor must correspond
 493 * to the smallest page size specified in the pgsz_mask page size bitmask.
 494 */
 495#define HV_PGSZ_IDX_8K			0
 496#define HV_PGSZ_IDX_64K			1
 497#define HV_PGSZ_IDX_512K		2
 498#define HV_PGSZ_IDX_4MB			3
 499#define HV_PGSZ_IDX_32MB		4
 500#define HV_PGSZ_IDX_256MB		5
 501#define HV_PGSZ_IDX_2GB			6
 502#define HV_PGSZ_IDX_16GB		7
 503
 504/* MMU fault status area.
 505 *
 506 * MMU related faults have their status and fault address information
 507 * placed into a memory region made available by privileged code.  Each
 508 * virtual processor must make a mmu_fault_area_conf() call to tell the
 509 * hypervisor where that processor's fault status should be stored.
 510 *
 511 * The fault status block is a multiple of 64-bytes and must be aligned
 512 * on a 64-byte boundary.
 513 */
 514#ifndef __ASSEMBLY__
 515struct hv_fault_status {
 516	unsigned long		i_fault_type;
 517	unsigned long		i_fault_addr;
 518	unsigned long		i_fault_ctx;
 519	unsigned long		i_reserved[5];
 520	unsigned long		d_fault_type;
 521	unsigned long		d_fault_addr;
 522	unsigned long		d_fault_ctx;
 523	unsigned long		d_reserved[5];
 524};
 525#endif
 526#define HV_FAULT_I_TYPE_OFFSET	0x00
 527#define HV_FAULT_I_ADDR_OFFSET	0x08
 528#define HV_FAULT_I_CTX_OFFSET	0x10
 529#define HV_FAULT_D_TYPE_OFFSET	0x40
 530#define HV_FAULT_D_ADDR_OFFSET	0x48
 531#define HV_FAULT_D_CTX_OFFSET	0x50
 532
 533#define HV_FAULT_TYPE_FAST_MISS	1
 534#define HV_FAULT_TYPE_FAST_PROT	2
 535#define HV_FAULT_TYPE_MMU_MISS	3
 536#define HV_FAULT_TYPE_INV_RA	4
 537#define HV_FAULT_TYPE_PRIV_VIOL	5
 538#define HV_FAULT_TYPE_PROT_VIOL	6
 539#define HV_FAULT_TYPE_NFO	7
 540#define HV_FAULT_TYPE_NFO_SEFF	8
 541#define HV_FAULT_TYPE_INV_VA	9
 542#define HV_FAULT_TYPE_INV_ASI	10
 543#define HV_FAULT_TYPE_NC_ATOMIC	11
 544#define HV_FAULT_TYPE_PRIV_ACT	12
 545#define HV_FAULT_TYPE_RESV1	13
 546#define HV_FAULT_TYPE_UNALIGNED	14
 547#define HV_FAULT_TYPE_INV_PGSZ	15
 
 
 548/* Values 16 --> -2 are reserved.  */
 549#define HV_FAULT_TYPE_MULTIPLE	-1
 550
 551/* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(),
 552 * and mmu_{map,unmap}_perm_addr().
 553 */
 554#define HV_MMU_DMMU			0x01
 555#define HV_MMU_IMMU			0x02
 556#define HV_MMU_ALL			(HV_MMU_DMMU | HV_MMU_IMMU)
 557
 558/* mmu_map_addr()
 559 * TRAP:	HV_MMU_MAP_ADDR_TRAP
 560 * ARG0:	virtual address
 561 * ARG1:	mmu context
 562 * ARG2:	TTE
 563 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
 564 * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
 565 *		EBADPGSZ	Invalid page size value
 566 *		ENORADDR	Invalid real address in TTE
 567 *
 568 * Create a non-permanent mapping using the given TTE, virtual
 569 * address, and mmu context.  The flags argument determines which
 570 * (data, or instruction, or both) TLB the mapping gets loaded into.
 571 *
 572 * The behavior is undefined if the valid bit is clear in the TTE.
 573 *
 574 * Note: This API call is for privileged code to specify temporary translation
 575 *       mappings without the need to create and manage a TSB.
 576 */
 577
 578/* mmu_unmap_addr()
 579 * TRAP:	HV_MMU_UNMAP_ADDR_TRAP
 580 * ARG0:	virtual address
 581 * ARG1:	mmu context
 582 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
 583 * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
 584 *
 585 * Demaps the given virtual address in the given mmu context on this
 586 * CPU.  This function is intended to be used to demap pages mapped
 587 * with mmu_map_addr.  This service is equivalent to invoking
 588 * mmu_demap_page() with only the current CPU in the CPU list. The
 589 * flags argument determines which (data, or instruction, or both) TLB
 590 * the mapping gets unmapped from.
 591 *
 592 * Attempting to perform an unmap operation for a previously defined
 593 * permanent mapping will have undefined results.
 594 */
 595
 596/* mmu_tsb_ctx0()
 597 * TRAP:	HV_FAST_TRAP
 598 * FUNCTION:	HV_FAST_MMU_TSB_CTX0
 599 * ARG0:	number of TSB descriptions
 600 * ARG1:	TSB descriptions pointer
 601 * RET0:	status
 602 * ERRORS:	ENORADDR		Invalid TSB descriptions pointer or
 603 *					TSB base within a descriptor
 604 *		EBADALIGN		TSB descriptions pointer is not aligned
 605 *					to an 8-byte boundary, or TSB base
 606 *					within a descriptor is not aligned for
 607 *					the given TSB size
 608 *		EBADPGSZ		Invalid page size in a TSB descriptor
 609 *		EBADTSB			Invalid associativity or size in a TSB
 610 *					descriptor
 611 *		EINVAL			Invalid number of TSB descriptions, or
 612 *					invalid context index in a TSB
 613 *					descriptor, or index page size not
 614 *					equal to smallest page size in page
 615 *					size bitmask field.
 616 *
 617 * Configures the TSBs for the current CPU for virtual addresses with
 618 * context zero.  The TSB descriptions pointer is a pointer to an
 619 * array of the given number of TSB descriptions.
 620 *
 621 * Note: The maximum number of TSBs available to a virtual CPU is given by the
 622 *       mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the
 623 *       machine description.
 624 */
 625#define HV_FAST_MMU_TSB_CTX0		0x20
 626
 627#ifndef __ASSEMBLY__
 628extern unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions,
 629					unsigned long tsb_desc_ra);
 630#endif
 631
 632/* mmu_tsb_ctxnon0()
 633 * TRAP:	HV_FAST_TRAP
 634 * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0
 635 * ARG0:	number of TSB descriptions
 636 * ARG1:	TSB descriptions pointer
 637 * RET0:	status
 638 * ERRORS:	Same as for mmu_tsb_ctx0() above.
 639 *
 640 * Configures the TSBs for the current CPU for virtual addresses with
 641 * non-zero contexts.  The TSB descriptions pointer is a pointer to an
 642 * array of the given number of TSB descriptions.
 643 *
 644 * Note: A maximum of 16 TSBs may be specified in the TSB description list.
 645 */
 646#define HV_FAST_MMU_TSB_CTXNON0		0x21
 647
 648/* mmu_demap_page()
 649 * TRAP:	HV_FAST_TRAP
 650 * FUNCTION:	HV_FAST_MMU_DEMAP_PAGE
 651 * ARG0:	reserved, must be zero
 652 * ARG1:	reserved, must be zero
 653 * ARG2:	virtual address
 654 * ARG3:	mmu context
 655 * ARG4:	flags (HV_MMU_{IMMU,DMMU})
 656 * RET0:	status
 657 * ERRORS:	EINVAL			Invalid virtual address, context, or
 658 *					flags value
 659 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
 660 *
 661 * Demaps any page mapping of the given virtual address in the given
 662 * mmu context for the current virtual CPU.  Any virtually tagged
 663 * caches are guaranteed to be kept consistent.  The flags argument
 664 * determines which TLB (instruction, or data, or both) participate in
 665 * the operation.
 666 *
 667 * ARG0 and ARG1 are both reserved and must be set to zero.
 668 */
 669#define HV_FAST_MMU_DEMAP_PAGE		0x22
 670
 671/* mmu_demap_ctx()
 672 * TRAP:	HV_FAST_TRAP
 673 * FUNCTION:	HV_FAST_MMU_DEMAP_CTX
 674 * ARG0:	reserved, must be zero
 675 * ARG1:	reserved, must be zero
 676 * ARG2:	mmu context
 677 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
 678 * RET0:	status
 679 * ERRORS:	EINVAL			Invalid context or flags value
 680 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
 681 *
 682 * Demaps all non-permanent virtual page mappings previously specified
 683 * for the given context for the current virtual CPU.  Any virtual
 684 * tagged caches are guaranteed to be kept consistent.  The flags
 685 * argument determines which TLB (instruction, or data, or both)
 686 * participate in the operation.
 687 *
 688 * ARG0 and ARG1 are both reserved and must be set to zero.
 689 */
 690#define HV_FAST_MMU_DEMAP_CTX		0x23
 691
 692/* mmu_demap_all()
 693 * TRAP:	HV_FAST_TRAP
 694 * FUNCTION:	HV_FAST_MMU_DEMAP_ALL
 695 * ARG0:	reserved, must be zero
 696 * ARG1:	reserved, must be zero
 697 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
 698 * RET0:	status
 699 * ERRORS:	EINVAL			Invalid flags value
 700 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
 701 *
 702 * Demaps all non-permanent virtual page mappings previously specified
 703 * for the current virtual CPU.  Any virtual tagged caches are
 704 * guaranteed to be kept consistent.  The flags argument determines
 705 * which TLB (instruction, or data, or both) participate in the
 706 * operation.
 707 *
 708 * ARG0 and ARG1 are both reserved and must be set to zero.
 709 */
 710#define HV_FAST_MMU_DEMAP_ALL		0x24
 711
 712#ifndef __ASSEMBLY__
 713extern void sun4v_mmu_demap_all(void);
 714#endif
 715
 716/* mmu_map_perm_addr()
 717 * TRAP:	HV_FAST_TRAP
 718 * FUNCTION:	HV_FAST_MMU_MAP_PERM_ADDR
 719 * ARG0:	virtual address
 720 * ARG1:	reserved, must be zero
 721 * ARG2:	TTE
 722 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
 723 * RET0:	status
 724 * ERRORS:	EINVAL			Invalid virtual address or flags value
 725 *		EBADPGSZ		Invalid page size value
 726 *		ENORADDR		Invalid real address in TTE
 727 *		ETOOMANY		Too many mappings (max of 8 reached)
 728 *
 729 * Create a permanent mapping using the given TTE and virtual address
 730 * for context 0 on the calling virtual CPU.  A maximum of 8 such
 731 * permanent mappings may be specified by privileged code.  Mappings
 732 * may be removed with mmu_unmap_perm_addr().
 733 *
 734 * The behavior is undefined if a TTE with the valid bit clear is given.
 735 *
 736 * Note: This call is used to specify address space mappings for which
 737 *       privileged code does not expect to receive misses.  For example,
 738 *       this mechanism can be used to map kernel nucleus code and data.
 739 */
 740#define HV_FAST_MMU_MAP_PERM_ADDR	0x25
 741
 742#ifndef __ASSEMBLY__
 743extern unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr,
 744					     unsigned long set_to_zero,
 745					     unsigned long tte,
 746					     unsigned long flags);
 747#endif
 748
 749/* mmu_fault_area_conf()
 750 * TRAP:	HV_FAST_TRAP
 751 * FUNCTION:	HV_FAST_MMU_FAULT_AREA_CONF
 752 * ARG0:	real address
 753 * RET0:	status
 754 * RET1:	previous mmu fault area real address
 755 * ERRORS:	ENORADDR		Invalid real address
 756 *		EBADALIGN		Invalid alignment for fault area
 757 *
 758 * Configure the MMU fault status area for the calling CPU.  A 64-byte
 759 * aligned real address specifies where MMU fault status information
 760 * is placed.  The return value is the previously specified area, or 0
 761 * for the first invocation.  Specifying a fault area at real address
 762 * 0 is not allowed.
 763 */
 764#define HV_FAST_MMU_FAULT_AREA_CONF	0x26
 765
 766/* mmu_enable()
 767 * TRAP:	HV_FAST_TRAP
 768 * FUNCTION:	HV_FAST_MMU_ENABLE
 769 * ARG0:	enable flag
 770 * ARG1:	return target address
 771 * RET0:	status
 772 * ERRORS:	ENORADDR		Invalid real address when disabling
 773 *					translation.
 774 *		EBADALIGN		The return target address is not
 775 *					aligned to an instruction.
 776 *		EINVAL			The enable flag request the current
 777 *					operating mode (e.g. disable if already
 778 *					disabled)
 779 *
 780 * Enable or disable virtual address translation for the calling CPU
 781 * within the virtual machine domain.  If the enable flag is zero,
 782 * translation is disabled, any non-zero value will enable
 783 * translation.
 784 *
 785 * When this function returns, the newly selected translation mode
 786 * will be active.  If the mmu is being enabled, then the return
 787 * target address is a virtual address else it is a real address.
 788 *
 789 * Upon successful completion, control will be returned to the given
 790 * return target address (ie. the cpu will jump to that address).  On
 791 * failure, the previous mmu mode remains and the trap simply returns
 792 * as normal with the appropriate error code in RET0.
 793 */
 794#define HV_FAST_MMU_ENABLE		0x27
 795
 796/* mmu_unmap_perm_addr()
 797 * TRAP:	HV_FAST_TRAP
 798 * FUNCTION:	HV_FAST_MMU_UNMAP_PERM_ADDR
 799 * ARG0:	virtual address
 800 * ARG1:	reserved, must be zero
 801 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
 802 * RET0:	status
 803 * ERRORS:	EINVAL			Invalid virtual address or flags value
 804 *		ENOMAP			Specified mapping was not found
 805 *
 806 * Demaps any permanent page mapping (established via
 807 * mmu_map_perm_addr()) at the given virtual address for context 0 on
 808 * the current virtual CPU.  Any virtual tagged caches are guaranteed
 809 * to be kept consistent.
 810 */
 811#define HV_FAST_MMU_UNMAP_PERM_ADDR	0x28
 812
 813/* mmu_tsb_ctx0_info()
 814 * TRAP:	HV_FAST_TRAP
 815 * FUNCTION:	HV_FAST_MMU_TSB_CTX0_INFO
 816 * ARG0:	max TSBs
 817 * ARG1:	buffer pointer
 818 * RET0:	status
 819 * RET1:	number of TSBs
 820 * ERRORS:	EINVAL			Supplied buffer is too small
 821 *		EBADALIGN		The buffer pointer is badly aligned
 822 *		ENORADDR		Invalid real address for buffer pointer
 823 *
 824 * Return the TSB configuration as previous defined by mmu_tsb_ctx0()
 825 * into the provided buffer.  The size of the buffer is given in ARG1
 826 * in terms of the number of TSB description entries.
 827 *
 828 * Upon return, RET1 always contains the number of TSB descriptions
 829 * previously configured.  If zero TSBs were configured, EOK is
 830 * returned with RET1 containing 0.
 831 */
 832#define HV_FAST_MMU_TSB_CTX0_INFO	0x29
 833
 834/* mmu_tsb_ctxnon0_info()
 835 * TRAP:	HV_FAST_TRAP
 836 * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0_INFO
 837 * ARG0:	max TSBs
 838 * ARG1:	buffer pointer
 839 * RET0:	status
 840 * RET1:	number of TSBs
 841 * ERRORS:	EINVAL			Supplied buffer is too small
 842 *		EBADALIGN		The buffer pointer is badly aligned
 843 *		ENORADDR		Invalid real address for buffer pointer
 844 *
 845 * Return the TSB configuration as previous defined by
 846 * mmu_tsb_ctxnon0() into the provided buffer.  The size of the buffer
 847 * is given in ARG1 in terms of the number of TSB description entries.
 848 *
 849 * Upon return, RET1 always contains the number of TSB descriptions
 850 * previously configured.  If zero TSBs were configured, EOK is
 851 * returned with RET1 containing 0.
 852 */
 853#define HV_FAST_MMU_TSB_CTXNON0_INFO	0x2a
 854
 855/* mmu_fault_area_info()
 856 * TRAP:	HV_FAST_TRAP
 857 * FUNCTION:	HV_FAST_MMU_FAULT_AREA_INFO
 858 * RET0:	status
 859 * RET1:	fault area real address
 860 * ERRORS:	No errors defined.
 861 *
 862 * Return the currently defined MMU fault status area for the current
 863 * CPU.  The real address of the fault status area is returned in
 864 * RET1, or 0 is returned in RET1 if no fault status area is defined.
 865 *
 866 * Note: mmu_fault_area_conf() may be called with the return value (RET1)
 867 *       from this service if there is a need to save and restore the fault
 868 *	 area for a cpu.
 869 */
 870#define HV_FAST_MMU_FAULT_AREA_INFO	0x2b
 871
 872/* Cache and Memory services. */
 873
 874/* mem_scrub()
 875 * TRAP:	HV_FAST_TRAP
 876 * FUNCTION:	HV_FAST_MEM_SCRUB
 877 * ARG0:	real address
 878 * ARG1:	length
 879 * RET0:	status
 880 * RET1:	length scrubbed
 881 * ERRORS:	ENORADDR	Invalid real address
 882 *		EBADALIGN	Start address or length are not correctly
 883 *				aligned
 884 *		EINVAL		Length is zero
 885 *
 886 * Zero the memory contents in the range real address to real address
 887 * plus length minus 1.  Also, valid ECC will be generated for that
 888 * memory address range.  Scrubbing is started at the given real
 889 * address, but may not scrub the entire given length.  The actual
 890 * length scrubbed will be returned in RET1.
 891 *
 892 * The real address and length must be aligned on an 8K boundary, or
 893 * contain the start address and length from a sun4v error report.
 894 *
 895 * Note: There are two uses for this function.  The first use is to block clear
 896 *       and initialize memory and the second is to scrub an u ncorrectable
 897 *       error reported via a resumable or non-resumable trap.  The second
 898 *       use requires the arguments to be equal to the real address and length
 899 *       provided in a sun4v memory error report.
 900 */
 901#define HV_FAST_MEM_SCRUB		0x31
 902
 903/* mem_sync()
 904 * TRAP:	HV_FAST_TRAP
 905 * FUNCTION:	HV_FAST_MEM_SYNC
 906 * ARG0:	real address
 907 * ARG1:	length
 908 * RET0:	status
 909 * RET1:	length synced
 910 * ERRORS:	ENORADDR	Invalid real address
 911 *		EBADALIGN	Start address or length are not correctly
 912 *				aligned
 913 *		EINVAL		Length is zero
 914 *
 915 * Force the next access within the real address to real address plus
 916 * length minus 1 to be fetches from main system memory.  Less than
 917 * the given length may be synced, the actual amount synced is
 918 * returned in RET1.  The real address and length must be aligned on
 919 * an 8K boundary.
 920 */
 921#define HV_FAST_MEM_SYNC		0x32
 922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923/* Time of day services.
 924 *
 925 * The hypervisor maintains the time of day on a per-domain basis.
 926 * Changing the time of day in one domain does not affect the time of
 927 * day on any other domain.
 928 *
 929 * Time is described by a single unsigned 64-bit word which is the
 930 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1,
 931 * 1970).
 932 */
 933
 934/* tod_get()
 935 * TRAP:	HV_FAST_TRAP
 936 * FUNCTION:	HV_FAST_TOD_GET
 937 * RET0:	status
 938 * RET1:	TOD
 939 * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
 940 *		ENOTSUPPORTED	If TOD not supported on this platform
 941 *
 942 * Return the current time of day.  May block if TOD access is
 943 * temporarily not possible.
 944 */
 945#define HV_FAST_TOD_GET			0x50
 946
 947#ifndef __ASSEMBLY__
 948extern unsigned long sun4v_tod_get(unsigned long *time);
 949#endif
 950
 951/* tod_set()
 952 * TRAP:	HV_FAST_TRAP
 953 * FUNCTION:	HV_FAST_TOD_SET
 954 * ARG0:	TOD
 955 * RET0:	status
 956 * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
 957 *		ENOTSUPPORTED	If TOD not supported on this platform
 958 *
 959 * The current time of day is set to the value specified in ARG0.  May
 960 * block if TOD access is temporarily not possible.
 961 */
 962#define HV_FAST_TOD_SET			0x51
 963
 964#ifndef __ASSEMBLY__
 965extern unsigned long sun4v_tod_set(unsigned long time);
 966#endif
 967
 968/* Console services */
 969
 970/* con_getchar()
 971 * TRAP:	HV_FAST_TRAP
 972 * FUNCTION:	HV_FAST_CONS_GETCHAR
 973 * RET0:	status
 974 * RET1:	character
 975 * ERRORS:	EWOULDBLOCK	No character available.
 976 *
 977 * Returns a character from the console device.  If no character is
 978 * available then an EWOULDBLOCK error is returned.  If a character is
 979 * available, then the returned status is EOK and the character value
 980 * is in RET1.
 981 *
 982 * A virtual BREAK is represented by the 64-bit value -1.
 983 *
 984 * A virtual HUP signal is represented by the 64-bit value -2.
 985 */
 986#define HV_FAST_CONS_GETCHAR		0x60
 987
 988/* con_putchar()
 989 * TRAP:	HV_FAST_TRAP
 990 * FUNCTION:	HV_FAST_CONS_PUTCHAR
 991 * ARG0:	character
 992 * RET0:	status
 993 * ERRORS:	EINVAL		Illegal character
 994 *		EWOULDBLOCK	Output buffer currently full, would block
 995 *
 996 * Send a character to the console device.  Only character values
 997 * between 0 and 255 may be used.  Values outside this range are
 998 * invalid except for the 64-bit value -1 which is used to send a
 999 * virtual BREAK.
1000 */
1001#define HV_FAST_CONS_PUTCHAR		0x61
1002
1003/* con_read()
1004 * TRAP:	HV_FAST_TRAP
1005 * FUNCTION:	HV_FAST_CONS_READ
1006 * ARG0:	buffer real address
1007 * ARG1:	buffer size in bytes
1008 * RET0:	status
1009 * RET1:	bytes read or BREAK or HUP
1010 * ERRORS:	EWOULDBLOCK	No character available.
1011 *
1012 * Reads characters into a buffer from the console device.  If no
1013 * character is available then an EWOULDBLOCK error is returned.
1014 * If a character is available, then the returned status is EOK
1015 * and the number of bytes read into the given buffer is provided
1016 * in RET1.
1017 *
1018 * A virtual BREAK is represented by the 64-bit RET1 value -1.
1019 *
1020 * A virtual HUP signal is represented by the 64-bit RET1 value -2.
1021 *
1022 * If BREAK or HUP are indicated, no bytes were read into buffer.
1023 */
1024#define HV_FAST_CONS_READ		0x62
1025
1026/* con_write()
1027 * TRAP:	HV_FAST_TRAP
1028 * FUNCTION:	HV_FAST_CONS_WRITE
1029 * ARG0:	buffer real address
1030 * ARG1:	buffer size in bytes
1031 * RET0:	status
1032 * RET1:	bytes written
1033 * ERRORS:	EWOULDBLOCK	Output buffer currently full, would block
1034 *
1035 * Send a characters in buffer to the console device.  Breaks must be
1036 * sent using con_putchar().
1037 */
1038#define HV_FAST_CONS_WRITE		0x63
1039
1040#ifndef __ASSEMBLY__
1041extern long sun4v_con_getchar(long *status);
1042extern long sun4v_con_putchar(long c);
1043extern long sun4v_con_read(unsigned long buffer,
1044			   unsigned long size,
1045			   unsigned long *bytes_read);
1046extern unsigned long sun4v_con_write(unsigned long buffer,
1047				     unsigned long size,
1048				     unsigned long *bytes_written);
1049#endif
1050
1051/* mach_set_soft_state()
1052 * TRAP:	HV_FAST_TRAP
1053 * FUNCTION:	HV_FAST_MACH_SET_SOFT_STATE
1054 * ARG0:	software state
1055 * ARG1:	software state description pointer
1056 * RET0:	status
1057 * ERRORS:	EINVAL		software state not valid or software state
1058 *				description is not NULL terminated
1059 *		ENORADDR	software state description pointer is not a
1060 *				valid real address
1061 *		EBADALIGNED	software state description is not correctly
1062 *				aligned
1063 *
1064 * This allows the guest to report it's soft state to the hypervisor.  There
1065 * are two primary components to this state.  The first part states whether
1066 * the guest software is running or not.  The second containts optional
1067 * details specific to the software.
1068 *
1069 * The software state argument is defined below in HV_SOFT_STATE_*, and
1070 * indicates whether the guest is operating normally or in a transitional
1071 * state.
1072 *
1073 * The software state description argument is a real address of a data buffer
1074 * of size 32-bytes aligned on a 32-byte boundary.  It is treated as a NULL
1075 * terminated 7-bit ASCII string of up to 31 characters not including the
1076 * NULL termination.
1077 */
1078#define HV_FAST_MACH_SET_SOFT_STATE	0x70
1079#define  HV_SOFT_STATE_NORMAL		 0x01
1080#define  HV_SOFT_STATE_TRANSITION	 0x02
1081
1082#ifndef __ASSEMBLY__
1083extern unsigned long sun4v_mach_set_soft_state(unsigned long soft_state,
1084					       unsigned long msg_string_ra);
1085#endif
1086
1087/* mach_get_soft_state()
1088 * TRAP:	HV_FAST_TRAP
1089 * FUNCTION:	HV_FAST_MACH_GET_SOFT_STATE
1090 * ARG0:	software state description pointer
1091 * RET0:	status
1092 * RET1:	software state
1093 * ERRORS:	ENORADDR	software state description pointer is not a
1094 *				valid real address
1095 *		EBADALIGNED	software state description is not correctly
1096 *				aligned
1097 *
1098 * Retrieve the current value of the guest's software state.  The rules
1099 * for the software state pointer are the same as for mach_set_soft_state()
1100 * above.
1101 */
1102#define HV_FAST_MACH_GET_SOFT_STATE	0x71
1103
1104/* svc_send()
1105 * TRAP:	HV_FAST_TRAP
1106 * FUNCTION:	HV_FAST_SVC_SEND
1107 * ARG0:	service ID
1108 * ARG1:	buffer real address
1109 * ARG2:	buffer size
1110 * RET0:	STATUS
1111 * RET1:	sent_bytes
1112 *
1113 * Be careful, all output registers are clobbered by this operation,
1114 * so for example it is not possible to save away a value in %o4
1115 * across the trap.
1116 */
1117#define HV_FAST_SVC_SEND		0x80
1118
1119/* svc_recv()
1120 * TRAP:	HV_FAST_TRAP
1121 * FUNCTION:	HV_FAST_SVC_RECV
1122 * ARG0:	service ID
1123 * ARG1:	buffer real address
1124 * ARG2:	buffer size
1125 * RET0:	STATUS
1126 * RET1:	recv_bytes
1127 *
1128 * Be careful, all output registers are clobbered by this operation,
1129 * so for example it is not possible to save away a value in %o4
1130 * across the trap.
1131 */
1132#define HV_FAST_SVC_RECV		0x81
1133
1134/* svc_getstatus()
1135 * TRAP:	HV_FAST_TRAP
1136 * FUNCTION:	HV_FAST_SVC_GETSTATUS
1137 * ARG0:	service ID
1138 * RET0:	STATUS
1139 * RET1:	status bits
1140 */
1141#define HV_FAST_SVC_GETSTATUS		0x82
1142
1143/* svc_setstatus()
1144 * TRAP:	HV_FAST_TRAP
1145 * FUNCTION:	HV_FAST_SVC_SETSTATUS
1146 * ARG0:	service ID
1147 * ARG1:	bits to set
1148 * RET0:	STATUS
1149 */
1150#define HV_FAST_SVC_SETSTATUS		0x83
1151
1152/* svc_clrstatus()
1153 * TRAP:	HV_FAST_TRAP
1154 * FUNCTION:	HV_FAST_SVC_CLRSTATUS
1155 * ARG0:	service ID
1156 * ARG1:	bits to clear
1157 * RET0:	STATUS
1158 */
1159#define HV_FAST_SVC_CLRSTATUS		0x84
1160
1161#ifndef __ASSEMBLY__
1162extern unsigned long sun4v_svc_send(unsigned long svc_id,
1163				    unsigned long buffer,
1164				    unsigned long buffer_size,
1165				    unsigned long *sent_bytes);
1166extern unsigned long sun4v_svc_recv(unsigned long svc_id,
1167				    unsigned long buffer,
1168				    unsigned long buffer_size,
1169				    unsigned long *recv_bytes);
1170extern unsigned long sun4v_svc_getstatus(unsigned long svc_id,
1171					 unsigned long *status_bits);
1172extern unsigned long sun4v_svc_setstatus(unsigned long svc_id,
1173					 unsigned long status_bits);
1174extern unsigned long sun4v_svc_clrstatus(unsigned long svc_id,
1175					 unsigned long status_bits);
1176#endif
1177
1178/* Trap trace services.
1179 *
1180 * The hypervisor provides a trap tracing capability for privileged
1181 * code running on each virtual CPU.  Privileged code provides a
1182 * round-robin trap trace queue within which the hypervisor writes
1183 * 64-byte entries detailing hyperprivileged traps taken n behalf of
1184 * privileged code.  This is provided as a debugging capability for
1185 * privileged code.
1186 *
1187 * The trap trace control structure is 64-bytes long and placed at the
1188 * start (offset 0) of the trap trace buffer, and is described as
1189 * follows:
1190 */
1191#ifndef __ASSEMBLY__
1192struct hv_trap_trace_control {
1193	unsigned long		head_offset;
1194	unsigned long		tail_offset;
1195	unsigned long		__reserved[0x30 / sizeof(unsigned long)];
1196};
1197#endif
1198#define HV_TRAP_TRACE_CTRL_HEAD_OFFSET	0x00
1199#define HV_TRAP_TRACE_CTRL_TAIL_OFFSET	0x08
1200
1201/* The head offset is the offset of the most recently completed entry
1202 * in the trap-trace buffer.  The tail offset is the offset of the
1203 * next entry to be written.  The control structure is owned and
1204 * modified by the hypervisor.  A guest may not modify the control
1205 * structure contents.  Attempts to do so will result in undefined
1206 * behavior for the guest.
1207 *
1208 * Each trap trace buffer entry is laid out as follows:
1209 */
1210#ifndef __ASSEMBLY__
1211struct hv_trap_trace_entry {
1212	unsigned char	type;		/* Hypervisor or guest entry?	*/
1213	unsigned char	hpstate;	/* Hyper-privileged state	*/
1214	unsigned char	tl;		/* Trap level			*/
1215	unsigned char	gl;		/* Global register level	*/
1216	unsigned short	tt;		/* Trap type			*/
1217	unsigned short	tag;		/* Extended trap identifier	*/
1218	unsigned long	tstate;		/* Trap state			*/
1219	unsigned long	tick;		/* Tick				*/
1220	unsigned long	tpc;		/* Trap PC			*/
1221	unsigned long	f1;		/* Entry specific		*/
1222	unsigned long	f2;		/* Entry specific		*/
1223	unsigned long	f3;		/* Entry specific		*/
1224	unsigned long	f4;		/* Entry specific		*/
1225};
1226#endif
1227#define HV_TRAP_TRACE_ENTRY_TYPE	0x00
1228#define HV_TRAP_TRACE_ENTRY_HPSTATE	0x01
1229#define HV_TRAP_TRACE_ENTRY_TL		0x02
1230#define HV_TRAP_TRACE_ENTRY_GL		0x03
1231#define HV_TRAP_TRACE_ENTRY_TT		0x04
1232#define HV_TRAP_TRACE_ENTRY_TAG		0x06
1233#define HV_TRAP_TRACE_ENTRY_TSTATE	0x08
1234#define HV_TRAP_TRACE_ENTRY_TICK	0x10
1235#define HV_TRAP_TRACE_ENTRY_TPC		0x18
1236#define HV_TRAP_TRACE_ENTRY_F1		0x20
1237#define HV_TRAP_TRACE_ENTRY_F2		0x28
1238#define HV_TRAP_TRACE_ENTRY_F3		0x30
1239#define HV_TRAP_TRACE_ENTRY_F4		0x38
1240
1241/* The type field is encoded as follows.  */
1242#define HV_TRAP_TYPE_UNDEF		0x00 /* Entry content undefined     */
1243#define HV_TRAP_TYPE_HV			0x01 /* Hypervisor trap entry       */
1244#define HV_TRAP_TYPE_GUEST		0xff /* Added via ttrace_addentry() */
1245
1246/* ttrace_buf_conf()
1247 * TRAP:	HV_FAST_TRAP
1248 * FUNCTION:	HV_FAST_TTRACE_BUF_CONF
1249 * ARG0:	real address
1250 * ARG1:	number of entries
1251 * RET0:	status
1252 * RET1:	number of entries
1253 * ERRORS:	ENORADDR	Invalid real address
1254 *		EINVAL		Size is too small
1255 *		EBADALIGN	Real address not aligned on 64-byte boundary
1256 *
1257 * Requests hypervisor trap tracing and declares a virtual CPU's trap
1258 * trace buffer to the hypervisor.  The real address supplies the real
1259 * base address of the trap trace queue and must be 64-byte aligned.
1260 * Specifying a value of 0 for the number of entries disables trap
1261 * tracing for the calling virtual CPU.  The buffer allocated must be
1262 * sized for a power of two number of 64-byte trap trace entries plus
1263 * an initial 64-byte control structure.
1264 *
1265 * This may be invoked any number of times so that a virtual CPU may
1266 * relocate a trap trace buffer or create "snapshots" of information.
1267 *
1268 * If the real address is illegal or badly aligned, then trap tracing
1269 * is disabled and an error is returned.
1270 *
1271 * Upon failure with EINVAL, this service call returns in RET1 the
1272 * minimum number of buffer entries required.  Upon other failures
1273 * RET1 is undefined.
1274 */
1275#define HV_FAST_TTRACE_BUF_CONF		0x90
1276
1277/* ttrace_buf_info()
1278 * TRAP:	HV_FAST_TRAP
1279 * FUNCTION:	HV_FAST_TTRACE_BUF_INFO
1280 * RET0:	status
1281 * RET1:	real address
1282 * RET2:	size
1283 * ERRORS:	None defined.
1284 *
1285 * Returns the size and location of the previously declared trap-trace
1286 * buffer.  In the event that no buffer was previously defined, or the
1287 * buffer is disabled, this call will return a size of zero bytes.
1288 */
1289#define HV_FAST_TTRACE_BUF_INFO		0x91
1290
1291/* ttrace_enable()
1292 * TRAP:	HV_FAST_TRAP
1293 * FUNCTION:	HV_FAST_TTRACE_ENABLE
1294 * ARG0:	enable
1295 * RET0:	status
1296 * RET1:	previous enable state
1297 * ERRORS:	EINVAL		No trap trace buffer currently defined
1298 *
1299 * Enable or disable trap tracing, and return the previous enabled
1300 * state in RET1.  Future systems may define various flags for the
1301 * enable argument (ARG0), for the moment a guest should pass
1302 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all
1303 * tracing - which will ensure future compatibility.
1304 */
1305#define HV_FAST_TTRACE_ENABLE		0x92
1306
1307/* ttrace_freeze()
1308 * TRAP:	HV_FAST_TRAP
1309 * FUNCTION:	HV_FAST_TTRACE_FREEZE
1310 * ARG0:	freeze
1311 * RET0:	status
1312 * RET1:	previous freeze state
1313 * ERRORS:	EINVAL		No trap trace buffer currently defined
1314 *
1315 * Freeze or unfreeze trap tracing, returning the previous freeze
1316 * state in RET1.  A guest should pass a non-zero value to freeze and
1317 * a zero value to unfreeze all tracing.  The returned previous state
1318 * is 0 for not frozen and 1 for frozen.
1319 */
1320#define HV_FAST_TTRACE_FREEZE		0x93
1321
1322/* ttrace_addentry()
1323 * TRAP:	HV_TTRACE_ADDENTRY_TRAP
1324 * ARG0:	tag (16-bits)
1325 * ARG1:	data word 0
1326 * ARG2:	data word 1
1327 * ARG3:	data word 2
1328 * ARG4:	data word 3
1329 * RET0:	status
1330 * ERRORS:	EINVAL		No trap trace buffer currently defined
1331 *
1332 * Add an entry to the trap trace buffer.  Upon return only ARG0/RET0
1333 * is modified - none of the other registers holding arguments are
1334 * volatile across this hypervisor service.
1335 */
1336
1337/* Core dump services.
1338 *
1339 * Since the hypervisor viraulizes and thus obscures a lot of the
1340 * physical machine layout and state, traditional OS crash dumps can
1341 * be difficult to diagnose especially when the problem is a
1342 * configuration error of some sort.
1343 *
1344 * The dump services provide an opaque buffer into which the
1345 * hypervisor can place it's internal state in order to assist in
1346 * debugging such situations.  The contents are opaque and extremely
1347 * platform and hypervisor implementation specific.  The guest, during
1348 * a core dump, requests that the hypervisor update any information in
1349 * the dump buffer in preparation to being dumped as part of the
1350 * domain's memory image.
1351 */
1352
1353/* dump_buf_update()
1354 * TRAP:	HV_FAST_TRAP
1355 * FUNCTION:	HV_FAST_DUMP_BUF_UPDATE
1356 * ARG0:	real address
1357 * ARG1:	size
1358 * RET0:	status
1359 * RET1:	required size of dump buffer
1360 * ERRORS:	ENORADDR	Invalid real address
1361 *		EBADALIGN	Real address is not aligned on a 64-byte
1362 *				boundary
1363 *		EINVAL		Size is non-zero but less than minimum size
1364 *				required
1365 *		ENOTSUPPORTED	Operation not supported on current logical
1366 *				domain
1367 *
1368 * Declare a domain dump buffer to the hypervisor.  The real address
1369 * provided for the domain dump buffer must be 64-byte aligned.  The
1370 * size specifies the size of the dump buffer and may be larger than
1371 * the minimum size specified in the machine description.  The
1372 * hypervisor will fill the dump buffer with opaque data.
1373 *
1374 * Note: A guest may elect to include dump buffer contents as part of a crash
1375 *       dump to assist with debugging.  This function may be called any number
1376 *       of times so that a guest may relocate a dump buffer, or create
1377 *       "snapshots" of any dump-buffer information.  Each call to
1378 *       dump_buf_update() atomically declares the new dump buffer to the
1379 *       hypervisor.
1380 *
1381 * A specified size of 0 unconfigures the dump buffer.  If the real
1382 * address is illegal or badly aligned, then any currently active dump
1383 * buffer is disabled and an error is returned.
1384 *
1385 * In the event that the call fails with EINVAL, RET1 contains the
1386 * minimum size requires by the hypervisor for a valid dump buffer.
1387 */
1388#define HV_FAST_DUMP_BUF_UPDATE		0x94
1389
1390/* dump_buf_info()
1391 * TRAP:	HV_FAST_TRAP
1392 * FUNCTION:	HV_FAST_DUMP_BUF_INFO
1393 * RET0:	status
1394 * RET1:	real address of current dump buffer
1395 * RET2:	size of current dump buffer
1396 * ERRORS:	No errors defined.
1397 *
1398 * Return the currently configures dump buffer description.  A
1399 * returned size of 0 bytes indicates an undefined dump buffer.  In
1400 * this case the return address in RET1 is undefined.
1401 */
1402#define HV_FAST_DUMP_BUF_INFO		0x95
1403
1404/* Device interrupt services.
1405 *
1406 * Device interrupts are allocated to system bus bridges by the hypervisor,
1407 * and described to OBP in the machine description.  OBP then describes
1408 * these interrupts to the OS via properties in the device tree.
1409 *
1410 * Terminology:
1411 *
1412 *	cpuid		Unique opaque value which represents a target cpu.
1413 *
1414 *	devhandle	Device handle.  It uniquely identifies a device, and
1415 *			consistes of the lower 28-bits of the hi-cell of the
1416 *			first entry of the device's "reg" property in the
1417 *			OBP device tree.
1418 *
1419 *	devino		Device interrupt number.  Specifies the relative
1420 *			interrupt number within the device.  The unique
1421 *			combination of devhandle and devino are used to
1422 *			identify a specific device interrupt.
1423 *
1424 *			Note: The devino value is the same as the values in the
1425 *			      "interrupts" property or "interrupt-map" property
1426 *			      in the OBP device tree for that device.
1427 *
1428 *	sysino		System interrupt number.  A 64-bit unsigned interger
1429 *			representing a unique interrupt within a virtual
1430 *			machine.
1431 *
1432 *	intr_state	A flag representing the interrupt state for a given
1433 *			sysino.  The state values are defined below.
1434 *
1435 *	intr_enabled	A flag representing the 'enabled' state for a given
1436 *			sysino.  The enable values are defined below.
1437 */
1438
1439#define HV_INTR_STATE_IDLE		0 /* Nothing pending */
1440#define HV_INTR_STATE_RECEIVED		1 /* Interrupt received by hardware */
1441#define HV_INTR_STATE_DELIVERED		2 /* Interrupt delivered to queue */
1442
1443#define HV_INTR_DISABLED		0 /* sysino not enabled */
1444#define HV_INTR_ENABLED			1 /* sysino enabled */
1445
1446/* intr_devino_to_sysino()
1447 * TRAP:	HV_FAST_TRAP
1448 * FUNCTION:	HV_FAST_INTR_DEVINO2SYSINO
1449 * ARG0:	devhandle
1450 * ARG1:	devino
1451 * RET0:	status
1452 * RET1:	sysino
1453 * ERRORS:	EINVAL		Invalid devhandle/devino
1454 *
1455 * Converts a device specific interrupt number of the given
1456 * devhandle/devino into a system specific ino (sysino).
1457 */
1458#define HV_FAST_INTR_DEVINO2SYSINO	0xa0
1459
1460#ifndef __ASSEMBLY__
1461extern unsigned long sun4v_devino_to_sysino(unsigned long devhandle,
1462					    unsigned long devino);
1463#endif
1464
1465/* intr_getenabled()
1466 * TRAP:	HV_FAST_TRAP
1467 * FUNCTION:	HV_FAST_INTR_GETENABLED
1468 * ARG0:	sysino
1469 * RET0:	status
1470 * RET1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1471 * ERRORS:	EINVAL		Invalid sysino
1472 *
1473 * Returns interrupt enabled state in RET1 for the interrupt defined
1474 * by the given sysino.
1475 */
1476#define HV_FAST_INTR_GETENABLED		0xa1
1477
1478#ifndef __ASSEMBLY__
1479extern unsigned long sun4v_intr_getenabled(unsigned long sysino);
1480#endif
1481
1482/* intr_setenabled()
1483 * TRAP:	HV_FAST_TRAP
1484 * FUNCTION:	HV_FAST_INTR_SETENABLED
1485 * ARG0:	sysino
1486 * ARG1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1487 * RET0:	status
1488 * ERRORS:	EINVAL		Invalid sysino or intr_enabled value
1489 *
1490 * Set the 'enabled' state of the interrupt sysino.
1491 */
1492#define HV_FAST_INTR_SETENABLED		0xa2
1493
1494#ifndef __ASSEMBLY__
1495extern unsigned long sun4v_intr_setenabled(unsigned long sysino, unsigned long intr_enabled);
 
1496#endif
1497
1498/* intr_getstate()
1499 * TRAP:	HV_FAST_TRAP
1500 * FUNCTION:	HV_FAST_INTR_GETSTATE
1501 * ARG0:	sysino
1502 * RET0:	status
1503 * RET1:	intr_state (HV_INTR_STATE_*)
1504 * ERRORS:	EINVAL		Invalid sysino
1505 *
1506 * Returns current state of the interrupt defined by the given sysino.
1507 */
1508#define HV_FAST_INTR_GETSTATE		0xa3
1509
1510#ifndef __ASSEMBLY__
1511extern unsigned long sun4v_intr_getstate(unsigned long sysino);
1512#endif
1513
1514/* intr_setstate()
1515 * TRAP:	HV_FAST_TRAP
1516 * FUNCTION:	HV_FAST_INTR_SETSTATE
1517 * ARG0:	sysino
1518 * ARG1:	intr_state (HV_INTR_STATE_*)
1519 * RET0:	status
1520 * ERRORS:	EINVAL		Invalid sysino or intr_state value
1521 *
1522 * Sets the current state of the interrupt described by the given sysino
1523 * value.
1524 *
1525 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending
1526 *       interrupt for sysino.
1527 */
1528#define HV_FAST_INTR_SETSTATE		0xa4
1529
1530#ifndef __ASSEMBLY__
1531extern unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state);
1532#endif
1533
1534/* intr_gettarget()
1535 * TRAP:	HV_FAST_TRAP
1536 * FUNCTION:	HV_FAST_INTR_GETTARGET
1537 * ARG0:	sysino
1538 * RET0:	status
1539 * RET1:	cpuid
1540 * ERRORS:	EINVAL		Invalid sysino
1541 *
1542 * Returns CPU that is the current target of the interrupt defined by
1543 * the given sysino.  The CPU value returned is undefined if the target
1544 * has not been set via intr_settarget().
1545 */
1546#define HV_FAST_INTR_GETTARGET		0xa5
1547
1548#ifndef __ASSEMBLY__
1549extern unsigned long sun4v_intr_gettarget(unsigned long sysino);
1550#endif
1551
1552/* intr_settarget()
1553 * TRAP:	HV_FAST_TRAP
1554 * FUNCTION:	HV_FAST_INTR_SETTARGET
1555 * ARG0:	sysino
1556 * ARG1:	cpuid
1557 * RET0:	status
1558 * ERRORS:	EINVAL		Invalid sysino
1559 *		ENOCPU		Invalid cpuid
1560 *
1561 * Set the target CPU for the interrupt defined by the given sysino.
1562 */
1563#define HV_FAST_INTR_SETTARGET		0xa6
1564
1565#ifndef __ASSEMBLY__
1566extern unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid);
1567#endif
1568
1569/* vintr_get_cookie()
1570 * TRAP:	HV_FAST_TRAP
1571 * FUNCTION:	HV_FAST_VINTR_GET_COOKIE
1572 * ARG0:	device handle
1573 * ARG1:	device ino
1574 * RET0:	status
1575 * RET1:	cookie
1576 */
1577#define HV_FAST_VINTR_GET_COOKIE	0xa7
1578
1579/* vintr_set_cookie()
1580 * TRAP:	HV_FAST_TRAP
1581 * FUNCTION:	HV_FAST_VINTR_SET_COOKIE
1582 * ARG0:	device handle
1583 * ARG1:	device ino
1584 * ARG2:	cookie
1585 * RET0:	status
1586 */
1587#define HV_FAST_VINTR_SET_COOKIE	0xa8
1588
1589/* vintr_get_valid()
1590 * TRAP:	HV_FAST_TRAP
1591 * FUNCTION:	HV_FAST_VINTR_GET_VALID
1592 * ARG0:	device handle
1593 * ARG1:	device ino
1594 * RET0:	status
1595 * RET1:	valid state
1596 */
1597#define HV_FAST_VINTR_GET_VALID		0xa9
1598
1599/* vintr_set_valid()
1600 * TRAP:	HV_FAST_TRAP
1601 * FUNCTION:	HV_FAST_VINTR_SET_VALID
1602 * ARG0:	device handle
1603 * ARG1:	device ino
1604 * ARG2:	valid state
1605 * RET0:	status
1606 */
1607#define HV_FAST_VINTR_SET_VALID		0xaa
1608
1609/* vintr_get_state()
1610 * TRAP:	HV_FAST_TRAP
1611 * FUNCTION:	HV_FAST_VINTR_GET_STATE
1612 * ARG0:	device handle
1613 * ARG1:	device ino
1614 * RET0:	status
1615 * RET1:	state
1616 */
1617#define HV_FAST_VINTR_GET_STATE		0xab
1618
1619/* vintr_set_state()
1620 * TRAP:	HV_FAST_TRAP
1621 * FUNCTION:	HV_FAST_VINTR_SET_STATE
1622 * ARG0:	device handle
1623 * ARG1:	device ino
1624 * ARG2:	state
1625 * RET0:	status
1626 */
1627#define HV_FAST_VINTR_SET_STATE		0xac
1628
1629/* vintr_get_target()
1630 * TRAP:	HV_FAST_TRAP
1631 * FUNCTION:	HV_FAST_VINTR_GET_TARGET
1632 * ARG0:	device handle
1633 * ARG1:	device ino
1634 * RET0:	status
1635 * RET1:	cpuid
1636 */
1637#define HV_FAST_VINTR_GET_TARGET	0xad
1638
1639/* vintr_set_target()
1640 * TRAP:	HV_FAST_TRAP
1641 * FUNCTION:	HV_FAST_VINTR_SET_TARGET
1642 * ARG0:	device handle
1643 * ARG1:	device ino
1644 * ARG2:	cpuid
1645 * RET0:	status
1646 */
1647#define HV_FAST_VINTR_SET_TARGET	0xae
1648
1649#ifndef __ASSEMBLY__
1650extern unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle,
1651					    unsigned long dev_ino,
1652					    unsigned long *cookie);
1653extern unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle,
1654					    unsigned long dev_ino,
1655					    unsigned long cookie);
1656extern unsigned long sun4v_vintr_get_valid(unsigned long dev_handle,
1657					   unsigned long dev_ino,
1658					   unsigned long *valid);
1659extern unsigned long sun4v_vintr_set_valid(unsigned long dev_handle,
1660					   unsigned long dev_ino,
1661					   unsigned long valid);
1662extern unsigned long sun4v_vintr_get_state(unsigned long dev_handle,
1663					   unsigned long dev_ino,
1664					   unsigned long *state);
1665extern unsigned long sun4v_vintr_set_state(unsigned long dev_handle,
1666					   unsigned long dev_ino,
1667					   unsigned long state);
1668extern unsigned long sun4v_vintr_get_target(unsigned long dev_handle,
1669					    unsigned long dev_ino,
1670					    unsigned long *cpuid);
1671extern unsigned long sun4v_vintr_set_target(unsigned long dev_handle,
1672					    unsigned long dev_ino,
1673					    unsigned long cpuid);
1674#endif
1675
1676/* PCI IO services.
1677 *
1678 * See the terminology descriptions in the device interrupt services
1679 * section above as those apply here too.  Here are terminology
1680 * definitions specific to these PCI IO services:
1681 *
1682 *	tsbnum		TSB number.  Indentifies which io-tsb is used.
1683 *			For this version of the specification, tsbnum
1684 *			must be zero.
1685 *
1686 *	tsbindex	TSB index.  Identifies which entry in the TSB
1687 *			is used.  The first entry is zero.
1688 *
1689 *	tsbid		A 64-bit aligned data structure which contains
1690 *			a tsbnum and a tsbindex.  Bits 63:32 contain the
1691 *			tsbnum and bits 31:00 contain the tsbindex.
1692 *
1693 *			Use the HV_PCI_TSBID() macro to construct such
1694 * 			values.
1695 *
1696 *	io_attributes	IO attributes for IOMMU mappings.  One of more
1697 *			of the attritbute bits are stores in a 64-bit
1698 *			value.  The values are defined below.
1699 *
1700 *	r_addr		64-bit real address
1701 *
1702 *	pci_device	PCI device address.  A PCI device address identifies
1703 *			a specific device on a specific PCI bus segment.
1704 *			A PCI device address ia a 32-bit unsigned integer
1705 *			with the following format:
1706 *
1707 *				00000000.bbbbbbbb.dddddfff.00000000
1708 *
1709 *			Use the HV_PCI_DEVICE_BUILD() macro to construct
1710 *			such values.
1711 *
1712 *	pci_config_offset
1713 *			PCI configureation space offset.  For conventional
1714 *			PCI a value between 0 and 255.  For extended
1715 *			configuration space, a value between 0 and 4095.
1716 *
1717 *			Note: For PCI configuration space accesses, the offset
1718 *			      must be aligned to the access size.
1719 *
1720 *	error_flag	A return value which specifies if the action succeeded
1721 *			or failed.  0 means no error, non-0 means some error
1722 *			occurred while performing the service.
1723 *
1724 *	io_sync_direction
1725 *			Direction definition for pci_dma_sync(), defined
1726 *			below in HV_PCI_SYNC_*.
1727 *
1728 *	io_page_list	A list of io_page_addresses, an io_page_address is
1729 *			a real address.
1730 *
1731 *	io_page_list_p	A pointer to an io_page_list.
1732 *
1733 *	"size based byte swap" - Some functions do size based byte swapping
1734 *				 which allows sw to access pointers and
1735 *				 counters in native form when the processor
1736 *				 operates in a different endianness than the
1737 *				 IO bus.  Size-based byte swapping converts a
1738 *				 multi-byte field between big-endian and
1739 *				 little-endian format.
1740 */
1741
1742#define HV_PCI_MAP_ATTR_READ		0x01
1743#define HV_PCI_MAP_ATTR_WRITE		0x02
 
1744
1745#define HV_PCI_DEVICE_BUILD(b,d,f)	\
1746	((((b) & 0xff) << 16) | \
1747	 (((d) & 0x1f) << 11) | \
1748	 (((f) & 0x07) <<  8))
1749
1750#define HV_PCI_TSBID(__tsb_num, __tsb_index) \
1751	((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index)))
1752
1753#define HV_PCI_SYNC_FOR_DEVICE		0x01
1754#define HV_PCI_SYNC_FOR_CPU		0x02
1755
1756/* pci_iommu_map()
1757 * TRAP:	HV_FAST_TRAP
1758 * FUNCTION:	HV_FAST_PCI_IOMMU_MAP
1759 * ARG0:	devhandle
1760 * ARG1:	tsbid
1761 * ARG2:	#ttes
1762 * ARG3:	io_attributes
1763 * ARG4:	io_page_list_p
1764 * RET0:	status
1765 * RET1:	#ttes mapped
1766 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex/io_attributes
1767 *		EBADALIGN	Improperly aligned real address
1768 *		ENORADDR	Invalid real address
1769 *
1770 * Create IOMMU mappings in the sun4v device defined by the given
1771 * devhandle.  The mappings are created in the TSB defined by the
1772 * tsbnum component of the given tsbid.  The first mapping is created
1773 * in the TSB i ndex defined by the tsbindex component of the given tsbid.
1774 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
1775 * the second at tsbnum, tsbindex + 1, etc.
1776 *
1777 * All mappings are created with the attributes defined by the io_attributes
1778 * argument.  The page mapping addresses are described in the io_page_list
1779 * defined by the given io_page_list_p, which is a pointer to the io_page_list.
1780 * The first entry in the io_page_list is the address for the first iotte, the
1781 * 2nd for the 2nd iotte, and so on.
1782 *
1783 * Each io_page_address in the io_page_list must be appropriately aligned.
1784 * #ttes must be greater than zero.  For this version of the spec, the tsbnum
1785 * component of the given tsbid must be zero.
1786 *
1787 * Returns the actual number of mappings creates, which may be less than
1788 * or equal to the argument #ttes.  If the function returns a value which
1789 * is less than the #ttes, the caller may continus to call the function with
1790 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are
1791 * mapped.
1792 *
1793 * Note: This function does not imply an iotte cache flush.  The guest must
1794 *       demap an entry before re-mapping it.
1795 */
1796#define HV_FAST_PCI_IOMMU_MAP		0xb0
1797
1798/* pci_iommu_demap()
1799 * TRAP:	HV_FAST_TRAP
1800 * FUNCTION:	HV_FAST_PCI_IOMMU_DEMAP
1801 * ARG0:	devhandle
1802 * ARG1:	tsbid
1803 * ARG2:	#ttes
1804 * RET0:	status
1805 * RET1:	#ttes demapped
1806 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1807 *
1808 * Demap and flush IOMMU mappings in the device defined by the given
1809 * devhandle.  Demaps up to #ttes entries in the TSB defined by the tsbnum
1810 * component of the given tsbid, starting at the TSB index defined by the
1811 * tsbindex component of the given tsbid.
1812 *
1813 * For this version of the spec, the tsbnum of the given tsbid must be zero.
1814 * #ttes must be greater than zero.
1815 *
1816 * Returns the actual number of ttes demapped, which may be less than or equal
1817 * to the argument #ttes.  If #ttes demapped is less than #ttes, the caller
1818 * may continue to call this function with updated tsbid and #ttes arguments
1819 * until all pages are demapped.
1820 *
1821 * Note: Entries do not have to be mapped to be demapped.  A demap of an
1822 *       unmapped page will flush the entry from the tte cache.
1823 */
1824#define HV_FAST_PCI_IOMMU_DEMAP		0xb1
1825
1826/* pci_iommu_getmap()
1827 * TRAP:	HV_FAST_TRAP
1828 * FUNCTION:	HV_FAST_PCI_IOMMU_GETMAP
1829 * ARG0:	devhandle
1830 * ARG1:	tsbid
1831 * RET0:	status
1832 * RET1:	io_attributes
1833 * RET2:	real address
1834 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1835 *		ENOMAP		Mapping is not valid, no translation exists
1836 *
1837 * Read and return the mapping in the device described by the given devhandle
1838 * and tsbid.  If successful, the io_attributes shall be returned in RET1
1839 * and the page address of the mapping shall be returned in RET2.
1840 *
1841 * For this version of the spec, the tsbnum component of the given tsbid
1842 * must be zero.
1843 */
1844#define HV_FAST_PCI_IOMMU_GETMAP	0xb2
1845
1846/* pci_iommu_getbypass()
1847 * TRAP:	HV_FAST_TRAP
1848 * FUNCTION:	HV_FAST_PCI_IOMMU_GETBYPASS
1849 * ARG0:	devhandle
1850 * ARG1:	real address
1851 * ARG2:	io_attributes
1852 * RET0:	status
1853 * RET1:	io_addr
1854 * ERRORS:	EINVAL		Invalid devhandle/io_attributes
1855 *		ENORADDR	Invalid real address
1856 *		ENOTSUPPORTED	Function not supported in this implementation.
1857 *
1858 * Create a "special" mapping in the device described by the given devhandle,
1859 * for the given real address and attributes.  Return the IO address in RET1
1860 * if successful.
1861 */
1862#define HV_FAST_PCI_IOMMU_GETBYPASS	0xb3
1863
1864/* pci_config_get()
1865 * TRAP:	HV_FAST_TRAP
1866 * FUNCTION:	HV_FAST_PCI_CONFIG_GET
1867 * ARG0:	devhandle
1868 * ARG1:	pci_device
1869 * ARG2:	pci_config_offset
1870 * ARG3:	size
1871 * RET0:	status
1872 * RET1:	error_flag
1873 * RET2:	data
1874 * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
1875 *		EBADALIGN	pci_config_offset not size aligned
1876 *		ENOACCESS	Access to this offset is not permitted
1877 *
1878 * Read PCI configuration space for the adapter described by the given
1879 * devhandle.  Read size (1, 2, or 4) bytes of data from the given
1880 * pci_device, at pci_config_offset from the beginning of the device's
1881 * configuration space.  If there was no error, RET1 is set to zero and
1882 * RET2 is set to the data read.  Insignificant bits in RET2 are not
1883 * guaranteed to have any specific value and therefore must be ignored.
1884 *
1885 * The data returned in RET2 is size based byte swapped.
1886 *
1887 * If an error occurs during the read, set RET1 to a non-zero value.  The
1888 * given pci_config_offset must be 'size' aligned.
1889 */
1890#define HV_FAST_PCI_CONFIG_GET		0xb4
1891
1892/* pci_config_put()
1893 * TRAP:	HV_FAST_TRAP
1894 * FUNCTION:	HV_FAST_PCI_CONFIG_PUT
1895 * ARG0:	devhandle
1896 * ARG1:	pci_device
1897 * ARG2:	pci_config_offset
1898 * ARG3:	size
1899 * ARG4:	data
1900 * RET0:	status
1901 * RET1:	error_flag
1902 * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
1903 *		EBADALIGN	pci_config_offset not size aligned
1904 *		ENOACCESS	Access to this offset is not permitted
1905 *
1906 * Write PCI configuration space for the adapter described by the given
1907 * devhandle.  Write size (1, 2, or 4) bytes of data in a single operation,
1908 * at pci_config_offset from the beginning of the device's configuration
1909 * space.  The data argument contains the data to be written to configuration
1910 * space.  Prior to writing, the data is size based byte swapped.
1911 *
1912 * If an error occurs during the write access, do not generate an error
1913 * report, do set RET1 to a non-zero value.  Otherwise RET1 is zero.
1914 * The given pci_config_offset must be 'size' aligned.
1915 *
1916 * This function is permitted to read from offset zero in the configuration
1917 * space described by the given pci_device if necessary to ensure that the
1918 * write access to config space completes.
1919 */
1920#define HV_FAST_PCI_CONFIG_PUT		0xb5
1921
1922/* pci_peek()
1923 * TRAP:	HV_FAST_TRAP
1924 * FUNCTION:	HV_FAST_PCI_PEEK
1925 * ARG0:	devhandle
1926 * ARG1:	real address
1927 * ARG2:	size
1928 * RET0:	status
1929 * RET1:	error_flag
1930 * RET2:	data
1931 * ERRORS:	EINVAL		Invalid devhandle or size
1932 *		EBADALIGN	Improperly aligned real address
1933 *		ENORADDR	Bad real address
1934 *		ENOACCESS	Guest access prohibited
1935 *
1936 * Attempt to read the IO address given by the given devhandle, real address,
1937 * and size.  Size must be 1, 2, 4, or 8.  The read is performed as a single
1938 * access operation using the given size.  If an error occurs when reading
1939 * from the given location, do not generate an error report, but return a
1940 * non-zero value in RET1.  If the read was successful, return zero in RET1
1941 * and return the actual data read in RET2.  The data returned is size based
1942 * byte swapped.
1943 *
1944 * Non-significant bits in RET2 are not guaranteed to have any specific value
1945 * and therefore must be ignored.  If RET1 is returned as non-zero, the data
1946 * value is not guaranteed to have any specific value and should be ignored.
1947 *
1948 * The caller must have permission to read from the given devhandle, real
1949 * address, which must be an IO address.  The argument real address must be a
1950 * size aligned address.
1951 *
1952 * The hypervisor implementation of this function must block access to any
1953 * IO address that the guest does not have explicit permission to access.
1954 */
1955#define HV_FAST_PCI_PEEK		0xb6
1956
1957/* pci_poke()
1958 * TRAP:	HV_FAST_TRAP
1959 * FUNCTION:	HV_FAST_PCI_POKE
1960 * ARG0:	devhandle
1961 * ARG1:	real address
1962 * ARG2:	size
1963 * ARG3:	data
1964 * ARG4:	pci_device
1965 * RET0:	status
1966 * RET1:	error_flag
1967 * ERRORS:	EINVAL		Invalid devhandle, size, or pci_device
1968 *		EBADALIGN	Improperly aligned real address
1969 *		ENORADDR	Bad real address
1970 *		ENOACCESS	Guest access prohibited
1971 *		ENOTSUPPORTED	Function is not supported by implementation
1972 *
1973 * Attempt to write data to the IO address given by the given devhandle,
1974 * real address, and size.  Size must be 1, 2, 4, or 8.  The write is
1975 * performed as a single access operation using the given size. Prior to
1976 * writing the data is size based swapped.
1977 *
1978 * If an error occurs when writing to the given location, do not generate an
1979 * error report, but return a non-zero value in RET1.  If the write was
1980 * successful, return zero in RET1.
1981 *
1982 * pci_device describes the configuration address of the device being
1983 * written to.  The implementation may safely read from offset 0 with
1984 * the configuration space of the device described by devhandle and
1985 * pci_device in order to guarantee that the write portion of the operation
1986 * completes
1987 *
1988 * Any error that occurs due to the read shall be reported using the normal
1989 * error reporting mechanisms .. the read error is not suppressed.
1990 *
1991 * The caller must have permission to write to the given devhandle, real
1992 * address, which must be an IO address.  The argument real address must be a
1993 * size aligned address.  The caller must have permission to read from
1994 * the given devhandle, pci_device cofiguration space offset 0.
1995 *
1996 * The hypervisor implementation of this function must block access to any
1997 * IO address that the guest does not have explicit permission to access.
1998 */
1999#define HV_FAST_PCI_POKE		0xb7
2000
2001/* pci_dma_sync()
2002 * TRAP:	HV_FAST_TRAP
2003 * FUNCTION:	HV_FAST_PCI_DMA_SYNC
2004 * ARG0:	devhandle
2005 * ARG1:	real address
2006 * ARG2:	size
2007 * ARG3:	io_sync_direction
2008 * RET0:	status
2009 * RET1:	#synced
2010 * ERRORS:	EINVAL		Invalid devhandle or io_sync_direction
2011 *		ENORADDR	Bad real address
2012 *
2013 * Synchronize a memory region described by the given real address and size,
2014 * for the device defined by the given devhandle using the direction(s)
2015 * defined by the given io_sync_direction.  The argument size is the size of
2016 * the memory region in bytes.
2017 *
2018 * Return the actual number of bytes synchronized in the return value #synced,
2019 * which may be less than or equal to the argument size.  If the return
2020 * value #synced is less than size, the caller must continue to call this
2021 * function with updated real address and size arguments until the entire
2022 * memory region is synchronized.
2023 */
2024#define HV_FAST_PCI_DMA_SYNC		0xb8
2025
2026/* PCI MSI services.  */
2027
2028#define HV_MSITYPE_MSI32		0x00
2029#define HV_MSITYPE_MSI64		0x01
2030
2031#define HV_MSIQSTATE_IDLE		0x00
2032#define HV_MSIQSTATE_ERROR		0x01
2033
2034#define HV_MSIQ_INVALID			0x00
2035#define HV_MSIQ_VALID			0x01
2036
2037#define HV_MSISTATE_IDLE		0x00
2038#define HV_MSISTATE_DELIVERED		0x01
2039
2040#define HV_MSIVALID_INVALID		0x00
2041#define HV_MSIVALID_VALID		0x01
2042
2043#define HV_PCIE_MSGTYPE_PME_MSG		0x18
2044#define HV_PCIE_MSGTYPE_PME_ACK_MSG	0x1b
2045#define HV_PCIE_MSGTYPE_CORR_MSG	0x30
2046#define HV_PCIE_MSGTYPE_NONFATAL_MSG	0x31
2047#define HV_PCIE_MSGTYPE_FATAL_MSG	0x33
2048
2049#define HV_MSG_INVALID			0x00
2050#define HV_MSG_VALID			0x01
2051
2052/* pci_msiq_conf()
2053 * TRAP:	HV_FAST_TRAP
2054 * FUNCTION:	HV_FAST_PCI_MSIQ_CONF
2055 * ARG0:	devhandle
2056 * ARG1:	msiqid
2057 * ARG2:	real address
2058 * ARG3:	number of entries
2059 * RET0:	status
2060 * ERRORS:	EINVAL		Invalid devhandle, msiqid or nentries
2061 *		EBADALIGN	Improperly aligned real address
2062 *		ENORADDR	Bad real address
2063 *
2064 * Configure the MSI queue given by the devhandle and msiqid arguments,
2065 * and to be placed at the given real address and be of the given
2066 * number of entries.  The real address must be aligned exactly to match
2067 * the queue size.  Each queue entry is 64-bytes long, so f.e. a 32 entry
2068 * queue must be aligned on a 2048 byte real address boundary.  The MSI-EQ
2069 * Head and Tail are initialized so that the MSI-EQ is 'empty'.
2070 *
2071 * Implementation Note: Certain implementations have fixed sized queues.  In
2072 *                      that case, number of entries must contain the correct
2073 *                      value.
2074 */
2075#define HV_FAST_PCI_MSIQ_CONF		0xc0
2076
2077/* pci_msiq_info()
2078 * TRAP:	HV_FAST_TRAP
2079 * FUNCTION:	HV_FAST_PCI_MSIQ_INFO
2080 * ARG0:	devhandle
2081 * ARG1:	msiqid
2082 * RET0:	status
2083 * RET1:	real address
2084 * RET2:	number of entries
2085 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2086 *
2087 * Return the configuration information for the MSI queue described
2088 * by the given devhandle and msiqid.  The base address of the queue
2089 * is returned in ARG1 and the number of entries is returned in ARG2.
2090 * If the queue is unconfigured, the real address is undefined and the
2091 * number of entries will be returned as zero.
2092 */
2093#define HV_FAST_PCI_MSIQ_INFO		0xc1
2094
2095/* pci_msiq_getvalid()
2096 * TRAP:	HV_FAST_TRAP
2097 * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2098 * ARG0:	devhandle
2099 * ARG1:	msiqid
2100 * RET0:	status
2101 * RET1:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2102 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2103 *
2104 * Get the valid state of the MSI-EQ described by the given devhandle and
2105 * msiqid.
2106 */
2107#define HV_FAST_PCI_MSIQ_GETVALID	0xc2
2108
2109/* pci_msiq_setvalid()
2110 * TRAP:	HV_FAST_TRAP
2111 * FUNCTION:	HV_FAST_PCI_MSIQ_SETVALID
2112 * ARG0:	devhandle
2113 * ARG1:	msiqid
2114 * ARG2:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2115 * RET0:	status
2116 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqvalid
2117 *				value or MSI EQ is uninitialized
2118 *
2119 * Set the valid state of the MSI-EQ described by the given devhandle and
2120 * msiqid to the given msiqvalid.
2121 */
2122#define HV_FAST_PCI_MSIQ_SETVALID	0xc3
2123
2124/* pci_msiq_getstate()
2125 * TRAP:	HV_FAST_TRAP
2126 * FUNCTION:	HV_FAST_PCI_MSIQ_GETSTATE
2127 * ARG0:	devhandle
2128 * ARG1:	msiqid
2129 * RET0:	status
2130 * RET1:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2131 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2132 *
2133 * Get the state of the MSI-EQ described by the given devhandle and
2134 * msiqid.
2135 */
2136#define HV_FAST_PCI_MSIQ_GETSTATE	0xc4
2137
2138/* pci_msiq_getvalid()
2139 * TRAP:	HV_FAST_TRAP
2140 * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2141 * ARG0:	devhandle
2142 * ARG1:	msiqid
2143 * ARG2:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2144 * RET0:	status
2145 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqstate
2146 *				value or MSI EQ is uninitialized
2147 *
2148 * Set the state of the MSI-EQ described by the given devhandle and
2149 * msiqid to the given msiqvalid.
2150 */
2151#define HV_FAST_PCI_MSIQ_SETSTATE	0xc5
2152
2153/* pci_msiq_gethead()
2154 * TRAP:	HV_FAST_TRAP
2155 * FUNCTION:	HV_FAST_PCI_MSIQ_GETHEAD
2156 * ARG0:	devhandle
2157 * ARG1:	msiqid
2158 * RET0:	status
2159 * RET1:	msiqhead
2160 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2161 *
2162 * Get the current MSI EQ queue head for the MSI-EQ described by the
2163 * given devhandle and msiqid.
2164 */
2165#define HV_FAST_PCI_MSIQ_GETHEAD	0xc6
2166
2167/* pci_msiq_sethead()
2168 * TRAP:	HV_FAST_TRAP
2169 * FUNCTION:	HV_FAST_PCI_MSIQ_SETHEAD
2170 * ARG0:	devhandle
2171 * ARG1:	msiqid
2172 * ARG2:	msiqhead
2173 * RET0:	status
2174 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqhead,
2175 *				or MSI EQ is uninitialized
2176 *
2177 * Set the current MSI EQ queue head for the MSI-EQ described by the
2178 * given devhandle and msiqid.
2179 */
2180#define HV_FAST_PCI_MSIQ_SETHEAD	0xc7
2181
2182/* pci_msiq_gettail()
2183 * TRAP:	HV_FAST_TRAP
2184 * FUNCTION:	HV_FAST_PCI_MSIQ_GETTAIL
2185 * ARG0:	devhandle
2186 * ARG1:	msiqid
2187 * RET0:	status
2188 * RET1:	msiqtail
2189 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2190 *
2191 * Get the current MSI EQ queue tail for the MSI-EQ described by the
2192 * given devhandle and msiqid.
2193 */
2194#define HV_FAST_PCI_MSIQ_GETTAIL	0xc8
2195
2196/* pci_msi_getvalid()
2197 * TRAP:	HV_FAST_TRAP
2198 * FUNCTION:	HV_FAST_PCI_MSI_GETVALID
2199 * ARG0:	devhandle
2200 * ARG1:	msinum
2201 * RET0:	status
2202 * RET1:	msivalidstate
2203 * ERRORS:	EINVAL		Invalid devhandle or msinum
2204 *
2205 * Get the current valid/enabled state for the MSI defined by the
2206 * given devhandle and msinum.
2207 */
2208#define HV_FAST_PCI_MSI_GETVALID	0xc9
2209
2210/* pci_msi_setvalid()
2211 * TRAP:	HV_FAST_TRAP
2212 * FUNCTION:	HV_FAST_PCI_MSI_SETVALID
2213 * ARG0:	devhandle
2214 * ARG1:	msinum
2215 * ARG2:	msivalidstate
2216 * RET0:	status
2217 * ERRORS:	EINVAL		Invalid devhandle or msinum or msivalidstate
2218 *
2219 * Set the current valid/enabled state for the MSI defined by the
2220 * given devhandle and msinum.
2221 */
2222#define HV_FAST_PCI_MSI_SETVALID	0xca
2223
2224/* pci_msi_getmsiq()
2225 * TRAP:	HV_FAST_TRAP
2226 * FUNCTION:	HV_FAST_PCI_MSI_GETMSIQ
2227 * ARG0:	devhandle
2228 * ARG1:	msinum
2229 * RET0:	status
2230 * RET1:	msiqid
2231 * ERRORS:	EINVAL		Invalid devhandle or msinum or MSI is unbound
2232 *
2233 * Get the MSI EQ that the MSI defined by the given devhandle and
2234 * msinum is bound to.
2235 */
2236#define HV_FAST_PCI_MSI_GETMSIQ		0xcb
2237
2238/* pci_msi_setmsiq()
2239 * TRAP:	HV_FAST_TRAP
2240 * FUNCTION:	HV_FAST_PCI_MSI_SETMSIQ
2241 * ARG0:	devhandle
2242 * ARG1:	msinum
2243 * ARG2:	msitype
2244 * ARG3:	msiqid
2245 * RET0:	status
2246 * ERRORS:	EINVAL		Invalid devhandle or msinum or msiqid
2247 *
2248 * Set the MSI EQ that the MSI defined by the given devhandle and
2249 * msinum is bound to.
2250 */
2251#define HV_FAST_PCI_MSI_SETMSIQ		0xcc
2252
2253/* pci_msi_getstate()
2254 * TRAP:	HV_FAST_TRAP
2255 * FUNCTION:	HV_FAST_PCI_MSI_GETSTATE
2256 * ARG0:	devhandle
2257 * ARG1:	msinum
2258 * RET0:	status
2259 * RET1:	msistate
2260 * ERRORS:	EINVAL		Invalid devhandle or msinum
2261 *
2262 * Get the state of the MSI defined by the given devhandle and msinum.
2263 * If not initialized, return HV_MSISTATE_IDLE.
2264 */
2265#define HV_FAST_PCI_MSI_GETSTATE	0xcd
2266
2267/* pci_msi_setstate()
2268 * TRAP:	HV_FAST_TRAP
2269 * FUNCTION:	HV_FAST_PCI_MSI_SETSTATE
2270 * ARG0:	devhandle
2271 * ARG1:	msinum
2272 * ARG2:	msistate
2273 * RET0:	status
2274 * ERRORS:	EINVAL		Invalid devhandle or msinum or msistate
2275 *
2276 * Set the state of the MSI defined by the given devhandle and msinum.
2277 */
2278#define HV_FAST_PCI_MSI_SETSTATE	0xce
2279
2280/* pci_msg_getmsiq()
2281 * TRAP:	HV_FAST_TRAP
2282 * FUNCTION:	HV_FAST_PCI_MSG_GETMSIQ
2283 * ARG0:	devhandle
2284 * ARG1:	msgtype
2285 * RET0:	status
2286 * RET1:	msiqid
2287 * ERRORS:	EINVAL		Invalid devhandle or msgtype
2288 *
2289 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype.
2290 */
2291#define HV_FAST_PCI_MSG_GETMSIQ		0xd0
2292
2293/* pci_msg_setmsiq()
2294 * TRAP:	HV_FAST_TRAP
2295 * FUNCTION:	HV_FAST_PCI_MSG_SETMSIQ
2296 * ARG0:	devhandle
2297 * ARG1:	msgtype
2298 * ARG2:	msiqid
2299 * RET0:	status
2300 * ERRORS:	EINVAL		Invalid devhandle, msgtype, or msiqid
2301 *
2302 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype.
2303 */
2304#define HV_FAST_PCI_MSG_SETMSIQ		0xd1
2305
2306/* pci_msg_getvalid()
2307 * TRAP:	HV_FAST_TRAP
2308 * FUNCTION:	HV_FAST_PCI_MSG_GETVALID
2309 * ARG0:	devhandle
2310 * ARG1:	msgtype
2311 * RET0:	status
2312 * RET1:	msgvalidstate
2313 * ERRORS:	EINVAL		Invalid devhandle or msgtype
2314 *
2315 * Get the valid/enabled state of the MSG defined by the given
2316 * devhandle and msgtype.
2317 */
2318#define HV_FAST_PCI_MSG_GETVALID	0xd2
2319
2320/* pci_msg_setvalid()
2321 * TRAP:	HV_FAST_TRAP
2322 * FUNCTION:	HV_FAST_PCI_MSG_SETVALID
2323 * ARG0:	devhandle
2324 * ARG1:	msgtype
2325 * ARG2:	msgvalidstate
2326 * RET0:	status
2327 * ERRORS:	EINVAL		Invalid devhandle or msgtype or msgvalidstate
2328 *
2329 * Set the valid/enabled state of the MSG defined by the given
2330 * devhandle and msgtype.
2331 */
2332#define HV_FAST_PCI_MSG_SETVALID	0xd3
2333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334/* Logical Domain Channel services.  */
2335
2336#define LDC_CHANNEL_DOWN		0
2337#define LDC_CHANNEL_UP			1
2338#define LDC_CHANNEL_RESETTING		2
2339
2340/* ldc_tx_qconf()
2341 * TRAP:	HV_FAST_TRAP
2342 * FUNCTION:	HV_FAST_LDC_TX_QCONF
2343 * ARG0:	channel ID
2344 * ARG1:	real address base of queue
2345 * ARG2:	num entries in queue
2346 * RET0:	status
2347 *
2348 * Configure transmit queue for the LDC endpoint specified by the
2349 * given channel ID, to be placed at the given real address, and
2350 * be of the given num entries.  Num entries must be a power of two.
2351 * The real address base of the queue must be aligned on the queue
2352 * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2353 * queue must be aligned on a 2048 byte real address boundary.
2354 *
2355 * Upon configuration of a valid transmit queue the head and tail
2356 * pointers are set to a hypervisor specific identical value indicating
2357 * that the queue initially is empty.
2358 *
2359 * The endpoint's transmit queue is un-configured if num entries is zero.
2360 *
2361 * The maximum number of entries for each queue for a specific cpu may be
2362 * determined from the machine description.  A transmit queue may be
2363 * specified even in the event that the LDC is down (peer endpoint has no
2364 * receive queue specified).  Transmission will begin as soon as the peer
2365 * endpoint defines a receive queue.
2366 *
2367 * It is recommended that a guest wait for a transmit queue to empty prior
2368 * to reconfiguring it, or un-configuring it.  Re or un-configuring of a
2369 * non-empty transmit queue behaves exactly as defined above, however it
2370 * is undefined as to how many of the pending entries in the original queue
2371 * will be delivered prior to the re-configuration taking effect.
2372 * Furthermore, as the queue configuration causes a reset of the head and
2373 * tail pointers there is no way for a guest to determine how many entries
2374 * have been sent after the configuration operation.
2375 */
2376#define HV_FAST_LDC_TX_QCONF		0xe0
2377
2378/* ldc_tx_qinfo()
2379 * TRAP:	HV_FAST_TRAP
2380 * FUNCTION:	HV_FAST_LDC_TX_QINFO
2381 * ARG0:	channel ID
2382 * RET0:	status
2383 * RET1:	real address base of queue
2384 * RET2:	num entries in queue
2385 *
2386 * Return the configuration info for the transmit queue of LDC endpoint
2387 * defined by the given channel ID.  The real address is the currently
2388 * defined real address base of the defined queue, and num entries is the
2389 * size of the queue in terms of number of entries.
2390 *
2391 * If the specified channel ID is a valid endpoint number, but no transmit
2392 * queue has been defined this service will return success, but with num
2393 * entries set to zero and the real address will have an undefined value.
2394 */
2395#define HV_FAST_LDC_TX_QINFO		0xe1
2396
2397/* ldc_tx_get_state()
2398 * TRAP:	HV_FAST_TRAP
2399 * FUNCTION:	HV_FAST_LDC_TX_GET_STATE
2400 * ARG0:	channel ID
2401 * RET0:	status
2402 * RET1:	head offset
2403 * RET2:	tail offset
2404 * RET3:	channel state
2405 *
2406 * Return the transmit state, and the head and tail queue pointers, for
2407 * the transmit queue of the LDC endpoint defined by the given channel ID.
2408 * The head and tail values are the byte offset of the head and tail
2409 * positions of the transmit queue for the specified endpoint.
2410 */
2411#define HV_FAST_LDC_TX_GET_STATE	0xe2
2412
2413/* ldc_tx_set_qtail()
2414 * TRAP:	HV_FAST_TRAP
2415 * FUNCTION:	HV_FAST_LDC_TX_SET_QTAIL
2416 * ARG0:	channel ID
2417 * ARG1:	tail offset
2418 * RET0:	status
2419 *
2420 * Update the tail pointer for the transmit queue associated with the LDC
2421 * endpoint defined by the given channel ID.  The tail offset specified
2422 * must be aligned on a 64 byte boundary, and calculated so as to increase
2423 * the number of pending entries on the transmit queue.  Any attempt to
2424 * decrease the number of pending transmit queue entires is considered
2425 * an invalid tail offset and will result in an EINVAL error.
2426 *
2427 * Since the tail of the transmit queue may not be moved backwards, the
2428 * transmit queue may be flushed by configuring a new transmit queue,
2429 * whereupon the hypervisor will configure the initial transmit head and
2430 * tail pointers to be equal.
2431 */
2432#define HV_FAST_LDC_TX_SET_QTAIL	0xe3
2433
2434/* ldc_rx_qconf()
2435 * TRAP:	HV_FAST_TRAP
2436 * FUNCTION:	HV_FAST_LDC_RX_QCONF
2437 * ARG0:	channel ID
2438 * ARG1:	real address base of queue
2439 * ARG2:	num entries in queue
2440 * RET0:	status
2441 *
2442 * Configure receive queue for the LDC endpoint specified by the
2443 * given channel ID, to be placed at the given real address, and
2444 * be of the given num entries.  Num entries must be a power of two.
2445 * The real address base of the queue must be aligned on the queue
2446 * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2447 * queue must be aligned on a 2048 byte real address boundary.
2448 *
2449 * The endpoint's transmit queue is un-configured if num entries is zero.
2450 *
2451 * If a valid receive queue is specified for a local endpoint the LDC is
2452 * in the up state for the purpose of transmission to this endpoint.
2453 *
2454 * The maximum number of entries for each queue for a specific cpu may be
2455 * determined from the machine description.
2456 *
2457 * As receive queue configuration causes a reset of the queue's head and
2458 * tail pointers there is no way for a gues to determine how many entries
2459 * have been received between a preceding ldc_get_rx_state() API call
2460 * and the completion of the configuration operation.  It should be noted
2461 * that datagram delivery is not guaranteed via domain channels anyway,
2462 * and therefore any higher protocol should be resilient to datagram
2463 * loss if necessary.  However, to overcome this specific race potential
2464 * it is recommended, for example, that a higher level protocol be employed
2465 * to ensure either retransmission, or ensure that no datagrams are pending
2466 * on the peer endpoint's transmit queue prior to the configuration process.
2467 */
2468#define HV_FAST_LDC_RX_QCONF		0xe4
2469
2470/* ldc_rx_qinfo()
2471 * TRAP:	HV_FAST_TRAP
2472 * FUNCTION:	HV_FAST_LDC_RX_QINFO
2473 * ARG0:	channel ID
2474 * RET0:	status
2475 * RET1:	real address base of queue
2476 * RET2:	num entries in queue
2477 *
2478 * Return the configuration info for the receive queue of LDC endpoint
2479 * defined by the given channel ID.  The real address is the currently
2480 * defined real address base of the defined queue, and num entries is the
2481 * size of the queue in terms of number of entries.
2482 *
2483 * If the specified channel ID is a valid endpoint number, but no receive
2484 * queue has been defined this service will return success, but with num
2485 * entries set to zero and the real address will have an undefined value.
2486 */
2487#define HV_FAST_LDC_RX_QINFO		0xe5
2488
2489/* ldc_rx_get_state()
2490 * TRAP:	HV_FAST_TRAP
2491 * FUNCTION:	HV_FAST_LDC_RX_GET_STATE
2492 * ARG0:	channel ID
2493 * RET0:	status
2494 * RET1:	head offset
2495 * RET2:	tail offset
2496 * RET3:	channel state
2497 *
2498 * Return the receive state, and the head and tail queue pointers, for
2499 * the receive queue of the LDC endpoint defined by the given channel ID.
2500 * The head and tail values are the byte offset of the head and tail
2501 * positions of the receive queue for the specified endpoint.
2502 */
2503#define HV_FAST_LDC_RX_GET_STATE	0xe6
2504
2505/* ldc_rx_set_qhead()
2506 * TRAP:	HV_FAST_TRAP
2507 * FUNCTION:	HV_FAST_LDC_RX_SET_QHEAD
2508 * ARG0:	channel ID
2509 * ARG1:	head offset
2510 * RET0:	status
2511 *
2512 * Update the head pointer for the receive queue associated with the LDC
2513 * endpoint defined by the given channel ID.  The head offset specified
2514 * must be aligned on a 64 byte boundary, and calculated so as to decrease
2515 * the number of pending entries on the receive queue.  Any attempt to
2516 * increase the number of pending receive queue entires is considered
2517 * an invalid head offset and will result in an EINVAL error.
2518 *
2519 * The receive queue may be flushed by setting the head offset equal
2520 * to the current tail offset.
2521 */
2522#define HV_FAST_LDC_RX_SET_QHEAD	0xe7
2523
2524/* LDC Map Table Entry.  Each slot is defined by a translation table
2525 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit
2526 * hypervisor invalidation cookie.
2527 */
2528#define LDC_MTE_PADDR	0x0fffffffffffe000 /* pa[55:13]          */
2529#define LDC_MTE_COPY_W	0x0000000000000400 /* copy write access  */
2530#define LDC_MTE_COPY_R	0x0000000000000200 /* copy read access   */
2531#define LDC_MTE_IOMMU_W	0x0000000000000100 /* IOMMU write access */
2532#define LDC_MTE_IOMMU_R	0x0000000000000080 /* IOMMU read access  */
2533#define LDC_MTE_EXEC	0x0000000000000040 /* execute            */
2534#define LDC_MTE_WRITE	0x0000000000000020 /* read               */
2535#define LDC_MTE_READ	0x0000000000000010 /* write              */
2536#define LDC_MTE_SZALL	0x000000000000000f /* page size bits     */
2537#define LDC_MTE_SZ16GB	0x0000000000000007 /* 16GB page          */
2538#define LDC_MTE_SZ2GB	0x0000000000000006 /* 2GB page           */
2539#define LDC_MTE_SZ256MB	0x0000000000000005 /* 256MB page         */
2540#define LDC_MTE_SZ32MB	0x0000000000000004 /* 32MB page          */
2541#define LDC_MTE_SZ4MB	0x0000000000000003 /* 4MB page           */
2542#define LDC_MTE_SZ512K	0x0000000000000002 /* 512K page          */
2543#define LDC_MTE_SZ64K	0x0000000000000001 /* 64K page           */
2544#define LDC_MTE_SZ8K	0x0000000000000000 /* 8K page            */
2545
2546#ifndef __ASSEMBLY__
2547struct ldc_mtable_entry {
2548	unsigned long	mte;
2549	unsigned long	cookie;
2550};
2551#endif
2552
2553/* ldc_set_map_table()
2554 * TRAP:	HV_FAST_TRAP
2555 * FUNCTION:	HV_FAST_LDC_SET_MAP_TABLE
2556 * ARG0:	channel ID
2557 * ARG1:	table real address
2558 * ARG2:	num entries
2559 * RET0:	status
2560 *
2561 * Register the MTE table at the given table real address, with the
2562 * specified num entries, for the LDC indicated by the given channel
2563 * ID.
2564 */
2565#define HV_FAST_LDC_SET_MAP_TABLE	0xea
2566
2567/* ldc_get_map_table()
2568 * TRAP:	HV_FAST_TRAP
2569 * FUNCTION:	HV_FAST_LDC_GET_MAP_TABLE
2570 * ARG0:	channel ID
2571 * RET0:	status
2572 * RET1:	table real address
2573 * RET2:	num entries
2574 *
2575 * Return the configuration of the current mapping table registered
2576 * for the given channel ID.
2577 */
2578#define HV_FAST_LDC_GET_MAP_TABLE	0xeb
2579
2580#define LDC_COPY_IN	0
2581#define LDC_COPY_OUT	1
2582
2583/* ldc_copy()
2584 * TRAP:	HV_FAST_TRAP
2585 * FUNCTION:	HV_FAST_LDC_COPY
2586 * ARG0:	channel ID
2587 * ARG1:	LDC_COPY_* direction code
2588 * ARG2:	target real address
2589 * ARG3:	local real address
2590 * ARG4:	length in bytes
2591 * RET0:	status
2592 * RET1:	actual length in bytes
2593 */
2594#define HV_FAST_LDC_COPY		0xec
2595
2596#define LDC_MEM_READ	1
2597#define LDC_MEM_WRITE	2
2598#define LDC_MEM_EXEC	4
2599
2600/* ldc_mapin()
2601 * TRAP:	HV_FAST_TRAP
2602 * FUNCTION:	HV_FAST_LDC_MAPIN
2603 * ARG0:	channel ID
2604 * ARG1:	cookie
2605 * RET0:	status
2606 * RET1:	real address
2607 * RET2:	LDC_MEM_* permissions
2608 */
2609#define HV_FAST_LDC_MAPIN		0xed
2610
2611/* ldc_unmap()
2612 * TRAP:	HV_FAST_TRAP
2613 * FUNCTION:	HV_FAST_LDC_UNMAP
2614 * ARG0:	real address
2615 * RET0:	status
2616 */
2617#define HV_FAST_LDC_UNMAP		0xee
2618
2619/* ldc_revoke()
2620 * TRAP:	HV_FAST_TRAP
2621 * FUNCTION:	HV_FAST_LDC_REVOKE
2622 * ARG0:	channel ID
2623 * ARG1:	cookie
2624 * ARG2:	ldc_mtable_entry cookie
2625 * RET0:	status
2626 */
2627#define HV_FAST_LDC_REVOKE		0xef
2628
2629#ifndef __ASSEMBLY__
2630extern unsigned long sun4v_ldc_tx_qconf(unsigned long channel,
2631					unsigned long ra,
2632					unsigned long num_entries);
2633extern unsigned long sun4v_ldc_tx_qinfo(unsigned long channel,
2634					unsigned long *ra,
2635					unsigned long *num_entries);
2636extern unsigned long sun4v_ldc_tx_get_state(unsigned long channel,
2637					    unsigned long *head_off,
2638					    unsigned long *tail_off,
2639					    unsigned long *chan_state);
2640extern unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel,
2641					    unsigned long tail_off);
2642extern unsigned long sun4v_ldc_rx_qconf(unsigned long channel,
2643					unsigned long ra,
2644					unsigned long num_entries);
2645extern unsigned long sun4v_ldc_rx_qinfo(unsigned long channel,
2646					unsigned long *ra,
2647					unsigned long *num_entries);
2648extern unsigned long sun4v_ldc_rx_get_state(unsigned long channel,
2649					    unsigned long *head_off,
2650					    unsigned long *tail_off,
2651					    unsigned long *chan_state);
2652extern unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel,
2653					    unsigned long head_off);
2654extern unsigned long sun4v_ldc_set_map_table(unsigned long channel,
2655					     unsigned long ra,
2656					     unsigned long num_entries);
2657extern unsigned long sun4v_ldc_get_map_table(unsigned long channel,
2658					     unsigned long *ra,
2659					     unsigned long *num_entries);
2660extern unsigned long sun4v_ldc_copy(unsigned long channel,
2661				    unsigned long dir_code,
2662				    unsigned long tgt_raddr,
2663				    unsigned long lcl_raddr,
2664				    unsigned long len,
2665				    unsigned long *actual_len);
2666extern unsigned long sun4v_ldc_mapin(unsigned long channel,
2667				     unsigned long cookie,
2668				     unsigned long *ra,
2669				     unsigned long *perm);
2670extern unsigned long sun4v_ldc_unmap(unsigned long ra);
2671extern unsigned long sun4v_ldc_revoke(unsigned long channel,
2672				      unsigned long cookie,
2673				      unsigned long mte_cookie);
2674#endif
2675
2676/* Performance counter services.  */
2677
2678#define HV_PERF_JBUS_PERF_CTRL_REG	0x00
2679#define HV_PERF_JBUS_PERF_CNT_REG	0x01
2680#define HV_PERF_DRAM_PERF_CTRL_REG_0	0x02
2681#define HV_PERF_DRAM_PERF_CNT_REG_0	0x03
2682#define HV_PERF_DRAM_PERF_CTRL_REG_1	0x04
2683#define HV_PERF_DRAM_PERF_CNT_REG_1	0x05
2684#define HV_PERF_DRAM_PERF_CTRL_REG_2	0x06
2685#define HV_PERF_DRAM_PERF_CNT_REG_2	0x07
2686#define HV_PERF_DRAM_PERF_CTRL_REG_3	0x08
2687#define HV_PERF_DRAM_PERF_CNT_REG_3	0x09
2688
2689/* get_perfreg()
2690 * TRAP:	HV_FAST_TRAP
2691 * FUNCTION:	HV_FAST_GET_PERFREG
2692 * ARG0:	performance reg number
2693 * RET0:	status
2694 * RET1:	performance reg value
2695 * ERRORS:	EINVAL		Invalid performance register number
2696 *		ENOACCESS	No access allowed to performance counters
2697 *
2698 * Read the value of the given DRAM/JBUS performance counter/control register.
2699 */
2700#define HV_FAST_GET_PERFREG		0x100
2701
2702/* set_perfreg()
2703 * TRAP:	HV_FAST_TRAP
2704 * FUNCTION:	HV_FAST_SET_PERFREG
2705 * ARG0:	performance reg number
2706 * ARG1:	performance reg value
2707 * RET0:	status
2708 * ERRORS:	EINVAL		Invalid performance register number
2709 *		ENOACCESS	No access allowed to performance counters
2710 *
2711 * Write the given performance reg value to the given DRAM/JBUS
2712 * performance counter/control register.
2713 */
2714#define HV_FAST_SET_PERFREG		0x101
2715
2716#define HV_N2_PERF_SPARC_CTL		0x0
2717#define HV_N2_PERF_DRAM_CTL0		0x1
2718#define HV_N2_PERF_DRAM_CNT0		0x2
2719#define HV_N2_PERF_DRAM_CTL1		0x3
2720#define HV_N2_PERF_DRAM_CNT1		0x4
2721#define HV_N2_PERF_DRAM_CTL2		0x5
2722#define HV_N2_PERF_DRAM_CNT2		0x6
2723#define HV_N2_PERF_DRAM_CTL3		0x7
2724#define HV_N2_PERF_DRAM_CNT3		0x8
2725
2726#define HV_FAST_N2_GET_PERFREG		0x104
2727#define HV_FAST_N2_SET_PERFREG		0x105
2728
2729#ifndef __ASSEMBLY__
2730extern unsigned long sun4v_niagara_getperf(unsigned long reg,
2731					   unsigned long *val);
2732extern unsigned long sun4v_niagara_setperf(unsigned long reg,
2733					   unsigned long val);
2734extern unsigned long sun4v_niagara2_getperf(unsigned long reg,
2735					    unsigned long *val);
2736extern unsigned long sun4v_niagara2_setperf(unsigned long reg,
2737					    unsigned long val);
2738#endif
2739
2740/* MMU statistics services.
2741 *
2742 * The hypervisor maintains MMU statistics and privileged code provides
2743 * a buffer where these statistics can be collected.  It is continually
2744 * updated once configured.  The layout is as follows:
2745 */
2746#ifndef __ASSEMBLY__
2747struct hv_mmu_statistics {
2748	unsigned long immu_tsb_hits_ctx0_8k_tte;
2749	unsigned long immu_tsb_ticks_ctx0_8k_tte;
2750	unsigned long immu_tsb_hits_ctx0_64k_tte;
2751	unsigned long immu_tsb_ticks_ctx0_64k_tte;
2752	unsigned long __reserved1[2];
2753	unsigned long immu_tsb_hits_ctx0_4mb_tte;
2754	unsigned long immu_tsb_ticks_ctx0_4mb_tte;
2755	unsigned long __reserved2[2];
2756	unsigned long immu_tsb_hits_ctx0_256mb_tte;
2757	unsigned long immu_tsb_ticks_ctx0_256mb_tte;
2758	unsigned long __reserved3[4];
2759	unsigned long immu_tsb_hits_ctxnon0_8k_tte;
2760	unsigned long immu_tsb_ticks_ctxnon0_8k_tte;
2761	unsigned long immu_tsb_hits_ctxnon0_64k_tte;
2762	unsigned long immu_tsb_ticks_ctxnon0_64k_tte;
2763	unsigned long __reserved4[2];
2764	unsigned long immu_tsb_hits_ctxnon0_4mb_tte;
2765	unsigned long immu_tsb_ticks_ctxnon0_4mb_tte;
2766	unsigned long __reserved5[2];
2767	unsigned long immu_tsb_hits_ctxnon0_256mb_tte;
2768	unsigned long immu_tsb_ticks_ctxnon0_256mb_tte;
2769	unsigned long __reserved6[4];
2770	unsigned long dmmu_tsb_hits_ctx0_8k_tte;
2771	unsigned long dmmu_tsb_ticks_ctx0_8k_tte;
2772	unsigned long dmmu_tsb_hits_ctx0_64k_tte;
2773	unsigned long dmmu_tsb_ticks_ctx0_64k_tte;
2774	unsigned long __reserved7[2];
2775	unsigned long dmmu_tsb_hits_ctx0_4mb_tte;
2776	unsigned long dmmu_tsb_ticks_ctx0_4mb_tte;
2777	unsigned long __reserved8[2];
2778	unsigned long dmmu_tsb_hits_ctx0_256mb_tte;
2779	unsigned long dmmu_tsb_ticks_ctx0_256mb_tte;
2780	unsigned long __reserved9[4];
2781	unsigned long dmmu_tsb_hits_ctxnon0_8k_tte;
2782	unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte;
2783	unsigned long dmmu_tsb_hits_ctxnon0_64k_tte;
2784	unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte;
2785	unsigned long __reserved10[2];
2786	unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte;
2787	unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte;
2788	unsigned long __reserved11[2];
2789	unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte;
2790	unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte;
2791	unsigned long __reserved12[4];
2792};
2793#endif
2794
2795/* mmustat_conf()
2796 * TRAP:	HV_FAST_TRAP
2797 * FUNCTION:	HV_FAST_MMUSTAT_CONF
2798 * ARG0:	real address
2799 * RET0:	status
2800 * RET1:	real address
2801 * ERRORS:	ENORADDR	Invalid real address
2802 *		EBADALIGN	Real address not aligned on 64-byte boundary
2803 *		EBADTRAP	API not supported on this processor
2804 *
2805 * Enable MMU statistic gathering using the buffer at the given real
2806 * address on the current virtual CPU.  The new buffer real address
2807 * is given in ARG1, and the previously specified buffer real address
2808 * is returned in RET1, or is returned as zero for the first invocation.
2809 *
2810 * If the passed in real address argument is zero, this will disable
2811 * MMU statistic collection on the current virtual CPU.  If an error is
2812 * returned then no statistics are collected.
2813 *
2814 * The buffer contents should be initialized to all zeros before being
2815 * given to the hypervisor or else the statistics will be meaningless.
2816 */
2817#define HV_FAST_MMUSTAT_CONF		0x102
2818
2819/* mmustat_info()
2820 * TRAP:	HV_FAST_TRAP
2821 * FUNCTION:	HV_FAST_MMUSTAT_INFO
2822 * RET0:	status
2823 * RET1:	real address
2824 * ERRORS:	EBADTRAP	API not supported on this processor
2825 *
2826 * Return the current state and real address of the currently configured
2827 * MMU statistics buffer on the current virtual CPU.
2828 */
2829#define HV_FAST_MMUSTAT_INFO		0x103
2830
2831#ifndef __ASSEMBLY__
2832extern unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra);
2833extern unsigned long sun4v_mmustat_info(unsigned long *ra);
2834#endif
2835
2836/* NCS crypto services  */
2837
2838/* ncs_request() sub-function numbers */
2839#define HV_NCS_QCONF			0x01
2840#define HV_NCS_QTAIL_UPDATE		0x02
2841
2842#ifndef __ASSEMBLY__
2843struct hv_ncs_queue_entry {
2844	/* MAU Control Register */
2845	unsigned long	mau_control;
2846#define MAU_CONTROL_INV_PARITY	0x0000000000002000
2847#define MAU_CONTROL_STRAND	0x0000000000001800
2848#define MAU_CONTROL_BUSY	0x0000000000000400
2849#define MAU_CONTROL_INT		0x0000000000000200
2850#define MAU_CONTROL_OP		0x00000000000001c0
2851#define MAU_CONTROL_OP_SHIFT	6
2852#define MAU_OP_LOAD_MA_MEMORY	0x0
2853#define MAU_OP_STORE_MA_MEMORY	0x1
2854#define MAU_OP_MODULAR_MULT	0x2
2855#define MAU_OP_MODULAR_REDUCE	0x3
2856#define MAU_OP_MODULAR_EXP_LOOP	0x4
2857#define MAU_CONTROL_LEN		0x000000000000003f
2858#define MAU_CONTROL_LEN_SHIFT	0
2859
2860	/* Real address of bytes to load or store bytes
2861	 * into/out-of the MAU.
2862	 */
2863	unsigned long	mau_mpa;
2864
2865	/* Modular Arithmetic MA Offset Register.  */
2866	unsigned long	mau_ma;
2867
2868	/* Modular Arithmetic N Prime Register.  */
2869	unsigned long	mau_np;
2870};
2871
2872struct hv_ncs_qconf_arg {
2873	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
2874	unsigned long	base;     /* Real address base of queue */
2875	unsigned long	end;	  /* Real address end of queue */
2876	unsigned long	num_ents; /* Number of entries in queue */
2877};
2878
2879struct hv_ncs_qtail_update_arg {
2880	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
2881	unsigned long	tail;     /* New tail index to use */
2882	unsigned long	syncflag; /* only SYNCFLAG_SYNC is implemented */
2883#define HV_NCS_SYNCFLAG_SYNC	0x00
2884#define HV_NCS_SYNCFLAG_ASYNC	0x01
2885};
2886#endif
2887
2888/* ncs_request()
2889 * TRAP:	HV_FAST_TRAP
2890 * FUNCTION:	HV_FAST_NCS_REQUEST
2891 * ARG0:	NCS sub-function
2892 * ARG1:	sub-function argument real address
2893 * ARG2:	size in bytes of sub-function argument
2894 * RET0:	status
2895 *
2896 * The MAU chip of the Niagara processor is not directly accessible
2897 * to privileged code, instead it is programmed indirectly via this
2898 * hypervisor API.
2899 *
2900 * The interfaces defines a queue of MAU operations to perform.
2901 * Privileged code registers a queue with the hypervisor by invoking
2902 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the
2903 * base, end, and number of entries of the queue.  Each queue entry
2904 * contains a MAU register struct block.
2905 *
2906 * The privileged code then proceeds to add entries to the queue and
2907 * then invoke the HV_NCS_QTAIL_UPDATE sub-function.  Since only
2908 * synchronous operations are supported by the current hypervisor,
2909 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to
2910 * completion and return HV_EOK, or return an error code.
2911 *
2912 * The real address of the sub-function argument must be aligned on at
2913 * least an 8-byte boundary.
2914 *
2915 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte
2916 * offset, into the queue and must be less than or equal the 'num_ents'
2917 * argument given in the HV_NCS_QCONF call.
2918 */
2919#define HV_FAST_NCS_REQUEST		0x110
2920
2921#ifndef __ASSEMBLY__
2922extern unsigned long sun4v_ncs_request(unsigned long request,
2923				       unsigned long arg_ra,
2924				       unsigned long arg_size);
2925#endif
2926
2927#define HV_FAST_FIRE_GET_PERFREG	0x120
2928#define HV_FAST_FIRE_SET_PERFREG	0x121
2929
2930#define HV_FAST_REBOOT_DATA_SET		0x172
2931
2932#ifndef __ASSEMBLY__
2933extern unsigned long sun4v_reboot_data_set(unsigned long ra,
2934					   unsigned long len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2935#endif
2936
2937/* Function numbers for HV_CORE_TRAP.  */
2938#define HV_CORE_SET_VER			0x00
2939#define HV_CORE_PUTCHAR			0x01
2940#define HV_CORE_EXIT			0x02
2941#define HV_CORE_GET_VER			0x03
2942
2943/* Hypervisor API groups for use with HV_CORE_SET_VER and
2944 * HV_CORE_GET_VER.
2945 */
2946#define HV_GRP_SUN4V			0x0000
2947#define HV_GRP_CORE			0x0001
2948#define HV_GRP_INTR			0x0002
2949#define HV_GRP_SOFT_STATE		0x0003
2950#define HV_GRP_TM			0x0080
2951#define HV_GRP_PCI			0x0100
2952#define HV_GRP_LDOM			0x0101
2953#define HV_GRP_SVC_CHAN			0x0102
2954#define HV_GRP_NCS			0x0103
2955#define HV_GRP_RNG			0x0104
2956#define HV_GRP_PBOOT			0x0105
2957#define HV_GRP_TPM			0x0107
2958#define HV_GRP_SDIO			0x0108
2959#define HV_GRP_SDIO_ERR			0x0109
2960#define HV_GRP_REBOOT_DATA		0x0110
 
 
 
2961#define HV_GRP_NIAG_PERF		0x0200
2962#define HV_GRP_FIRE_PERF		0x0201
2963#define HV_GRP_N2_CPU			0x0202
2964#define HV_GRP_NIU			0x0204
2965#define HV_GRP_VF_CPU			0x0205
2966#define HV_GRP_KT_CPU			0x0209
 
 
2967#define HV_GRP_DIAG			0x0300
2968
2969#ifndef __ASSEMBLY__
2970extern unsigned long sun4v_get_version(unsigned long group,
2971				       unsigned long *major,
2972				       unsigned long *minor);
2973extern unsigned long sun4v_set_version(unsigned long group,
2974				       unsigned long major,
2975				       unsigned long minor,
2976				       unsigned long *actual_minor);
2977
2978extern int sun4v_hvapi_register(unsigned long group, unsigned long major,
2979				unsigned long *minor);
2980extern void sun4v_hvapi_unregister(unsigned long group);
2981extern int sun4v_hvapi_get(unsigned long group,
2982			   unsigned long *major,
2983			   unsigned long *minor);
2984extern void sun4v_hvapi_init(void);
2985#endif
2986
2987#endif /* !(_SPARC64_HYPERVISOR_H) */
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _SPARC64_HYPERVISOR_H
   3#define _SPARC64_HYPERVISOR_H
   4
   5/* Sun4v hypervisor interfaces and defines.
   6 *
   7 * Hypervisor calls are made via traps to software traps number 0x80
   8 * and above.  Registers %o0 to %o5 serve as argument, status, and
   9 * return value registers.
  10 *
  11 * There are two kinds of these traps.  First there are the normal
  12 * "fast traps" which use software trap 0x80 and encode the function
  13 * to invoke by number in register %o5.  Argument and return value
  14 * handling is as follows:
  15 *
  16 * -----------------------------------------------
  17 * |  %o5  | function number |     undefined     |
  18 * |  %o0  |   argument 0    |   return status   |
  19 * |  %o1  |   argument 1    |   return value 1  |
  20 * |  %o2  |   argument 2    |   return value 2  |
  21 * |  %o3  |   argument 3    |   return value 3  |
  22 * |  %o4  |   argument 4    |   return value 4  |
  23 * -----------------------------------------------
  24 *
  25 * The second type are "hyper-fast traps" which encode the function
  26 * number in the software trap number itself.  So these use trap
  27 * numbers > 0x80.  The register usage for hyper-fast traps is as
  28 * follows:
  29 *
  30 * -----------------------------------------------
  31 * |  %o0  |   argument 0    |   return status   |
  32 * |  %o1  |   argument 1    |   return value 1  |
  33 * |  %o2  |   argument 2    |   return value 2  |
  34 * |  %o3  |   argument 3    |   return value 3  |
  35 * |  %o4  |   argument 4    |   return value 4  |
  36 * -----------------------------------------------
  37 *
  38 * Registers providing explicit arguments to the hypervisor calls
  39 * are volatile across the call.  Upon return their values are
  40 * undefined unless explicitly specified as containing a particular
  41 * return value by the specific call.  The return status is always
  42 * returned in register %o0, zero indicates a successful execution of
  43 * the hypervisor call and other values indicate an error status as
  44 * defined below.  So, for example, if a hyper-fast trap takes
  45 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across
  46 * the call and %o3, %o4, and %o5 would be preserved.
  47 *
  48 * If the hypervisor trap is invalid, or the fast trap function number
  49 * is invalid, HV_EBADTRAP will be returned in %o0.  Also, all 64-bits
  50 * of the argument and return values are significant.
  51 */
  52
  53/* Trap numbers.  */
  54#define HV_FAST_TRAP		0x80
  55#define HV_MMU_MAP_ADDR_TRAP	0x83
  56#define HV_MMU_UNMAP_ADDR_TRAP	0x84
  57#define HV_TTRACE_ADDENTRY_TRAP	0x85
  58#define HV_CORE_TRAP		0xff
  59
  60/* Error codes.  */
  61#define HV_EOK				0  /* Successful return            */
  62#define HV_ENOCPU			1  /* Invalid CPU id               */
  63#define HV_ENORADDR			2  /* Invalid real address         */
  64#define HV_ENOINTR			3  /* Invalid interrupt id         */
  65#define HV_EBADPGSZ			4  /* Invalid pagesize encoding    */
  66#define HV_EBADTSB			5  /* Invalid TSB description      */
  67#define HV_EINVAL			6  /* Invalid argument             */
  68#define HV_EBADTRAP			7  /* Invalid function number      */
  69#define HV_EBADALIGN			8  /* Invalid address alignment    */
  70#define HV_EWOULDBLOCK			9  /* Cannot complete w/o blocking */
  71#define HV_ENOACCESS			10 /* No access to resource        */
  72#define HV_EIO				11 /* I/O error                    */
  73#define HV_ECPUERROR			12 /* CPU in error state           */
  74#define HV_ENOTSUPPORTED		13 /* Function not supported       */
  75#define HV_ENOMAP			14 /* No mapping found             */
  76#define HV_ETOOMANY			15 /* Too many items specified     */
  77#define HV_ECHANNEL			16 /* Invalid LDC channel          */
  78#define HV_EBUSY			17 /* Resource busy                */
  79#define HV_EUNAVAILABLE			23 /* Resource or operation not
  80					    * currently available, but may
  81					    * become available in the future
  82					    */
  83
  84/* mach_exit()
  85 * TRAP:	HV_FAST_TRAP
  86 * FUNCTION:	HV_FAST_MACH_EXIT
  87 * ARG0:	exit code
  88 * ERRORS:	This service does not return.
  89 *
  90 * Stop all CPUs in the virtual domain and place them into the stopped
  91 * state.  The 64-bit exit code may be passed to a service entity as
  92 * the domain's exit status.  On systems without a service entity, the
  93 * domain will undergo a reset, and the boot firmware will be
  94 * reloaded.
  95 *
  96 * This function will never return to the guest that invokes it.
  97 *
  98 * Note: By convention an exit code of zero denotes a successful exit by
  99 *       the guest code.  A non-zero exit code denotes a guest specific
 100 *       error indication.
 101 *
 102 */
 103#define HV_FAST_MACH_EXIT		0x00
 104
 105#ifndef __ASSEMBLY__
 106void sun4v_mach_exit(unsigned long exit_code);
 107#endif
 108
 109/* Domain services.  */
 110
 111/* mach_desc()
 112 * TRAP:	HV_FAST_TRAP
 113 * FUNCTION:	HV_FAST_MACH_DESC
 114 * ARG0:	buffer
 115 * ARG1:	length
 116 * RET0:	status
 117 * RET1:	length
 118 * ERRORS:	HV_EBADALIGN	Buffer is badly aligned
 119 *		HV_ENORADDR	Buffer is to an illegal real address.
 120 *		HV_EINVAL	Buffer length is too small for complete
 121 *				machine description.
 122 *
 123 * Copy the most current machine description into the buffer indicated
 124 * by the real address in ARG0.  The buffer provided must be 16 byte
 125 * aligned.  Upon success or HV_EINVAL, this service returns the
 126 * actual size of the machine description in the RET1 return value.
 127 *
 128 * Note: A method of determining the appropriate buffer size for the
 129 *       machine description is to first call this service with a buffer
 130 *       length of 0 bytes.
 131 */
 132#define HV_FAST_MACH_DESC		0x01
 133
 134#ifndef __ASSEMBLY__
 135unsigned long sun4v_mach_desc(unsigned long buffer_pa,
 136			      unsigned long buf_len,
 137			      unsigned long *real_buf_len);
 138#endif
 139
 140/* mach_sir()
 141 * TRAP:	HV_FAST_TRAP
 142 * FUNCTION:	HV_FAST_MACH_SIR
 143 * ERRORS:	This service does not return.
 144 *
 145 * Perform a software initiated reset of the virtual machine domain.
 146 * All CPUs are captured as soon as possible, all hardware devices are
 147 * returned to the entry default state, and the domain is restarted at
 148 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one
 149 * of the CPUs.  The single CPU restarted is selected as determined by
 150 * platform specific policy.  Memory is preserved across this
 151 * operation.
 152 */
 153#define HV_FAST_MACH_SIR		0x02
 154
 155#ifndef __ASSEMBLY__
 156void sun4v_mach_sir(void);
 157#endif
 158
 159/* mach_set_watchdog()
 160 * TRAP:	HV_FAST_TRAP
 161 * FUNCTION:	HV_FAST_MACH_SET_WATCHDOG
 162 * ARG0:	timeout in milliseconds
 163 * RET0:	status
 164 * RET1:	time remaining in milliseconds
 165 *
 166 * A guest uses this API to set a watchdog timer.  Once the gues has set
 167 * the timer, it must call the timer service again either to disable or
 168 * postpone the expiration.  If the timer expires before being reset or
 169 * disabled, then the hypervisor take a platform specific action leading
 170 * to guest termination within a bounded time period.  The platform action
 171 * may include recovery actions such as reporting the expiration to a
 172 * Service Processor, and/or automatically restarting the gues.
 173 *
 174 * The 'timeout' parameter is specified in milliseconds, however the
 175 * implementated granularity is given by the 'watchdog-resolution'
 176 * property in the 'platform' node of the guest's machine description.
 177 * The largest allowed timeout value is specified by the
 178 * 'watchdog-max-timeout' property of the 'platform' node.
 179 *
 180 * If the 'timeout' argument is not zero, the watchdog timer is set to
 181 * expire after a minimum of 'timeout' milliseconds.
 182 *
 183 * If the 'timeout' argument is zero, the watchdog timer is disabled.
 184 *
 185 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout'
 186 * property, the hypervisor leaves the watchdog timer state unchanged,
 187 * and returns a status of EINVAL.
 188 *
 189 * The 'time remaining' return value is valid regardless of whether the
 190 * return status is EOK or EINVAL.  A non-zero return value indicates the
 191 * number of milliseconds that were remaining until the timer was to expire.
 192 * If less than one millisecond remains, the return value is '1'.  If the
 193 * watchdog timer was disabled at the time of the call, the return value is
 194 * zero.
 195 *
 196 * If the hypervisor cannot support the exact timeout value requested, but
 197 * can support a larger timeout value, the hypervisor may round the actual
 198 * timeout to a value larger than the requested timeout, consequently the
 199 * 'time remaining' return value may be larger than the previously requested
 200 * timeout value.
 201 *
 202 * Any guest OS debugger should be aware that the watchdog service may be in
 203 * use.  Consequently, it is recommended that the watchdog service is
 204 * disabled upon debugger entry (e.g. reaching a breakpoint), and then
 205 * re-enabled upon returning to normal execution.  The API has been designed
 206 * with this in mind, and the 'time remaining' result of the disable call may
 207 * be used directly as the timeout argument of the re-enable call.
 208 */
 209#define HV_FAST_MACH_SET_WATCHDOG	0x05
 210
 211#ifndef __ASSEMBLY__
 212unsigned long sun4v_mach_set_watchdog(unsigned long timeout,
 213				      unsigned long *orig_timeout);
 214#endif
 215
 216/* CPU services.
 217 *
 218 * CPUs represent devices that can execute software threads.  A single
 219 * chip that contains multiple cores or strands is represented as
 220 * multiple CPUs with unique CPU identifiers.  CPUs are exported to
 221 * OBP via the machine description (and to the OS via the OBP device
 222 * tree).  CPUs are always in one of three states: stopped, running,
 223 * or error.
 224 *
 225 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a
 226 * CPU within a logical domain.  Operations that are to be performed
 227 * on multiple CPUs specify them via a CPU list.  A CPU list is an
 228 * array in real memory, of which each 16-bit word is a CPU ID.  CPU
 229 * lists are passed through the API as two arguments.  The first is
 230 * the number of entries (16-bit words) in the CPU list, and the
 231 * second is the (real address) pointer to the CPU ID list.
 232 */
 233
 234/* cpu_start()
 235 * TRAP:	HV_FAST_TRAP
 236 * FUNCTION:	HV_FAST_CPU_START
 237 * ARG0:	CPU ID
 238 * ARG1:	PC
 239 * ARG2:	RTBA
 240 * ARG3:	target ARG0
 241 * RET0:	status
 242 * ERRORS:	ENOCPU		Invalid CPU ID
 243 *		EINVAL		Target CPU ID is not in the stopped state
 244 *		ENORADDR	Invalid PC or RTBA real address
 245 *		EBADALIGN	Unaligned PC or unaligned RTBA
 246 *		EWOULDBLOCK	Starting resources are not available
 247 *
 248 * Start CPU with given CPU ID with PC in %pc and with a real trap
 249 * base address value of RTBA.  The indicated CPU must be in the
 250 * stopped state.  The supplied RTBA must be aligned on a 256 byte
 251 * boundary.  On successful completion, the specified CPU will be in
 252 * the running state and will be supplied with "target ARG0" in %o0
 253 * and RTBA in %tba.
 254 */
 255#define HV_FAST_CPU_START		0x10
 256
 257#ifndef __ASSEMBLY__
 258unsigned long sun4v_cpu_start(unsigned long cpuid,
 259			      unsigned long pc,
 260			      unsigned long rtba,
 261			      unsigned long arg0);
 262#endif
 263
 264/* cpu_stop()
 265 * TRAP:	HV_FAST_TRAP
 266 * FUNCTION:	HV_FAST_CPU_STOP
 267 * ARG0:	CPU ID
 268 * RET0:	status
 269 * ERRORS:	ENOCPU		Invalid CPU ID
 270 *		EINVAL		Target CPU ID is the current cpu
 271 *		EINVAL		Target CPU ID is not in the running state
 272 *		EWOULDBLOCK	Stopping resources are not available
 273 *		ENOTSUPPORTED	Not supported on this platform
 274 *
 275 * The specified CPU is stopped.  The indicated CPU must be in the
 276 * running state.  On completion, it will be in the stopped state.  It
 277 * is not legal to stop the current CPU.
 278 *
 279 * Note: As this service cannot be used to stop the current cpu, this service
 280 *       may not be used to stop the last running CPU in a domain.  To stop
 281 *       and exit a running domain, a guest must use the mach_exit() service.
 282 */
 283#define HV_FAST_CPU_STOP		0x11
 284
 285#ifndef __ASSEMBLY__
 286unsigned long sun4v_cpu_stop(unsigned long cpuid);
 287#endif
 288
 289/* cpu_yield()
 290 * TRAP:	HV_FAST_TRAP
 291 * FUNCTION:	HV_FAST_CPU_YIELD
 292 * RET0:	status
 293 * ERRORS:	No possible error.
 294 *
 295 * Suspend execution on the current CPU.  Execution will resume when
 296 * an interrupt (device, %stick_compare, or cross-call) is targeted to
 297 * the CPU.  On some CPUs, this API may be used by the hypervisor to
 298 * save power by disabling hardware strands.
 299 */
 300#define HV_FAST_CPU_YIELD		0x12
 301
 302#ifndef __ASSEMBLY__
 303unsigned long sun4v_cpu_yield(void);
 304#endif
 305
 306/* cpu_poke()
 307 * TRAP:	HV_FAST_TRAP
 308 * FUNCTION:	HV_FAST_CPU_POKE
 309 * RET0:	status
 310 * ERRORS:	ENOCPU		cpuid refers to a CPU that does not exist
 311 *		EINVAL		cpuid is current CPU
 312 *
 313 * Poke CPU cpuid. If the target CPU is currently suspended having
 314 * invoked the cpu-yield service, that vCPU will be resumed.
 315 * Poke interrupts may only be sent to valid, non-local CPUs.
 316 * It is not legal to poke the current vCPU.
 317 */
 318#define HV_FAST_CPU_POKE                0x13
 319
 320#ifndef __ASSEMBLY__
 321unsigned long sun4v_cpu_poke(unsigned long cpuid);
 322#endif
 323
 324/* cpu_qconf()
 325 * TRAP:	HV_FAST_TRAP
 326 * FUNCTION:	HV_FAST_CPU_QCONF
 327 * ARG0:	queue
 328 * ARG1:	base real address
 329 * ARG2:	number of entries
 330 * RET0:	status
 331 * ERRORS:	ENORADDR	Invalid base real address
 332 *		EINVAL		Invalid queue or number of entries is less
 333 *				than 2 or too large.
 334 *		EBADALIGN	Base real address is not correctly aligned
 335 *				for size.
 336 *
 337 * Configure the given queue to be placed at the given base real
 338 * address, with the given number of entries.  The number of entries
 339 * must be a power of 2.  The base real address must be aligned
 340 * exactly to match the queue size.  Each queue entry is 64 bytes
 341 * long, so for example a 32 entry queue must be aligned on a 2048
 342 * byte real address boundary.
 343 *
 344 * The specified queue is unconfigured if the number of entries is given
 345 * as zero.
 346 *
 347 * For the current version of this API service, the argument queue is defined
 348 * as follows:
 349 *
 350 *	queue		description
 351 *	-----		-------------------------
 352 *	0x3c		cpu mondo queue
 353 *	0x3d		device mondo queue
 354 *	0x3e		resumable error queue
 355 *	0x3f		non-resumable error queue
 356 *
 357 * Note: The maximum number of entries for each queue for a specific cpu may
 358 *       be determined from the machine description.
 359 */
 360#define HV_FAST_CPU_QCONF		0x14
 361#define  HV_CPU_QUEUE_CPU_MONDO		 0x3c
 362#define  HV_CPU_QUEUE_DEVICE_MONDO	 0x3d
 363#define  HV_CPU_QUEUE_RES_ERROR		 0x3e
 364#define  HV_CPU_QUEUE_NONRES_ERROR	 0x3f
 365
 366#ifndef __ASSEMBLY__
 367unsigned long sun4v_cpu_qconf(unsigned long type,
 368			      unsigned long queue_paddr,
 369			      unsigned long num_queue_entries);
 370#endif
 371
 372/* cpu_qinfo()
 373 * TRAP:	HV_FAST_TRAP
 374 * FUNCTION:	HV_FAST_CPU_QINFO
 375 * ARG0:	queue
 376 * RET0:	status
 377 * RET1:	base real address
 378 * RET1:	number of entries
 379 * ERRORS:	EINVAL		Invalid queue
 380 *
 381 * Return the configuration info for the given queue.  The base real
 382 * address and number of entries of the defined queue are returned.
 383 * The queue argument values are the same as for cpu_qconf() above.
 384 *
 385 * If the specified queue is a valid queue number, but no queue has
 386 * been defined, the number of entries will be set to zero and the
 387 * base real address returned is undefined.
 388 */
 389#define HV_FAST_CPU_QINFO		0x15
 390
 391/* cpu_mondo_send()
 392 * TRAP:	HV_FAST_TRAP
 393 * FUNCTION:	HV_FAST_CPU_MONDO_SEND
 394 * ARG0-1:	CPU list
 395 * ARG2:	data real address
 396 * RET0:	status
 397 * ERRORS:	EBADALIGN	Mondo data is not 64-byte aligned or CPU list
 398 *				is not 2-byte aligned.
 399 *		ENORADDR	Invalid data mondo address, or invalid cpu list
 400 *				address.
 401 *		ENOCPU		Invalid cpu in CPU list
 402 *		EWOULDBLOCK	Some or all of the listed CPUs did not receive
 403 *				the mondo
 404 *		ECPUERROR	One or more of the listed CPUs are in error
 405 *				state, use HV_FAST_CPU_STATE to see which ones
 406 *		EINVAL		CPU list includes caller's CPU ID
 407 *
 408 * Send a mondo interrupt to the CPUs in the given CPU list with the
 409 * 64-bytes at the given data real address.  The data must be 64-byte
 410 * aligned.  The mondo data will be delivered to the cpu_mondo queues
 411 * of the recipient CPUs.
 412 *
 413 * In all cases, error or not, the CPUs in the CPU list to which the
 414 * mondo has been successfully delivered will be indicated by having
 415 * their entry in CPU list updated with the value 0xffff.
 416 */
 417#define HV_FAST_CPU_MONDO_SEND		0x42
 418
 419#ifndef __ASSEMBLY__
 420unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count,
 421				   unsigned long cpu_list_pa,
 422				   unsigned long mondo_block_pa);
 423#endif
 424
 425/* cpu_myid()
 426 * TRAP:	HV_FAST_TRAP
 427 * FUNCTION:	HV_FAST_CPU_MYID
 428 * RET0:	status
 429 * RET1:	CPU ID
 430 * ERRORS:	No errors defined.
 431 *
 432 * Return the hypervisor ID handle for the current CPU.  Use by a
 433 * virtual CPU to discover its own identity.
 434 */
 435#define HV_FAST_CPU_MYID		0x16
 436
 437/* cpu_state()
 438 * TRAP:	HV_FAST_TRAP
 439 * FUNCTION:	HV_FAST_CPU_STATE
 440 * ARG0:	CPU ID
 441 * RET0:	status
 442 * RET1:	state
 443 * ERRORS:	ENOCPU		Invalid CPU ID
 444 *
 445 * Retrieve the current state of the CPU with the given CPU ID.
 446 */
 447#define HV_FAST_CPU_STATE		0x17
 448#define  HV_CPU_STATE_STOPPED		 0x01
 449#define  HV_CPU_STATE_RUNNING		 0x02
 450#define  HV_CPU_STATE_ERROR		 0x03
 451
 452#ifndef __ASSEMBLY__
 453long sun4v_cpu_state(unsigned long cpuid);
 454#endif
 455
 456/* cpu_set_rtba()
 457 * TRAP:	HV_FAST_TRAP
 458 * FUNCTION:	HV_FAST_CPU_SET_RTBA
 459 * ARG0:	RTBA
 460 * RET0:	status
 461 * RET1:	previous RTBA
 462 * ERRORS:	ENORADDR	Invalid RTBA real address
 463 *		EBADALIGN	RTBA is incorrectly aligned for a trap table
 464 *
 465 * Set the real trap base address of the local cpu to the given RTBA.
 466 * The supplied RTBA must be aligned on a 256 byte boundary.  Upon
 467 * success the previous value of the RTBA is returned in RET1.
 468 *
 469 * Note: This service does not affect %tba
 470 */
 471#define HV_FAST_CPU_SET_RTBA		0x18
 472
 473/* cpu_set_rtba()
 474 * TRAP:	HV_FAST_TRAP
 475 * FUNCTION:	HV_FAST_CPU_GET_RTBA
 476 * RET0:	status
 477 * RET1:	previous RTBA
 478 * ERRORS:	No possible error.
 479 *
 480 * Returns the current value of RTBA in RET1.
 481 */
 482#define HV_FAST_CPU_GET_RTBA		0x19
 483
 484/* MMU services.
 485 *
 486 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls.
 487 */
 488#ifndef __ASSEMBLY__
 489struct hv_tsb_descr {
 490	unsigned short		pgsz_idx;
 491	unsigned short		assoc;
 492	unsigned int		num_ttes;	/* in TTEs */
 493	unsigned int		ctx_idx;
 494	unsigned int		pgsz_mask;
 495	unsigned long		tsb_base;
 496	unsigned long		resv;
 497};
 498#endif
 499#define HV_TSB_DESCR_PGSZ_IDX_OFFSET	0x00
 500#define HV_TSB_DESCR_ASSOC_OFFSET	0x02
 501#define HV_TSB_DESCR_NUM_TTES_OFFSET	0x04
 502#define HV_TSB_DESCR_CTX_IDX_OFFSET	0x08
 503#define HV_TSB_DESCR_PGSZ_MASK_OFFSET	0x0c
 504#define HV_TSB_DESCR_TSB_BASE_OFFSET	0x10
 505#define HV_TSB_DESCR_RESV_OFFSET	0x18
 506
 507/* Page size bitmask.  */
 508#define HV_PGSZ_MASK_8K			(1 << 0)
 509#define HV_PGSZ_MASK_64K		(1 << 1)
 510#define HV_PGSZ_MASK_512K		(1 << 2)
 511#define HV_PGSZ_MASK_4MB		(1 << 3)
 512#define HV_PGSZ_MASK_32MB		(1 << 4)
 513#define HV_PGSZ_MASK_256MB		(1 << 5)
 514#define HV_PGSZ_MASK_2GB		(1 << 6)
 515#define HV_PGSZ_MASK_16GB		(1 << 7)
 516
 517/* Page size index.  The value given in the TSB descriptor must correspond
 518 * to the smallest page size specified in the pgsz_mask page size bitmask.
 519 */
 520#define HV_PGSZ_IDX_8K			0
 521#define HV_PGSZ_IDX_64K			1
 522#define HV_PGSZ_IDX_512K		2
 523#define HV_PGSZ_IDX_4MB			3
 524#define HV_PGSZ_IDX_32MB		4
 525#define HV_PGSZ_IDX_256MB		5
 526#define HV_PGSZ_IDX_2GB			6
 527#define HV_PGSZ_IDX_16GB		7
 528
 529/* MMU fault status area.
 530 *
 531 * MMU related faults have their status and fault address information
 532 * placed into a memory region made available by privileged code.  Each
 533 * virtual processor must make a mmu_fault_area_conf() call to tell the
 534 * hypervisor where that processor's fault status should be stored.
 535 *
 536 * The fault status block is a multiple of 64-bytes and must be aligned
 537 * on a 64-byte boundary.
 538 */
 539#ifndef __ASSEMBLY__
 540struct hv_fault_status {
 541	unsigned long		i_fault_type;
 542	unsigned long		i_fault_addr;
 543	unsigned long		i_fault_ctx;
 544	unsigned long		i_reserved[5];
 545	unsigned long		d_fault_type;
 546	unsigned long		d_fault_addr;
 547	unsigned long		d_fault_ctx;
 548	unsigned long		d_reserved[5];
 549};
 550#endif
 551#define HV_FAULT_I_TYPE_OFFSET	0x00
 552#define HV_FAULT_I_ADDR_OFFSET	0x08
 553#define HV_FAULT_I_CTX_OFFSET	0x10
 554#define HV_FAULT_D_TYPE_OFFSET	0x40
 555#define HV_FAULT_D_ADDR_OFFSET	0x48
 556#define HV_FAULT_D_CTX_OFFSET	0x50
 557
 558#define HV_FAULT_TYPE_FAST_MISS	1
 559#define HV_FAULT_TYPE_FAST_PROT	2
 560#define HV_FAULT_TYPE_MMU_MISS	3
 561#define HV_FAULT_TYPE_INV_RA	4
 562#define HV_FAULT_TYPE_PRIV_VIOL	5
 563#define HV_FAULT_TYPE_PROT_VIOL	6
 564#define HV_FAULT_TYPE_NFO	7
 565#define HV_FAULT_TYPE_NFO_SEFF	8
 566#define HV_FAULT_TYPE_INV_VA	9
 567#define HV_FAULT_TYPE_INV_ASI	10
 568#define HV_FAULT_TYPE_NC_ATOMIC	11
 569#define HV_FAULT_TYPE_PRIV_ACT	12
 570#define HV_FAULT_TYPE_RESV1	13
 571#define HV_FAULT_TYPE_UNALIGNED	14
 572#define HV_FAULT_TYPE_INV_PGSZ	15
 573#define HV_FAULT_TYPE_MCD	17
 574#define HV_FAULT_TYPE_MCD_DIS	18
 575/* Values 16 --> -2 are reserved.  */
 576#define HV_FAULT_TYPE_MULTIPLE	-1
 577
 578/* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(),
 579 * and mmu_{map,unmap}_perm_addr().
 580 */
 581#define HV_MMU_DMMU			0x01
 582#define HV_MMU_IMMU			0x02
 583#define HV_MMU_ALL			(HV_MMU_DMMU | HV_MMU_IMMU)
 584
 585/* mmu_map_addr()
 586 * TRAP:	HV_MMU_MAP_ADDR_TRAP
 587 * ARG0:	virtual address
 588 * ARG1:	mmu context
 589 * ARG2:	TTE
 590 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
 591 * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
 592 *		EBADPGSZ	Invalid page size value
 593 *		ENORADDR	Invalid real address in TTE
 594 *
 595 * Create a non-permanent mapping using the given TTE, virtual
 596 * address, and mmu context.  The flags argument determines which
 597 * (data, or instruction, or both) TLB the mapping gets loaded into.
 598 *
 599 * The behavior is undefined if the valid bit is clear in the TTE.
 600 *
 601 * Note: This API call is for privileged code to specify temporary translation
 602 *       mappings without the need to create and manage a TSB.
 603 */
 604
 605/* mmu_unmap_addr()
 606 * TRAP:	HV_MMU_UNMAP_ADDR_TRAP
 607 * ARG0:	virtual address
 608 * ARG1:	mmu context
 609 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
 610 * ERRORS:	EINVAL		Invalid virtual address, mmu context, or flags
 611 *
 612 * Demaps the given virtual address in the given mmu context on this
 613 * CPU.  This function is intended to be used to demap pages mapped
 614 * with mmu_map_addr.  This service is equivalent to invoking
 615 * mmu_demap_page() with only the current CPU in the CPU list. The
 616 * flags argument determines which (data, or instruction, or both) TLB
 617 * the mapping gets unmapped from.
 618 *
 619 * Attempting to perform an unmap operation for a previously defined
 620 * permanent mapping will have undefined results.
 621 */
 622
 623/* mmu_tsb_ctx0()
 624 * TRAP:	HV_FAST_TRAP
 625 * FUNCTION:	HV_FAST_MMU_TSB_CTX0
 626 * ARG0:	number of TSB descriptions
 627 * ARG1:	TSB descriptions pointer
 628 * RET0:	status
 629 * ERRORS:	ENORADDR		Invalid TSB descriptions pointer or
 630 *					TSB base within a descriptor
 631 *		EBADALIGN		TSB descriptions pointer is not aligned
 632 *					to an 8-byte boundary, or TSB base
 633 *					within a descriptor is not aligned for
 634 *					the given TSB size
 635 *		EBADPGSZ		Invalid page size in a TSB descriptor
 636 *		EBADTSB			Invalid associativity or size in a TSB
 637 *					descriptor
 638 *		EINVAL			Invalid number of TSB descriptions, or
 639 *					invalid context index in a TSB
 640 *					descriptor, or index page size not
 641 *					equal to smallest page size in page
 642 *					size bitmask field.
 643 *
 644 * Configures the TSBs for the current CPU for virtual addresses with
 645 * context zero.  The TSB descriptions pointer is a pointer to an
 646 * array of the given number of TSB descriptions.
 647 *
 648 * Note: The maximum number of TSBs available to a virtual CPU is given by the
 649 *       mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the
 650 *       machine description.
 651 */
 652#define HV_FAST_MMU_TSB_CTX0		0x20
 653
 654#ifndef __ASSEMBLY__
 655unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions,
 656				 unsigned long tsb_desc_ra);
 657#endif
 658
 659/* mmu_tsb_ctxnon0()
 660 * TRAP:	HV_FAST_TRAP
 661 * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0
 662 * ARG0:	number of TSB descriptions
 663 * ARG1:	TSB descriptions pointer
 664 * RET0:	status
 665 * ERRORS:	Same as for mmu_tsb_ctx0() above.
 666 *
 667 * Configures the TSBs for the current CPU for virtual addresses with
 668 * non-zero contexts.  The TSB descriptions pointer is a pointer to an
 669 * array of the given number of TSB descriptions.
 670 *
 671 * Note: A maximum of 16 TSBs may be specified in the TSB description list.
 672 */
 673#define HV_FAST_MMU_TSB_CTXNON0		0x21
 674
 675/* mmu_demap_page()
 676 * TRAP:	HV_FAST_TRAP
 677 * FUNCTION:	HV_FAST_MMU_DEMAP_PAGE
 678 * ARG0:	reserved, must be zero
 679 * ARG1:	reserved, must be zero
 680 * ARG2:	virtual address
 681 * ARG3:	mmu context
 682 * ARG4:	flags (HV_MMU_{IMMU,DMMU})
 683 * RET0:	status
 684 * ERRORS:	EINVAL			Invalid virtual address, context, or
 685 *					flags value
 686 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
 687 *
 688 * Demaps any page mapping of the given virtual address in the given
 689 * mmu context for the current virtual CPU.  Any virtually tagged
 690 * caches are guaranteed to be kept consistent.  The flags argument
 691 * determines which TLB (instruction, or data, or both) participate in
 692 * the operation.
 693 *
 694 * ARG0 and ARG1 are both reserved and must be set to zero.
 695 */
 696#define HV_FAST_MMU_DEMAP_PAGE		0x22
 697
 698/* mmu_demap_ctx()
 699 * TRAP:	HV_FAST_TRAP
 700 * FUNCTION:	HV_FAST_MMU_DEMAP_CTX
 701 * ARG0:	reserved, must be zero
 702 * ARG1:	reserved, must be zero
 703 * ARG2:	mmu context
 704 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
 705 * RET0:	status
 706 * ERRORS:	EINVAL			Invalid context or flags value
 707 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
 708 *
 709 * Demaps all non-permanent virtual page mappings previously specified
 710 * for the given context for the current virtual CPU.  Any virtual
 711 * tagged caches are guaranteed to be kept consistent.  The flags
 712 * argument determines which TLB (instruction, or data, or both)
 713 * participate in the operation.
 714 *
 715 * ARG0 and ARG1 are both reserved and must be set to zero.
 716 */
 717#define HV_FAST_MMU_DEMAP_CTX		0x23
 718
 719/* mmu_demap_all()
 720 * TRAP:	HV_FAST_TRAP
 721 * FUNCTION:	HV_FAST_MMU_DEMAP_ALL
 722 * ARG0:	reserved, must be zero
 723 * ARG1:	reserved, must be zero
 724 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
 725 * RET0:	status
 726 * ERRORS:	EINVAL			Invalid flags value
 727 *		ENOTSUPPORTED		ARG0 or ARG1 is non-zero
 728 *
 729 * Demaps all non-permanent virtual page mappings previously specified
 730 * for the current virtual CPU.  Any virtual tagged caches are
 731 * guaranteed to be kept consistent.  The flags argument determines
 732 * which TLB (instruction, or data, or both) participate in the
 733 * operation.
 734 *
 735 * ARG0 and ARG1 are both reserved and must be set to zero.
 736 */
 737#define HV_FAST_MMU_DEMAP_ALL		0x24
 738
 739#ifndef __ASSEMBLY__
 740void sun4v_mmu_demap_all(void);
 741#endif
 742
 743/* mmu_map_perm_addr()
 744 * TRAP:	HV_FAST_TRAP
 745 * FUNCTION:	HV_FAST_MMU_MAP_PERM_ADDR
 746 * ARG0:	virtual address
 747 * ARG1:	reserved, must be zero
 748 * ARG2:	TTE
 749 * ARG3:	flags (HV_MMU_{IMMU,DMMU})
 750 * RET0:	status
 751 * ERRORS:	EINVAL			Invalid virtual address or flags value
 752 *		EBADPGSZ		Invalid page size value
 753 *		ENORADDR		Invalid real address in TTE
 754 *		ETOOMANY		Too many mappings (max of 8 reached)
 755 *
 756 * Create a permanent mapping using the given TTE and virtual address
 757 * for context 0 on the calling virtual CPU.  A maximum of 8 such
 758 * permanent mappings may be specified by privileged code.  Mappings
 759 * may be removed with mmu_unmap_perm_addr().
 760 *
 761 * The behavior is undefined if a TTE with the valid bit clear is given.
 762 *
 763 * Note: This call is used to specify address space mappings for which
 764 *       privileged code does not expect to receive misses.  For example,
 765 *       this mechanism can be used to map kernel nucleus code and data.
 766 */
 767#define HV_FAST_MMU_MAP_PERM_ADDR	0x25
 768
 769#ifndef __ASSEMBLY__
 770unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr,
 771				      unsigned long set_to_zero,
 772				      unsigned long tte,
 773				      unsigned long flags);
 774#endif
 775
 776/* mmu_fault_area_conf()
 777 * TRAP:	HV_FAST_TRAP
 778 * FUNCTION:	HV_FAST_MMU_FAULT_AREA_CONF
 779 * ARG0:	real address
 780 * RET0:	status
 781 * RET1:	previous mmu fault area real address
 782 * ERRORS:	ENORADDR		Invalid real address
 783 *		EBADALIGN		Invalid alignment for fault area
 784 *
 785 * Configure the MMU fault status area for the calling CPU.  A 64-byte
 786 * aligned real address specifies where MMU fault status information
 787 * is placed.  The return value is the previously specified area, or 0
 788 * for the first invocation.  Specifying a fault area at real address
 789 * 0 is not allowed.
 790 */
 791#define HV_FAST_MMU_FAULT_AREA_CONF	0x26
 792
 793/* mmu_enable()
 794 * TRAP:	HV_FAST_TRAP
 795 * FUNCTION:	HV_FAST_MMU_ENABLE
 796 * ARG0:	enable flag
 797 * ARG1:	return target address
 798 * RET0:	status
 799 * ERRORS:	ENORADDR		Invalid real address when disabling
 800 *					translation.
 801 *		EBADALIGN		The return target address is not
 802 *					aligned to an instruction.
 803 *		EINVAL			The enable flag request the current
 804 *					operating mode (e.g. disable if already
 805 *					disabled)
 806 *
 807 * Enable or disable virtual address translation for the calling CPU
 808 * within the virtual machine domain.  If the enable flag is zero,
 809 * translation is disabled, any non-zero value will enable
 810 * translation.
 811 *
 812 * When this function returns, the newly selected translation mode
 813 * will be active.  If the mmu is being enabled, then the return
 814 * target address is a virtual address else it is a real address.
 815 *
 816 * Upon successful completion, control will be returned to the given
 817 * return target address (ie. the cpu will jump to that address).  On
 818 * failure, the previous mmu mode remains and the trap simply returns
 819 * as normal with the appropriate error code in RET0.
 820 */
 821#define HV_FAST_MMU_ENABLE		0x27
 822
 823/* mmu_unmap_perm_addr()
 824 * TRAP:	HV_FAST_TRAP
 825 * FUNCTION:	HV_FAST_MMU_UNMAP_PERM_ADDR
 826 * ARG0:	virtual address
 827 * ARG1:	reserved, must be zero
 828 * ARG2:	flags (HV_MMU_{IMMU,DMMU})
 829 * RET0:	status
 830 * ERRORS:	EINVAL			Invalid virtual address or flags value
 831 *		ENOMAP			Specified mapping was not found
 832 *
 833 * Demaps any permanent page mapping (established via
 834 * mmu_map_perm_addr()) at the given virtual address for context 0 on
 835 * the current virtual CPU.  Any virtual tagged caches are guaranteed
 836 * to be kept consistent.
 837 */
 838#define HV_FAST_MMU_UNMAP_PERM_ADDR	0x28
 839
 840/* mmu_tsb_ctx0_info()
 841 * TRAP:	HV_FAST_TRAP
 842 * FUNCTION:	HV_FAST_MMU_TSB_CTX0_INFO
 843 * ARG0:	max TSBs
 844 * ARG1:	buffer pointer
 845 * RET0:	status
 846 * RET1:	number of TSBs
 847 * ERRORS:	EINVAL			Supplied buffer is too small
 848 *		EBADALIGN		The buffer pointer is badly aligned
 849 *		ENORADDR		Invalid real address for buffer pointer
 850 *
 851 * Return the TSB configuration as previous defined by mmu_tsb_ctx0()
 852 * into the provided buffer.  The size of the buffer is given in ARG1
 853 * in terms of the number of TSB description entries.
 854 *
 855 * Upon return, RET1 always contains the number of TSB descriptions
 856 * previously configured.  If zero TSBs were configured, EOK is
 857 * returned with RET1 containing 0.
 858 */
 859#define HV_FAST_MMU_TSB_CTX0_INFO	0x29
 860
 861/* mmu_tsb_ctxnon0_info()
 862 * TRAP:	HV_FAST_TRAP
 863 * FUNCTION:	HV_FAST_MMU_TSB_CTXNON0_INFO
 864 * ARG0:	max TSBs
 865 * ARG1:	buffer pointer
 866 * RET0:	status
 867 * RET1:	number of TSBs
 868 * ERRORS:	EINVAL			Supplied buffer is too small
 869 *		EBADALIGN		The buffer pointer is badly aligned
 870 *		ENORADDR		Invalid real address for buffer pointer
 871 *
 872 * Return the TSB configuration as previous defined by
 873 * mmu_tsb_ctxnon0() into the provided buffer.  The size of the buffer
 874 * is given in ARG1 in terms of the number of TSB description entries.
 875 *
 876 * Upon return, RET1 always contains the number of TSB descriptions
 877 * previously configured.  If zero TSBs were configured, EOK is
 878 * returned with RET1 containing 0.
 879 */
 880#define HV_FAST_MMU_TSB_CTXNON0_INFO	0x2a
 881
 882/* mmu_fault_area_info()
 883 * TRAP:	HV_FAST_TRAP
 884 * FUNCTION:	HV_FAST_MMU_FAULT_AREA_INFO
 885 * RET0:	status
 886 * RET1:	fault area real address
 887 * ERRORS:	No errors defined.
 888 *
 889 * Return the currently defined MMU fault status area for the current
 890 * CPU.  The real address of the fault status area is returned in
 891 * RET1, or 0 is returned in RET1 if no fault status area is defined.
 892 *
 893 * Note: mmu_fault_area_conf() may be called with the return value (RET1)
 894 *       from this service if there is a need to save and restore the fault
 895 *	 area for a cpu.
 896 */
 897#define HV_FAST_MMU_FAULT_AREA_INFO	0x2b
 898
 899/* Cache and Memory services. */
 900
 901/* mem_scrub()
 902 * TRAP:	HV_FAST_TRAP
 903 * FUNCTION:	HV_FAST_MEM_SCRUB
 904 * ARG0:	real address
 905 * ARG1:	length
 906 * RET0:	status
 907 * RET1:	length scrubbed
 908 * ERRORS:	ENORADDR	Invalid real address
 909 *		EBADALIGN	Start address or length are not correctly
 910 *				aligned
 911 *		EINVAL		Length is zero
 912 *
 913 * Zero the memory contents in the range real address to real address
 914 * plus length minus 1.  Also, valid ECC will be generated for that
 915 * memory address range.  Scrubbing is started at the given real
 916 * address, but may not scrub the entire given length.  The actual
 917 * length scrubbed will be returned in RET1.
 918 *
 919 * The real address and length must be aligned on an 8K boundary, or
 920 * contain the start address and length from a sun4v error report.
 921 *
 922 * Note: There are two uses for this function.  The first use is to block clear
 923 *       and initialize memory and the second is to scrub an u ncorrectable
 924 *       error reported via a resumable or non-resumable trap.  The second
 925 *       use requires the arguments to be equal to the real address and length
 926 *       provided in a sun4v memory error report.
 927 */
 928#define HV_FAST_MEM_SCRUB		0x31
 929
 930/* mem_sync()
 931 * TRAP:	HV_FAST_TRAP
 932 * FUNCTION:	HV_FAST_MEM_SYNC
 933 * ARG0:	real address
 934 * ARG1:	length
 935 * RET0:	status
 936 * RET1:	length synced
 937 * ERRORS:	ENORADDR	Invalid real address
 938 *		EBADALIGN	Start address or length are not correctly
 939 *				aligned
 940 *		EINVAL		Length is zero
 941 *
 942 * Force the next access within the real address to real address plus
 943 * length minus 1 to be fetches from main system memory.  Less than
 944 * the given length may be synced, the actual amount synced is
 945 * returned in RET1.  The real address and length must be aligned on
 946 * an 8K boundary.
 947 */
 948#define HV_FAST_MEM_SYNC		0x32
 949
 950/* Coprocessor services
 951 *
 952 * M7 and later processors provide an on-chip coprocessor which
 953 * accelerates database operations, and is known internally as
 954 * DAX.
 955 */
 956
 957/* ccb_submit()
 958 * TRAP:	HV_FAST_TRAP
 959 * FUNCTION:	HV_CCB_SUBMIT
 960 * ARG0:	address of CCB array
 961 * ARG1:	size (in bytes) of CCB array being submitted
 962 * ARG2:	flags
 963 * ARG3:	reserved
 964 * RET0:	status (success or error code)
 965 * RET1:	size (in bytes) of CCB array that was accepted (might be less
 966 *		than arg1)
 967 * RET2:	status data
 968 *		if status == ENOMAP or ENOACCESS, identifies the VA in question
 969 *		if status == EUNAVAILBLE, unavailable code
 970 * RET3:	reserved
 971 *
 972 * ERRORS:	EOK		successful submission (check size)
 973 *		EWOULDBLOCK	could not finish submissions, try again
 974 *		EBADALIGN	array not 64B aligned or size not 64B multiple
 975 *		ENORADDR	invalid RA for array or in CCB
 976 *		ENOMAP		could not translate address (see status data)
 977 *		EINVAL		invalid ccb or arguments
 978 *		ETOOMANY	too many ccbs with all-or-nothing flag
 979 *		ENOACCESS	guest has no access to submit ccbs or address
 980 *				in CCB does not have correct permissions (check
 981 *				status data)
 982 *		EUNAVAILABLE	ccb operation could not be performed at this
 983 *				time (check status data)
 984 *				Status data codes:
 985 *					0 - exact CCB could not be executed
 986 *					1 - CCB opcode cannot be executed
 987 *					2 - CCB version cannot be executed
 988 *					3 - vcpu cannot execute CCBs
 989 *					4 - no CCBs can be executed
 990 */
 991
 992#define HV_CCB_SUBMIT               0x34
 993#ifndef __ASSEMBLY__
 994unsigned long sun4v_ccb_submit(unsigned long ccb_buf,
 995			       unsigned long len,
 996			       unsigned long flags,
 997			       unsigned long reserved,
 998			       void *submitted_len,
 999			       void *status_data);
1000#endif
1001
1002/* flags (ARG2) */
1003#define HV_CCB_QUERY_CMD		BIT(1)
1004#define HV_CCB_ARG0_TYPE_REAL		0UL
1005#define HV_CCB_ARG0_TYPE_PRIMARY	BIT(4)
1006#define HV_CCB_ARG0_TYPE_SECONDARY	BIT(5)
1007#define HV_CCB_ARG0_TYPE_NUCLEUS	GENMASK(5, 4)
1008#define HV_CCB_ARG0_PRIVILEGED		BIT(6)
1009#define HV_CCB_ALL_OR_NOTHING		BIT(7)
1010#define HV_CCB_QUEUE_INFO		BIT(8)
1011#define HV_CCB_VA_REJECT		0UL
1012#define HV_CCB_VA_SECONDARY		BIT(13)
1013#define HV_CCB_VA_NUCLEUS		GENMASK(13, 12)
1014#define HV_CCB_VA_PRIVILEGED		BIT(14)
1015#define HV_CCB_VA_READ_ADI_DISABLE	BIT(15)	/* DAX2 only */
1016
1017/* ccb_info()
1018 * TRAP:	HV_FAST_TRAP
1019 * FUNCTION:	HV_CCB_INFO
1020 * ARG0:	real address of CCB completion area
1021 * RET0:	status (success or error code)
1022 * RET1:	info array
1023 *			- RET1[0]: CCB state
1024 *			- RET1[1]: dax unit
1025 *			- RET1[2]: queue number
1026 *			- RET1[3]: queue position
1027 *
1028 * ERRORS:	EOK		operation successful
1029 *		EBADALIGN	address not 64B aligned
1030 *		ENORADDR	RA in address not valid
1031 *		EINVAL		CA not valid
1032 *		EWOULDBLOCK	info not available for this CCB currently, try
1033 *				again
1034 *		ENOACCESS	guest cannot use dax
1035 */
1036
1037#define HV_CCB_INFO                 0x35
1038#ifndef __ASSEMBLY__
1039unsigned long sun4v_ccb_info(unsigned long ca,
1040			     void *info_arr);
1041#endif
1042
1043/* info array byte offsets (RET1) */
1044#define CCB_INFO_OFFSET_CCB_STATE	0
1045#define CCB_INFO_OFFSET_DAX_UNIT	2
1046#define CCB_INFO_OFFSET_QUEUE_NUM	4
1047#define CCB_INFO_OFFSET_QUEUE_POS	6
1048
1049/* CCB state (RET1[0]) */
1050#define HV_CCB_STATE_COMPLETED      0
1051#define HV_CCB_STATE_ENQUEUED       1
1052#define HV_CCB_STATE_INPROGRESS     2
1053#define HV_CCB_STATE_NOTFOUND       3
1054
1055/* ccb_kill()
1056 * TRAP:	HV_FAST_TRAP
1057 * FUNCTION:	HV_CCB_KILL
1058 * ARG0:	real address of CCB completion area
1059 * RET0:	status (success or error code)
1060 * RET1:	CCB kill status
1061 *
1062 * ERRORS:	EOK		operation successful
1063 *		EBADALIGN	address not 64B aligned
1064 *		ENORADDR	RA in address not valid
1065 *		EINVAL		CA not valid
1066 *		EWOULDBLOCK	kill not available for this CCB currently, try
1067 *				again
1068 *		ENOACCESS	guest cannot use dax
1069 */
1070
1071#define HV_CCB_KILL                 0x36
1072#ifndef __ASSEMBLY__
1073unsigned long sun4v_ccb_kill(unsigned long ca,
1074			     void *kill_status);
1075#endif
1076
1077/* CCB kill status (RET1) */
1078#define HV_CCB_KILL_COMPLETED       0
1079#define HV_CCB_KILL_DEQUEUED        1
1080#define HV_CCB_KILL_KILLED          2
1081#define HV_CCB_KILL_NOTFOUND        3
1082
1083/* Time of day services.
1084 *
1085 * The hypervisor maintains the time of day on a per-domain basis.
1086 * Changing the time of day in one domain does not affect the time of
1087 * day on any other domain.
1088 *
1089 * Time is described by a single unsigned 64-bit word which is the
1090 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1,
1091 * 1970).
1092 */
1093
1094/* tod_get()
1095 * TRAP:	HV_FAST_TRAP
1096 * FUNCTION:	HV_FAST_TOD_GET
1097 * RET0:	status
1098 * RET1:	TOD
1099 * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
1100 *		ENOTSUPPORTED	If TOD not supported on this platform
1101 *
1102 * Return the current time of day.  May block if TOD access is
1103 * temporarily not possible.
1104 */
1105#define HV_FAST_TOD_GET			0x50
1106
1107#ifndef __ASSEMBLY__
1108unsigned long sun4v_tod_get(unsigned long *time);
1109#endif
1110
1111/* tod_set()
1112 * TRAP:	HV_FAST_TRAP
1113 * FUNCTION:	HV_FAST_TOD_SET
1114 * ARG0:	TOD
1115 * RET0:	status
1116 * ERRORS:	EWOULDBLOCK	TOD resource is temporarily unavailable
1117 *		ENOTSUPPORTED	If TOD not supported on this platform
1118 *
1119 * The current time of day is set to the value specified in ARG0.  May
1120 * block if TOD access is temporarily not possible.
1121 */
1122#define HV_FAST_TOD_SET			0x51
1123
1124#ifndef __ASSEMBLY__
1125unsigned long sun4v_tod_set(unsigned long time);
1126#endif
1127
1128/* Console services */
1129
1130/* con_getchar()
1131 * TRAP:	HV_FAST_TRAP
1132 * FUNCTION:	HV_FAST_CONS_GETCHAR
1133 * RET0:	status
1134 * RET1:	character
1135 * ERRORS:	EWOULDBLOCK	No character available.
1136 *
1137 * Returns a character from the console device.  If no character is
1138 * available then an EWOULDBLOCK error is returned.  If a character is
1139 * available, then the returned status is EOK and the character value
1140 * is in RET1.
1141 *
1142 * A virtual BREAK is represented by the 64-bit value -1.
1143 *
1144 * A virtual HUP signal is represented by the 64-bit value -2.
1145 */
1146#define HV_FAST_CONS_GETCHAR		0x60
1147
1148/* con_putchar()
1149 * TRAP:	HV_FAST_TRAP
1150 * FUNCTION:	HV_FAST_CONS_PUTCHAR
1151 * ARG0:	character
1152 * RET0:	status
1153 * ERRORS:	EINVAL		Illegal character
1154 *		EWOULDBLOCK	Output buffer currently full, would block
1155 *
1156 * Send a character to the console device.  Only character values
1157 * between 0 and 255 may be used.  Values outside this range are
1158 * invalid except for the 64-bit value -1 which is used to send a
1159 * virtual BREAK.
1160 */
1161#define HV_FAST_CONS_PUTCHAR		0x61
1162
1163/* con_read()
1164 * TRAP:	HV_FAST_TRAP
1165 * FUNCTION:	HV_FAST_CONS_READ
1166 * ARG0:	buffer real address
1167 * ARG1:	buffer size in bytes
1168 * RET0:	status
1169 * RET1:	bytes read or BREAK or HUP
1170 * ERRORS:	EWOULDBLOCK	No character available.
1171 *
1172 * Reads characters into a buffer from the console device.  If no
1173 * character is available then an EWOULDBLOCK error is returned.
1174 * If a character is available, then the returned status is EOK
1175 * and the number of bytes read into the given buffer is provided
1176 * in RET1.
1177 *
1178 * A virtual BREAK is represented by the 64-bit RET1 value -1.
1179 *
1180 * A virtual HUP signal is represented by the 64-bit RET1 value -2.
1181 *
1182 * If BREAK or HUP are indicated, no bytes were read into buffer.
1183 */
1184#define HV_FAST_CONS_READ		0x62
1185
1186/* con_write()
1187 * TRAP:	HV_FAST_TRAP
1188 * FUNCTION:	HV_FAST_CONS_WRITE
1189 * ARG0:	buffer real address
1190 * ARG1:	buffer size in bytes
1191 * RET0:	status
1192 * RET1:	bytes written
1193 * ERRORS:	EWOULDBLOCK	Output buffer currently full, would block
1194 *
1195 * Send a characters in buffer to the console device.  Breaks must be
1196 * sent using con_putchar().
1197 */
1198#define HV_FAST_CONS_WRITE		0x63
1199
1200#ifndef __ASSEMBLY__
1201long sun4v_con_getchar(long *status);
1202long sun4v_con_putchar(long c);
1203long sun4v_con_read(unsigned long buffer,
1204		    unsigned long size,
1205		    unsigned long *bytes_read);
1206unsigned long sun4v_con_write(unsigned long buffer,
1207			      unsigned long size,
1208			      unsigned long *bytes_written);
1209#endif
1210
1211/* mach_set_soft_state()
1212 * TRAP:	HV_FAST_TRAP
1213 * FUNCTION:	HV_FAST_MACH_SET_SOFT_STATE
1214 * ARG0:	software state
1215 * ARG1:	software state description pointer
1216 * RET0:	status
1217 * ERRORS:	EINVAL		software state not valid or software state
1218 *				description is not NULL terminated
1219 *		ENORADDR	software state description pointer is not a
1220 *				valid real address
1221 *		EBADALIGNED	software state description is not correctly
1222 *				aligned
1223 *
1224 * This allows the guest to report its soft state to the hypervisor.  There
1225 * are two primary components to this state.  The first part states whether
1226 * the guest software is running or not.  The second containts optional
1227 * details specific to the software.
1228 *
1229 * The software state argument is defined below in HV_SOFT_STATE_*, and
1230 * indicates whether the guest is operating normally or in a transitional
1231 * state.
1232 *
1233 * The software state description argument is a real address of a data buffer
1234 * of size 32-bytes aligned on a 32-byte boundary.  It is treated as a NULL
1235 * terminated 7-bit ASCII string of up to 31 characters not including the
1236 * NULL termination.
1237 */
1238#define HV_FAST_MACH_SET_SOFT_STATE	0x70
1239#define  HV_SOFT_STATE_NORMAL		 0x01
1240#define  HV_SOFT_STATE_TRANSITION	 0x02
1241
1242#ifndef __ASSEMBLY__
1243unsigned long sun4v_mach_set_soft_state(unsigned long soft_state,
1244				        unsigned long msg_string_ra);
1245#endif
1246
1247/* mach_get_soft_state()
1248 * TRAP:	HV_FAST_TRAP
1249 * FUNCTION:	HV_FAST_MACH_GET_SOFT_STATE
1250 * ARG0:	software state description pointer
1251 * RET0:	status
1252 * RET1:	software state
1253 * ERRORS:	ENORADDR	software state description pointer is not a
1254 *				valid real address
1255 *		EBADALIGNED	software state description is not correctly
1256 *				aligned
1257 *
1258 * Retrieve the current value of the guest's software state.  The rules
1259 * for the software state pointer are the same as for mach_set_soft_state()
1260 * above.
1261 */
1262#define HV_FAST_MACH_GET_SOFT_STATE	0x71
1263
1264/* svc_send()
1265 * TRAP:	HV_FAST_TRAP
1266 * FUNCTION:	HV_FAST_SVC_SEND
1267 * ARG0:	service ID
1268 * ARG1:	buffer real address
1269 * ARG2:	buffer size
1270 * RET0:	STATUS
1271 * RET1:	sent_bytes
1272 *
1273 * Be careful, all output registers are clobbered by this operation,
1274 * so for example it is not possible to save away a value in %o4
1275 * across the trap.
1276 */
1277#define HV_FAST_SVC_SEND		0x80
1278
1279/* svc_recv()
1280 * TRAP:	HV_FAST_TRAP
1281 * FUNCTION:	HV_FAST_SVC_RECV
1282 * ARG0:	service ID
1283 * ARG1:	buffer real address
1284 * ARG2:	buffer size
1285 * RET0:	STATUS
1286 * RET1:	recv_bytes
1287 *
1288 * Be careful, all output registers are clobbered by this operation,
1289 * so for example it is not possible to save away a value in %o4
1290 * across the trap.
1291 */
1292#define HV_FAST_SVC_RECV		0x81
1293
1294/* svc_getstatus()
1295 * TRAP:	HV_FAST_TRAP
1296 * FUNCTION:	HV_FAST_SVC_GETSTATUS
1297 * ARG0:	service ID
1298 * RET0:	STATUS
1299 * RET1:	status bits
1300 */
1301#define HV_FAST_SVC_GETSTATUS		0x82
1302
1303/* svc_setstatus()
1304 * TRAP:	HV_FAST_TRAP
1305 * FUNCTION:	HV_FAST_SVC_SETSTATUS
1306 * ARG0:	service ID
1307 * ARG1:	bits to set
1308 * RET0:	STATUS
1309 */
1310#define HV_FAST_SVC_SETSTATUS		0x83
1311
1312/* svc_clrstatus()
1313 * TRAP:	HV_FAST_TRAP
1314 * FUNCTION:	HV_FAST_SVC_CLRSTATUS
1315 * ARG0:	service ID
1316 * ARG1:	bits to clear
1317 * RET0:	STATUS
1318 */
1319#define HV_FAST_SVC_CLRSTATUS		0x84
1320
1321#ifndef __ASSEMBLY__
1322unsigned long sun4v_svc_send(unsigned long svc_id,
1323			     unsigned long buffer,
1324			     unsigned long buffer_size,
1325			     unsigned long *sent_bytes);
1326unsigned long sun4v_svc_recv(unsigned long svc_id,
1327			     unsigned long buffer,
1328			     unsigned long buffer_size,
1329			     unsigned long *recv_bytes);
1330unsigned long sun4v_svc_getstatus(unsigned long svc_id,
1331				  unsigned long *status_bits);
1332unsigned long sun4v_svc_setstatus(unsigned long svc_id,
1333				  unsigned long status_bits);
1334unsigned long sun4v_svc_clrstatus(unsigned long svc_id,
1335				  unsigned long status_bits);
1336#endif
1337
1338/* Trap trace services.
1339 *
1340 * The hypervisor provides a trap tracing capability for privileged
1341 * code running on each virtual CPU.  Privileged code provides a
1342 * round-robin trap trace queue within which the hypervisor writes
1343 * 64-byte entries detailing hyperprivileged traps taken n behalf of
1344 * privileged code.  This is provided as a debugging capability for
1345 * privileged code.
1346 *
1347 * The trap trace control structure is 64-bytes long and placed at the
1348 * start (offset 0) of the trap trace buffer, and is described as
1349 * follows:
1350 */
1351#ifndef __ASSEMBLY__
1352struct hv_trap_trace_control {
1353	unsigned long		head_offset;
1354	unsigned long		tail_offset;
1355	unsigned long		__reserved[0x30 / sizeof(unsigned long)];
1356};
1357#endif
1358#define HV_TRAP_TRACE_CTRL_HEAD_OFFSET	0x00
1359#define HV_TRAP_TRACE_CTRL_TAIL_OFFSET	0x08
1360
1361/* The head offset is the offset of the most recently completed entry
1362 * in the trap-trace buffer.  The tail offset is the offset of the
1363 * next entry to be written.  The control structure is owned and
1364 * modified by the hypervisor.  A guest may not modify the control
1365 * structure contents.  Attempts to do so will result in undefined
1366 * behavior for the guest.
1367 *
1368 * Each trap trace buffer entry is laid out as follows:
1369 */
1370#ifndef __ASSEMBLY__
1371struct hv_trap_trace_entry {
1372	unsigned char	type;		/* Hypervisor or guest entry?	*/
1373	unsigned char	hpstate;	/* Hyper-privileged state	*/
1374	unsigned char	tl;		/* Trap level			*/
1375	unsigned char	gl;		/* Global register level	*/
1376	unsigned short	tt;		/* Trap type			*/
1377	unsigned short	tag;		/* Extended trap identifier	*/
1378	unsigned long	tstate;		/* Trap state			*/
1379	unsigned long	tick;		/* Tick				*/
1380	unsigned long	tpc;		/* Trap PC			*/
1381	unsigned long	f1;		/* Entry specific		*/
1382	unsigned long	f2;		/* Entry specific		*/
1383	unsigned long	f3;		/* Entry specific		*/
1384	unsigned long	f4;		/* Entry specific		*/
1385};
1386#endif
1387#define HV_TRAP_TRACE_ENTRY_TYPE	0x00
1388#define HV_TRAP_TRACE_ENTRY_HPSTATE	0x01
1389#define HV_TRAP_TRACE_ENTRY_TL		0x02
1390#define HV_TRAP_TRACE_ENTRY_GL		0x03
1391#define HV_TRAP_TRACE_ENTRY_TT		0x04
1392#define HV_TRAP_TRACE_ENTRY_TAG		0x06
1393#define HV_TRAP_TRACE_ENTRY_TSTATE	0x08
1394#define HV_TRAP_TRACE_ENTRY_TICK	0x10
1395#define HV_TRAP_TRACE_ENTRY_TPC		0x18
1396#define HV_TRAP_TRACE_ENTRY_F1		0x20
1397#define HV_TRAP_TRACE_ENTRY_F2		0x28
1398#define HV_TRAP_TRACE_ENTRY_F3		0x30
1399#define HV_TRAP_TRACE_ENTRY_F4		0x38
1400
1401/* The type field is encoded as follows.  */
1402#define HV_TRAP_TYPE_UNDEF		0x00 /* Entry content undefined     */
1403#define HV_TRAP_TYPE_HV			0x01 /* Hypervisor trap entry       */
1404#define HV_TRAP_TYPE_GUEST		0xff /* Added via ttrace_addentry() */
1405
1406/* ttrace_buf_conf()
1407 * TRAP:	HV_FAST_TRAP
1408 * FUNCTION:	HV_FAST_TTRACE_BUF_CONF
1409 * ARG0:	real address
1410 * ARG1:	number of entries
1411 * RET0:	status
1412 * RET1:	number of entries
1413 * ERRORS:	ENORADDR	Invalid real address
1414 *		EINVAL		Size is too small
1415 *		EBADALIGN	Real address not aligned on 64-byte boundary
1416 *
1417 * Requests hypervisor trap tracing and declares a virtual CPU's trap
1418 * trace buffer to the hypervisor.  The real address supplies the real
1419 * base address of the trap trace queue and must be 64-byte aligned.
1420 * Specifying a value of 0 for the number of entries disables trap
1421 * tracing for the calling virtual CPU.  The buffer allocated must be
1422 * sized for a power of two number of 64-byte trap trace entries plus
1423 * an initial 64-byte control structure.
1424 *
1425 * This may be invoked any number of times so that a virtual CPU may
1426 * relocate a trap trace buffer or create "snapshots" of information.
1427 *
1428 * If the real address is illegal or badly aligned, then trap tracing
1429 * is disabled and an error is returned.
1430 *
1431 * Upon failure with EINVAL, this service call returns in RET1 the
1432 * minimum number of buffer entries required.  Upon other failures
1433 * RET1 is undefined.
1434 */
1435#define HV_FAST_TTRACE_BUF_CONF		0x90
1436
1437/* ttrace_buf_info()
1438 * TRAP:	HV_FAST_TRAP
1439 * FUNCTION:	HV_FAST_TTRACE_BUF_INFO
1440 * RET0:	status
1441 * RET1:	real address
1442 * RET2:	size
1443 * ERRORS:	None defined.
1444 *
1445 * Returns the size and location of the previously declared trap-trace
1446 * buffer.  In the event that no buffer was previously defined, or the
1447 * buffer is disabled, this call will return a size of zero bytes.
1448 */
1449#define HV_FAST_TTRACE_BUF_INFO		0x91
1450
1451/* ttrace_enable()
1452 * TRAP:	HV_FAST_TRAP
1453 * FUNCTION:	HV_FAST_TTRACE_ENABLE
1454 * ARG0:	enable
1455 * RET0:	status
1456 * RET1:	previous enable state
1457 * ERRORS:	EINVAL		No trap trace buffer currently defined
1458 *
1459 * Enable or disable trap tracing, and return the previous enabled
1460 * state in RET1.  Future systems may define various flags for the
1461 * enable argument (ARG0), for the moment a guest should pass
1462 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all
1463 * tracing - which will ensure future compatibility.
1464 */
1465#define HV_FAST_TTRACE_ENABLE		0x92
1466
1467/* ttrace_freeze()
1468 * TRAP:	HV_FAST_TRAP
1469 * FUNCTION:	HV_FAST_TTRACE_FREEZE
1470 * ARG0:	freeze
1471 * RET0:	status
1472 * RET1:	previous freeze state
1473 * ERRORS:	EINVAL		No trap trace buffer currently defined
1474 *
1475 * Freeze or unfreeze trap tracing, returning the previous freeze
1476 * state in RET1.  A guest should pass a non-zero value to freeze and
1477 * a zero value to unfreeze all tracing.  The returned previous state
1478 * is 0 for not frozen and 1 for frozen.
1479 */
1480#define HV_FAST_TTRACE_FREEZE		0x93
1481
1482/* ttrace_addentry()
1483 * TRAP:	HV_TTRACE_ADDENTRY_TRAP
1484 * ARG0:	tag (16-bits)
1485 * ARG1:	data word 0
1486 * ARG2:	data word 1
1487 * ARG3:	data word 2
1488 * ARG4:	data word 3
1489 * RET0:	status
1490 * ERRORS:	EINVAL		No trap trace buffer currently defined
1491 *
1492 * Add an entry to the trap trace buffer.  Upon return only ARG0/RET0
1493 * is modified - none of the other registers holding arguments are
1494 * volatile across this hypervisor service.
1495 */
1496
1497/* Core dump services.
1498 *
1499 * Since the hypervisor viraulizes and thus obscures a lot of the
1500 * physical machine layout and state, traditional OS crash dumps can
1501 * be difficult to diagnose especially when the problem is a
1502 * configuration error of some sort.
1503 *
1504 * The dump services provide an opaque buffer into which the
1505 * hypervisor can place its internal state in order to assist in
1506 * debugging such situations.  The contents are opaque and extremely
1507 * platform and hypervisor implementation specific.  The guest, during
1508 * a core dump, requests that the hypervisor update any information in
1509 * the dump buffer in preparation to being dumped as part of the
1510 * domain's memory image.
1511 */
1512
1513/* dump_buf_update()
1514 * TRAP:	HV_FAST_TRAP
1515 * FUNCTION:	HV_FAST_DUMP_BUF_UPDATE
1516 * ARG0:	real address
1517 * ARG1:	size
1518 * RET0:	status
1519 * RET1:	required size of dump buffer
1520 * ERRORS:	ENORADDR	Invalid real address
1521 *		EBADALIGN	Real address is not aligned on a 64-byte
1522 *				boundary
1523 *		EINVAL		Size is non-zero but less than minimum size
1524 *				required
1525 *		ENOTSUPPORTED	Operation not supported on current logical
1526 *				domain
1527 *
1528 * Declare a domain dump buffer to the hypervisor.  The real address
1529 * provided for the domain dump buffer must be 64-byte aligned.  The
1530 * size specifies the size of the dump buffer and may be larger than
1531 * the minimum size specified in the machine description.  The
1532 * hypervisor will fill the dump buffer with opaque data.
1533 *
1534 * Note: A guest may elect to include dump buffer contents as part of a crash
1535 *       dump to assist with debugging.  This function may be called any number
1536 *       of times so that a guest may relocate a dump buffer, or create
1537 *       "snapshots" of any dump-buffer information.  Each call to
1538 *       dump_buf_update() atomically declares the new dump buffer to the
1539 *       hypervisor.
1540 *
1541 * A specified size of 0 unconfigures the dump buffer.  If the real
1542 * address is illegal or badly aligned, then any currently active dump
1543 * buffer is disabled and an error is returned.
1544 *
1545 * In the event that the call fails with EINVAL, RET1 contains the
1546 * minimum size requires by the hypervisor for a valid dump buffer.
1547 */
1548#define HV_FAST_DUMP_BUF_UPDATE		0x94
1549
1550/* dump_buf_info()
1551 * TRAP:	HV_FAST_TRAP
1552 * FUNCTION:	HV_FAST_DUMP_BUF_INFO
1553 * RET0:	status
1554 * RET1:	real address of current dump buffer
1555 * RET2:	size of current dump buffer
1556 * ERRORS:	No errors defined.
1557 *
1558 * Return the currently configures dump buffer description.  A
1559 * returned size of 0 bytes indicates an undefined dump buffer.  In
1560 * this case the return address in RET1 is undefined.
1561 */
1562#define HV_FAST_DUMP_BUF_INFO		0x95
1563
1564/* Device interrupt services.
1565 *
1566 * Device interrupts are allocated to system bus bridges by the hypervisor,
1567 * and described to OBP in the machine description.  OBP then describes
1568 * these interrupts to the OS via properties in the device tree.
1569 *
1570 * Terminology:
1571 *
1572 *	cpuid		Unique opaque value which represents a target cpu.
1573 *
1574 *	devhandle	Device handle.  It uniquely identifies a device, and
1575 *			consistes of the lower 28-bits of the hi-cell of the
1576 *			first entry of the device's "reg" property in the
1577 *			OBP device tree.
1578 *
1579 *	devino		Device interrupt number.  Specifies the relative
1580 *			interrupt number within the device.  The unique
1581 *			combination of devhandle and devino are used to
1582 *			identify a specific device interrupt.
1583 *
1584 *			Note: The devino value is the same as the values in the
1585 *			      "interrupts" property or "interrupt-map" property
1586 *			      in the OBP device tree for that device.
1587 *
1588 *	sysino		System interrupt number.  A 64-bit unsigned interger
1589 *			representing a unique interrupt within a virtual
1590 *			machine.
1591 *
1592 *	intr_state	A flag representing the interrupt state for a given
1593 *			sysino.  The state values are defined below.
1594 *
1595 *	intr_enabled	A flag representing the 'enabled' state for a given
1596 *			sysino.  The enable values are defined below.
1597 */
1598
1599#define HV_INTR_STATE_IDLE		0 /* Nothing pending */
1600#define HV_INTR_STATE_RECEIVED		1 /* Interrupt received by hardware */
1601#define HV_INTR_STATE_DELIVERED		2 /* Interrupt delivered to queue */
1602
1603#define HV_INTR_DISABLED		0 /* sysino not enabled */
1604#define HV_INTR_ENABLED			1 /* sysino enabled */
1605
1606/* intr_devino_to_sysino()
1607 * TRAP:	HV_FAST_TRAP
1608 * FUNCTION:	HV_FAST_INTR_DEVINO2SYSINO
1609 * ARG0:	devhandle
1610 * ARG1:	devino
1611 * RET0:	status
1612 * RET1:	sysino
1613 * ERRORS:	EINVAL		Invalid devhandle/devino
1614 *
1615 * Converts a device specific interrupt number of the given
1616 * devhandle/devino into a system specific ino (sysino).
1617 */
1618#define HV_FAST_INTR_DEVINO2SYSINO	0xa0
1619
1620#ifndef __ASSEMBLY__
1621unsigned long sun4v_devino_to_sysino(unsigned long devhandle,
1622				     unsigned long devino);
1623#endif
1624
1625/* intr_getenabled()
1626 * TRAP:	HV_FAST_TRAP
1627 * FUNCTION:	HV_FAST_INTR_GETENABLED
1628 * ARG0:	sysino
1629 * RET0:	status
1630 * RET1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1631 * ERRORS:	EINVAL		Invalid sysino
1632 *
1633 * Returns interrupt enabled state in RET1 for the interrupt defined
1634 * by the given sysino.
1635 */
1636#define HV_FAST_INTR_GETENABLED		0xa1
1637
1638#ifndef __ASSEMBLY__
1639unsigned long sun4v_intr_getenabled(unsigned long sysino);
1640#endif
1641
1642/* intr_setenabled()
1643 * TRAP:	HV_FAST_TRAP
1644 * FUNCTION:	HV_FAST_INTR_SETENABLED
1645 * ARG0:	sysino
1646 * ARG1:	intr_enabled (HV_INTR_{DISABLED,ENABLED})
1647 * RET0:	status
1648 * ERRORS:	EINVAL		Invalid sysino or intr_enabled value
1649 *
1650 * Set the 'enabled' state of the interrupt sysino.
1651 */
1652#define HV_FAST_INTR_SETENABLED		0xa2
1653
1654#ifndef __ASSEMBLY__
1655unsigned long sun4v_intr_setenabled(unsigned long sysino,
1656				    unsigned long intr_enabled);
1657#endif
1658
1659/* intr_getstate()
1660 * TRAP:	HV_FAST_TRAP
1661 * FUNCTION:	HV_FAST_INTR_GETSTATE
1662 * ARG0:	sysino
1663 * RET0:	status
1664 * RET1:	intr_state (HV_INTR_STATE_*)
1665 * ERRORS:	EINVAL		Invalid sysino
1666 *
1667 * Returns current state of the interrupt defined by the given sysino.
1668 */
1669#define HV_FAST_INTR_GETSTATE		0xa3
1670
1671#ifndef __ASSEMBLY__
1672unsigned long sun4v_intr_getstate(unsigned long sysino);
1673#endif
1674
1675/* intr_setstate()
1676 * TRAP:	HV_FAST_TRAP
1677 * FUNCTION:	HV_FAST_INTR_SETSTATE
1678 * ARG0:	sysino
1679 * ARG1:	intr_state (HV_INTR_STATE_*)
1680 * RET0:	status
1681 * ERRORS:	EINVAL		Invalid sysino or intr_state value
1682 *
1683 * Sets the current state of the interrupt described by the given sysino
1684 * value.
1685 *
1686 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending
1687 *       interrupt for sysino.
1688 */
1689#define HV_FAST_INTR_SETSTATE		0xa4
1690
1691#ifndef __ASSEMBLY__
1692unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state);
1693#endif
1694
1695/* intr_gettarget()
1696 * TRAP:	HV_FAST_TRAP
1697 * FUNCTION:	HV_FAST_INTR_GETTARGET
1698 * ARG0:	sysino
1699 * RET0:	status
1700 * RET1:	cpuid
1701 * ERRORS:	EINVAL		Invalid sysino
1702 *
1703 * Returns CPU that is the current target of the interrupt defined by
1704 * the given sysino.  The CPU value returned is undefined if the target
1705 * has not been set via intr_settarget().
1706 */
1707#define HV_FAST_INTR_GETTARGET		0xa5
1708
1709#ifndef __ASSEMBLY__
1710unsigned long sun4v_intr_gettarget(unsigned long sysino);
1711#endif
1712
1713/* intr_settarget()
1714 * TRAP:	HV_FAST_TRAP
1715 * FUNCTION:	HV_FAST_INTR_SETTARGET
1716 * ARG0:	sysino
1717 * ARG1:	cpuid
1718 * RET0:	status
1719 * ERRORS:	EINVAL		Invalid sysino
1720 *		ENOCPU		Invalid cpuid
1721 *
1722 * Set the target CPU for the interrupt defined by the given sysino.
1723 */
1724#define HV_FAST_INTR_SETTARGET		0xa6
1725
1726#ifndef __ASSEMBLY__
1727unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid);
1728#endif
1729
1730/* vintr_get_cookie()
1731 * TRAP:	HV_FAST_TRAP
1732 * FUNCTION:	HV_FAST_VINTR_GET_COOKIE
1733 * ARG0:	device handle
1734 * ARG1:	device ino
1735 * RET0:	status
1736 * RET1:	cookie
1737 */
1738#define HV_FAST_VINTR_GET_COOKIE	0xa7
1739
1740/* vintr_set_cookie()
1741 * TRAP:	HV_FAST_TRAP
1742 * FUNCTION:	HV_FAST_VINTR_SET_COOKIE
1743 * ARG0:	device handle
1744 * ARG1:	device ino
1745 * ARG2:	cookie
1746 * RET0:	status
1747 */
1748#define HV_FAST_VINTR_SET_COOKIE	0xa8
1749
1750/* vintr_get_valid()
1751 * TRAP:	HV_FAST_TRAP
1752 * FUNCTION:	HV_FAST_VINTR_GET_VALID
1753 * ARG0:	device handle
1754 * ARG1:	device ino
1755 * RET0:	status
1756 * RET1:	valid state
1757 */
1758#define HV_FAST_VINTR_GET_VALID		0xa9
1759
1760/* vintr_set_valid()
1761 * TRAP:	HV_FAST_TRAP
1762 * FUNCTION:	HV_FAST_VINTR_SET_VALID
1763 * ARG0:	device handle
1764 * ARG1:	device ino
1765 * ARG2:	valid state
1766 * RET0:	status
1767 */
1768#define HV_FAST_VINTR_SET_VALID		0xaa
1769
1770/* vintr_get_state()
1771 * TRAP:	HV_FAST_TRAP
1772 * FUNCTION:	HV_FAST_VINTR_GET_STATE
1773 * ARG0:	device handle
1774 * ARG1:	device ino
1775 * RET0:	status
1776 * RET1:	state
1777 */
1778#define HV_FAST_VINTR_GET_STATE		0xab
1779
1780/* vintr_set_state()
1781 * TRAP:	HV_FAST_TRAP
1782 * FUNCTION:	HV_FAST_VINTR_SET_STATE
1783 * ARG0:	device handle
1784 * ARG1:	device ino
1785 * ARG2:	state
1786 * RET0:	status
1787 */
1788#define HV_FAST_VINTR_SET_STATE		0xac
1789
1790/* vintr_get_target()
1791 * TRAP:	HV_FAST_TRAP
1792 * FUNCTION:	HV_FAST_VINTR_GET_TARGET
1793 * ARG0:	device handle
1794 * ARG1:	device ino
1795 * RET0:	status
1796 * RET1:	cpuid
1797 */
1798#define HV_FAST_VINTR_GET_TARGET	0xad
1799
1800/* vintr_set_target()
1801 * TRAP:	HV_FAST_TRAP
1802 * FUNCTION:	HV_FAST_VINTR_SET_TARGET
1803 * ARG0:	device handle
1804 * ARG1:	device ino
1805 * ARG2:	cpuid
1806 * RET0:	status
1807 */
1808#define HV_FAST_VINTR_SET_TARGET	0xae
1809
1810#ifndef __ASSEMBLY__
1811unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle,
1812				     unsigned long dev_ino,
1813				     unsigned long *cookie);
1814unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle,
1815				     unsigned long dev_ino,
1816				     unsigned long cookie);
1817unsigned long sun4v_vintr_get_valid(unsigned long dev_handle,
1818				    unsigned long dev_ino,
1819				    unsigned long *valid);
1820unsigned long sun4v_vintr_set_valid(unsigned long dev_handle,
1821				    unsigned long dev_ino,
1822				    unsigned long valid);
1823unsigned long sun4v_vintr_get_state(unsigned long dev_handle,
1824				    unsigned long dev_ino,
1825				    unsigned long *state);
1826unsigned long sun4v_vintr_set_state(unsigned long dev_handle,
1827				    unsigned long dev_ino,
1828				    unsigned long state);
1829unsigned long sun4v_vintr_get_target(unsigned long dev_handle,
1830				     unsigned long dev_ino,
1831				     unsigned long *cpuid);
1832unsigned long sun4v_vintr_set_target(unsigned long dev_handle,
1833				     unsigned long dev_ino,
1834				     unsigned long cpuid);
1835#endif
1836
1837/* PCI IO services.
1838 *
1839 * See the terminology descriptions in the device interrupt services
1840 * section above as those apply here too.  Here are terminology
1841 * definitions specific to these PCI IO services:
1842 *
1843 *	tsbnum		TSB number.  Indentifies which io-tsb is used.
1844 *			For this version of the specification, tsbnum
1845 *			must be zero.
1846 *
1847 *	tsbindex	TSB index.  Identifies which entry in the TSB
1848 *			is used.  The first entry is zero.
1849 *
1850 *	tsbid		A 64-bit aligned data structure which contains
1851 *			a tsbnum and a tsbindex.  Bits 63:32 contain the
1852 *			tsbnum and bits 31:00 contain the tsbindex.
1853 *
1854 *			Use the HV_PCI_TSBID() macro to construct such
1855 * 			values.
1856 *
1857 *	io_attributes	IO attributes for IOMMU mappings.  One of more
1858 *			of the attritbute bits are stores in a 64-bit
1859 *			value.  The values are defined below.
1860 *
1861 *	r_addr		64-bit real address
1862 *
1863 *	pci_device	PCI device address.  A PCI device address identifies
1864 *			a specific device on a specific PCI bus segment.
1865 *			A PCI device address ia a 32-bit unsigned integer
1866 *			with the following format:
1867 *
1868 *				00000000.bbbbbbbb.dddddfff.00000000
1869 *
1870 *			Use the HV_PCI_DEVICE_BUILD() macro to construct
1871 *			such values.
1872 *
1873 *	pci_config_offset
1874 *			PCI configureation space offset.  For conventional
1875 *			PCI a value between 0 and 255.  For extended
1876 *			configuration space, a value between 0 and 4095.
1877 *
1878 *			Note: For PCI configuration space accesses, the offset
1879 *			      must be aligned to the access size.
1880 *
1881 *	error_flag	A return value which specifies if the action succeeded
1882 *			or failed.  0 means no error, non-0 means some error
1883 *			occurred while performing the service.
1884 *
1885 *	io_sync_direction
1886 *			Direction definition for pci_dma_sync(), defined
1887 *			below in HV_PCI_SYNC_*.
1888 *
1889 *	io_page_list	A list of io_page_addresses, an io_page_address is
1890 *			a real address.
1891 *
1892 *	io_page_list_p	A pointer to an io_page_list.
1893 *
1894 *	"size based byte swap" - Some functions do size based byte swapping
1895 *				 which allows sw to access pointers and
1896 *				 counters in native form when the processor
1897 *				 operates in a different endianness than the
1898 *				 IO bus.  Size-based byte swapping converts a
1899 *				 multi-byte field between big-endian and
1900 *				 little-endian format.
1901 */
1902
1903#define HV_PCI_MAP_ATTR_READ		0x01
1904#define HV_PCI_MAP_ATTR_WRITE		0x02
1905#define HV_PCI_MAP_ATTR_RELAXED_ORDER	0x04
1906
1907#define HV_PCI_DEVICE_BUILD(b,d,f)	\
1908	((((b) & 0xff) << 16) | \
1909	 (((d) & 0x1f) << 11) | \
1910	 (((f) & 0x07) <<  8))
1911
1912#define HV_PCI_TSBID(__tsb_num, __tsb_index) \
1913	((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index)))
1914
1915#define HV_PCI_SYNC_FOR_DEVICE		0x01
1916#define HV_PCI_SYNC_FOR_CPU		0x02
1917
1918/* pci_iommu_map()
1919 * TRAP:	HV_FAST_TRAP
1920 * FUNCTION:	HV_FAST_PCI_IOMMU_MAP
1921 * ARG0:	devhandle
1922 * ARG1:	tsbid
1923 * ARG2:	#ttes
1924 * ARG3:	io_attributes
1925 * ARG4:	io_page_list_p
1926 * RET0:	status
1927 * RET1:	#ttes mapped
1928 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex/io_attributes
1929 *		EBADALIGN	Improperly aligned real address
1930 *		ENORADDR	Invalid real address
1931 *
1932 * Create IOMMU mappings in the sun4v device defined by the given
1933 * devhandle.  The mappings are created in the TSB defined by the
1934 * tsbnum component of the given tsbid.  The first mapping is created
1935 * in the TSB i ndex defined by the tsbindex component of the given tsbid.
1936 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex,
1937 * the second at tsbnum, tsbindex + 1, etc.
1938 *
1939 * All mappings are created with the attributes defined by the io_attributes
1940 * argument.  The page mapping addresses are described in the io_page_list
1941 * defined by the given io_page_list_p, which is a pointer to the io_page_list.
1942 * The first entry in the io_page_list is the address for the first iotte, the
1943 * 2nd for the 2nd iotte, and so on.
1944 *
1945 * Each io_page_address in the io_page_list must be appropriately aligned.
1946 * #ttes must be greater than zero.  For this version of the spec, the tsbnum
1947 * component of the given tsbid must be zero.
1948 *
1949 * Returns the actual number of mappings creates, which may be less than
1950 * or equal to the argument #ttes.  If the function returns a value which
1951 * is less than the #ttes, the caller may continus to call the function with
1952 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are
1953 * mapped.
1954 *
1955 * Note: This function does not imply an iotte cache flush.  The guest must
1956 *       demap an entry before re-mapping it.
1957 */
1958#define HV_FAST_PCI_IOMMU_MAP		0xb0
1959
1960/* pci_iommu_demap()
1961 * TRAP:	HV_FAST_TRAP
1962 * FUNCTION:	HV_FAST_PCI_IOMMU_DEMAP
1963 * ARG0:	devhandle
1964 * ARG1:	tsbid
1965 * ARG2:	#ttes
1966 * RET0:	status
1967 * RET1:	#ttes demapped
1968 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1969 *
1970 * Demap and flush IOMMU mappings in the device defined by the given
1971 * devhandle.  Demaps up to #ttes entries in the TSB defined by the tsbnum
1972 * component of the given tsbid, starting at the TSB index defined by the
1973 * tsbindex component of the given tsbid.
1974 *
1975 * For this version of the spec, the tsbnum of the given tsbid must be zero.
1976 * #ttes must be greater than zero.
1977 *
1978 * Returns the actual number of ttes demapped, which may be less than or equal
1979 * to the argument #ttes.  If #ttes demapped is less than #ttes, the caller
1980 * may continue to call this function with updated tsbid and #ttes arguments
1981 * until all pages are demapped.
1982 *
1983 * Note: Entries do not have to be mapped to be demapped.  A demap of an
1984 *       unmapped page will flush the entry from the tte cache.
1985 */
1986#define HV_FAST_PCI_IOMMU_DEMAP		0xb1
1987
1988/* pci_iommu_getmap()
1989 * TRAP:	HV_FAST_TRAP
1990 * FUNCTION:	HV_FAST_PCI_IOMMU_GETMAP
1991 * ARG0:	devhandle
1992 * ARG1:	tsbid
1993 * RET0:	status
1994 * RET1:	io_attributes
1995 * RET2:	real address
1996 * ERRORS:	EINVAL		Invalid devhandle/tsbnum/tsbindex
1997 *		ENOMAP		Mapping is not valid, no translation exists
1998 *
1999 * Read and return the mapping in the device described by the given devhandle
2000 * and tsbid.  If successful, the io_attributes shall be returned in RET1
2001 * and the page address of the mapping shall be returned in RET2.
2002 *
2003 * For this version of the spec, the tsbnum component of the given tsbid
2004 * must be zero.
2005 */
2006#define HV_FAST_PCI_IOMMU_GETMAP	0xb2
2007
2008/* pci_iommu_getbypass()
2009 * TRAP:	HV_FAST_TRAP
2010 * FUNCTION:	HV_FAST_PCI_IOMMU_GETBYPASS
2011 * ARG0:	devhandle
2012 * ARG1:	real address
2013 * ARG2:	io_attributes
2014 * RET0:	status
2015 * RET1:	io_addr
2016 * ERRORS:	EINVAL		Invalid devhandle/io_attributes
2017 *		ENORADDR	Invalid real address
2018 *		ENOTSUPPORTED	Function not supported in this implementation.
2019 *
2020 * Create a "special" mapping in the device described by the given devhandle,
2021 * for the given real address and attributes.  Return the IO address in RET1
2022 * if successful.
2023 */
2024#define HV_FAST_PCI_IOMMU_GETBYPASS	0xb3
2025
2026/* pci_config_get()
2027 * TRAP:	HV_FAST_TRAP
2028 * FUNCTION:	HV_FAST_PCI_CONFIG_GET
2029 * ARG0:	devhandle
2030 * ARG1:	pci_device
2031 * ARG2:	pci_config_offset
2032 * ARG3:	size
2033 * RET0:	status
2034 * RET1:	error_flag
2035 * RET2:	data
2036 * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
2037 *		EBADALIGN	pci_config_offset not size aligned
2038 *		ENOACCESS	Access to this offset is not permitted
2039 *
2040 * Read PCI configuration space for the adapter described by the given
2041 * devhandle.  Read size (1, 2, or 4) bytes of data from the given
2042 * pci_device, at pci_config_offset from the beginning of the device's
2043 * configuration space.  If there was no error, RET1 is set to zero and
2044 * RET2 is set to the data read.  Insignificant bits in RET2 are not
2045 * guaranteed to have any specific value and therefore must be ignored.
2046 *
2047 * The data returned in RET2 is size based byte swapped.
2048 *
2049 * If an error occurs during the read, set RET1 to a non-zero value.  The
2050 * given pci_config_offset must be 'size' aligned.
2051 */
2052#define HV_FAST_PCI_CONFIG_GET		0xb4
2053
2054/* pci_config_put()
2055 * TRAP:	HV_FAST_TRAP
2056 * FUNCTION:	HV_FAST_PCI_CONFIG_PUT
2057 * ARG0:	devhandle
2058 * ARG1:	pci_device
2059 * ARG2:	pci_config_offset
2060 * ARG3:	size
2061 * ARG4:	data
2062 * RET0:	status
2063 * RET1:	error_flag
2064 * ERRORS:	EINVAL		Invalid devhandle/pci_device/offset/size
2065 *		EBADALIGN	pci_config_offset not size aligned
2066 *		ENOACCESS	Access to this offset is not permitted
2067 *
2068 * Write PCI configuration space for the adapter described by the given
2069 * devhandle.  Write size (1, 2, or 4) bytes of data in a single operation,
2070 * at pci_config_offset from the beginning of the device's configuration
2071 * space.  The data argument contains the data to be written to configuration
2072 * space.  Prior to writing, the data is size based byte swapped.
2073 *
2074 * If an error occurs during the write access, do not generate an error
2075 * report, do set RET1 to a non-zero value.  Otherwise RET1 is zero.
2076 * The given pci_config_offset must be 'size' aligned.
2077 *
2078 * This function is permitted to read from offset zero in the configuration
2079 * space described by the given pci_device if necessary to ensure that the
2080 * write access to config space completes.
2081 */
2082#define HV_FAST_PCI_CONFIG_PUT		0xb5
2083
2084/* pci_peek()
2085 * TRAP:	HV_FAST_TRAP
2086 * FUNCTION:	HV_FAST_PCI_PEEK
2087 * ARG0:	devhandle
2088 * ARG1:	real address
2089 * ARG2:	size
2090 * RET0:	status
2091 * RET1:	error_flag
2092 * RET2:	data
2093 * ERRORS:	EINVAL		Invalid devhandle or size
2094 *		EBADALIGN	Improperly aligned real address
2095 *		ENORADDR	Bad real address
2096 *		ENOACCESS	Guest access prohibited
2097 *
2098 * Attempt to read the IO address given by the given devhandle, real address,
2099 * and size.  Size must be 1, 2, 4, or 8.  The read is performed as a single
2100 * access operation using the given size.  If an error occurs when reading
2101 * from the given location, do not generate an error report, but return a
2102 * non-zero value in RET1.  If the read was successful, return zero in RET1
2103 * and return the actual data read in RET2.  The data returned is size based
2104 * byte swapped.
2105 *
2106 * Non-significant bits in RET2 are not guaranteed to have any specific value
2107 * and therefore must be ignored.  If RET1 is returned as non-zero, the data
2108 * value is not guaranteed to have any specific value and should be ignored.
2109 *
2110 * The caller must have permission to read from the given devhandle, real
2111 * address, which must be an IO address.  The argument real address must be a
2112 * size aligned address.
2113 *
2114 * The hypervisor implementation of this function must block access to any
2115 * IO address that the guest does not have explicit permission to access.
2116 */
2117#define HV_FAST_PCI_PEEK		0xb6
2118
2119/* pci_poke()
2120 * TRAP:	HV_FAST_TRAP
2121 * FUNCTION:	HV_FAST_PCI_POKE
2122 * ARG0:	devhandle
2123 * ARG1:	real address
2124 * ARG2:	size
2125 * ARG3:	data
2126 * ARG4:	pci_device
2127 * RET0:	status
2128 * RET1:	error_flag
2129 * ERRORS:	EINVAL		Invalid devhandle, size, or pci_device
2130 *		EBADALIGN	Improperly aligned real address
2131 *		ENORADDR	Bad real address
2132 *		ENOACCESS	Guest access prohibited
2133 *		ENOTSUPPORTED	Function is not supported by implementation
2134 *
2135 * Attempt to write data to the IO address given by the given devhandle,
2136 * real address, and size.  Size must be 1, 2, 4, or 8.  The write is
2137 * performed as a single access operation using the given size. Prior to
2138 * writing the data is size based swapped.
2139 *
2140 * If an error occurs when writing to the given location, do not generate an
2141 * error report, but return a non-zero value in RET1.  If the write was
2142 * successful, return zero in RET1.
2143 *
2144 * pci_device describes the configuration address of the device being
2145 * written to.  The implementation may safely read from offset 0 with
2146 * the configuration space of the device described by devhandle and
2147 * pci_device in order to guarantee that the write portion of the operation
2148 * completes
2149 *
2150 * Any error that occurs due to the read shall be reported using the normal
2151 * error reporting mechanisms .. the read error is not suppressed.
2152 *
2153 * The caller must have permission to write to the given devhandle, real
2154 * address, which must be an IO address.  The argument real address must be a
2155 * size aligned address.  The caller must have permission to read from
2156 * the given devhandle, pci_device cofiguration space offset 0.
2157 *
2158 * The hypervisor implementation of this function must block access to any
2159 * IO address that the guest does not have explicit permission to access.
2160 */
2161#define HV_FAST_PCI_POKE		0xb7
2162
2163/* pci_dma_sync()
2164 * TRAP:	HV_FAST_TRAP
2165 * FUNCTION:	HV_FAST_PCI_DMA_SYNC
2166 * ARG0:	devhandle
2167 * ARG1:	real address
2168 * ARG2:	size
2169 * ARG3:	io_sync_direction
2170 * RET0:	status
2171 * RET1:	#synced
2172 * ERRORS:	EINVAL		Invalid devhandle or io_sync_direction
2173 *		ENORADDR	Bad real address
2174 *
2175 * Synchronize a memory region described by the given real address and size,
2176 * for the device defined by the given devhandle using the direction(s)
2177 * defined by the given io_sync_direction.  The argument size is the size of
2178 * the memory region in bytes.
2179 *
2180 * Return the actual number of bytes synchronized in the return value #synced,
2181 * which may be less than or equal to the argument size.  If the return
2182 * value #synced is less than size, the caller must continue to call this
2183 * function with updated real address and size arguments until the entire
2184 * memory region is synchronized.
2185 */
2186#define HV_FAST_PCI_DMA_SYNC		0xb8
2187
2188/* PCI MSI services.  */
2189
2190#define HV_MSITYPE_MSI32		0x00
2191#define HV_MSITYPE_MSI64		0x01
2192
2193#define HV_MSIQSTATE_IDLE		0x00
2194#define HV_MSIQSTATE_ERROR		0x01
2195
2196#define HV_MSIQ_INVALID			0x00
2197#define HV_MSIQ_VALID			0x01
2198
2199#define HV_MSISTATE_IDLE		0x00
2200#define HV_MSISTATE_DELIVERED		0x01
2201
2202#define HV_MSIVALID_INVALID		0x00
2203#define HV_MSIVALID_VALID		0x01
2204
2205#define HV_PCIE_MSGTYPE_PME_MSG		0x18
2206#define HV_PCIE_MSGTYPE_PME_ACK_MSG	0x1b
2207#define HV_PCIE_MSGTYPE_CORR_MSG	0x30
2208#define HV_PCIE_MSGTYPE_NONFATAL_MSG	0x31
2209#define HV_PCIE_MSGTYPE_FATAL_MSG	0x33
2210
2211#define HV_MSG_INVALID			0x00
2212#define HV_MSG_VALID			0x01
2213
2214/* pci_msiq_conf()
2215 * TRAP:	HV_FAST_TRAP
2216 * FUNCTION:	HV_FAST_PCI_MSIQ_CONF
2217 * ARG0:	devhandle
2218 * ARG1:	msiqid
2219 * ARG2:	real address
2220 * ARG3:	number of entries
2221 * RET0:	status
2222 * ERRORS:	EINVAL		Invalid devhandle, msiqid or nentries
2223 *		EBADALIGN	Improperly aligned real address
2224 *		ENORADDR	Bad real address
2225 *
2226 * Configure the MSI queue given by the devhandle and msiqid arguments,
2227 * and to be placed at the given real address and be of the given
2228 * number of entries.  The real address must be aligned exactly to match
2229 * the queue size.  Each queue entry is 64-bytes long, so f.e. a 32 entry
2230 * queue must be aligned on a 2048 byte real address boundary.  The MSI-EQ
2231 * Head and Tail are initialized so that the MSI-EQ is 'empty'.
2232 *
2233 * Implementation Note: Certain implementations have fixed sized queues.  In
2234 *                      that case, number of entries must contain the correct
2235 *                      value.
2236 */
2237#define HV_FAST_PCI_MSIQ_CONF		0xc0
2238
2239/* pci_msiq_info()
2240 * TRAP:	HV_FAST_TRAP
2241 * FUNCTION:	HV_FAST_PCI_MSIQ_INFO
2242 * ARG0:	devhandle
2243 * ARG1:	msiqid
2244 * RET0:	status
2245 * RET1:	real address
2246 * RET2:	number of entries
2247 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2248 *
2249 * Return the configuration information for the MSI queue described
2250 * by the given devhandle and msiqid.  The base address of the queue
2251 * is returned in ARG1 and the number of entries is returned in ARG2.
2252 * If the queue is unconfigured, the real address is undefined and the
2253 * number of entries will be returned as zero.
2254 */
2255#define HV_FAST_PCI_MSIQ_INFO		0xc1
2256
2257/* pci_msiq_getvalid()
2258 * TRAP:	HV_FAST_TRAP
2259 * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2260 * ARG0:	devhandle
2261 * ARG1:	msiqid
2262 * RET0:	status
2263 * RET1:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2264 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2265 *
2266 * Get the valid state of the MSI-EQ described by the given devhandle and
2267 * msiqid.
2268 */
2269#define HV_FAST_PCI_MSIQ_GETVALID	0xc2
2270
2271/* pci_msiq_setvalid()
2272 * TRAP:	HV_FAST_TRAP
2273 * FUNCTION:	HV_FAST_PCI_MSIQ_SETVALID
2274 * ARG0:	devhandle
2275 * ARG1:	msiqid
2276 * ARG2:	msiqvalid	(HV_MSIQ_VALID or HV_MSIQ_INVALID)
2277 * RET0:	status
2278 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqvalid
2279 *				value or MSI EQ is uninitialized
2280 *
2281 * Set the valid state of the MSI-EQ described by the given devhandle and
2282 * msiqid to the given msiqvalid.
2283 */
2284#define HV_FAST_PCI_MSIQ_SETVALID	0xc3
2285
2286/* pci_msiq_getstate()
2287 * TRAP:	HV_FAST_TRAP
2288 * FUNCTION:	HV_FAST_PCI_MSIQ_GETSTATE
2289 * ARG0:	devhandle
2290 * ARG1:	msiqid
2291 * RET0:	status
2292 * RET1:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2293 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2294 *
2295 * Get the state of the MSI-EQ described by the given devhandle and
2296 * msiqid.
2297 */
2298#define HV_FAST_PCI_MSIQ_GETSTATE	0xc4
2299
2300/* pci_msiq_getvalid()
2301 * TRAP:	HV_FAST_TRAP
2302 * FUNCTION:	HV_FAST_PCI_MSIQ_GETVALID
2303 * ARG0:	devhandle
2304 * ARG1:	msiqid
2305 * ARG2:	msiqstate	(HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR)
2306 * RET0:	status
2307 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqstate
2308 *				value or MSI EQ is uninitialized
2309 *
2310 * Set the state of the MSI-EQ described by the given devhandle and
2311 * msiqid to the given msiqvalid.
2312 */
2313#define HV_FAST_PCI_MSIQ_SETSTATE	0xc5
2314
2315/* pci_msiq_gethead()
2316 * TRAP:	HV_FAST_TRAP
2317 * FUNCTION:	HV_FAST_PCI_MSIQ_GETHEAD
2318 * ARG0:	devhandle
2319 * ARG1:	msiqid
2320 * RET0:	status
2321 * RET1:	msiqhead
2322 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2323 *
2324 * Get the current MSI EQ queue head for the MSI-EQ described by the
2325 * given devhandle and msiqid.
2326 */
2327#define HV_FAST_PCI_MSIQ_GETHEAD	0xc6
2328
2329/* pci_msiq_sethead()
2330 * TRAP:	HV_FAST_TRAP
2331 * FUNCTION:	HV_FAST_PCI_MSIQ_SETHEAD
2332 * ARG0:	devhandle
2333 * ARG1:	msiqid
2334 * ARG2:	msiqhead
2335 * RET0:	status
2336 * ERRORS:	EINVAL		Invalid devhandle or msiqid or msiqhead,
2337 *				or MSI EQ is uninitialized
2338 *
2339 * Set the current MSI EQ queue head for the MSI-EQ described by the
2340 * given devhandle and msiqid.
2341 */
2342#define HV_FAST_PCI_MSIQ_SETHEAD	0xc7
2343
2344/* pci_msiq_gettail()
2345 * TRAP:	HV_FAST_TRAP
2346 * FUNCTION:	HV_FAST_PCI_MSIQ_GETTAIL
2347 * ARG0:	devhandle
2348 * ARG1:	msiqid
2349 * RET0:	status
2350 * RET1:	msiqtail
2351 * ERRORS:	EINVAL		Invalid devhandle or msiqid
2352 *
2353 * Get the current MSI EQ queue tail for the MSI-EQ described by the
2354 * given devhandle and msiqid.
2355 */
2356#define HV_FAST_PCI_MSIQ_GETTAIL	0xc8
2357
2358/* pci_msi_getvalid()
2359 * TRAP:	HV_FAST_TRAP
2360 * FUNCTION:	HV_FAST_PCI_MSI_GETVALID
2361 * ARG0:	devhandle
2362 * ARG1:	msinum
2363 * RET0:	status
2364 * RET1:	msivalidstate
2365 * ERRORS:	EINVAL		Invalid devhandle or msinum
2366 *
2367 * Get the current valid/enabled state for the MSI defined by the
2368 * given devhandle and msinum.
2369 */
2370#define HV_FAST_PCI_MSI_GETVALID	0xc9
2371
2372/* pci_msi_setvalid()
2373 * TRAP:	HV_FAST_TRAP
2374 * FUNCTION:	HV_FAST_PCI_MSI_SETVALID
2375 * ARG0:	devhandle
2376 * ARG1:	msinum
2377 * ARG2:	msivalidstate
2378 * RET0:	status
2379 * ERRORS:	EINVAL		Invalid devhandle or msinum or msivalidstate
2380 *
2381 * Set the current valid/enabled state for the MSI defined by the
2382 * given devhandle and msinum.
2383 */
2384#define HV_FAST_PCI_MSI_SETVALID	0xca
2385
2386/* pci_msi_getmsiq()
2387 * TRAP:	HV_FAST_TRAP
2388 * FUNCTION:	HV_FAST_PCI_MSI_GETMSIQ
2389 * ARG0:	devhandle
2390 * ARG1:	msinum
2391 * RET0:	status
2392 * RET1:	msiqid
2393 * ERRORS:	EINVAL		Invalid devhandle or msinum or MSI is unbound
2394 *
2395 * Get the MSI EQ that the MSI defined by the given devhandle and
2396 * msinum is bound to.
2397 */
2398#define HV_FAST_PCI_MSI_GETMSIQ		0xcb
2399
2400/* pci_msi_setmsiq()
2401 * TRAP:	HV_FAST_TRAP
2402 * FUNCTION:	HV_FAST_PCI_MSI_SETMSIQ
2403 * ARG0:	devhandle
2404 * ARG1:	msinum
2405 * ARG2:	msitype
2406 * ARG3:	msiqid
2407 * RET0:	status
2408 * ERRORS:	EINVAL		Invalid devhandle or msinum or msiqid
2409 *
2410 * Set the MSI EQ that the MSI defined by the given devhandle and
2411 * msinum is bound to.
2412 */
2413#define HV_FAST_PCI_MSI_SETMSIQ		0xcc
2414
2415/* pci_msi_getstate()
2416 * TRAP:	HV_FAST_TRAP
2417 * FUNCTION:	HV_FAST_PCI_MSI_GETSTATE
2418 * ARG0:	devhandle
2419 * ARG1:	msinum
2420 * RET0:	status
2421 * RET1:	msistate
2422 * ERRORS:	EINVAL		Invalid devhandle or msinum
2423 *
2424 * Get the state of the MSI defined by the given devhandle and msinum.
2425 * If not initialized, return HV_MSISTATE_IDLE.
2426 */
2427#define HV_FAST_PCI_MSI_GETSTATE	0xcd
2428
2429/* pci_msi_setstate()
2430 * TRAP:	HV_FAST_TRAP
2431 * FUNCTION:	HV_FAST_PCI_MSI_SETSTATE
2432 * ARG0:	devhandle
2433 * ARG1:	msinum
2434 * ARG2:	msistate
2435 * RET0:	status
2436 * ERRORS:	EINVAL		Invalid devhandle or msinum or msistate
2437 *
2438 * Set the state of the MSI defined by the given devhandle and msinum.
2439 */
2440#define HV_FAST_PCI_MSI_SETSTATE	0xce
2441
2442/* pci_msg_getmsiq()
2443 * TRAP:	HV_FAST_TRAP
2444 * FUNCTION:	HV_FAST_PCI_MSG_GETMSIQ
2445 * ARG0:	devhandle
2446 * ARG1:	msgtype
2447 * RET0:	status
2448 * RET1:	msiqid
2449 * ERRORS:	EINVAL		Invalid devhandle or msgtype
2450 *
2451 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype.
2452 */
2453#define HV_FAST_PCI_MSG_GETMSIQ		0xd0
2454
2455/* pci_msg_setmsiq()
2456 * TRAP:	HV_FAST_TRAP
2457 * FUNCTION:	HV_FAST_PCI_MSG_SETMSIQ
2458 * ARG0:	devhandle
2459 * ARG1:	msgtype
2460 * ARG2:	msiqid
2461 * RET0:	status
2462 * ERRORS:	EINVAL		Invalid devhandle, msgtype, or msiqid
2463 *
2464 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype.
2465 */
2466#define HV_FAST_PCI_MSG_SETMSIQ		0xd1
2467
2468/* pci_msg_getvalid()
2469 * TRAP:	HV_FAST_TRAP
2470 * FUNCTION:	HV_FAST_PCI_MSG_GETVALID
2471 * ARG0:	devhandle
2472 * ARG1:	msgtype
2473 * RET0:	status
2474 * RET1:	msgvalidstate
2475 * ERRORS:	EINVAL		Invalid devhandle or msgtype
2476 *
2477 * Get the valid/enabled state of the MSG defined by the given
2478 * devhandle and msgtype.
2479 */
2480#define HV_FAST_PCI_MSG_GETVALID	0xd2
2481
2482/* pci_msg_setvalid()
2483 * TRAP:	HV_FAST_TRAP
2484 * FUNCTION:	HV_FAST_PCI_MSG_SETVALID
2485 * ARG0:	devhandle
2486 * ARG1:	msgtype
2487 * ARG2:	msgvalidstate
2488 * RET0:	status
2489 * ERRORS:	EINVAL		Invalid devhandle or msgtype or msgvalidstate
2490 *
2491 * Set the valid/enabled state of the MSG defined by the given
2492 * devhandle and msgtype.
2493 */
2494#define HV_FAST_PCI_MSG_SETVALID	0xd3
2495
2496/* PCI IOMMU v2 definitions and services
2497 *
2498 * While the PCI IO definitions above is valid IOMMU v2 adds new PCI IO
2499 * definitions and services.
2500 *
2501 *	CTE		Clump Table Entry. First level table entry in the ATU.
2502 *
2503 *	pci_device_list
2504 *			A 32-bit aligned list of pci_devices.
2505 *
2506 *	pci_device_listp
2507 *			real address of a pci_device_list. 32-bit aligned.
2508 *
2509 *	iotte		IOMMU translation table entry.
2510 *
2511 *	iotte_attributes
2512 *			IO Attributes for IOMMU v2 mappings. In addition to
2513 *			read, write IOMMU v2 supports relax ordering
2514 *
2515 *	io_page_list	A 64-bit aligned list of real addresses. Each real
2516 *			address in an io_page_list must be properly aligned
2517 *			to the pagesize of the given IOTSB.
2518 *
2519 *	io_page_list_p	Real address of an io_page_list, 64-bit aligned.
2520 *
2521 *	IOTSB		IO Translation Storage Buffer. An aligned table of
2522 *			IOTTEs. Each IOTSB has a pagesize, table size, and
2523 *			virtual address associated with it that must match
2524 *			a pagesize and table size supported by the un-derlying
2525 *			hardware implementation. The alignment requirements
2526 *			for an IOTSB depend on the pagesize used for that IOTSB.
2527 *			Each IOTTE in an IOTSB maps one pagesize-sized page.
2528 *			The size of the IOTSB dictates how large of a virtual
2529 *			address space the IOTSB is capable of mapping.
2530 *
2531 *	iotsb_handle	An opaque identifier for an IOTSB. A devhandle plus
2532 *			iotsb_handle represents a binding of an IOTSB to a
2533 *			PCI root complex.
2534 *
2535 *	iotsb_index	Zero-based IOTTE number within an IOTSB.
2536 */
2537
2538/* The index_count argument consists of two fields:
2539 * bits 63:48 #iottes and bits 47:0 iotsb_index
2540 */
2541#define HV_PCI_IOTSB_INDEX_COUNT(__iottes, __iotsb_index) \
2542	(((u64)(__iottes) << 48UL) | ((u64)(__iotsb_index)))
2543
2544/* pci_iotsb_conf()
2545 * TRAP:	HV_FAST_TRAP
2546 * FUNCTION:	HV_FAST_PCI_IOTSB_CONF
2547 * ARG0:	devhandle
2548 * ARG1:	r_addr
2549 * ARG2:	size
2550 * ARG3:	pagesize
2551 * ARG4:	iova
2552 * RET0:	status
2553 * RET1:	iotsb_handle
2554 * ERRORS:	EINVAL		Invalid devhandle, size, iova, or pagesize
2555 *		EBADALIGN	r_addr is not properly aligned
2556 *		ENORADDR	r_addr is not a valid real address
2557 *		ETOOMANY	No further IOTSBs may be configured
2558 *		EBUSY		Duplicate devhandle, raddir, iova combination
2559 *
2560 * Create an IOTSB suitable for the PCI root complex identified by devhandle,
2561 * for the DMA virtual address defined by the argument iova.
2562 *
2563 * r_addr is the properly aligned base address of the IOTSB and size is the
2564 * IOTSB (table) size in bytes.The IOTSB is required to be zeroed prior to
2565 * being configured. If it contains any values other than zeros then the
2566 * behavior is undefined.
2567 *
2568 * pagesize is the size of each page in the IOTSB. Note that the combination of
2569 * size (table size) and pagesize must be valid.
2570 *
2571 * virt is the DMA virtual address this IOTSB will map.
2572 *
2573 * If successful, the opaque 64-bit handle iotsb_handle is returned in ret1.
2574 * Once configured, privileged access to the IOTSB memory is prohibited and
2575 * creates undefined behavior. The only permitted access is indirect via these
2576 * services.
2577 */
2578#define HV_FAST_PCI_IOTSB_CONF		0x190
2579
2580/* pci_iotsb_info()
2581 * TRAP:	HV_FAST_TRAP
2582 * FUNCTION:	HV_FAST_PCI_IOTSB_INFO
2583 * ARG0:	devhandle
2584 * ARG1:	iotsb_handle
2585 * RET0:	status
2586 * RET1:	r_addr
2587 * RET2:	size
2588 * RET3:	pagesize
2589 * RET4:	iova
2590 * RET5:	#bound
2591 * ERRORS:	EINVAL	Invalid devhandle or iotsb_handle
2592 *
2593 * This service returns configuration information about an IOTSB previously
2594 * created with pci_iotsb_conf.
2595 *
2596 * iotsb_handle value 0 may be used with this service to inquire about the
2597 * legacy IOTSB that may or may not exist. If the service succeeds, the return
2598 * values describe the legacy IOTSB and I/O virtual addresses mapped by that
2599 * table. However, the table base address r_addr may contain the value -1 which
2600 * indicates a memory range that cannot be accessed or be reclaimed.
2601 *
2602 * The return value #bound contains the number of PCI devices that iotsb_handle
2603 * is currently bound to.
2604 */
2605#define HV_FAST_PCI_IOTSB_INFO		0x191
2606
2607/* pci_iotsb_unconf()
2608 * TRAP:	HV_FAST_TRAP
2609 * FUNCTION:	HV_FAST_PCI_IOTSB_UNCONF
2610 * ARG0:	devhandle
2611 * ARG1:	iotsb_handle
2612 * RET0:	status
2613 * ERRORS:	EINVAL	Invalid devhandle or iotsb_handle
2614 *		EBUSY	The IOTSB is bound and may not be unconfigured
2615 *
2616 * This service unconfigures the IOTSB identified by the devhandle and
2617 * iotsb_handle arguments, previously created with pci_iotsb_conf.
2618 * The IOTSB must not be currently bound to any device or the service will fail
2619 *
2620 * If the call succeeds, iotsb_handle is no longer valid.
2621 */
2622#define HV_FAST_PCI_IOTSB_UNCONF	0x192
2623
2624/* pci_iotsb_bind()
2625 * TRAP:	HV_FAST_TRAP
2626 * FUNCTION:	HV_FAST_PCI_IOTSB_BIND
2627 * ARG0:	devhandle
2628 * ARG1:	iotsb_handle
2629 * ARG2:	pci_device
2630 * RET0:	status
2631 * ERRORS:	EINVAL	Invalid devhandle, iotsb_handle, or pci_device
2632 *		EBUSY	A PCI function is already bound to an IOTSB at the same
2633 *			address range as specified by devhandle, iotsb_handle.
2634 *
2635 * This service binds the PCI function specified by the argument pci_device to
2636 * the IOTSB specified by the arguments devhandle and iotsb_handle.
2637 *
2638 * The PCI device function is bound to the specified IOTSB with the IOVA range
2639 * specified when the IOTSB was configured via pci_iotsb_conf. If the function
2640 * is already bound then it is unbound first.
2641 */
2642#define HV_FAST_PCI_IOTSB_BIND		0x193
2643
2644/* pci_iotsb_unbind()
2645 * TRAP:	HV_FAST_TRAP
2646 * FUNCTION:	HV_FAST_PCI_IOTSB_UNBIND
2647 * ARG0:	devhandle
2648 * ARG1:	iotsb_handle
2649 * ARG2:	pci_device
2650 * RET0:	status
2651 * ERRORS:	EINVAL	Invalid devhandle, iotsb_handle, or pci_device
2652 *		ENOMAP	The PCI function was not bound to the specified IOTSB
2653 *
2654 * This service unbinds the PCI device specified by the argument pci_device
2655 * from the IOTSB identified  * by the arguments devhandle and iotsb_handle.
2656 *
2657 * If the PCI device is not bound to the specified IOTSB then this service will
2658 * fail with status ENOMAP
2659 */
2660#define HV_FAST_PCI_IOTSB_UNBIND	0x194
2661
2662/* pci_iotsb_get_binding()
2663 * TRAP:	HV_FAST_TRAP
2664 * FUNCTION:	HV_FAST_PCI_IOTSB_GET_BINDING
2665 * ARG0:	devhandle
2666 * ARG1:	iotsb_handle
2667 * ARG2:	iova
2668 * RET0:	status
2669 * RET1:	iotsb_handle
2670 * ERRORS:	EINVAL	Invalid devhandle, pci_device, or iova
2671 *		ENOMAP	The PCI function is not bound to an IOTSB at iova
2672 *
2673 * This service returns the IOTSB binding, iotsb_handle, for a given pci_device
2674 * and DMA virtual address, iova.
2675 *
2676 * iova must be the base address of a DMA virtual address range as defined by
2677 * the iommu-address-ranges property in the root complex device node defined
2678 * by the argument devhandle.
2679 */
2680#define HV_FAST_PCI_IOTSB_GET_BINDING	0x195
2681
2682/* pci_iotsb_map()
2683 * TRAP:	HV_FAST_TRAP
2684 * FUNCTION:	HV_FAST_PCI_IOTSB_MAP
2685 * ARG0:	devhandle
2686 * ARG1:	iotsb_handle
2687 * ARG2:	index_count
2688 * ARG3:	iotte_attributes
2689 * ARG4:	io_page_list_p
2690 * RET0:	status
2691 * RET1:	#mapped
2692 * ERRORS:	EINVAL		Invalid devhandle, iotsb_handle, #iottes,
2693 *				iotsb_index or iotte_attributes
2694 *		EBADALIGN	Improperly aligned io_page_list_p or I/O page
2695 *				address in the I/O page list.
2696 *		ENORADDR	Invalid io_page_list_p or I/O page address in
2697 *				the I/O page list.
2698 *
2699 * This service creates and flushes mappings in the IOTSB defined by the
2700 * arguments devhandle, iotsb.
2701 *
2702 * The index_count argument consists of two fields. Bits 63:48 contain #iotte
2703 * and bits 47:0 contain iotsb_index
2704 *
2705 * The first mapping is created in the IOTSB index specified by iotsb_index.
2706 * Subsequent mappings are  created at iotsb_index+1 and so on.
2707 *
2708 * The attributes of each mapping are defined by the argument iotte_attributes.
2709 *
2710 * The io_page_list_p specifies the real address of the 64-bit-aligned list of
2711 * #iottes I/O page addresses. Each page address must be a properly aligned
2712 * real address of a page to be mapped in the IOTSB. The first entry in the I/O
2713 * page list contains the real address of the first page, the 2nd entry for the
2714 * 2nd page, and so on.
2715 *
2716 * #iottes must be greater than zero.
2717 *
2718 * The return value #mapped is the actual number of mappings created, which may
2719 * be less than or equal to the argument #iottes. If the function returns
2720 * successfully with a #mapped value less than the requested #iottes then the
2721 * caller should continue to invoke the service with updated iotsb_index,
2722 * #iottes, and io_page_list_p arguments until all pages are mapped.
2723 *
2724 * This service must not be used to demap a mapping. In other words, all
2725 * mappings must be valid and have  one or both of the RW attribute bits set.
2726 *
2727 * Note:
2728 * It is implementation-defined whether I/O page real address validity checking
2729 * is done at time mappings are established or deferred until they are
2730 * accessed.
2731 */
2732#define HV_FAST_PCI_IOTSB_MAP		0x196
2733
2734/* pci_iotsb_map_one()
2735 * TRAP:	HV_FAST_TRAP
2736 * FUNCTION:	HV_FAST_PCI_IOTSB_MAP_ONE
2737 * ARG0:	devhandle
2738 * ARG1:	iotsb_handle
2739 * ARG2:	iotsb_index
2740 * ARG3:	iotte_attributes
2741 * ARG4:	r_addr
2742 * RET0:	status
2743 * ERRORS:	EINVAL		Invalid devhandle,iotsb_handle, iotsb_index
2744 *				or iotte_attributes
2745 *		EBADALIGN	Improperly aligned r_addr
2746 *		ENORADDR	Invalid r_addr
2747 *
2748 * This service creates and flushes a single mapping in the IOTSB defined by the
2749 * arguments devhandle, iotsb.
2750 *
2751 * The mapping for the page at r_addr is created at the IOTSB index specified by
2752 * iotsb_index with  the attributes iotte_attributes.
2753 *
2754 * This service must not be used to demap a mapping. In other words, the mapping
2755 * must be valid and have one or both of the RW attribute bits set.
2756 *
2757 * Note:
2758 * It is implementation-defined whether I/O page real address validity checking
2759 * is done at time mappings are established or deferred until they are
2760 * accessed.
2761 */
2762#define HV_FAST_PCI_IOTSB_MAP_ONE	0x197
2763
2764/* pci_iotsb_demap()
2765 * TRAP:	HV_FAST_TRAP
2766 * FUNCTION:	HV_FAST_PCI_IOTSB_DEMAP
2767 * ARG0:	devhandle
2768 * ARG1:	iotsb_handle
2769 * ARG2:	iotsb_index
2770 * ARG3:	#iottes
2771 * RET0:	status
2772 * RET1:	#unmapped
2773 * ERRORS:	EINVAL	Invalid devhandle, iotsb_handle, iotsb_index or #iottes
2774 *
2775 * This service unmaps and flushes up to #iottes mappings starting at index
2776 * iotsb_index from the IOTSB defined by the arguments devhandle, iotsb.
2777 *
2778 * #iottes must be greater than zero.
2779 *
2780 * The actual number of IOTTEs unmapped is returned in #unmapped and may be less
2781 * than or equal to the requested number of IOTTEs, #iottes.
2782 *
2783 * If #unmapped is less than #iottes, the caller should continue to invoke this
2784 * service with updated iotsb_index and #iottes arguments until all pages are
2785 * demapped.
2786 */
2787#define HV_FAST_PCI_IOTSB_DEMAP		0x198
2788
2789/* pci_iotsb_getmap()
2790 * TRAP:	HV_FAST_TRAP
2791 * FUNCTION:	HV_FAST_PCI_IOTSB_GETMAP
2792 * ARG0:	devhandle
2793 * ARG1:	iotsb_handle
2794 * ARG2:	iotsb_index
2795 * RET0:	status
2796 * RET1:	r_addr
2797 * RET2:	iotte_attributes
2798 * ERRORS:	EINVAL	Invalid devhandle, iotsb_handle, or iotsb_index
2799 *		ENOMAP	No mapping was found
2800 *
2801 * This service returns the mapping specified by index iotsb_index from the
2802 * IOTSB defined by the arguments devhandle, iotsb.
2803 *
2804 * Upon success, the real address of the mapping shall be returned in
2805 * r_addr and thethe IOTTE mapping attributes shall be returned in
2806 * iotte_attributes.
2807 *
2808 * The return value iotte_attributes may not include optional features used in
2809 * the call to create the  mapping.
2810 */
2811#define HV_FAST_PCI_IOTSB_GETMAP	0x199
2812
2813/* pci_iotsb_sync_mappings()
2814 * TRAP:	HV_FAST_TRAP
2815 * FUNCTION:	HV_FAST_PCI_IOTSB_SYNC_MAPPINGS
2816 * ARG0:	devhandle
2817 * ARG1:	iotsb_handle
2818 * ARG2:	iotsb_index
2819 * ARG3:	#iottes
2820 * RET0:	status
2821 * RET1:	#synced
2822 * ERROS:	EINVAL	Invalid devhandle, iotsb_handle, iotsb_index, or #iottes
2823 *
2824 * This service synchronizes #iottes mappings starting at index iotsb_index in
2825 * the IOTSB defined by the arguments devhandle, iotsb.
2826 *
2827 * #iottes must be greater than zero.
2828 *
2829 * The actual number of IOTTEs synchronized is returned in #synced, which may
2830 * be less than or equal to the requested number, #iottes.
2831 *
2832 * Upon a successful return, #synced is less than #iottes, the caller should
2833 * continue to invoke this service with updated iotsb_index and #iottes
2834 * arguments until all pages are synchronized.
2835 */
2836#define HV_FAST_PCI_IOTSB_SYNC_MAPPINGS	0x19a
2837
2838/* Logical Domain Channel services.  */
2839
2840#define LDC_CHANNEL_DOWN		0
2841#define LDC_CHANNEL_UP			1
2842#define LDC_CHANNEL_RESETTING		2
2843
2844/* ldc_tx_qconf()
2845 * TRAP:	HV_FAST_TRAP
2846 * FUNCTION:	HV_FAST_LDC_TX_QCONF
2847 * ARG0:	channel ID
2848 * ARG1:	real address base of queue
2849 * ARG2:	num entries in queue
2850 * RET0:	status
2851 *
2852 * Configure transmit queue for the LDC endpoint specified by the
2853 * given channel ID, to be placed at the given real address, and
2854 * be of the given num entries.  Num entries must be a power of two.
2855 * The real address base of the queue must be aligned on the queue
2856 * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2857 * queue must be aligned on a 2048 byte real address boundary.
2858 *
2859 * Upon configuration of a valid transmit queue the head and tail
2860 * pointers are set to a hypervisor specific identical value indicating
2861 * that the queue initially is empty.
2862 *
2863 * The endpoint's transmit queue is un-configured if num entries is zero.
2864 *
2865 * The maximum number of entries for each queue for a specific cpu may be
2866 * determined from the machine description.  A transmit queue may be
2867 * specified even in the event that the LDC is down (peer endpoint has no
2868 * receive queue specified).  Transmission will begin as soon as the peer
2869 * endpoint defines a receive queue.
2870 *
2871 * It is recommended that a guest wait for a transmit queue to empty prior
2872 * to reconfiguring it, or un-configuring it.  Re or un-configuring of a
2873 * non-empty transmit queue behaves exactly as defined above, however it
2874 * is undefined as to how many of the pending entries in the original queue
2875 * will be delivered prior to the re-configuration taking effect.
2876 * Furthermore, as the queue configuration causes a reset of the head and
2877 * tail pointers there is no way for a guest to determine how many entries
2878 * have been sent after the configuration operation.
2879 */
2880#define HV_FAST_LDC_TX_QCONF		0xe0
2881
2882/* ldc_tx_qinfo()
2883 * TRAP:	HV_FAST_TRAP
2884 * FUNCTION:	HV_FAST_LDC_TX_QINFO
2885 * ARG0:	channel ID
2886 * RET0:	status
2887 * RET1:	real address base of queue
2888 * RET2:	num entries in queue
2889 *
2890 * Return the configuration info for the transmit queue of LDC endpoint
2891 * defined by the given channel ID.  The real address is the currently
2892 * defined real address base of the defined queue, and num entries is the
2893 * size of the queue in terms of number of entries.
2894 *
2895 * If the specified channel ID is a valid endpoint number, but no transmit
2896 * queue has been defined this service will return success, but with num
2897 * entries set to zero and the real address will have an undefined value.
2898 */
2899#define HV_FAST_LDC_TX_QINFO		0xe1
2900
2901/* ldc_tx_get_state()
2902 * TRAP:	HV_FAST_TRAP
2903 * FUNCTION:	HV_FAST_LDC_TX_GET_STATE
2904 * ARG0:	channel ID
2905 * RET0:	status
2906 * RET1:	head offset
2907 * RET2:	tail offset
2908 * RET3:	channel state
2909 *
2910 * Return the transmit state, and the head and tail queue pointers, for
2911 * the transmit queue of the LDC endpoint defined by the given channel ID.
2912 * The head and tail values are the byte offset of the head and tail
2913 * positions of the transmit queue for the specified endpoint.
2914 */
2915#define HV_FAST_LDC_TX_GET_STATE	0xe2
2916
2917/* ldc_tx_set_qtail()
2918 * TRAP:	HV_FAST_TRAP
2919 * FUNCTION:	HV_FAST_LDC_TX_SET_QTAIL
2920 * ARG0:	channel ID
2921 * ARG1:	tail offset
2922 * RET0:	status
2923 *
2924 * Update the tail pointer for the transmit queue associated with the LDC
2925 * endpoint defined by the given channel ID.  The tail offset specified
2926 * must be aligned on a 64 byte boundary, and calculated so as to increase
2927 * the number of pending entries on the transmit queue.  Any attempt to
2928 * decrease the number of pending transmit queue entires is considered
2929 * an invalid tail offset and will result in an EINVAL error.
2930 *
2931 * Since the tail of the transmit queue may not be moved backwards, the
2932 * transmit queue may be flushed by configuring a new transmit queue,
2933 * whereupon the hypervisor will configure the initial transmit head and
2934 * tail pointers to be equal.
2935 */
2936#define HV_FAST_LDC_TX_SET_QTAIL	0xe3
2937
2938/* ldc_rx_qconf()
2939 * TRAP:	HV_FAST_TRAP
2940 * FUNCTION:	HV_FAST_LDC_RX_QCONF
2941 * ARG0:	channel ID
2942 * ARG1:	real address base of queue
2943 * ARG2:	num entries in queue
2944 * RET0:	status
2945 *
2946 * Configure receive queue for the LDC endpoint specified by the
2947 * given channel ID, to be placed at the given real address, and
2948 * be of the given num entries.  Num entries must be a power of two.
2949 * The real address base of the queue must be aligned on the queue
2950 * size.  Each queue entry is 64-bytes, so for example, a 32 entry
2951 * queue must be aligned on a 2048 byte real address boundary.
2952 *
2953 * The endpoint's transmit queue is un-configured if num entries is zero.
2954 *
2955 * If a valid receive queue is specified for a local endpoint the LDC is
2956 * in the up state for the purpose of transmission to this endpoint.
2957 *
2958 * The maximum number of entries for each queue for a specific cpu may be
2959 * determined from the machine description.
2960 *
2961 * As receive queue configuration causes a reset of the queue's head and
2962 * tail pointers there is no way for a gues to determine how many entries
2963 * have been received between a preceding ldc_get_rx_state() API call
2964 * and the completion of the configuration operation.  It should be noted
2965 * that datagram delivery is not guaranteed via domain channels anyway,
2966 * and therefore any higher protocol should be resilient to datagram
2967 * loss if necessary.  However, to overcome this specific race potential
2968 * it is recommended, for example, that a higher level protocol be employed
2969 * to ensure either retransmission, or ensure that no datagrams are pending
2970 * on the peer endpoint's transmit queue prior to the configuration process.
2971 */
2972#define HV_FAST_LDC_RX_QCONF		0xe4
2973
2974/* ldc_rx_qinfo()
2975 * TRAP:	HV_FAST_TRAP
2976 * FUNCTION:	HV_FAST_LDC_RX_QINFO
2977 * ARG0:	channel ID
2978 * RET0:	status
2979 * RET1:	real address base of queue
2980 * RET2:	num entries in queue
2981 *
2982 * Return the configuration info for the receive queue of LDC endpoint
2983 * defined by the given channel ID.  The real address is the currently
2984 * defined real address base of the defined queue, and num entries is the
2985 * size of the queue in terms of number of entries.
2986 *
2987 * If the specified channel ID is a valid endpoint number, but no receive
2988 * queue has been defined this service will return success, but with num
2989 * entries set to zero and the real address will have an undefined value.
2990 */
2991#define HV_FAST_LDC_RX_QINFO		0xe5
2992
2993/* ldc_rx_get_state()
2994 * TRAP:	HV_FAST_TRAP
2995 * FUNCTION:	HV_FAST_LDC_RX_GET_STATE
2996 * ARG0:	channel ID
2997 * RET0:	status
2998 * RET1:	head offset
2999 * RET2:	tail offset
3000 * RET3:	channel state
3001 *
3002 * Return the receive state, and the head and tail queue pointers, for
3003 * the receive queue of the LDC endpoint defined by the given channel ID.
3004 * The head and tail values are the byte offset of the head and tail
3005 * positions of the receive queue for the specified endpoint.
3006 */
3007#define HV_FAST_LDC_RX_GET_STATE	0xe6
3008
3009/* ldc_rx_set_qhead()
3010 * TRAP:	HV_FAST_TRAP
3011 * FUNCTION:	HV_FAST_LDC_RX_SET_QHEAD
3012 * ARG0:	channel ID
3013 * ARG1:	head offset
3014 * RET0:	status
3015 *
3016 * Update the head pointer for the receive queue associated with the LDC
3017 * endpoint defined by the given channel ID.  The head offset specified
3018 * must be aligned on a 64 byte boundary, and calculated so as to decrease
3019 * the number of pending entries on the receive queue.  Any attempt to
3020 * increase the number of pending receive queue entires is considered
3021 * an invalid head offset and will result in an EINVAL error.
3022 *
3023 * The receive queue may be flushed by setting the head offset equal
3024 * to the current tail offset.
3025 */
3026#define HV_FAST_LDC_RX_SET_QHEAD	0xe7
3027
3028/* LDC Map Table Entry.  Each slot is defined by a translation table
3029 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit
3030 * hypervisor invalidation cookie.
3031 */
3032#define LDC_MTE_PADDR	0x0fffffffffffe000 /* pa[55:13]          */
3033#define LDC_MTE_COPY_W	0x0000000000000400 /* copy write access  */
3034#define LDC_MTE_COPY_R	0x0000000000000200 /* copy read access   */
3035#define LDC_MTE_IOMMU_W	0x0000000000000100 /* IOMMU write access */
3036#define LDC_MTE_IOMMU_R	0x0000000000000080 /* IOMMU read access  */
3037#define LDC_MTE_EXEC	0x0000000000000040 /* execute            */
3038#define LDC_MTE_WRITE	0x0000000000000020 /* read               */
3039#define LDC_MTE_READ	0x0000000000000010 /* write              */
3040#define LDC_MTE_SZALL	0x000000000000000f /* page size bits     */
3041#define LDC_MTE_SZ16GB	0x0000000000000007 /* 16GB page          */
3042#define LDC_MTE_SZ2GB	0x0000000000000006 /* 2GB page           */
3043#define LDC_MTE_SZ256MB	0x0000000000000005 /* 256MB page         */
3044#define LDC_MTE_SZ32MB	0x0000000000000004 /* 32MB page          */
3045#define LDC_MTE_SZ4MB	0x0000000000000003 /* 4MB page           */
3046#define LDC_MTE_SZ512K	0x0000000000000002 /* 512K page          */
3047#define LDC_MTE_SZ64K	0x0000000000000001 /* 64K page           */
3048#define LDC_MTE_SZ8K	0x0000000000000000 /* 8K page            */
3049
3050#ifndef __ASSEMBLY__
3051struct ldc_mtable_entry {
3052	unsigned long	mte;
3053	unsigned long	cookie;
3054};
3055#endif
3056
3057/* ldc_set_map_table()
3058 * TRAP:	HV_FAST_TRAP
3059 * FUNCTION:	HV_FAST_LDC_SET_MAP_TABLE
3060 * ARG0:	channel ID
3061 * ARG1:	table real address
3062 * ARG2:	num entries
3063 * RET0:	status
3064 *
3065 * Register the MTE table at the given table real address, with the
3066 * specified num entries, for the LDC indicated by the given channel
3067 * ID.
3068 */
3069#define HV_FAST_LDC_SET_MAP_TABLE	0xea
3070
3071/* ldc_get_map_table()
3072 * TRAP:	HV_FAST_TRAP
3073 * FUNCTION:	HV_FAST_LDC_GET_MAP_TABLE
3074 * ARG0:	channel ID
3075 * RET0:	status
3076 * RET1:	table real address
3077 * RET2:	num entries
3078 *
3079 * Return the configuration of the current mapping table registered
3080 * for the given channel ID.
3081 */
3082#define HV_FAST_LDC_GET_MAP_TABLE	0xeb
3083
3084#define LDC_COPY_IN	0
3085#define LDC_COPY_OUT	1
3086
3087/* ldc_copy()
3088 * TRAP:	HV_FAST_TRAP
3089 * FUNCTION:	HV_FAST_LDC_COPY
3090 * ARG0:	channel ID
3091 * ARG1:	LDC_COPY_* direction code
3092 * ARG2:	target real address
3093 * ARG3:	local real address
3094 * ARG4:	length in bytes
3095 * RET0:	status
3096 * RET1:	actual length in bytes
3097 */
3098#define HV_FAST_LDC_COPY		0xec
3099
3100#define LDC_MEM_READ	1
3101#define LDC_MEM_WRITE	2
3102#define LDC_MEM_EXEC	4
3103
3104/* ldc_mapin()
3105 * TRAP:	HV_FAST_TRAP
3106 * FUNCTION:	HV_FAST_LDC_MAPIN
3107 * ARG0:	channel ID
3108 * ARG1:	cookie
3109 * RET0:	status
3110 * RET1:	real address
3111 * RET2:	LDC_MEM_* permissions
3112 */
3113#define HV_FAST_LDC_MAPIN		0xed
3114
3115/* ldc_unmap()
3116 * TRAP:	HV_FAST_TRAP
3117 * FUNCTION:	HV_FAST_LDC_UNMAP
3118 * ARG0:	real address
3119 * RET0:	status
3120 */
3121#define HV_FAST_LDC_UNMAP		0xee
3122
3123/* ldc_revoke()
3124 * TRAP:	HV_FAST_TRAP
3125 * FUNCTION:	HV_FAST_LDC_REVOKE
3126 * ARG0:	channel ID
3127 * ARG1:	cookie
3128 * ARG2:	ldc_mtable_entry cookie
3129 * RET0:	status
3130 */
3131#define HV_FAST_LDC_REVOKE		0xef
3132
3133#ifndef __ASSEMBLY__
3134unsigned long sun4v_ldc_tx_qconf(unsigned long channel,
3135				 unsigned long ra,
3136				 unsigned long num_entries);
3137unsigned long sun4v_ldc_tx_qinfo(unsigned long channel,
3138				 unsigned long *ra,
3139				 unsigned long *num_entries);
3140unsigned long sun4v_ldc_tx_get_state(unsigned long channel,
3141				     unsigned long *head_off,
3142				     unsigned long *tail_off,
3143				     unsigned long *chan_state);
3144unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel,
3145				     unsigned long tail_off);
3146unsigned long sun4v_ldc_rx_qconf(unsigned long channel,
3147				 unsigned long ra,
3148				 unsigned long num_entries);
3149unsigned long sun4v_ldc_rx_qinfo(unsigned long channel,
3150				 unsigned long *ra,
3151				 unsigned long *num_entries);
3152unsigned long sun4v_ldc_rx_get_state(unsigned long channel,
3153				     unsigned long *head_off,
3154				     unsigned long *tail_off,
3155				     unsigned long *chan_state);
3156unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel,
3157				     unsigned long head_off);
3158unsigned long sun4v_ldc_set_map_table(unsigned long channel,
3159				      unsigned long ra,
3160				      unsigned long num_entries);
3161unsigned long sun4v_ldc_get_map_table(unsigned long channel,
3162				      unsigned long *ra,
3163				      unsigned long *num_entries);
3164unsigned long sun4v_ldc_copy(unsigned long channel,
3165			     unsigned long dir_code,
3166			     unsigned long tgt_raddr,
3167			     unsigned long lcl_raddr,
3168			     unsigned long len,
3169			     unsigned long *actual_len);
3170unsigned long sun4v_ldc_mapin(unsigned long channel,
3171			      unsigned long cookie,
3172			      unsigned long *ra,
3173			      unsigned long *perm);
3174unsigned long sun4v_ldc_unmap(unsigned long ra);
3175unsigned long sun4v_ldc_revoke(unsigned long channel,
3176			       unsigned long cookie,
3177			       unsigned long mte_cookie);
3178#endif
3179
3180/* Performance counter services.  */
3181
3182#define HV_PERF_JBUS_PERF_CTRL_REG	0x00
3183#define HV_PERF_JBUS_PERF_CNT_REG	0x01
3184#define HV_PERF_DRAM_PERF_CTRL_REG_0	0x02
3185#define HV_PERF_DRAM_PERF_CNT_REG_0	0x03
3186#define HV_PERF_DRAM_PERF_CTRL_REG_1	0x04
3187#define HV_PERF_DRAM_PERF_CNT_REG_1	0x05
3188#define HV_PERF_DRAM_PERF_CTRL_REG_2	0x06
3189#define HV_PERF_DRAM_PERF_CNT_REG_2	0x07
3190#define HV_PERF_DRAM_PERF_CTRL_REG_3	0x08
3191#define HV_PERF_DRAM_PERF_CNT_REG_3	0x09
3192
3193/* get_perfreg()
3194 * TRAP:	HV_FAST_TRAP
3195 * FUNCTION:	HV_FAST_GET_PERFREG
3196 * ARG0:	performance reg number
3197 * RET0:	status
3198 * RET1:	performance reg value
3199 * ERRORS:	EINVAL		Invalid performance register number
3200 *		ENOACCESS	No access allowed to performance counters
3201 *
3202 * Read the value of the given DRAM/JBUS performance counter/control register.
3203 */
3204#define HV_FAST_GET_PERFREG		0x100
3205
3206/* set_perfreg()
3207 * TRAP:	HV_FAST_TRAP
3208 * FUNCTION:	HV_FAST_SET_PERFREG
3209 * ARG0:	performance reg number
3210 * ARG1:	performance reg value
3211 * RET0:	status
3212 * ERRORS:	EINVAL		Invalid performance register number
3213 *		ENOACCESS	No access allowed to performance counters
3214 *
3215 * Write the given performance reg value to the given DRAM/JBUS
3216 * performance counter/control register.
3217 */
3218#define HV_FAST_SET_PERFREG		0x101
3219
3220#define HV_N2_PERF_SPARC_CTL		0x0
3221#define HV_N2_PERF_DRAM_CTL0		0x1
3222#define HV_N2_PERF_DRAM_CNT0		0x2
3223#define HV_N2_PERF_DRAM_CTL1		0x3
3224#define HV_N2_PERF_DRAM_CNT1		0x4
3225#define HV_N2_PERF_DRAM_CTL2		0x5
3226#define HV_N2_PERF_DRAM_CNT2		0x6
3227#define HV_N2_PERF_DRAM_CTL3		0x7
3228#define HV_N2_PERF_DRAM_CNT3		0x8
3229
3230#define HV_FAST_N2_GET_PERFREG		0x104
3231#define HV_FAST_N2_SET_PERFREG		0x105
3232
3233#ifndef __ASSEMBLY__
3234unsigned long sun4v_niagara_getperf(unsigned long reg,
3235				    unsigned long *val);
3236unsigned long sun4v_niagara_setperf(unsigned long reg,
3237				    unsigned long val);
3238unsigned long sun4v_niagara2_getperf(unsigned long reg,
3239				     unsigned long *val);
3240unsigned long sun4v_niagara2_setperf(unsigned long reg,
3241				     unsigned long val);
3242#endif
3243
3244/* MMU statistics services.
3245 *
3246 * The hypervisor maintains MMU statistics and privileged code provides
3247 * a buffer where these statistics can be collected.  It is continually
3248 * updated once configured.  The layout is as follows:
3249 */
3250#ifndef __ASSEMBLY__
3251struct hv_mmu_statistics {
3252	unsigned long immu_tsb_hits_ctx0_8k_tte;
3253	unsigned long immu_tsb_ticks_ctx0_8k_tte;
3254	unsigned long immu_tsb_hits_ctx0_64k_tte;
3255	unsigned long immu_tsb_ticks_ctx0_64k_tte;
3256	unsigned long __reserved1[2];
3257	unsigned long immu_tsb_hits_ctx0_4mb_tte;
3258	unsigned long immu_tsb_ticks_ctx0_4mb_tte;
3259	unsigned long __reserved2[2];
3260	unsigned long immu_tsb_hits_ctx0_256mb_tte;
3261	unsigned long immu_tsb_ticks_ctx0_256mb_tte;
3262	unsigned long __reserved3[4];
3263	unsigned long immu_tsb_hits_ctxnon0_8k_tte;
3264	unsigned long immu_tsb_ticks_ctxnon0_8k_tte;
3265	unsigned long immu_tsb_hits_ctxnon0_64k_tte;
3266	unsigned long immu_tsb_ticks_ctxnon0_64k_tte;
3267	unsigned long __reserved4[2];
3268	unsigned long immu_tsb_hits_ctxnon0_4mb_tte;
3269	unsigned long immu_tsb_ticks_ctxnon0_4mb_tte;
3270	unsigned long __reserved5[2];
3271	unsigned long immu_tsb_hits_ctxnon0_256mb_tte;
3272	unsigned long immu_tsb_ticks_ctxnon0_256mb_tte;
3273	unsigned long __reserved6[4];
3274	unsigned long dmmu_tsb_hits_ctx0_8k_tte;
3275	unsigned long dmmu_tsb_ticks_ctx0_8k_tte;
3276	unsigned long dmmu_tsb_hits_ctx0_64k_tte;
3277	unsigned long dmmu_tsb_ticks_ctx0_64k_tte;
3278	unsigned long __reserved7[2];
3279	unsigned long dmmu_tsb_hits_ctx0_4mb_tte;
3280	unsigned long dmmu_tsb_ticks_ctx0_4mb_tte;
3281	unsigned long __reserved8[2];
3282	unsigned long dmmu_tsb_hits_ctx0_256mb_tte;
3283	unsigned long dmmu_tsb_ticks_ctx0_256mb_tte;
3284	unsigned long __reserved9[4];
3285	unsigned long dmmu_tsb_hits_ctxnon0_8k_tte;
3286	unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte;
3287	unsigned long dmmu_tsb_hits_ctxnon0_64k_tte;
3288	unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte;
3289	unsigned long __reserved10[2];
3290	unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte;
3291	unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte;
3292	unsigned long __reserved11[2];
3293	unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte;
3294	unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte;
3295	unsigned long __reserved12[4];
3296};
3297#endif
3298
3299/* mmustat_conf()
3300 * TRAP:	HV_FAST_TRAP
3301 * FUNCTION:	HV_FAST_MMUSTAT_CONF
3302 * ARG0:	real address
3303 * RET0:	status
3304 * RET1:	real address
3305 * ERRORS:	ENORADDR	Invalid real address
3306 *		EBADALIGN	Real address not aligned on 64-byte boundary
3307 *		EBADTRAP	API not supported on this processor
3308 *
3309 * Enable MMU statistic gathering using the buffer at the given real
3310 * address on the current virtual CPU.  The new buffer real address
3311 * is given in ARG1, and the previously specified buffer real address
3312 * is returned in RET1, or is returned as zero for the first invocation.
3313 *
3314 * If the passed in real address argument is zero, this will disable
3315 * MMU statistic collection on the current virtual CPU.  If an error is
3316 * returned then no statistics are collected.
3317 *
3318 * The buffer contents should be initialized to all zeros before being
3319 * given to the hypervisor or else the statistics will be meaningless.
3320 */
3321#define HV_FAST_MMUSTAT_CONF		0x102
3322
3323/* mmustat_info()
3324 * TRAP:	HV_FAST_TRAP
3325 * FUNCTION:	HV_FAST_MMUSTAT_INFO
3326 * RET0:	status
3327 * RET1:	real address
3328 * ERRORS:	EBADTRAP	API not supported on this processor
3329 *
3330 * Return the current state and real address of the currently configured
3331 * MMU statistics buffer on the current virtual CPU.
3332 */
3333#define HV_FAST_MMUSTAT_INFO		0x103
3334
3335#ifndef __ASSEMBLY__
3336unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra);
3337unsigned long sun4v_mmustat_info(unsigned long *ra);
3338#endif
3339
3340/* NCS crypto services  */
3341
3342/* ncs_request() sub-function numbers */
3343#define HV_NCS_QCONF			0x01
3344#define HV_NCS_QTAIL_UPDATE		0x02
3345
3346#ifndef __ASSEMBLY__
3347struct hv_ncs_queue_entry {
3348	/* MAU Control Register */
3349	unsigned long	mau_control;
3350#define MAU_CONTROL_INV_PARITY	0x0000000000002000
3351#define MAU_CONTROL_STRAND	0x0000000000001800
3352#define MAU_CONTROL_BUSY	0x0000000000000400
3353#define MAU_CONTROL_INT		0x0000000000000200
3354#define MAU_CONTROL_OP		0x00000000000001c0
3355#define MAU_CONTROL_OP_SHIFT	6
3356#define MAU_OP_LOAD_MA_MEMORY	0x0
3357#define MAU_OP_STORE_MA_MEMORY	0x1
3358#define MAU_OP_MODULAR_MULT	0x2
3359#define MAU_OP_MODULAR_REDUCE	0x3
3360#define MAU_OP_MODULAR_EXP_LOOP	0x4
3361#define MAU_CONTROL_LEN		0x000000000000003f
3362#define MAU_CONTROL_LEN_SHIFT	0
3363
3364	/* Real address of bytes to load or store bytes
3365	 * into/out-of the MAU.
3366	 */
3367	unsigned long	mau_mpa;
3368
3369	/* Modular Arithmetic MA Offset Register.  */
3370	unsigned long	mau_ma;
3371
3372	/* Modular Arithmetic N Prime Register.  */
3373	unsigned long	mau_np;
3374};
3375
3376struct hv_ncs_qconf_arg {
3377	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
3378	unsigned long	base;     /* Real address base of queue */
3379	unsigned long	end;	  /* Real address end of queue */
3380	unsigned long	num_ents; /* Number of entries in queue */
3381};
3382
3383struct hv_ncs_qtail_update_arg {
3384	unsigned long	mid;      /* MAU ID, 1 per core on Niagara */
3385	unsigned long	tail;     /* New tail index to use */
3386	unsigned long	syncflag; /* only SYNCFLAG_SYNC is implemented */
3387#define HV_NCS_SYNCFLAG_SYNC	0x00
3388#define HV_NCS_SYNCFLAG_ASYNC	0x01
3389};
3390#endif
3391
3392/* ncs_request()
3393 * TRAP:	HV_FAST_TRAP
3394 * FUNCTION:	HV_FAST_NCS_REQUEST
3395 * ARG0:	NCS sub-function
3396 * ARG1:	sub-function argument real address
3397 * ARG2:	size in bytes of sub-function argument
3398 * RET0:	status
3399 *
3400 * The MAU chip of the Niagara processor is not directly accessible
3401 * to privileged code, instead it is programmed indirectly via this
3402 * hypervisor API.
3403 *
3404 * The interfaces defines a queue of MAU operations to perform.
3405 * Privileged code registers a queue with the hypervisor by invoking
3406 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the
3407 * base, end, and number of entries of the queue.  Each queue entry
3408 * contains a MAU register struct block.
3409 *
3410 * The privileged code then proceeds to add entries to the queue and
3411 * then invoke the HV_NCS_QTAIL_UPDATE sub-function.  Since only
3412 * synchronous operations are supported by the current hypervisor,
3413 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to
3414 * completion and return HV_EOK, or return an error code.
3415 *
3416 * The real address of the sub-function argument must be aligned on at
3417 * least an 8-byte boundary.
3418 *
3419 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte
3420 * offset, into the queue and must be less than or equal the 'num_ents'
3421 * argument given in the HV_NCS_QCONF call.
3422 */
3423#define HV_FAST_NCS_REQUEST		0x110
3424
3425#ifndef __ASSEMBLY__
3426unsigned long sun4v_ncs_request(unsigned long request,
3427			        unsigned long arg_ra,
3428			        unsigned long arg_size);
3429#endif
3430
3431#define HV_FAST_FIRE_GET_PERFREG	0x120
3432#define HV_FAST_FIRE_SET_PERFREG	0x121
3433
3434#define HV_FAST_REBOOT_DATA_SET		0x172
3435
3436#ifndef __ASSEMBLY__
3437unsigned long sun4v_reboot_data_set(unsigned long ra,
3438				    unsigned long len);
3439#endif
3440
3441#define HV_FAST_VT_GET_PERFREG		0x184
3442#define HV_FAST_VT_SET_PERFREG		0x185
3443
3444#ifndef __ASSEMBLY__
3445unsigned long sun4v_vt_get_perfreg(unsigned long reg_num,
3446				   unsigned long *reg_val);
3447unsigned long sun4v_vt_set_perfreg(unsigned long reg_num,
3448				   unsigned long reg_val);
3449#endif
3450
3451#define	HV_FAST_T5_GET_PERFREG		0x1a8
3452#define	HV_FAST_T5_SET_PERFREG		0x1a9
3453
3454#ifndef	__ASSEMBLY__
3455unsigned long sun4v_t5_get_perfreg(unsigned long reg_num,
3456				   unsigned long *reg_val);
3457unsigned long sun4v_t5_set_perfreg(unsigned long reg_num,
3458				   unsigned long reg_val);
3459#endif
3460
3461
3462#define HV_FAST_M7_GET_PERFREG	0x43
3463#define HV_FAST_M7_SET_PERFREG	0x44
3464
3465#ifndef	__ASSEMBLY__
3466unsigned long sun4v_m7_get_perfreg(unsigned long reg_num,
3467				      unsigned long *reg_val);
3468unsigned long sun4v_m7_set_perfreg(unsigned long reg_num,
3469				      unsigned long reg_val);
3470#endif
3471
3472/* Function numbers for HV_CORE_TRAP.  */
3473#define HV_CORE_SET_VER			0x00
3474#define HV_CORE_PUTCHAR			0x01
3475#define HV_CORE_EXIT			0x02
3476#define HV_CORE_GET_VER			0x03
3477
3478/* Hypervisor API groups for use with HV_CORE_SET_VER and
3479 * HV_CORE_GET_VER.
3480 */
3481#define HV_GRP_SUN4V			0x0000
3482#define HV_GRP_CORE			0x0001
3483#define HV_GRP_INTR			0x0002
3484#define HV_GRP_SOFT_STATE		0x0003
3485#define HV_GRP_TM			0x0080
3486#define HV_GRP_PCI			0x0100
3487#define HV_GRP_LDOM			0x0101
3488#define HV_GRP_SVC_CHAN			0x0102
3489#define HV_GRP_NCS			0x0103
3490#define HV_GRP_RNG			0x0104
3491#define HV_GRP_PBOOT			0x0105
3492#define HV_GRP_TPM			0x0107
3493#define HV_GRP_SDIO			0x0108
3494#define HV_GRP_SDIO_ERR			0x0109
3495#define HV_GRP_REBOOT_DATA		0x0110
3496#define HV_GRP_ATU			0x0111
3497#define HV_GRP_DAX			0x0113
3498#define HV_GRP_M7_PERF			0x0114
3499#define HV_GRP_NIAG_PERF		0x0200
3500#define HV_GRP_FIRE_PERF		0x0201
3501#define HV_GRP_N2_CPU			0x0202
3502#define HV_GRP_NIU			0x0204
3503#define HV_GRP_VF_CPU			0x0205
3504#define HV_GRP_KT_CPU			0x0209
3505#define HV_GRP_VT_CPU			0x020c
3506#define HV_GRP_T5_CPU			0x0211
3507#define HV_GRP_DIAG			0x0300
3508
3509#ifndef __ASSEMBLY__
3510unsigned long sun4v_get_version(unsigned long group,
3511			        unsigned long *major,
3512			        unsigned long *minor);
3513unsigned long sun4v_set_version(unsigned long group,
3514			        unsigned long major,
3515			        unsigned long minor,
3516			        unsigned long *actual_minor);
3517
3518int sun4v_hvapi_register(unsigned long group, unsigned long major,
3519			 unsigned long *minor);
3520void sun4v_hvapi_unregister(unsigned long group);
3521int sun4v_hvapi_get(unsigned long group,
3522		    unsigned long *major,
3523		    unsigned long *minor);
3524void sun4v_hvapi_init(void);
3525#endif
3526
3527#endif /* !(_SPARC64_HYPERVISOR_H) */