Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * NTP state machine interfaces and logic.
  3 *
  4 * This code was mainly moved from kernel/timer.c and kernel/time.c
  5 * Please see those files for relevant copyright info and historical
  6 * changelogs.
  7 */
  8#include <linux/capability.h>
  9#include <linux/clocksource.h>
 10#include <linux/workqueue.h>
 11#include <linux/hrtimer.h>
 12#include <linux/jiffies.h>
 13#include <linux/math64.h>
 14#include <linux/timex.h>
 15#include <linux/time.h>
 16#include <linux/mm.h>
 17#include <linux/module.h>
 
 
 18
 19#include "tick-internal.h"
 
 20
 21/*
 22 * NTP timekeeping variables:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25/* USER_HZ period (usecs): */
 26unsigned long			tick_usec = TICK_USEC;
 27
 28/* ACTHZ period (nsecs): */
 29unsigned long			tick_nsec;
 30
 31u64				tick_length;
 32static u64			tick_length_base;
 33
 34static struct hrtimer		leap_timer;
 35
 
 36#define MAX_TICKADJ		500LL		/* usecs */
 37#define MAX_TICKADJ_SCALED \
 38	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 39
 40/*
 41 * phase-lock loop variables
 42 */
 43
 44/*
 45 * clock synchronization status
 46 *
 47 * (TIME_ERROR prevents overwriting the CMOS clock)
 48 */
 49static int			time_state = TIME_OK;
 50
 51/* clock status bits:							*/
 52int				time_status = STA_UNSYNC;
 53
 54/* TAI offset (secs):							*/
 55static long			time_tai;
 56
 57/* time adjustment (nsecs):						*/
 58static s64			time_offset;
 59
 60/* pll time constant:							*/
 61static long			time_constant = 2;
 62
 63/* maximum error (usecs):						*/
 64static long			time_maxerror = NTP_PHASE_LIMIT;
 65
 66/* estimated error (usecs):						*/
 67static long			time_esterror = NTP_PHASE_LIMIT;
 68
 69/* frequency offset (scaled nsecs/secs):				*/
 70static s64			time_freq;
 71
 72/* time at last adjustment (secs):					*/
 73static long			time_reftime;
 74
 75static long			time_adjust;
 76
 77/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
 78static s64			ntp_tick_adj;
 79
 80#ifdef CONFIG_NTP_PPS
 81
 82/*
 83 * The following variables are used when a pulse-per-second (PPS) signal
 84 * is available. They establish the engineering parameters of the clock
 85 * discipline loop when controlled by the PPS signal.
 86 */
 87#define PPS_VALID	10	/* PPS signal watchdog max (s) */
 88#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
 89#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
 90#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
 91#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 92				   increase pps_shift or consecutive bad
 93				   intervals to decrease it */
 94#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 95
 96static int pps_valid;		/* signal watchdog counter */
 97static long pps_tf[3];		/* phase median filter */
 98static long pps_jitter;		/* current jitter (ns) */
 99static struct timespec pps_fbase; /* beginning of the last freq interval */
100static int pps_shift;		/* current interval duration (s) (shift) */
101static int pps_intcnt;		/* interval counter */
102static s64 pps_freq;		/* frequency offset (scaled ns/s) */
103static long pps_stabil;		/* current stability (scaled ns/s) */
104
105/*
106 * PPS signal quality monitors
107 */
108static long pps_calcnt;		/* calibration intervals */
109static long pps_jitcnt;		/* jitter limit exceeded */
110static long pps_stbcnt;		/* stability limit exceeded */
111static long pps_errcnt;		/* calibration errors */
112
113
114/* PPS kernel consumer compensates the whole phase error immediately.
115 * Otherwise, reduce the offset by a fixed factor times the time constant.
116 */
117static inline s64 ntp_offset_chunk(s64 offset)
118{
119	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
120		return offset;
121	else
122		return shift_right(offset, SHIFT_PLL + time_constant);
123}
124
125static inline void pps_reset_freq_interval(void)
126{
127	/* the PPS calibration interval may end
128	   surprisingly early */
129	pps_shift = PPS_INTMIN;
130	pps_intcnt = 0;
131}
132
133/**
134 * pps_clear - Clears the PPS state variables
135 *
136 * Must be called while holding a write on the xtime_lock
137 */
138static inline void pps_clear(void)
139{
140	pps_reset_freq_interval();
141	pps_tf[0] = 0;
142	pps_tf[1] = 0;
143	pps_tf[2] = 0;
144	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
145	pps_freq = 0;
146}
147
148/* Decrease pps_valid to indicate that another second has passed since
149 * the last PPS signal. When it reaches 0, indicate that PPS signal is
150 * missing.
151 *
152 * Must be called while holding a write on the xtime_lock
153 */
154static inline void pps_dec_valid(void)
155{
156	if (pps_valid > 0)
157		pps_valid--;
158	else {
159		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
160				 STA_PPSWANDER | STA_PPSERROR);
161		pps_clear();
162	}
163}
164
165static inline void pps_set_freq(s64 freq)
166{
167	pps_freq = freq;
168}
169
170static inline int is_error_status(int status)
171{
172	return (time_status & (STA_UNSYNC|STA_CLOCKERR))
173		/* PPS signal lost when either PPS time or
174		 * PPS frequency synchronization requested
 
175		 */
176		|| ((time_status & (STA_PPSFREQ|STA_PPSTIME))
177			&& !(time_status & STA_PPSSIGNAL))
178		/* PPS jitter exceeded when
179		 * PPS time synchronization requested */
180		|| ((time_status & (STA_PPSTIME|STA_PPSJITTER))
 
 
181			== (STA_PPSTIME|STA_PPSJITTER))
182		/* PPS wander exceeded or calibration error when
183		 * PPS frequency synchronization requested
 
184		 */
185		|| ((time_status & STA_PPSFREQ)
186			&& (time_status & (STA_PPSWANDER|STA_PPSERROR)));
187}
188
189static inline void pps_fill_timex(struct timex *txc)
190{
191	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
192					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
193	txc->jitter	   = pps_jitter;
194	if (!(time_status & STA_NANO))
195		txc->jitter /= NSEC_PER_USEC;
196	txc->shift	   = pps_shift;
197	txc->stabil	   = pps_stabil;
198	txc->jitcnt	   = pps_jitcnt;
199	txc->calcnt	   = pps_calcnt;
200	txc->errcnt	   = pps_errcnt;
201	txc->stbcnt	   = pps_stbcnt;
202}
203
204#else /* !CONFIG_NTP_PPS */
205
206static inline s64 ntp_offset_chunk(s64 offset)
207{
208	return shift_right(offset, SHIFT_PLL + time_constant);
209}
210
211static inline void pps_reset_freq_interval(void) {}
212static inline void pps_clear(void) {}
213static inline void pps_dec_valid(void) {}
214static inline void pps_set_freq(s64 freq) {}
215
216static inline int is_error_status(int status)
217{
218	return status & (STA_UNSYNC|STA_CLOCKERR);
219}
220
221static inline void pps_fill_timex(struct timex *txc)
222{
223	/* PPS is not implemented, so these are zero */
224	txc->ppsfreq	   = 0;
225	txc->jitter	   = 0;
226	txc->shift	   = 0;
227	txc->stabil	   = 0;
228	txc->jitcnt	   = 0;
229	txc->calcnt	   = 0;
230	txc->errcnt	   = 0;
231	txc->stbcnt	   = 0;
232}
233
234#endif /* CONFIG_NTP_PPS */
235
236/*
237 * NTP methods:
238 */
239
240/*
241 * Update (tick_length, tick_length_base, tick_nsec), based
242 * on (tick_usec, ntp_tick_adj, time_freq):
243 */
244static void ntp_update_frequency(void)
245{
246	u64 second_length;
247	u64 new_base;
248
249	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
250						<< NTP_SCALE_SHIFT;
251
252	second_length		+= ntp_tick_adj;
253	second_length		+= time_freq;
254
255	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
256	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
257
258	/*
259	 * Don't wait for the next second_overflow, apply
260	 * the change to the tick length immediately:
261	 */
262	tick_length		+= new_base - tick_length_base;
263	tick_length_base	 = new_base;
264}
265
266static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
267{
268	time_status &= ~STA_MODE;
269
270	if (secs < MINSEC)
271		return 0;
272
273	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
274		return 0;
275
276	time_status |= STA_MODE;
277
278	return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
279}
280
281static void ntp_update_offset(long offset)
282{
283	s64 freq_adj;
284	s64 offset64;
285	long secs;
286
287	if (!(time_status & STA_PLL))
288		return;
289
290	if (!(time_status & STA_NANO))
 
 
291		offset *= NSEC_PER_USEC;
 
292
293	/*
294	 * Scale the phase adjustment and
295	 * clamp to the operating range.
296	 */
297	offset = min(offset, MAXPHASE);
298	offset = max(offset, -MAXPHASE);
299
300	/*
301	 * Select how the frequency is to be controlled
302	 * and in which mode (PLL or FLL).
303	 */
304	secs = get_seconds() - time_reftime;
305	if (unlikely(time_status & STA_FREQHOLD))
 
306		secs = 0;
307
308	time_reftime = get_seconds();
309
310	offset64    = offset;
311	freq_adj    = ntp_update_offset_fll(offset64, secs);
312
313	/*
314	 * Clamp update interval to reduce PLL gain with low
315	 * sampling rate (e.g. intermittent network connection)
316	 * to avoid instability.
317	 */
318	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
319		secs = 1 << (SHIFT_PLL + 1 + time_constant);
320
321	freq_adj    += (offset64 * secs) <<
322			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
323
324	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
325
326	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
327
328	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
329}
330
331/**
332 * ntp_clear - Clears the NTP state variables
333 *
334 * Must be called while holding a write on the xtime_lock
335 */
336void ntp_clear(void)
337{
338	time_adjust	= 0;		/* stop active adjtime() */
339	time_status	|= STA_UNSYNC;
340	time_maxerror	= NTP_PHASE_LIMIT;
341	time_esterror	= NTP_PHASE_LIMIT;
 
342
343	ntp_update_frequency();
344
345	tick_length	= tick_length_base;
346	time_offset	= 0;
347
 
348	/* Clear PPS state variables */
349	pps_clear();
350}
351
352/*
353 * Leap second processing. If in leap-insert state at the end of the
354 * day, the system clock is set back one second; if in leap-delete
355 * state, the system clock is set ahead one second.
356 */
357static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
358{
359	enum hrtimer_restart res = HRTIMER_NORESTART;
 
360
361	write_seqlock(&xtime_lock);
362
363	switch (time_state) {
364	case TIME_OK:
365		break;
366	case TIME_INS:
367		timekeeping_leap_insert(-1);
368		time_state = TIME_OOP;
369		printk(KERN_NOTICE
370			"Clock: inserting leap second 23:59:60 UTC\n");
371		hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
372		res = HRTIMER_RESTART;
373		break;
374	case TIME_DEL:
375		timekeeping_leap_insert(1);
376		time_tai--;
377		time_state = TIME_WAIT;
378		printk(KERN_NOTICE
379			"Clock: deleting leap second 23:59:59 UTC\n");
380		break;
381	case TIME_OOP:
382		time_tai++;
383		time_state = TIME_WAIT;
384		/* fall through */
385	case TIME_WAIT:
386		if (!(time_status & (STA_INS | STA_DEL)))
387			time_state = TIME_OK;
388		break;
389	}
390
391	write_sequnlock(&xtime_lock);
 
 
 
 
 
 
 
 
 
392
393	return res;
 
 
 
394}
395
396/*
397 * this routine handles the overflow of the microsecond field
398 *
399 * The tricky bits of code to handle the accurate clock support
400 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
401 * They were originally developed for SUN and DEC kernels.
402 * All the kudos should go to Dave for this stuff.
 
 
403 */
404void second_overflow(void)
405{
 
406	s64 delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407
408	/* Bump the maxerror field */
409	time_maxerror += MAXFREQ / NSEC_PER_USEC;
410	if (time_maxerror > NTP_PHASE_LIMIT) {
411		time_maxerror = NTP_PHASE_LIMIT;
412		time_status |= STA_UNSYNC;
413	}
414
415	/* Compute the phase adjustment for the next second */
416	tick_length	 = tick_length_base;
417
418	delta		 = ntp_offset_chunk(time_offset);
419	time_offset	-= delta;
420	tick_length	+= delta;
421
422	/* Check PPS signal */
423	pps_dec_valid();
424
425	if (!time_adjust)
426		return;
427
428	if (time_adjust > MAX_TICKADJ) {
429		time_adjust -= MAX_TICKADJ;
430		tick_length += MAX_TICKADJ_SCALED;
431		return;
432	}
433
434	if (time_adjust < -MAX_TICKADJ) {
435		time_adjust += MAX_TICKADJ;
436		tick_length -= MAX_TICKADJ_SCALED;
437		return;
438	}
439
440	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
441							 << NTP_SCALE_SHIFT;
442	time_adjust = 0;
443}
444
445#ifdef CONFIG_GENERIC_CMOS_UPDATE
 
 
446
447/* Disable the cmos update - used by virtualization and embedded */
448int no_sync_cmos_clock  __read_mostly;
 
 
 
449
450static void sync_cmos_clock(struct work_struct *work);
 
 
451
452static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
 
453
454static void sync_cmos_clock(struct work_struct *work)
455{
456	struct timespec now, next;
457	int fail = 1;
458
459	/*
460	 * If we have an externally synchronized Linux clock, then update
461	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
462	 * called as close as possible to 500 ms before the new second starts.
463	 * This code is run on a timer.  If the clock is set, that timer
464	 * may not expire at the correct time.  Thus, we adjust...
465	 */
466	if (!ntp_synced()) {
467		/*
468		 * Not synced, exit, do not restart a timer (if one is
469		 * running, let it run out).
470		 */
471		return;
472	}
473
474	getnstimeofday(&now);
475	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
476		fail = update_persistent_clock(now);
477
478	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
479	if (next.tv_nsec <= 0)
480		next.tv_nsec += NSEC_PER_SEC;
481
482	if (!fail)
483		next.tv_sec = 659;
484	else
485		next.tv_sec = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486
487	if (next.tv_nsec >= NSEC_PER_SEC) {
488		next.tv_sec++;
489		next.tv_nsec -= NSEC_PER_SEC;
 
490	}
491	schedule_delayed_work(&sync_cmos_work, timespec_to_jiffies(&next));
492}
493
494static void notify_cmos_timer(void)
 
 
 
 
 
 
495{
496	if (!no_sync_cmos_clock)
497		schedule_delayed_work(&sync_cmos_work, 0);
498}
 
499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500#else
501static inline void notify_cmos_timer(void) { }
 
 
 
502#endif
503
 
 
 
 
 
 
 
 
 
504/*
505 * Start the leap seconds timer:
 
 
 
 
 
506 */
507static inline void ntp_start_leap_timer(struct timespec *ts)
508{
509	long now = ts->tv_sec;
 
 
 
 
 
 
 
510
511	if (time_status & STA_INS) {
512		time_state = TIME_INS;
513		now += 86400 - now % 86400;
514		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
 
 
 
515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516		return;
517	}
 
 
518
519	if (time_status & STA_DEL) {
520		time_state = TIME_DEL;
521		now += 86400 - (now + 1) % 86400;
522		hrtimer_start(&leap_timer, ktime_set(now, 0), HRTIMER_MODE_ABS);
523	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524}
 
 
 
525
526/*
527 * Propagate a new txc->status value into the NTP state:
528 */
529static inline void process_adj_status(struct timex *txc, struct timespec *ts)
530{
531	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
532		time_state = TIME_OK;
533		time_status = STA_UNSYNC;
534		/* restart PPS frequency calibration */
535		pps_reset_freq_interval();
 
536	}
537
538	/*
539	 * If we turn on PLL adjustments then reset the
540	 * reference time to current time.
541	 */
542	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
543		time_reftime = get_seconds();
544
545	/* only set allowed bits */
546	time_status &= STA_RONLY;
547	time_status |= txc->status & ~STA_RONLY;
548
549	switch (time_state) {
550	case TIME_OK:
551		ntp_start_leap_timer(ts);
552		break;
553	case TIME_INS:
554	case TIME_DEL:
555		time_state = TIME_OK;
556		ntp_start_leap_timer(ts);
557	case TIME_WAIT:
558		if (!(time_status & (STA_INS | STA_DEL)))
559			time_state = TIME_OK;
560		break;
561	case TIME_OOP:
562		hrtimer_restart(&leap_timer);
563		break;
564	}
565}
566/*
567 * Called with the xtime lock held, so we can access and modify
568 * all the global NTP state:
569 */
570static inline void process_adjtimex_modes(struct timex *txc, struct timespec *ts)
571{
572	if (txc->modes & ADJ_STATUS)
573		process_adj_status(txc, ts);
574
575	if (txc->modes & ADJ_NANO)
576		time_status |= STA_NANO;
577
578	if (txc->modes & ADJ_MICRO)
579		time_status &= ~STA_NANO;
580
581	if (txc->modes & ADJ_FREQUENCY) {
582		time_freq = txc->freq * PPM_SCALE;
583		time_freq = min(time_freq, MAXFREQ_SCALED);
584		time_freq = max(time_freq, -MAXFREQ_SCALED);
585		/* update pps_freq */
586		pps_set_freq(time_freq);
587	}
588
589	if (txc->modes & ADJ_MAXERROR)
590		time_maxerror = txc->maxerror;
591
592	if (txc->modes & ADJ_ESTERROR)
593		time_esterror = txc->esterror;
594
595	if (txc->modes & ADJ_TIMECONST) {
596		time_constant = txc->constant;
597		if (!(time_status & STA_NANO))
598			time_constant += 4;
599		time_constant = min(time_constant, (long)MAXTC);
600		time_constant = max(time_constant, 0l);
601	}
602
603	if (txc->modes & ADJ_TAI && txc->constant > 0)
604		time_tai = txc->constant;
605
606	if (txc->modes & ADJ_OFFSET)
607		ntp_update_offset(txc->offset);
608
609	if (txc->modes & ADJ_TICK)
610		tick_usec = txc->tick;
611
612	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
613		ntp_update_frequency();
614}
615
616/*
617 * adjtimex mainly allows reading (and writing, if superuser) of
618 * kernel time-keeping variables. used by xntpd.
619 */
620int do_adjtimex(struct timex *txc)
 
621{
622	struct timespec ts;
623	int result;
624
625	/* Validate the data before disabling interrupts */
626	if (txc->modes & ADJ_ADJTIME) {
627		/* singleshot must not be used with any other mode bits */
628		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
629			return -EINVAL;
630		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
631		    !capable(CAP_SYS_TIME))
632			return -EPERM;
633	} else {
634		/* In order to modify anything, you gotta be super-user! */
635		 if (txc->modes && !capable(CAP_SYS_TIME))
636			return -EPERM;
637
638		/*
639		 * if the quartz is off by more than 10% then
640		 * something is VERY wrong!
641		 */
642		if (txc->modes & ADJ_TICK &&
643		    (txc->tick <  900000/USER_HZ ||
644		     txc->tick > 1100000/USER_HZ))
645			return -EINVAL;
646
647		if (txc->modes & ADJ_STATUS && time_state != TIME_OK)
648			hrtimer_cancel(&leap_timer);
649	}
650
651	if (txc->modes & ADJ_SETOFFSET) {
652		struct timespec delta;
653		delta.tv_sec  = txc->time.tv_sec;
654		delta.tv_nsec = txc->time.tv_usec;
655		if (!capable(CAP_SYS_TIME))
656			return -EPERM;
657		if (!(txc->modes & ADJ_NANO))
658			delta.tv_nsec *= 1000;
659		result = timekeeping_inject_offset(&delta);
660		if (result)
661			return result;
662	}
663
664	getnstimeofday(&ts);
665
666	write_seqlock_irq(&xtime_lock);
667
668	if (txc->modes & ADJ_ADJTIME) {
669		long save_adjust = time_adjust;
670
671		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
672			/* adjtime() is independent from ntp_adjtime() */
673			time_adjust = txc->offset;
674			ntp_update_frequency();
 
 
 
675		}
676		txc->offset = save_adjust;
677	} else {
678
679		/* If there are input parameters, then process them: */
680		if (txc->modes)
681			process_adjtimex_modes(txc, &ts);
 
 
 
 
 
 
 
 
 
 
 
 
 
682
683		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
684				  NTP_SCALE_SHIFT);
685		if (!(time_status & STA_NANO))
686			txc->offset /= NSEC_PER_USEC;
687	}
688
689	result = time_state;	/* mostly `TIME_OK' */
690	/* check for errors */
691	if (is_error_status(time_status))
692		result = TIME_ERROR;
693
694	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
695					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
696	txc->maxerror	   = time_maxerror;
697	txc->esterror	   = time_esterror;
698	txc->status	   = time_status;
699	txc->constant	   = time_constant;
700	txc->precision	   = 1;
701	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
702	txc->tick	   = tick_usec;
703	txc->tai	   = time_tai;
704
705	/* fill PPS status fields */
706	pps_fill_timex(txc);
707
708	write_sequnlock_irq(&xtime_lock);
709
710	txc->time.tv_sec = ts.tv_sec;
711	txc->time.tv_usec = ts.tv_nsec;
712	if (!(time_status & STA_NANO))
713		txc->time.tv_usec /= NSEC_PER_USEC;
714
715	notify_cmos_timer();
 
 
 
 
 
 
 
 
 
 
 
 
716
717	return result;
718}
719
720#ifdef	CONFIG_NTP_PPS
721
722/* actually struct pps_normtime is good old struct timespec, but it is
 
723 * semantically different (and it is the reason why it was invented):
724 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
725 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
 
726struct pps_normtime {
727	__kernel_time_t	sec;	/* seconds */
728	long		nsec;	/* nanoseconds */
729};
730
731/* normalize the timestamp so that nsec is in the
732   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
733static inline struct pps_normtime pps_normalize_ts(struct timespec ts)
 
 
734{
735	struct pps_normtime norm = {
736		.sec = ts.tv_sec,
737		.nsec = ts.tv_nsec
738	};
739
740	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
741		norm.nsec -= NSEC_PER_SEC;
742		norm.sec++;
743	}
744
745	return norm;
746}
747
748/* get current phase correction and jitter */
749static inline long pps_phase_filter_get(long *jitter)
750{
751	*jitter = pps_tf[0] - pps_tf[1];
752	if (*jitter < 0)
753		*jitter = -*jitter;
754
755	/* TODO: test various filters */
756	return pps_tf[0];
757}
758
759/* add the sample to the phase filter */
760static inline void pps_phase_filter_add(long err)
761{
762	pps_tf[2] = pps_tf[1];
763	pps_tf[1] = pps_tf[0];
764	pps_tf[0] = err;
765}
766
767/* decrease frequency calibration interval length.
768 * It is halved after four consecutive unstable intervals.
 
769 */
770static inline void pps_dec_freq_interval(void)
771{
772	if (--pps_intcnt <= -PPS_INTCOUNT) {
773		pps_intcnt = -PPS_INTCOUNT;
774		if (pps_shift > PPS_INTMIN) {
775			pps_shift--;
776			pps_intcnt = 0;
777		}
778	}
779}
780
781/* increase frequency calibration interval length.
782 * It is doubled after four consecutive stable intervals.
 
783 */
784static inline void pps_inc_freq_interval(void)
785{
786	if (++pps_intcnt >= PPS_INTCOUNT) {
787		pps_intcnt = PPS_INTCOUNT;
788		if (pps_shift < PPS_INTMAX) {
789			pps_shift++;
790			pps_intcnt = 0;
791		}
792	}
793}
794
795/* update clock frequency based on MONOTONIC_RAW clock PPS signal
 
796 * timestamps
797 *
798 * At the end of the calibration interval the difference between the
799 * first and last MONOTONIC_RAW clock timestamps divided by the length
800 * of the interval becomes the frequency update. If the interval was
801 * too long, the data are discarded.
802 * Returns the difference between old and new frequency values.
803 */
804static long hardpps_update_freq(struct pps_normtime freq_norm)
805{
806	long delta, delta_mod;
807	s64 ftemp;
808
809	/* check if the frequency interval was too long */
810	if (freq_norm.sec > (2 << pps_shift)) {
811		time_status |= STA_PPSERROR;
812		pps_errcnt++;
813		pps_dec_freq_interval();
814		pr_err("hardpps: PPSERROR: interval too long - %ld s\n",
815				freq_norm.sec);
816		return 0;
817	}
818
819	/* here the raw frequency offset and wander (stability) is
820	 * calculated. If the wander is less than the wander threshold
821	 * the interval is increased; otherwise it is decreased.
 
822	 */
823	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
824			freq_norm.sec);
825	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
826	pps_freq = ftemp;
827	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
828		pr_warning("hardpps: PPSWANDER: change=%ld\n", delta);
829		time_status |= STA_PPSWANDER;
830		pps_stbcnt++;
831		pps_dec_freq_interval();
832	} else {	/* good sample */
833		pps_inc_freq_interval();
 
834	}
835
836	/* the stability metric is calculated as the average of recent
837	 * frequency changes, but is used only for performance
838	 * monitoring
839	 */
840	delta_mod = delta;
841	if (delta_mod < 0)
842		delta_mod = -delta_mod;
843	pps_stabil += (div_s64(((s64)delta_mod) <<
844				(NTP_SCALE_SHIFT - SHIFT_USEC),
845				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
846
847	/* if enabled, the system clock frequency is updated */
848	if ((time_status & STA_PPSFREQ) != 0 &&
849	    (time_status & STA_FREQHOLD) == 0) {
850		time_freq = pps_freq;
851		ntp_update_frequency();
852	}
853
854	return delta;
855}
856
857/* correct REALTIME clock phase error against PPS signal */
858static void hardpps_update_phase(long error)
859{
860	long correction = -error;
861	long jitter;
862
863	/* add the sample to the median filter */
864	pps_phase_filter_add(correction);
865	correction = pps_phase_filter_get(&jitter);
866
867	/* Nominal jitter is due to PPS signal noise. If it exceeds the
 
868	 * threshold, the sample is discarded; otherwise, if so enabled,
869	 * the time offset is updated.
870	 */
871	if (jitter > (pps_jitter << PPS_POPCORN)) {
872		pr_warning("hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
873		       jitter, (pps_jitter << PPS_POPCORN));
874		time_status |= STA_PPSJITTER;
875		pps_jitcnt++;
876	} else if (time_status & STA_PPSTIME) {
877		/* correct the time using the phase offset */
878		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
879				NTP_INTERVAL_FREQ);
880		/* cancel running adjtime() */
881		time_adjust = 0;
882	}
883	/* update jitter */
884	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
885}
886
887/*
888 * hardpps() - discipline CPU clock oscillator to external PPS signal
889 *
890 * This routine is called at each PPS signal arrival in order to
891 * discipline the CPU clock oscillator to the PPS signal. It takes two
892 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
893 * is used to correct clock phase error and the latter is used to
894 * correct the frequency.
895 *
896 * This code is based on David Mills's reference nanokernel
897 * implementation. It was mostly rewritten but keeps the same idea.
898 */
899void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
900{
901	struct pps_normtime pts_norm, freq_norm;
902	unsigned long flags;
903
904	pts_norm = pps_normalize_ts(*phase_ts);
905
906	write_seqlock_irqsave(&xtime_lock, flags);
907
908	/* clear the error bits, they will be set again if needed */
909	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
910
911	/* indicate signal presence */
912	time_status |= STA_PPSSIGNAL;
913	pps_valid = PPS_VALID;
914
915	/* when called for the first time,
916	 * just start the frequency interval */
917	if (unlikely(pps_fbase.tv_sec == 0)) {
918		pps_fbase = *raw_ts;
919		write_sequnlock_irqrestore(&xtime_lock, flags);
 
920		return;
921	}
922
923	/* ok, now we have a base for frequency calculation */
924	freq_norm = pps_normalize_ts(timespec_sub(*raw_ts, pps_fbase));
925
926	/* check that the signal is in the range
927	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
928	if ((freq_norm.sec == 0) ||
929			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
930			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
931		time_status |= STA_PPSJITTER;
932		/* restart the frequency calibration interval */
933		pps_fbase = *raw_ts;
934		write_sequnlock_irqrestore(&xtime_lock, flags);
935		pr_err("hardpps: PPSJITTER: bad pulse\n");
936		return;
937	}
938
939	/* signal is ok */
940
941	/* check if the current frequency interval is finished */
942	if (freq_norm.sec >= (1 << pps_shift)) {
943		pps_calcnt++;
944		/* restart the frequency calibration interval */
945		pps_fbase = *raw_ts;
946		hardpps_update_freq(freq_norm);
947	}
948
949	hardpps_update_phase(pts_norm.nsec);
950
951	write_sequnlock_irqrestore(&xtime_lock, flags);
952}
953EXPORT_SYMBOL(hardpps);
954
955#endif	/* CONFIG_NTP_PPS */
956
957static int __init ntp_tick_adj_setup(char *str)
958{
959	ntp_tick_adj = simple_strtol(str, NULL, 0);
960	ntp_tick_adj <<= NTP_SCALE_SHIFT;
 
961
 
962	return 1;
963}
964
965__setup("ntp_tick_adj=", ntp_tick_adj_setup);
966
967void __init ntp_init(void)
968{
969	ntp_clear();
970	hrtimer_init(&leap_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
971	leap_timer.function = ntp_leap_second;
972}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * NTP state machine interfaces and logic.
   4 *
   5 * This code was mainly moved from kernel/timer.c and kernel/time.c
   6 * Please see those files for relevant copyright info and historical
   7 * changelogs.
   8 */
   9#include <linux/capability.h>
  10#include <linux/clocksource.h>
  11#include <linux/workqueue.h>
  12#include <linux/hrtimer.h>
  13#include <linux/jiffies.h>
  14#include <linux/math64.h>
  15#include <linux/timex.h>
  16#include <linux/time.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/rtc.h>
  20#include <linux/audit.h>
  21
  22#include "ntp_internal.h"
  23#include "timekeeping_internal.h"
  24
  25/**
  26 * struct ntp_data - Structure holding all NTP related state
  27 * @tick_usec:		USER_HZ period in microseconds
  28 * @tick_length:	Adjusted tick length
  29 * @tick_length_base:	Base value for @tick_length
  30 * @time_state:		State of the clock synchronization
  31 * @time_status:	Clock status bits
  32 * @time_offset:	Time adjustment in nanoseconds
  33 * @time_constant:	PLL time constant
  34 * @time_maxerror:	Maximum error in microseconds holding the NTP sync distance
  35 *			(NTP dispersion + delay / 2)
  36 * @time_esterror:	Estimated error in microseconds holding NTP dispersion
  37 * @time_freq:		Frequency offset scaled nsecs/secs
  38 * @time_reftime:	Time at last adjustment in seconds
  39 * @time_adjust:	Adjustment value
  40 * @ntp_tick_adj:	Constant boot-param configurable NTP tick adjustment (upscaled)
  41 * @ntp_next_leap_sec:	Second value of the next pending leapsecond, or TIME64_MAX if no leap
  42 *
  43 * @pps_valid:		PPS signal watchdog counter
  44 * @pps_tf:		PPS phase median filter
  45 * @pps_jitter:		PPS current jitter in nanoseconds
  46 * @pps_fbase:		PPS beginning of the last freq interval
  47 * @pps_shift:		PPS current interval duration in seconds (shift value)
  48 * @pps_intcnt:		PPS interval counter
  49 * @pps_freq:		PPS frequency offset in scaled ns/s
  50 * @pps_stabil:		PPS current stability in scaled ns/s
  51 * @pps_calcnt:		PPS monitor: calibration intervals
  52 * @pps_jitcnt:		PPS monitor: jitter limit exceeded
  53 * @pps_stbcnt:		PPS monitor: stability limit exceeded
  54 * @pps_errcnt:		PPS monitor: calibration errors
  55 *
  56 * Protected by the timekeeping locks.
  57 */
  58struct ntp_data {
  59	unsigned long		tick_usec;
  60	u64			tick_length;
  61	u64			tick_length_base;
  62	int			time_state;
  63	int			time_status;
  64	s64			time_offset;
  65	long			time_constant;
  66	long			time_maxerror;
  67	long			time_esterror;
  68	s64			time_freq;
  69	time64_t		time_reftime;
  70	long			time_adjust;
  71	s64			ntp_tick_adj;
  72	time64_t		ntp_next_leap_sec;
  73#ifdef CONFIG_NTP_PPS
  74	int			pps_valid;
  75	long			pps_tf[3];
  76	long			pps_jitter;
  77	struct timespec64	pps_fbase;
  78	int			pps_shift;
  79	int			pps_intcnt;
  80	s64			pps_freq;
  81	long			pps_stabil;
  82	long			pps_calcnt;
  83	long			pps_jitcnt;
  84	long			pps_stbcnt;
  85	long			pps_errcnt;
  86#endif
  87};
  88
  89static struct ntp_data tk_ntp_data = {
  90	.tick_usec		= USER_TICK_USEC,
  91	.time_state		= TIME_OK,
  92	.time_status		= STA_UNSYNC,
  93	.time_constant		= 2,
  94	.time_maxerror		= NTP_PHASE_LIMIT,
  95	.time_esterror		= NTP_PHASE_LIMIT,
  96	.ntp_next_leap_sec	= TIME64_MAX,
  97};
 
  98
  99#define SECS_PER_DAY		86400
 100#define MAX_TICKADJ		500LL		/* usecs */
 101#define MAX_TICKADJ_SCALED \
 102	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
 103#define MAX_TAI_OFFSET		100000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105#ifdef CONFIG_NTP_PPS
 106
 107/*
 108 * The following variables are used when a pulse-per-second (PPS) signal
 109 * is available. They establish the engineering parameters of the clock
 110 * discipline loop when controlled by the PPS signal.
 111 */
 112#define PPS_VALID	10	/* PPS signal watchdog max (s) */
 113#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
 114#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
 115#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
 116#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
 117				   increase pps_shift or consecutive bad
 118				   intervals to decrease it */
 119#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
 120
 
 
 
 
 
 
 
 
 
 121/*
 122 * PPS kernel consumer compensates the whole phase error immediately.
 
 
 
 
 
 
 
 
 123 * Otherwise, reduce the offset by a fixed factor times the time constant.
 124 */
 125static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
 126{
 127	if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
 128		return offset;
 129	else
 130		return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
 131}
 132
 133static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
 134{
 135	/* The PPS calibration interval may end surprisingly early */
 136	ntpdata->pps_shift = PPS_INTMIN;
 137	ntpdata->pps_intcnt = 0;
 
 138}
 139
 140/**
 141 * pps_clear - Clears the PPS state variables
 142 * @ntpdata:	Pointer to ntp data
 
 143 */
 144static inline void pps_clear(struct ntp_data *ntpdata)
 145{
 146	pps_reset_freq_interval(ntpdata);
 147	ntpdata->pps_tf[0] = 0;
 148	ntpdata->pps_tf[1] = 0;
 149	ntpdata->pps_tf[2] = 0;
 150	ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
 151	ntpdata->pps_freq = 0;
 152}
 153
 154/*
 155 * Decrease pps_valid to indicate that another second has passed since the
 156 * last PPS signal. When it reaches 0, indicate that PPS signal is missing.
 
 
 157 */
 158static inline void pps_dec_valid(struct ntp_data *ntpdata)
 159{
 160	if (ntpdata->pps_valid > 0) {
 161		ntpdata->pps_valid--;
 162	} else {
 163		ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
 164					  STA_PPSWANDER | STA_PPSERROR);
 165		pps_clear(ntpdata);
 166	}
 167}
 168
 169static inline void pps_set_freq(struct ntp_data *ntpdata)
 170{
 171	ntpdata->pps_freq = ntpdata->time_freq;
 172}
 173
 174static inline bool is_error_status(int status)
 175{
 176	return (status & (STA_UNSYNC|STA_CLOCKERR))
 177		/*
 178		 * PPS signal lost when either PPS time or PPS frequency
 179		 * synchronization requested
 180		 */
 181		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
 182			&& !(status & STA_PPSSIGNAL))
 183		/*
 184		 * PPS jitter exceeded when PPS time synchronization
 185		 * requested
 186		 */
 187		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
 188			== (STA_PPSTIME|STA_PPSJITTER))
 189		/*
 190		 * PPS wander exceeded or calibration error when PPS
 191		 * frequency synchronization requested
 192		 */
 193		|| ((status & STA_PPSFREQ)
 194			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
 195}
 196
 197static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
 198{
 199	txc->ppsfreq	   = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
 200					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 201	txc->jitter	   = ntpdata->pps_jitter;
 202	if (!(ntpdata->time_status & STA_NANO))
 203		txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
 204	txc->shift	   = ntpdata->pps_shift;
 205	txc->stabil	   = ntpdata->pps_stabil;
 206	txc->jitcnt	   = ntpdata->pps_jitcnt;
 207	txc->calcnt	   = ntpdata->pps_calcnt;
 208	txc->errcnt	   = ntpdata->pps_errcnt;
 209	txc->stbcnt	   = ntpdata->pps_stbcnt;
 210}
 211
 212#else /* !CONFIG_NTP_PPS */
 213
 214static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
 215{
 216	return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
 217}
 218
 219static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
 220static inline void pps_clear(struct ntp_data *ntpdata) {}
 221static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
 222static inline void pps_set_freq(struct ntp_data *ntpdata) {}
 223
 224static inline bool is_error_status(int status)
 225{
 226	return status & (STA_UNSYNC|STA_CLOCKERR);
 227}
 228
 229static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
 230{
 231	/* PPS is not implemented, so these are zero */
 232	txc->ppsfreq	   = 0;
 233	txc->jitter	   = 0;
 234	txc->shift	   = 0;
 235	txc->stabil	   = 0;
 236	txc->jitcnt	   = 0;
 237	txc->calcnt	   = 0;
 238	txc->errcnt	   = 0;
 239	txc->stbcnt	   = 0;
 240}
 241
 242#endif /* CONFIG_NTP_PPS */
 243
 244/*
 245 * Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
 246 * time_freq:
 
 
 
 
 247 */
 248static void ntp_update_frequency(struct ntp_data *ntpdata)
 249{
 250	u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
 
 251
 252	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
 
 253
 254	second_length		+= ntpdata->ntp_tick_adj;
 255	second_length		+= ntpdata->time_freq;
 256
 
 257	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
 258
 259	/*
 260	 * Don't wait for the next second_overflow, apply the change to the
 261	 * tick length immediately:
 262	 */
 263	ntpdata->tick_length		+= new_base - ntpdata->tick_length_base;
 264	ntpdata->tick_length_base	 = new_base;
 265}
 266
 267static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
 268{
 269	ntpdata->time_status &= ~STA_MODE;
 270
 271	if (secs < MINSEC)
 272		return 0;
 273
 274	if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
 275		return 0;
 276
 277	ntpdata->time_status |= STA_MODE;
 278
 279	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
 280}
 281
 282static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
 283{
 284	s64 freq_adj, offset64;
 285	long secs, real_secs;
 
 286
 287	if (!(ntpdata->time_status & STA_PLL))
 288		return;
 289
 290	if (!(ntpdata->time_status & STA_NANO)) {
 291		/* Make sure the multiplication below won't overflow */
 292		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
 293		offset *= NSEC_PER_USEC;
 294	}
 295
 296	/* Scale the phase adjustment and clamp to the operating range. */
 297	offset = clamp(offset, -MAXPHASE, MAXPHASE);
 
 
 
 
 298
 299	/*
 300	 * Select how the frequency is to be controlled
 301	 * and in which mode (PLL or FLL).
 302	 */
 303	real_secs = __ktime_get_real_seconds();
 304	secs = (long)(real_secs - ntpdata->time_reftime);
 305	if (unlikely(ntpdata->time_status & STA_FREQHOLD))
 306		secs = 0;
 307
 308	ntpdata->time_reftime = real_secs;
 309
 310	offset64    = offset;
 311	freq_adj    = ntp_update_offset_fll(ntpdata, offset64, secs);
 312
 313	/*
 314	 * Clamp update interval to reduce PLL gain with low
 315	 * sampling rate (e.g. intermittent network connection)
 316	 * to avoid instability.
 317	 */
 318	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
 319		secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
 320
 321	freq_adj    += (offset64 * secs) <<
 322			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
 323
 324	freq_adj    = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
 325
 326	ntpdata->time_freq   = max(freq_adj, -MAXFREQ_SCALED);
 327
 328	ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
 329}
 330
 331static void __ntp_clear(struct ntp_data *ntpdata)
 
 
 
 
 
 332{
 333	/* Stop active adjtime() */
 334	ntpdata->time_adjust	= 0;
 335	ntpdata->time_status	|= STA_UNSYNC;
 336	ntpdata->time_maxerror	= NTP_PHASE_LIMIT;
 337	ntpdata->time_esterror	= NTP_PHASE_LIMIT;
 338
 339	ntp_update_frequency(ntpdata);
 340
 341	ntpdata->tick_length	= ntpdata->tick_length_base;
 342	ntpdata->time_offset	= 0;
 343
 344	ntpdata->ntp_next_leap_sec = TIME64_MAX;
 345	/* Clear PPS state variables */
 346	pps_clear(ntpdata);
 347}
 348
 349/**
 350 * ntp_clear - Clears the NTP state variables
 
 
 351 */
 352void ntp_clear(void)
 353{
 354	__ntp_clear(&tk_ntp_data);
 355}
 356
 
 357
 358u64 ntp_tick_length(void)
 359{
 360	return tk_ntp_data.tick_length;
 361}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362
 363/**
 364 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
 365 *
 366 * Provides the time of the next leapsecond against CLOCK_REALTIME in
 367 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
 368 */
 369ktime_t ntp_get_next_leap(void)
 370{
 371	struct ntp_data *ntpdata = &tk_ntp_data;
 372	ktime_t ret;
 373
 374	if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
 375		return ktime_set(ntpdata->ntp_next_leap_sec, 0);
 376	ret = KTIME_MAX;
 377	return ret;
 378}
 379
 380/*
 381 * This routine handles the overflow of the microsecond field
 382 *
 383 * The tricky bits of code to handle the accurate clock support
 384 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
 385 * They were originally developed for SUN and DEC kernels.
 386 * All the kudos should go to Dave for this stuff.
 387 *
 388 * Also handles leap second processing, and returns leap offset
 389 */
 390int second_overflow(time64_t secs)
 391{
 392	struct ntp_data *ntpdata = &tk_ntp_data;
 393	s64 delta;
 394	int leap = 0;
 395	s32 rem;
 396
 397	/*
 398	 * Leap second processing. If in leap-insert state at the end of the
 399	 * day, the system clock is set back one second; if in leap-delete
 400	 * state, the system clock is set ahead one second.
 401	 */
 402	switch (ntpdata->time_state) {
 403	case TIME_OK:
 404		if (ntpdata->time_status & STA_INS) {
 405			ntpdata->time_state = TIME_INS;
 406			div_s64_rem(secs, SECS_PER_DAY, &rem);
 407			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 408		} else if (ntpdata->time_status & STA_DEL) {
 409			ntpdata->time_state = TIME_DEL;
 410			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
 411			ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
 412		}
 413		break;
 414	case TIME_INS:
 415		if (!(ntpdata->time_status & STA_INS)) {
 416			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 417			ntpdata->time_state = TIME_OK;
 418		} else if (secs == ntpdata->ntp_next_leap_sec) {
 419			leap = -1;
 420			ntpdata->time_state = TIME_OOP;
 421			pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
 422		}
 423		break;
 424	case TIME_DEL:
 425		if (!(ntpdata->time_status & STA_DEL)) {
 426			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 427			ntpdata->time_state = TIME_OK;
 428		} else if (secs == ntpdata->ntp_next_leap_sec) {
 429			leap = 1;
 430			ntpdata->ntp_next_leap_sec = TIME64_MAX;
 431			ntpdata->time_state = TIME_WAIT;
 432			pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
 433		}
 434		break;
 435	case TIME_OOP:
 436		ntpdata->ntp_next_leap_sec = TIME64_MAX;
 437		ntpdata->time_state = TIME_WAIT;
 438		break;
 439	case TIME_WAIT:
 440		if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
 441			ntpdata->time_state = TIME_OK;
 442		break;
 443	}
 444
 445	/* Bump the maxerror field */
 446	ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
 447	if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
 448		ntpdata->time_maxerror = NTP_PHASE_LIMIT;
 449		ntpdata->time_status |= STA_UNSYNC;
 450	}
 451
 452	/* Compute the phase adjustment for the next second */
 453	ntpdata->tick_length	 = ntpdata->tick_length_base;
 454
 455	delta			 = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
 456	ntpdata->time_offset	-= delta;
 457	ntpdata->tick_length	+= delta;
 458
 459	/* Check PPS signal */
 460	pps_dec_valid(ntpdata);
 461
 462	if (!ntpdata->time_adjust)
 463		goto out;
 464
 465	if (ntpdata->time_adjust > MAX_TICKADJ) {
 466		ntpdata->time_adjust -= MAX_TICKADJ;
 467		ntpdata->tick_length += MAX_TICKADJ_SCALED;
 468		goto out;
 469	}
 470
 471	if (ntpdata->time_adjust < -MAX_TICKADJ) {
 472		ntpdata->time_adjust += MAX_TICKADJ;
 473		ntpdata->tick_length -= MAX_TICKADJ_SCALED;
 474		goto out;
 475	}
 476
 477	ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
 478				<< NTP_SCALE_SHIFT;
 479	ntpdata->time_adjust = 0;
 
 480
 481out:
 482	return leap;
 483}
 484
 485#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
 486static void sync_hw_clock(struct work_struct *work);
 487static DECLARE_WORK(sync_work, sync_hw_clock);
 488static struct hrtimer sync_hrtimer;
 489#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
 490
 491static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
 492{
 493	queue_work(system_freezable_power_efficient_wq, &sync_work);
 494
 495	return HRTIMER_NORESTART;
 496}
 497
 498static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
 499{
 500	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
 
 501
 502	if (retry)
 503		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
 504	else
 505		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
 
 
 
 
 
 
 
 
 
 
 506
 507	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
 508}
 
 
 
 
 
 509
 510/*
 511 * Check whether @now is correct versus the required time to update the RTC
 512 * and calculate the value which needs to be written to the RTC so that the
 513 * next seconds increment of the RTC after the write is aligned with the next
 514 * seconds increment of clock REALTIME.
 515 *
 516 * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
 517 *
 518 * t2.tv_nsec == 0
 519 * tsched = t2 - set_offset_nsec
 520 * newval = t2 - NSEC_PER_SEC
 521 *
 522 * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
 523 *
 524 * As the execution of this code is not guaranteed to happen exactly at
 525 * tsched this allows it to happen within a fuzzy region:
 526 *
 527 *	abs(now - tsched) < FUZZ
 528 *
 529 * If @now is not inside the allowed window the function returns false.
 530 */
 531static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
 532				  struct timespec64 *to_set,
 533				  const struct timespec64 *now)
 534{
 535	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
 536	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
 537	struct timespec64 delay = {.tv_sec = -1,
 538				   .tv_nsec = set_offset_nsec};
 539
 540	*to_set = timespec64_add(*now, delay);
 541
 542	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
 543		to_set->tv_nsec = 0;
 544		return true;
 545	}
 546
 547	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
 548		to_set->tv_sec++;
 549		to_set->tv_nsec = 0;
 550		return true;
 551	}
 552	return false;
 553}
 554
 555#ifdef CONFIG_GENERIC_CMOS_UPDATE
 556int __weak update_persistent_clock64(struct timespec64 now64)
 557{
 558	return -ENODEV;
 559}
 560#else
 561static inline int update_persistent_clock64(struct timespec64 now64)
 562{
 563	return -ENODEV;
 
 564}
 565#endif
 566
 567#ifdef CONFIG_RTC_SYSTOHC
 568/* Save NTP synchronized time to the RTC */
 569static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 570{
 571	struct rtc_device *rtc;
 572	struct rtc_time tm;
 573	int err = -ENODEV;
 574
 575	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
 576	if (!rtc)
 577		return -ENODEV;
 578
 579	if (!rtc->ops || !rtc->ops->set_time)
 580		goto out_close;
 581
 582	/* First call might not have the correct offset */
 583	if (*offset_nsec == rtc->set_offset_nsec) {
 584		rtc_time64_to_tm(to_set->tv_sec, &tm);
 585		err = rtc_set_time(rtc, &tm);
 586	} else {
 587		/* Store the update offset and let the caller try again */
 588		*offset_nsec = rtc->set_offset_nsec;
 589		err = -EAGAIN;
 590	}
 591out_close:
 592	rtc_class_close(rtc);
 593	return err;
 594}
 595#else
 596static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
 597{
 598	return -ENODEV;
 599}
 600#endif
 601
 602/**
 603 * ntp_synced - Tells whether the NTP status is not UNSYNC
 604 * Returns:	true if not UNSYNC, false otherwise
 605 */
 606static inline bool ntp_synced(void)
 607{
 608	return !(tk_ntp_data.time_status & STA_UNSYNC);
 609}
 610
 611/*
 612 * If we have an externally synchronized Linux clock, then update RTC clock
 613 * accordingly every ~11 minutes. Generally RTCs can only store second
 614 * precision, but many RTCs will adjust the phase of their second tick to
 615 * match the moment of update. This infrastructure arranges to call to the RTC
 616 * set at the correct moment to phase synchronize the RTC second tick over
 617 * with the kernel clock.
 618 */
 619static void sync_hw_clock(struct work_struct *work)
 620{
 621	/*
 622	 * The default synchronization offset is 500ms for the deprecated
 623	 * update_persistent_clock64() under the assumption that it uses
 624	 * the infamous CMOS clock (MC146818).
 625	 */
 626	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
 627	struct timespec64 now, to_set;
 628	int res = -EAGAIN;
 629
 630	/*
 631	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
 632	 * managed to schedule the work between the timer firing and the
 633	 * work being able to rearm the timer. Wait for the timer to expire.
 634	 */
 635	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
 636		return;
 637
 638	ktime_get_real_ts64(&now);
 639	/* If @now is not in the allowed window, try again */
 640	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
 641		goto rearm;
 642
 643	/* Take timezone adjusted RTCs into account */
 644	if (persistent_clock_is_local)
 645		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
 646
 647	/* Try the legacy RTC first. */
 648	res = update_persistent_clock64(to_set);
 649	if (res != -ENODEV)
 650		goto rearm;
 651
 652	/* Try the RTC class */
 653	res = update_rtc(&to_set, &offset_nsec);
 654	if (res == -ENODEV)
 655		return;
 656rearm:
 657	sched_sync_hw_clock(offset_nsec, res != 0);
 658}
 659
 660void ntp_notify_cmos_timer(bool offset_set)
 661{
 662	/*
 663	 * If the time jumped (using ADJ_SETOFFSET) cancels sync timer,
 664	 * which may have been running if the time was synchronized
 665	 * prior to the ADJ_SETOFFSET call.
 666	 */
 667	if (offset_set)
 668		hrtimer_cancel(&sync_hrtimer);
 669
 670	/*
 671	 * When the work is currently executed but has not yet the timer
 672	 * rearmed this queues the work immediately again. No big issue,
 673	 * just a pointless work scheduled.
 674	 */
 675	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
 676		queue_work(system_freezable_power_efficient_wq, &sync_work);
 677}
 678
 679static void __init ntp_init_cmos_sync(void)
 680{
 681	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
 682	sync_hrtimer.function = sync_timer_callback;
 683}
 684#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 685static inline void __init ntp_init_cmos_sync(void) { }
 686#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
 687
 688/*
 689 * Propagate a new txc->status value into the NTP state:
 690 */
 691static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
 692{
 693	if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
 694		ntpdata->time_state = TIME_OK;
 695		ntpdata->time_status = STA_UNSYNC;
 696		ntpdata->ntp_next_leap_sec = TIME64_MAX;
 697		/* Restart PPS frequency calibration */
 698		pps_reset_freq_interval(ntpdata);
 699	}
 700
 701	/*
 702	 * If we turn on PLL adjustments then reset the
 703	 * reference time to current time.
 704	 */
 705	if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
 706		ntpdata->time_reftime = __ktime_get_real_seconds();
 707
 708	/* only set allowed bits */
 709	ntpdata->time_status &= STA_RONLY;
 710	ntpdata->time_status |= txc->status & ~STA_RONLY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711}
 712
 713static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
 714					  s32 *time_tai)
 
 
 715{
 716	if (txc->modes & ADJ_STATUS)
 717		process_adj_status(ntpdata, txc);
 718
 719	if (txc->modes & ADJ_NANO)
 720		ntpdata->time_status |= STA_NANO;
 721
 722	if (txc->modes & ADJ_MICRO)
 723		ntpdata->time_status &= ~STA_NANO;
 724
 725	if (txc->modes & ADJ_FREQUENCY) {
 726		ntpdata->time_freq = txc->freq * PPM_SCALE;
 727		ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
 728		ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
 729		/* Update pps_freq */
 730		pps_set_freq(ntpdata);
 731	}
 732
 733	if (txc->modes & ADJ_MAXERROR)
 734		ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
 735
 736	if (txc->modes & ADJ_ESTERROR)
 737		ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
 738
 739	if (txc->modes & ADJ_TIMECONST) {
 740		ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
 741		if (!(ntpdata->time_status & STA_NANO))
 742			ntpdata->time_constant += 4;
 743		ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
 
 744	}
 745
 746	if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
 747		*time_tai = txc->constant;
 748
 749	if (txc->modes & ADJ_OFFSET)
 750		ntp_update_offset(ntpdata, txc->offset);
 751
 752	if (txc->modes & ADJ_TICK)
 753		ntpdata->tick_usec = txc->tick;
 754
 755	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
 756		ntp_update_frequency(ntpdata);
 757}
 758
 759/*
 760 * adjtimex() mainly allows reading (and writing, if superuser) of
 761 * kernel time-keeping variables. used by xntpd.
 762 */
 763int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
 764		  s32 *time_tai, struct audit_ntp_data *ad)
 765{
 766	struct ntp_data *ntpdata = &tk_ntp_data;
 767	int result;
 768
 
 769	if (txc->modes & ADJ_ADJTIME) {
 770		long save_adjust = ntpdata->time_adjust;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771
 772		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
 773			/* adjtime() is independent from ntp_adjtime() */
 774			ntpdata->time_adjust = txc->offset;
 775			ntp_update_frequency(ntpdata);
 776
 777			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
 778			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	ntpdata->time_adjust);
 779		}
 780		txc->offset = save_adjust;
 781	} else {
 
 782		/* If there are input parameters, then process them: */
 783		if (txc->modes) {
 784			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
 785			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
 786			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
 787			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
 788			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
 789
 790			process_adjtimex_modes(ntpdata, txc, time_tai);
 791
 792			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	ntpdata->time_offset);
 793			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	ntpdata->time_freq);
 794			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	ntpdata->time_status);
 795			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
 796			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	ntpdata->tick_usec);
 797		}
 798
 799		txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
 800		if (!(ntpdata->time_status & STA_NANO))
 801			txc->offset = div_s64(txc->offset, NSEC_PER_USEC);
 
 802	}
 803
 804	result = ntpdata->time_state;
 805	if (is_error_status(ntpdata->time_status))
 
 806		result = TIME_ERROR;
 807
 808	txc->freq	   = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
 809					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
 810	txc->maxerror	   = ntpdata->time_maxerror;
 811	txc->esterror	   = ntpdata->time_esterror;
 812	txc->status	   = ntpdata->time_status;
 813	txc->constant	   = ntpdata->time_constant;
 814	txc->precision	   = 1;
 815	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
 816	txc->tick	   = ntpdata->tick_usec;
 817	txc->tai	   = *time_tai;
 818
 819	/* Fill PPS status fields */
 820	pps_fill_timex(ntpdata, txc);
 821
 822	txc->time.tv_sec = ts->tv_sec;
 823	txc->time.tv_usec = ts->tv_nsec;
 824	if (!(ntpdata->time_status & STA_NANO))
 825		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
 826
 827	/* Handle leapsec adjustments */
 828	if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
 829		if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
 830			result = TIME_OOP;
 831			txc->tai++;
 832			txc->time.tv_sec--;
 833		}
 834		if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
 835			result = TIME_WAIT;
 836			txc->tai--;
 837			txc->time.tv_sec++;
 838		}
 839		if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
 840			result = TIME_WAIT;
 841	}
 842
 843	return result;
 844}
 845
 846#ifdef	CONFIG_NTP_PPS
 847
 848/*
 849 * struct pps_normtime is basically a struct timespec, but it is
 850 * semantically different (and it is the reason why it was invented):
 851 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
 852 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
 853 */
 854struct pps_normtime {
 855	s64		sec;	/* seconds */
 856	long		nsec;	/* nanoseconds */
 857};
 858
 859/*
 860 * Normalize the timestamp so that nsec is in the
 861 * [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
 862 */
 863static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
 864{
 865	struct pps_normtime norm = {
 866		.sec = ts.tv_sec,
 867		.nsec = ts.tv_nsec
 868	};
 869
 870	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
 871		norm.nsec -= NSEC_PER_SEC;
 872		norm.sec++;
 873	}
 874
 875	return norm;
 876}
 877
 878/* Get current phase correction and jitter */
 879static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
 880{
 881	*jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
 882	if (*jitter < 0)
 883		*jitter = -*jitter;
 884
 885	/* TODO: test various filters */
 886	return ntpdata->pps_tf[0];
 887}
 888
 889/* Add the sample to the phase filter */
 890static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
 891{
 892	ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
 893	ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
 894	ntpdata->pps_tf[0] = err;
 895}
 896
 897/*
 898 * Decrease frequency calibration interval length. It is halved after four
 899 * consecutive unstable intervals.
 900 */
 901static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
 902{
 903	if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
 904		ntpdata->pps_intcnt = -PPS_INTCOUNT;
 905		if (ntpdata->pps_shift > PPS_INTMIN) {
 906			ntpdata->pps_shift--;
 907			ntpdata->pps_intcnt = 0;
 908		}
 909	}
 910}
 911
 912/*
 913 * Increase frequency calibration interval length. It is doubled after
 914 * four consecutive stable intervals.
 915 */
 916static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
 917{
 918	if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
 919		ntpdata->pps_intcnt = PPS_INTCOUNT;
 920		if (ntpdata->pps_shift < PPS_INTMAX) {
 921			ntpdata->pps_shift++;
 922			ntpdata->pps_intcnt = 0;
 923		}
 924	}
 925}
 926
 927/*
 928 * Update clock frequency based on MONOTONIC_RAW clock PPS signal
 929 * timestamps
 930 *
 931 * At the end of the calibration interval the difference between the
 932 * first and last MONOTONIC_RAW clock timestamps divided by the length
 933 * of the interval becomes the frequency update. If the interval was
 934 * too long, the data are discarded.
 935 * Returns the difference between old and new frequency values.
 936 */
 937static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
 938{
 939	long delta, delta_mod;
 940	s64 ftemp;
 941
 942	/* Check if the frequency interval was too long */
 943	if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
 944		ntpdata->time_status |= STA_PPSERROR;
 945		ntpdata->pps_errcnt++;
 946		pps_dec_freq_interval(ntpdata);
 947		printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
 948				freq_norm.sec);
 949		return 0;
 950	}
 951
 952	/*
 953	 * Here the raw frequency offset and wander (stability) is
 954	 * calculated. If the wander is less than the wander threshold the
 955	 * interval is increased; otherwise it is decreased.
 956	 */
 957	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
 958			freq_norm.sec);
 959	delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
 960	ntpdata->pps_freq = ftemp;
 961	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
 962		printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
 963		ntpdata->time_status |= STA_PPSWANDER;
 964		ntpdata->pps_stbcnt++;
 965		pps_dec_freq_interval(ntpdata);
 966	} else {
 967		/* Good sample */
 968		pps_inc_freq_interval(ntpdata);
 969	}
 970
 971	/*
 972	 * The stability metric is calculated as the average of recent
 973	 * frequency changes, but is used only for performance monitoring
 974	 */
 975	delta_mod = delta;
 976	if (delta_mod < 0)
 977		delta_mod = -delta_mod;
 978	ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
 979				     NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
 980
 981	/* If enabled, the system clock frequency is updated */
 982	if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
 983		ntpdata->time_freq = ntpdata->pps_freq;
 984		ntp_update_frequency(ntpdata);
 
 
 985	}
 986
 987	return delta;
 988}
 989
 990/* Correct REALTIME clock phase error against PPS signal */
 991static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
 992{
 993	long correction = -error;
 994	long jitter;
 995
 996	/* Add the sample to the median filter */
 997	pps_phase_filter_add(ntpdata, correction);
 998	correction = pps_phase_filter_get(ntpdata, &jitter);
 999
1000	/*
1001	 * Nominal jitter is due to PPS signal noise. If it exceeds the
1002	 * threshold, the sample is discarded; otherwise, if so enabled,
1003	 * the time offset is updated.
1004	 */
1005	if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
1006		printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
1007				jitter, (ntpdata->pps_jitter << PPS_POPCORN));
1008		ntpdata->time_status |= STA_PPSJITTER;
1009		ntpdata->pps_jitcnt++;
1010	} else if (ntpdata->time_status & STA_PPSTIME) {
1011		/* Correct the time using the phase offset */
1012		ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
1013					       NTP_INTERVAL_FREQ);
1014		/* Cancel running adjtime() */
1015		ntpdata->time_adjust = 0;
1016	}
1017	/* Update jitter */
1018	ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
1019}
1020
1021/*
1022 * __hardpps() - discipline CPU clock oscillator to external PPS signal
1023 *
1024 * This routine is called at each PPS signal arrival in order to
1025 * discipline the CPU clock oscillator to the PPS signal. It takes two
1026 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
1027 * is used to correct clock phase error and the latter is used to
1028 * correct the frequency.
1029 *
1030 * This code is based on David Mills's reference nanokernel
1031 * implementation. It was mostly rewritten but keeps the same idea.
1032 */
1033void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
1034{
1035	struct pps_normtime pts_norm, freq_norm;
1036	struct ntp_data *ntpdata = &tk_ntp_data;
1037
1038	pts_norm = pps_normalize_ts(*phase_ts);
1039
1040	/* Clear the error bits, they will be set again if needed */
1041	ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
 
 
1042
1043	/* indicate signal presence */
1044	ntpdata->time_status |= STA_PPSSIGNAL;
1045	ntpdata->pps_valid = PPS_VALID;
1046
1047	/*
1048	 * When called for the first time, just start the frequency
1049	 * interval
1050	 */
1051	if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
1052		ntpdata->pps_fbase = *raw_ts;
1053		return;
1054	}
1055
1056	/* Ok, now we have a base for frequency calculation */
1057	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
1058
1059	/*
1060	 * Check that the signal is in the range
1061	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
1062	 */
1063	if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1064	    (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1065		ntpdata->time_status |= STA_PPSJITTER;
1066		/* Restart the frequency calibration interval */
1067		ntpdata->pps_fbase = *raw_ts;
1068		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1069		return;
1070	}
1071
1072	/* Signal is ok. Check if the current frequency interval is finished */
1073	if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
1074		ntpdata->pps_calcnt++;
1075		/* Restart the frequency calibration interval */
1076		ntpdata->pps_fbase = *raw_ts;
1077		hardpps_update_freq(ntpdata, freq_norm);
 
 
1078	}
1079
1080	hardpps_update_phase(ntpdata, pts_norm.nsec);
1081
 
1082}
 
 
1083#endif	/* CONFIG_NTP_PPS */
1084
1085static int __init ntp_tick_adj_setup(char *str)
1086{
1087	int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
1088	if (rc)
1089		return rc;
1090
1091	tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
1092	return 1;
1093}
1094
1095__setup("ntp_tick_adj=", ntp_tick_adj_setup);
1096
1097void __init ntp_init(void)
1098{
1099	ntp_clear();
1100	ntp_init_cmos_sync();
 
1101}