Linux Audio

Check our new training course

Loading...
v3.1
 
  1#include <linux/ceph/ceph_debug.h>
  2
 
  3#include <linux/sort.h>
  4#include <linux/slab.h>
  5
  6#include "super.h"
  7#include "mds_client.h"
  8
  9#include <linux/ceph/decode.h>
 10
 
 
 
 11/*
 12 * Snapshots in ceph are driven in large part by cooperation from the
 13 * client.  In contrast to local file systems or file servers that
 14 * implement snapshots at a single point in the system, ceph's
 15 * distributed access to storage requires clients to help decide
 16 * whether a write logically occurs before or after a recently created
 17 * snapshot.
 18 *
 19 * This provides a perfect instantanous client-wide snapshot.  Between
 20 * clients, however, snapshots may appear to be applied at slightly
 21 * different points in time, depending on delays in delivering the
 22 * snapshot notification.
 23 *
 24 * Snapshots are _not_ file system-wide.  Instead, each snapshot
 25 * applies to the subdirectory nested beneath some directory.  This
 26 * effectively divides the hierarchy into multiple "realms," where all
 27 * of the files contained by each realm share the same set of
 28 * snapshots.  An individual realm's snap set contains snapshots
 29 * explicitly created on that realm, as well as any snaps in its
 30 * parent's snap set _after_ the point at which the parent became it's
 31 * parent (due to, say, a rename).  Similarly, snaps from prior parents
 32 * during the time intervals during which they were the parent are included.
 33 *
 34 * The client is spared most of this detail, fortunately... it must only
 35 * maintains a hierarchy of realms reflecting the current parent/child
 36 * realm relationship, and for each realm has an explicit list of snaps
 37 * inherited from prior parents.
 38 *
 39 * A snap_realm struct is maintained for realms containing every inode
 40 * with an open cap in the system.  (The needed snap realm information is
 41 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
 42 * version number is used to ensure that as realm parameters change (new
 43 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
 44 *
 45 * The realm hierarchy drives the generation of a 'snap context' for each
 46 * realm, which simply lists the resulting set of snaps for the realm.  This
 47 * is attached to any writes sent to OSDs.
 48 */
 49/*
 50 * Unfortunately error handling is a bit mixed here.  If we get a snap
 51 * update, but don't have enough memory to update our realm hierarchy,
 52 * it's not clear what we can do about it (besides complaining to the
 53 * console).
 54 */
 55
 56
 57/*
 58 * increase ref count for the realm
 59 *
 60 * caller must hold snap_rwsem for write.
 61 */
 62void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
 63			 struct ceph_snap_realm *realm)
 64{
 65	dout("get_realm %p %d -> %d\n", realm,
 66	     atomic_read(&realm->nref), atomic_read(&realm->nref)+1);
 67	/*
 68	 * since we _only_ increment realm refs or empty the empty
 69	 * list with snap_rwsem held, adjusting the empty list here is
 70	 * safe.  we do need to protect against concurrent empty list
 71	 * additions, however.
 72	 */
 73	if (atomic_read(&realm->nref) == 0) {
 74		spin_lock(&mdsc->snap_empty_lock);
 75		list_del_init(&realm->empty_item);
 76		spin_unlock(&mdsc->snap_empty_lock);
 77	}
 78
 79	atomic_inc(&realm->nref);
 
 
 
 80}
 81
 82static void __insert_snap_realm(struct rb_root *root,
 83				struct ceph_snap_realm *new)
 84{
 85	struct rb_node **p = &root->rb_node;
 86	struct rb_node *parent = NULL;
 87	struct ceph_snap_realm *r = NULL;
 88
 89	while (*p) {
 90		parent = *p;
 91		r = rb_entry(parent, struct ceph_snap_realm, node);
 92		if (new->ino < r->ino)
 93			p = &(*p)->rb_left;
 94		else if (new->ino > r->ino)
 95			p = &(*p)->rb_right;
 96		else
 97			BUG();
 98	}
 99
100	rb_link_node(&new->node, parent, p);
101	rb_insert_color(&new->node, root);
102}
103
104/*
105 * create and get the realm rooted at @ino and bump its ref count.
106 *
107 * caller must hold snap_rwsem for write.
108 */
109static struct ceph_snap_realm *ceph_create_snap_realm(
110	struct ceph_mds_client *mdsc,
111	u64 ino)
112{
113	struct ceph_snap_realm *realm;
114
 
 
115	realm = kzalloc(sizeof(*realm), GFP_NOFS);
116	if (!realm)
117		return ERR_PTR(-ENOMEM);
118
119	atomic_set(&realm->nref, 0);    /* tree does not take a ref */
 
 
 
 
120	realm->ino = ino;
121	INIT_LIST_HEAD(&realm->children);
122	INIT_LIST_HEAD(&realm->child_item);
123	INIT_LIST_HEAD(&realm->empty_item);
124	INIT_LIST_HEAD(&realm->dirty_item);
 
125	INIT_LIST_HEAD(&realm->inodes_with_caps);
126	spin_lock_init(&realm->inodes_with_caps_lock);
127	__insert_snap_realm(&mdsc->snap_realms, realm);
128	dout("create_snap_realm %llx %p\n", realm->ino, realm);
 
 
129	return realm;
130}
131
132/*
133 * lookup the realm rooted at @ino.
134 *
135 * caller must hold snap_rwsem for write.
136 */
137struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
138					       u64 ino)
139{
 
140	struct rb_node *n = mdsc->snap_realms.rb_node;
141	struct ceph_snap_realm *r;
142
 
 
143	while (n) {
144		r = rb_entry(n, struct ceph_snap_realm, node);
145		if (ino < r->ino)
146			n = n->rb_left;
147		else if (ino > r->ino)
148			n = n->rb_right;
149		else {
150			dout("lookup_snap_realm %llx %p\n", r->ino, r);
151			return r;
152		}
153	}
154	return NULL;
155}
156
 
 
 
 
 
 
 
 
 
 
157static void __put_snap_realm(struct ceph_mds_client *mdsc,
158			     struct ceph_snap_realm *realm);
159
160/*
161 * called with snap_rwsem (write)
162 */
163static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
164				 struct ceph_snap_realm *realm)
165{
166	dout("__destroy_snap_realm %p %llx\n", realm, realm->ino);
 
 
 
167
168	rb_erase(&realm->node, &mdsc->snap_realms);
 
169
170	if (realm->parent) {
171		list_del_init(&realm->child_item);
172		__put_snap_realm(mdsc, realm->parent);
173	}
174
175	kfree(realm->prior_parent_snaps);
176	kfree(realm->snaps);
177	ceph_put_snap_context(realm->cached_context);
178	kfree(realm);
179}
180
181/*
182 * caller holds snap_rwsem (write)
183 */
184static void __put_snap_realm(struct ceph_mds_client *mdsc,
185			     struct ceph_snap_realm *realm)
186{
187	dout("__put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
188	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
 
 
 
 
189	if (atomic_dec_and_test(&realm->nref))
190		__destroy_snap_realm(mdsc, realm);
191}
192
193/*
194 * caller needn't hold any locks
195 */
196void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
197			 struct ceph_snap_realm *realm)
198{
199	dout("put_snap_realm %llx %p %d -> %d\n", realm->ino, realm,
200	     atomic_read(&realm->nref), atomic_read(&realm->nref)-1);
201	if (!atomic_dec_and_test(&realm->nref))
202		return;
203
204	if (down_write_trylock(&mdsc->snap_rwsem)) {
 
205		__destroy_snap_realm(mdsc, realm);
206		up_write(&mdsc->snap_rwsem);
207	} else {
208		spin_lock(&mdsc->snap_empty_lock);
209		list_add(&realm->empty_item, &mdsc->snap_empty);
210		spin_unlock(&mdsc->snap_empty_lock);
211	}
212}
213
214/*
215 * Clean up any realms whose ref counts have dropped to zero.  Note
216 * that this does not include realms who were created but not yet
217 * used.
218 *
219 * Called under snap_rwsem (write)
220 */
221static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
222{
223	struct ceph_snap_realm *realm;
224
 
 
225	spin_lock(&mdsc->snap_empty_lock);
226	while (!list_empty(&mdsc->snap_empty)) {
227		realm = list_first_entry(&mdsc->snap_empty,
228				   struct ceph_snap_realm, empty_item);
229		list_del(&realm->empty_item);
230		spin_unlock(&mdsc->snap_empty_lock);
231		__destroy_snap_realm(mdsc, realm);
232		spin_lock(&mdsc->snap_empty_lock);
233	}
234	spin_unlock(&mdsc->snap_empty_lock);
235}
236
237void ceph_cleanup_empty_realms(struct ceph_mds_client *mdsc)
238{
 
 
239	down_write(&mdsc->snap_rwsem);
 
 
 
240	__cleanup_empty_realms(mdsc);
241	up_write(&mdsc->snap_rwsem);
242}
243
244/*
245 * adjust the parent realm of a given @realm.  adjust child list, and parent
246 * pointers, and ref counts appropriately.
247 *
248 * return true if parent was changed, 0 if unchanged, <0 on error.
249 *
250 * caller must hold snap_rwsem for write.
251 */
252static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
253				    struct ceph_snap_realm *realm,
254				    u64 parentino)
255{
 
256	struct ceph_snap_realm *parent;
257
 
 
258	if (realm->parent_ino == parentino)
259		return 0;
260
261	parent = ceph_lookup_snap_realm(mdsc, parentino);
262	if (!parent) {
263		parent = ceph_create_snap_realm(mdsc, parentino);
264		if (IS_ERR(parent))
265			return PTR_ERR(parent);
266	}
267	dout("adjust_snap_realm_parent %llx %p: %llx %p -> %llx %p\n",
268	     realm->ino, realm, realm->parent_ino, realm->parent,
269	     parentino, parent);
270	if (realm->parent) {
271		list_del_init(&realm->child_item);
272		ceph_put_snap_realm(mdsc, realm->parent);
273	}
274	realm->parent_ino = parentino;
275	realm->parent = parent;
276	ceph_get_snap_realm(mdsc, parent);
277	list_add(&realm->child_item, &parent->children);
278	return 1;
279}
280
281
282static int cmpu64_rev(const void *a, const void *b)
283{
284	if (*(u64 *)a < *(u64 *)b)
285		return 1;
286	if (*(u64 *)a > *(u64 *)b)
287		return -1;
288	return 0;
289}
290
 
291/*
292 * build the snap context for a given realm.
293 */
294static int build_snap_context(struct ceph_snap_realm *realm)
 
 
 
295{
 
296	struct ceph_snap_realm *parent = realm->parent;
297	struct ceph_snap_context *snapc;
298	int err = 0;
299	int i;
300	int num = realm->num_prior_parent_snaps + realm->num_snaps;
301
302	/*
303	 * build parent context, if it hasn't been built.
304	 * conservatively estimate that all parent snaps might be
305	 * included by us.
306	 */
307	if (parent) {
308		if (!parent->cached_context) {
309			err = build_snap_context(parent);
310			if (err)
311				goto fail;
312		}
313		num += parent->cached_context->num_snaps;
314	}
315
316	/* do i actually need to update?  not if my context seq
317	   matches realm seq, and my parents' does to.  (this works
318	   because we rebuild_snap_realms() works _downward_ in
319	   hierarchy after each update.) */
320	if (realm->cached_context &&
321	    realm->cached_context->seq == realm->seq &&
322	    (!parent ||
323	     realm->cached_context->seq >= parent->cached_context->seq)) {
324		dout("build_snap_context %llx %p: %p seq %lld (%d snaps)"
325		     " (unchanged)\n",
326		     realm->ino, realm, realm->cached_context,
327		     realm->cached_context->seq,
328		     realm->cached_context->num_snaps);
329		return 0;
330	}
331
332	/* alloc new snap context */
333	err = -ENOMEM;
334	if (num > ULONG_MAX / sizeof(u64) - sizeof(*snapc))
335		goto fail;
336	snapc = kzalloc(sizeof(*snapc) + num*sizeof(u64), GFP_NOFS);
337	if (!snapc)
338		goto fail;
339	atomic_set(&snapc->nref, 1);
340
341	/* build (reverse sorted) snap vector */
342	num = 0;
343	snapc->seq = realm->seq;
344	if (parent) {
 
 
345		/* include any of parent's snaps occurring _after_ my
346		   parent became my parent */
347		for (i = 0; i < parent->cached_context->num_snaps; i++)
348			if (parent->cached_context->snaps[i] >=
349			    realm->parent_since)
350				snapc->snaps[num++] =
351					parent->cached_context->snaps[i];
352		if (parent->cached_context->seq > snapc->seq)
353			snapc->seq = parent->cached_context->seq;
354	}
355	memcpy(snapc->snaps + num, realm->snaps,
356	       sizeof(u64)*realm->num_snaps);
357	num += realm->num_snaps;
358	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
359	       sizeof(u64)*realm->num_prior_parent_snaps);
360	num += realm->num_prior_parent_snaps;
361
362	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
363	snapc->num_snaps = num;
364	dout("build_snap_context %llx %p: %p seq %lld (%d snaps)\n",
365	     realm->ino, realm, snapc, snapc->seq, snapc->num_snaps);
366
367	if (realm->cached_context)
368		ceph_put_snap_context(realm->cached_context);
369	realm->cached_context = snapc;
 
 
370	return 0;
371
372fail:
373	/*
374	 * if we fail, clear old (incorrect) cached_context... hopefully
375	 * we'll have better luck building it later
376	 */
377	if (realm->cached_context) {
378		ceph_put_snap_context(realm->cached_context);
379		realm->cached_context = NULL;
380	}
381	pr_err("build_snap_context %llx %p fail %d\n", realm->ino,
382	       realm, err);
383	return err;
384}
385
386/*
387 * rebuild snap context for the given realm and all of its children.
388 */
389static void rebuild_snap_realms(struct ceph_snap_realm *realm)
 
 
390{
391	struct ceph_snap_realm *child;
 
 
 
 
 
 
 
 
 
 
 
 
392
393	dout("rebuild_snap_realms %llx %p\n", realm->ino, realm);
394	build_snap_context(realm);
 
 
 
 
 
 
 
395
396	list_for_each_entry(child, &realm->children, child_item)
397		rebuild_snap_realms(child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398}
399
400
401/*
402 * helper to allocate and decode an array of snapids.  free prior
403 * instance, if any.
404 */
405static int dup_array(u64 **dst, __le64 *src, int num)
406{
407	int i;
408
409	kfree(*dst);
410	if (num) {
411		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
412		if (!*dst)
413			return -ENOMEM;
414		for (i = 0; i < num; i++)
415			(*dst)[i] = get_unaligned_le64(src + i);
416	} else {
417		*dst = NULL;
418	}
419	return 0;
420}
421
 
 
 
 
 
 
 
 
422
423/*
424 * When a snapshot is applied, the size/mtime inode metadata is queued
425 * in a ceph_cap_snap (one for each snapshot) until writeback
426 * completes and the metadata can be flushed back to the MDS.
427 *
428 * However, if a (sync) write is currently in-progress when we apply
429 * the snapshot, we have to wait until the write succeeds or fails
430 * (and a final size/mtime is known).  In this case the
431 * cap_snap->writing = 1, and is said to be "pending."  When the write
432 * finishes, we __ceph_finish_cap_snap().
433 *
434 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
435 * change).
436 */
437void ceph_queue_cap_snap(struct ceph_inode_info *ci)
 
438{
439	struct inode *inode = &ci->vfs_inode;
440	struct ceph_cap_snap *capsnap;
 
 
 
441	int used, dirty;
442
443	capsnap = kzalloc(sizeof(*capsnap), GFP_NOFS);
444	if (!capsnap) {
445		pr_err("ENOMEM allocating ceph_cap_snap on %p\n", inode);
446		return;
447	}
448
449	spin_lock(&inode->i_lock);
450	used = __ceph_caps_used(ci);
451	dirty = __ceph_caps_dirty(ci);
452
 
 
 
453	/*
454	 * If there is a write in progress, treat that as a dirty Fw,
455	 * even though it hasn't completed yet; by the time we finish
456	 * up this capsnap it will be.
457	 */
458	if (used & CEPH_CAP_FILE_WR)
459		dirty |= CEPH_CAP_FILE_WR;
460
461	if (__ceph_have_pending_cap_snap(ci)) {
462		/* there is no point in queuing multiple "pending" cap_snaps,
463		   as no new writes are allowed to start when pending, so any
464		   writes in progress now were started before the previous
465		   cap_snap.  lucky us. */
466		dout("queue_cap_snap %p already pending\n", inode);
467		kfree(capsnap);
468	} else if (dirty & (CEPH_CAP_AUTH_EXCL|CEPH_CAP_XATTR_EXCL|
469			    CEPH_CAP_FILE_EXCL|CEPH_CAP_FILE_WR)) {
470		struct ceph_snap_context *snapc = ci->i_head_snapc;
 
 
 
 
 
471
472		/*
473		 * if we are a sync write, we may need to go to the snaprealm
474		 * to get the current snapc.
475		 */
476		if (!snapc)
477			snapc = ci->i_snap_realm->cached_context;
478
479		dout("queue_cap_snap %p cap_snap %p queuing under %p %s\n",
480		     inode, capsnap, snapc, ceph_cap_string(dirty));
481		ihold(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482
483		atomic_set(&capsnap->nref, 1);
484		capsnap->ci = ci;
485		INIT_LIST_HEAD(&capsnap->ci_item);
486		INIT_LIST_HEAD(&capsnap->flushing_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487
488		capsnap->follows = snapc->seq;
489		capsnap->issued = __ceph_caps_issued(ci, NULL);
490		capsnap->dirty = dirty;
491
492		capsnap->mode = inode->i_mode;
493		capsnap->uid = inode->i_uid;
494		capsnap->gid = inode->i_gid;
495
496		if (dirty & CEPH_CAP_XATTR_EXCL) {
497			__ceph_build_xattrs_blob(ci);
498			capsnap->xattr_blob =
499				ceph_buffer_get(ci->i_xattrs.blob);
500			capsnap->xattr_version = ci->i_xattrs.version;
501		} else {
502			capsnap->xattr_blob = NULL;
503			capsnap->xattr_version = 0;
504		}
505
506		/* dirty page count moved from _head to this cap_snap;
507		   all subsequent writes page dirties occur _after_ this
508		   snapshot. */
509		capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
510		ci->i_wrbuffer_ref_head = 0;
511		capsnap->context = snapc;
512		ci->i_head_snapc =
513			ceph_get_snap_context(ci->i_snap_realm->cached_context);
514		dout(" new snapc is %p\n", ci->i_head_snapc);
515		list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
516
517		if (used & CEPH_CAP_FILE_WR) {
518			dout("queue_cap_snap %p cap_snap %p snapc %p"
519			     " seq %llu used WR, now pending\n", inode,
520			     capsnap, snapc, snapc->seq);
521			capsnap->writing = 1;
522		} else {
523			/* note mtime, size NOW. */
524			__ceph_finish_cap_snap(ci, capsnap);
525		}
526	} else {
527		dout("queue_cap_snap %p nothing dirty|writing\n", inode);
528		kfree(capsnap);
529	}
 
 
530
531	spin_unlock(&inode->i_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
532}
533
534/*
535 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
536 * to be used for the snapshot, to be flushed back to the mds.
537 *
538 * If capsnap can now be flushed, add to snap_flush list, and return 1.
539 *
540 * Caller must hold i_lock.
541 */
542int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
543			    struct ceph_cap_snap *capsnap)
544{
545	struct inode *inode = &ci->vfs_inode;
546	struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
 
547
548	BUG_ON(capsnap->writing);
549	capsnap->size = inode->i_size;
550	capsnap->mtime = inode->i_mtime;
551	capsnap->atime = inode->i_atime;
552	capsnap->ctime = inode->i_ctime;
 
 
553	capsnap->time_warp_seq = ci->i_time_warp_seq;
 
 
554	if (capsnap->dirty_pages) {
555		dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu "
556		     "still has %d dirty pages\n", inode, capsnap,
557		     capsnap->context, capsnap->context->seq,
558		     ceph_cap_string(capsnap->dirty), capsnap->size,
559		     capsnap->dirty_pages);
 
560		return 0;
561	}
562	dout("finish_cap_snap %p cap_snap %p snapc %p %llu %s s=%llu\n",
563	     inode, capsnap, capsnap->context,
564	     capsnap->context->seq, ceph_cap_string(capsnap->dirty),
565	     capsnap->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566
567	spin_lock(&mdsc->snap_flush_lock);
568	list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 
 
 
569	spin_unlock(&mdsc->snap_flush_lock);
570	return 1;  /* caller may want to ceph_flush_snaps */
571}
572
573/*
574 * Queue cap_snaps for snap writeback for this realm and its children.
575 * Called under snap_rwsem, so realm topology won't change.
576 */
577static void queue_realm_cap_snaps(struct ceph_snap_realm *realm)
 
578{
 
579	struct ceph_inode_info *ci;
580	struct inode *lastinode = NULL;
581	struct ceph_snap_realm *child;
582
583	dout("queue_realm_cap_snaps %p %llx inodes\n", realm, realm->ino);
584
585	spin_lock(&realm->inodes_with_caps_lock);
586	list_for_each_entry(ci, &realm->inodes_with_caps,
587			    i_snap_realm_item) {
588		struct inode *inode = igrab(&ci->vfs_inode);
589		if (!inode)
590			continue;
591		spin_unlock(&realm->inodes_with_caps_lock);
592		if (lastinode)
593			iput(lastinode);
594		lastinode = inode;
595		ceph_queue_cap_snap(ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596		spin_lock(&realm->inodes_with_caps_lock);
597	}
598	spin_unlock(&realm->inodes_with_caps_lock);
599	if (lastinode)
600		iput(lastinode);
601
602	list_for_each_entry(child, &realm->children, child_item) {
603		dout("queue_realm_cap_snaps %p %llx queue child %p %llx\n",
604		     realm, realm->ino, child, child->ino);
605		list_del_init(&child->dirty_item);
606		list_add(&child->dirty_item, &realm->dirty_item);
607	}
608
609	list_del_init(&realm->dirty_item);
610	dout("queue_realm_cap_snaps %p %llx done\n", realm, realm->ino);
611}
612
613/*
614 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
615 * the snap realm parameters from a given realm and all of its ancestors,
616 * up to the root.
617 *
618 * Caller must hold snap_rwsem for write.
619 */
620int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
621			   void *p, void *e, bool deletion)
 
622{
 
623	struct ceph_mds_snap_realm *ri;    /* encoded */
624	__le64 *snaps;                     /* encoded */
625	__le64 *prior_parent_snaps;        /* encoded */
626	struct ceph_snap_realm *realm;
627	int invalidate = 0;
 
 
 
628	int err = -ENOMEM;
 
629	LIST_HEAD(dirty_realms);
630
631	dout("update_snap_trace deletion=%d\n", deletion);
 
 
632more:
 
 
633	ceph_decode_need(&p, e, sizeof(*ri), bad);
634	ri = p;
635	p += sizeof(*ri);
636	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
637			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
638	snaps = p;
639	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
640	prior_parent_snaps = p;
641	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
642
643	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
644	if (!realm) {
645		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
646		if (IS_ERR(realm)) {
647			err = PTR_ERR(realm);
648			goto fail;
649		}
650	}
651
652	/* ensure the parent is correct */
653	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
654	if (err < 0)
655		goto fail;
656	invalidate += err;
657
658	if (le64_to_cpu(ri->seq) > realm->seq) {
659		dout("update_snap_trace updating %llx %p %lld -> %lld\n",
660		     realm->ino, realm, realm->seq, le64_to_cpu(ri->seq));
661		/* update realm parameters, snap lists */
662		realm->seq = le64_to_cpu(ri->seq);
663		realm->created = le64_to_cpu(ri->created);
664		realm->parent_since = le64_to_cpu(ri->parent_since);
665
666		realm->num_snaps = le32_to_cpu(ri->num_snaps);
667		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
668		if (err < 0)
669			goto fail;
670
671		realm->num_prior_parent_snaps =
672			le32_to_cpu(ri->num_prior_parent_snaps);
673		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
674				realm->num_prior_parent_snaps);
675		if (err < 0)
676			goto fail;
677
678		/* queue realm for cap_snap creation */
679		list_add(&realm->dirty_item, &dirty_realms);
680
681		invalidate = 1;
682	} else if (!realm->cached_context) {
683		dout("update_snap_trace %llx %p seq %lld new\n",
684		     realm->ino, realm, realm->seq);
685		invalidate = 1;
686	} else {
687		dout("update_snap_trace %llx %p seq %lld unchanged\n",
688		     realm->ino, realm, realm->seq);
689	}
690
691	dout("done with %llx %p, invalidated=%d, %p %p\n", realm->ino,
692	     realm, invalidate, p, e);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693
694	if (p < e)
695		goto more;
696
697	/* invalidate when we reach the _end_ (root) of the trace */
698	if (invalidate)
699		rebuild_snap_realms(realm);
700
701	/*
702	 * queue cap snaps _after_ we've built the new snap contexts,
703	 * so that i_head_snapc can be set appropriately.
704	 */
705	while (!list_empty(&dirty_realms)) {
706		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
707					 dirty_item);
708		queue_realm_cap_snaps(realm);
 
709	}
710
 
 
 
 
 
711	__cleanup_empty_realms(mdsc);
712	return 0;
713
714bad:
715	err = -EINVAL;
716fail:
717	pr_err("update_snap_trace error %d\n", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718	return err;
719}
720
721
722/*
723 * Send any cap_snaps that are queued for flush.  Try to carry
724 * s_mutex across multiple snap flushes to avoid locking overhead.
725 *
726 * Caller holds no locks.
727 */
728static void flush_snaps(struct ceph_mds_client *mdsc)
729{
 
730	struct ceph_inode_info *ci;
731	struct inode *inode;
732	struct ceph_mds_session *session = NULL;
733
734	dout("flush_snaps\n");
735	spin_lock(&mdsc->snap_flush_lock);
736	while (!list_empty(&mdsc->snap_flush_list)) {
737		ci = list_first_entry(&mdsc->snap_flush_list,
738				struct ceph_inode_info, i_snap_flush_item);
739		inode = &ci->vfs_inode;
740		ihold(inode);
741		spin_unlock(&mdsc->snap_flush_lock);
742		spin_lock(&inode->i_lock);
743		__ceph_flush_snaps(ci, &session, 0);
744		spin_unlock(&inode->i_lock);
745		iput(inode);
746		spin_lock(&mdsc->snap_flush_lock);
747	}
748	spin_unlock(&mdsc->snap_flush_lock);
749
750	if (session) {
751		mutex_unlock(&session->s_mutex);
752		ceph_put_mds_session(session);
753	}
754	dout("flush_snaps done\n");
755}
756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
757
758/*
759 * Handle a snap notification from the MDS.
760 *
761 * This can take two basic forms: the simplest is just a snap creation
762 * or deletion notification on an existing realm.  This should update the
763 * realm and its children.
764 *
765 * The more difficult case is realm creation, due to snap creation at a
766 * new point in the file hierarchy, or due to a rename that moves a file or
767 * directory into another realm.
768 */
769void ceph_handle_snap(struct ceph_mds_client *mdsc,
770		      struct ceph_mds_session *session,
771		      struct ceph_msg *msg)
772{
 
773	struct super_block *sb = mdsc->fsc->sb;
774	int mds = session->s_mds;
775	u64 split;
776	int op;
777	int trace_len;
778	struct ceph_snap_realm *realm = NULL;
779	void *p = msg->front.iov_base;
780	void *e = p + msg->front.iov_len;
781	struct ceph_mds_snap_head *h;
782	int num_split_inos, num_split_realms;
783	__le64 *split_inos = NULL, *split_realms = NULL;
784	int i;
785	int locked_rwsem = 0;
 
 
 
 
786
787	/* decode */
788	if (msg->front.iov_len < sizeof(*h))
789		goto bad;
790	h = p;
791	op = le32_to_cpu(h->op);
792	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
793					  * existing realm */
794	num_split_inos = le32_to_cpu(h->num_split_inos);
795	num_split_realms = le32_to_cpu(h->num_split_realms);
796	trace_len = le32_to_cpu(h->trace_len);
797	p += sizeof(*h);
798
799	dout("handle_snap from mds%d op %s split %llx tracelen %d\n", mds,
800	     ceph_snap_op_name(op), split, trace_len);
801
802	mutex_lock(&session->s_mutex);
803	session->s_seq++;
804	mutex_unlock(&session->s_mutex);
805
806	down_write(&mdsc->snap_rwsem);
807	locked_rwsem = 1;
808
809	if (op == CEPH_SNAP_OP_SPLIT) {
810		struct ceph_mds_snap_realm *ri;
811
812		/*
813		 * A "split" breaks part of an existing realm off into
814		 * a new realm.  The MDS provides a list of inodes
815		 * (with caps) and child realms that belong to the new
816		 * child.
817		 */
818		split_inos = p;
819		p += sizeof(u64) * num_split_inos;
820		split_realms = p;
821		p += sizeof(u64) * num_split_realms;
822		ceph_decode_need(&p, e, sizeof(*ri), bad);
823		/* we will peek at realm info here, but will _not_
824		 * advance p, as the realm update will occur below in
825		 * ceph_update_snap_trace. */
826		ri = p;
827
828		realm = ceph_lookup_snap_realm(mdsc, split);
829		if (!realm) {
830			realm = ceph_create_snap_realm(mdsc, split);
831			if (IS_ERR(realm))
832				goto out;
833		}
834		ceph_get_snap_realm(mdsc, realm);
835
836		dout("splitting snap_realm %llx %p\n", realm->ino, realm);
837		for (i = 0; i < num_split_inos; i++) {
838			struct ceph_vino vino = {
839				.ino = le64_to_cpu(split_inos[i]),
840				.snap = CEPH_NOSNAP,
841			};
842			struct inode *inode = ceph_find_inode(sb, vino);
843			struct ceph_inode_info *ci;
844			struct ceph_snap_realm *oldrealm;
845
846			if (!inode)
847				continue;
848			ci = ceph_inode(inode);
849
850			spin_lock(&inode->i_lock);
851			if (!ci->i_snap_realm)
852				goto skip_inode;
853			/*
854			 * If this inode belongs to a realm that was
855			 * created after our new realm, we experienced
856			 * a race (due to another split notifications
857			 * arriving from a different MDS).  So skip
858			 * this inode.
859			 */
860			if (ci->i_snap_realm->created >
861			    le64_to_cpu(ri->created)) {
862				dout(" leaving %p in newer realm %llx %p\n",
863				     inode, ci->i_snap_realm->ino,
864				     ci->i_snap_realm);
865				goto skip_inode;
866			}
867			dout(" will move %p to split realm %llx %p\n",
868			     inode, realm->ino, realm);
869			/*
870			 * Move the inode to the new realm
871			 */
872			spin_lock(&realm->inodes_with_caps_lock);
873			list_del_init(&ci->i_snap_realm_item);
874			list_add(&ci->i_snap_realm_item,
875				 &realm->inodes_with_caps);
876			oldrealm = ci->i_snap_realm;
877			ci->i_snap_realm = realm;
878			spin_unlock(&realm->inodes_with_caps_lock);
879			spin_unlock(&inode->i_lock);
880
881			ceph_get_snap_realm(mdsc, realm);
882			ceph_put_snap_realm(mdsc, oldrealm);
883
884			iput(inode);
885			continue;
886
887skip_inode:
888			spin_unlock(&inode->i_lock);
889			iput(inode);
890		}
891
892		/* we may have taken some of the old realm's children. */
893		for (i = 0; i < num_split_realms; i++) {
894			struct ceph_snap_realm *child =
895				ceph_lookup_snap_realm(mdsc,
896					   le64_to_cpu(split_realms[i]));
897			if (!child)
898				continue;
899			adjust_snap_realm_parent(mdsc, child, realm->ino);
900		}
 
 
 
 
 
 
 
 
 
 
 
 
 
901	}
902
903	/*
904	 * update using the provided snap trace. if we are deleting a
905	 * snap, we can avoid queueing cap_snaps.
906	 */
907	ceph_update_snap_trace(mdsc, p, e,
908			       op == CEPH_SNAP_OP_DESTROY);
 
 
 
 
909
910	if (op == CEPH_SNAP_OP_SPLIT)
911		/* we took a reference when we created the realm, above */
912		ceph_put_snap_realm(mdsc, realm);
913
914	__cleanup_empty_realms(mdsc);
915
916	up_write(&mdsc->snap_rwsem);
917
918	flush_snaps(mdsc);
 
919	return;
920
921bad:
922	pr_err("corrupt snap message from mds%d\n", mds);
923	ceph_msg_dump(msg);
924out:
925	if (locked_rwsem)
926		up_write(&mdsc->snap_rwsem);
 
 
 
 
 
927	return;
928}
929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
930
 
 
 
 
 
 
 
 
 
931
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/ceph/ceph_debug.h>
   3
   4#include <linux/fs.h>
   5#include <linux/sort.h>
   6#include <linux/slab.h>
   7#include <linux/iversion.h>
   8#include "super.h"
   9#include "mds_client.h"
 
  10#include <linux/ceph/decode.h>
  11
  12/* unused map expires after 5 minutes */
  13#define CEPH_SNAPID_MAP_TIMEOUT	(5 * 60 * HZ)
  14
  15/*
  16 * Snapshots in ceph are driven in large part by cooperation from the
  17 * client.  In contrast to local file systems or file servers that
  18 * implement snapshots at a single point in the system, ceph's
  19 * distributed access to storage requires clients to help decide
  20 * whether a write logically occurs before or after a recently created
  21 * snapshot.
  22 *
  23 * This provides a perfect instantanous client-wide snapshot.  Between
  24 * clients, however, snapshots may appear to be applied at slightly
  25 * different points in time, depending on delays in delivering the
  26 * snapshot notification.
  27 *
  28 * Snapshots are _not_ file system-wide.  Instead, each snapshot
  29 * applies to the subdirectory nested beneath some directory.  This
  30 * effectively divides the hierarchy into multiple "realms," where all
  31 * of the files contained by each realm share the same set of
  32 * snapshots.  An individual realm's snap set contains snapshots
  33 * explicitly created on that realm, as well as any snaps in its
  34 * parent's snap set _after_ the point at which the parent became it's
  35 * parent (due to, say, a rename).  Similarly, snaps from prior parents
  36 * during the time intervals during which they were the parent are included.
  37 *
  38 * The client is spared most of this detail, fortunately... it must only
  39 * maintains a hierarchy of realms reflecting the current parent/child
  40 * realm relationship, and for each realm has an explicit list of snaps
  41 * inherited from prior parents.
  42 *
  43 * A snap_realm struct is maintained for realms containing every inode
  44 * with an open cap in the system.  (The needed snap realm information is
  45 * provided by the MDS whenever a cap is issued, i.e., on open.)  A 'seq'
  46 * version number is used to ensure that as realm parameters change (new
  47 * snapshot, new parent, etc.) the client's realm hierarchy is updated.
  48 *
  49 * The realm hierarchy drives the generation of a 'snap context' for each
  50 * realm, which simply lists the resulting set of snaps for the realm.  This
  51 * is attached to any writes sent to OSDs.
  52 */
  53/*
  54 * Unfortunately error handling is a bit mixed here.  If we get a snap
  55 * update, but don't have enough memory to update our realm hierarchy,
  56 * it's not clear what we can do about it (besides complaining to the
  57 * console).
  58 */
  59
  60
  61/*
  62 * increase ref count for the realm
  63 *
  64 * caller must hold snap_rwsem.
  65 */
  66void ceph_get_snap_realm(struct ceph_mds_client *mdsc,
  67			 struct ceph_snap_realm *realm)
  68{
  69	lockdep_assert_held(&mdsc->snap_rwsem);
  70
  71	/*
  72	 * The 0->1 and 1->0 transitions must take the snap_empty_lock
  73	 * atomically with the refcount change. Go ahead and bump the
  74	 * nref here, unless it's 0, in which case we take the spinlock
  75	 * and then do the increment and remove it from the list.
  76	 */
  77	if (atomic_inc_not_zero(&realm->nref))
  78		return;
 
 
 
  79
  80	spin_lock(&mdsc->snap_empty_lock);
  81	if (atomic_inc_return(&realm->nref) == 1)
  82		list_del_init(&realm->empty_item);
  83	spin_unlock(&mdsc->snap_empty_lock);
  84}
  85
  86static void __insert_snap_realm(struct rb_root *root,
  87				struct ceph_snap_realm *new)
  88{
  89	struct rb_node **p = &root->rb_node;
  90	struct rb_node *parent = NULL;
  91	struct ceph_snap_realm *r = NULL;
  92
  93	while (*p) {
  94		parent = *p;
  95		r = rb_entry(parent, struct ceph_snap_realm, node);
  96		if (new->ino < r->ino)
  97			p = &(*p)->rb_left;
  98		else if (new->ino > r->ino)
  99			p = &(*p)->rb_right;
 100		else
 101			BUG();
 102	}
 103
 104	rb_link_node(&new->node, parent, p);
 105	rb_insert_color(&new->node, root);
 106}
 107
 108/*
 109 * create and get the realm rooted at @ino and bump its ref count.
 110 *
 111 * caller must hold snap_rwsem for write.
 112 */
 113static struct ceph_snap_realm *ceph_create_snap_realm(
 114	struct ceph_mds_client *mdsc,
 115	u64 ino)
 116{
 117	struct ceph_snap_realm *realm;
 118
 119	lockdep_assert_held_write(&mdsc->snap_rwsem);
 120
 121	realm = kzalloc(sizeof(*realm), GFP_NOFS);
 122	if (!realm)
 123		return ERR_PTR(-ENOMEM);
 124
 125	/* Do not release the global dummy snaprealm until unmouting */
 126	if (ino == CEPH_INO_GLOBAL_SNAPREALM)
 127		atomic_set(&realm->nref, 2);
 128	else
 129		atomic_set(&realm->nref, 1);
 130	realm->ino = ino;
 131	INIT_LIST_HEAD(&realm->children);
 132	INIT_LIST_HEAD(&realm->child_item);
 133	INIT_LIST_HEAD(&realm->empty_item);
 134	INIT_LIST_HEAD(&realm->dirty_item);
 135	INIT_LIST_HEAD(&realm->rebuild_item);
 136	INIT_LIST_HEAD(&realm->inodes_with_caps);
 137	spin_lock_init(&realm->inodes_with_caps_lock);
 138	__insert_snap_realm(&mdsc->snap_realms, realm);
 139	mdsc->num_snap_realms++;
 140
 141	doutc(mdsc->fsc->client, "%llx %p\n", realm->ino, realm);
 142	return realm;
 143}
 144
 145/*
 146 * lookup the realm rooted at @ino.
 147 *
 148 * caller must hold snap_rwsem.
 149 */
 150static struct ceph_snap_realm *__lookup_snap_realm(struct ceph_mds_client *mdsc,
 151						   u64 ino)
 152{
 153	struct ceph_client *cl = mdsc->fsc->client;
 154	struct rb_node *n = mdsc->snap_realms.rb_node;
 155	struct ceph_snap_realm *r;
 156
 157	lockdep_assert_held(&mdsc->snap_rwsem);
 158
 159	while (n) {
 160		r = rb_entry(n, struct ceph_snap_realm, node);
 161		if (ino < r->ino)
 162			n = n->rb_left;
 163		else if (ino > r->ino)
 164			n = n->rb_right;
 165		else {
 166			doutc(cl, "%llx %p\n", r->ino, r);
 167			return r;
 168		}
 169	}
 170	return NULL;
 171}
 172
 173struct ceph_snap_realm *ceph_lookup_snap_realm(struct ceph_mds_client *mdsc,
 174					       u64 ino)
 175{
 176	struct ceph_snap_realm *r;
 177	r = __lookup_snap_realm(mdsc, ino);
 178	if (r)
 179		ceph_get_snap_realm(mdsc, r);
 180	return r;
 181}
 182
 183static void __put_snap_realm(struct ceph_mds_client *mdsc,
 184			     struct ceph_snap_realm *realm);
 185
 186/*
 187 * called with snap_rwsem (write)
 188 */
 189static void __destroy_snap_realm(struct ceph_mds_client *mdsc,
 190				 struct ceph_snap_realm *realm)
 191{
 192	struct ceph_client *cl = mdsc->fsc->client;
 193	lockdep_assert_held_write(&mdsc->snap_rwsem);
 194
 195	doutc(cl, "%p %llx\n", realm, realm->ino);
 196
 197	rb_erase(&realm->node, &mdsc->snap_realms);
 198	mdsc->num_snap_realms--;
 199
 200	if (realm->parent) {
 201		list_del_init(&realm->child_item);
 202		__put_snap_realm(mdsc, realm->parent);
 203	}
 204
 205	kfree(realm->prior_parent_snaps);
 206	kfree(realm->snaps);
 207	ceph_put_snap_context(realm->cached_context);
 208	kfree(realm);
 209}
 210
 211/*
 212 * caller holds snap_rwsem (write)
 213 */
 214static void __put_snap_realm(struct ceph_mds_client *mdsc,
 215			     struct ceph_snap_realm *realm)
 216{
 217	lockdep_assert_held_write(&mdsc->snap_rwsem);
 218
 219	/*
 220	 * We do not require the snap_empty_lock here, as any caller that
 221	 * increments the value must hold the snap_rwsem.
 222	 */
 223	if (atomic_dec_and_test(&realm->nref))
 224		__destroy_snap_realm(mdsc, realm);
 225}
 226
 227/*
 228 * See comments in ceph_get_snap_realm. Caller needn't hold any locks.
 229 */
 230void ceph_put_snap_realm(struct ceph_mds_client *mdsc,
 231			 struct ceph_snap_realm *realm)
 232{
 233	if (!atomic_dec_and_lock(&realm->nref, &mdsc->snap_empty_lock))
 
 
 234		return;
 235
 236	if (down_write_trylock(&mdsc->snap_rwsem)) {
 237		spin_unlock(&mdsc->snap_empty_lock);
 238		__destroy_snap_realm(mdsc, realm);
 239		up_write(&mdsc->snap_rwsem);
 240	} else {
 
 241		list_add(&realm->empty_item, &mdsc->snap_empty);
 242		spin_unlock(&mdsc->snap_empty_lock);
 243	}
 244}
 245
 246/*
 247 * Clean up any realms whose ref counts have dropped to zero.  Note
 248 * that this does not include realms who were created but not yet
 249 * used.
 250 *
 251 * Called under snap_rwsem (write)
 252 */
 253static void __cleanup_empty_realms(struct ceph_mds_client *mdsc)
 254{
 255	struct ceph_snap_realm *realm;
 256
 257	lockdep_assert_held_write(&mdsc->snap_rwsem);
 258
 259	spin_lock(&mdsc->snap_empty_lock);
 260	while (!list_empty(&mdsc->snap_empty)) {
 261		realm = list_first_entry(&mdsc->snap_empty,
 262				   struct ceph_snap_realm, empty_item);
 263		list_del(&realm->empty_item);
 264		spin_unlock(&mdsc->snap_empty_lock);
 265		__destroy_snap_realm(mdsc, realm);
 266		spin_lock(&mdsc->snap_empty_lock);
 267	}
 268	spin_unlock(&mdsc->snap_empty_lock);
 269}
 270
 271void ceph_cleanup_global_and_empty_realms(struct ceph_mds_client *mdsc)
 272{
 273	struct ceph_snap_realm *global_realm;
 274
 275	down_write(&mdsc->snap_rwsem);
 276	global_realm = __lookup_snap_realm(mdsc, CEPH_INO_GLOBAL_SNAPREALM);
 277	if (global_realm)
 278		ceph_put_snap_realm(mdsc, global_realm);
 279	__cleanup_empty_realms(mdsc);
 280	up_write(&mdsc->snap_rwsem);
 281}
 282
 283/*
 284 * adjust the parent realm of a given @realm.  adjust child list, and parent
 285 * pointers, and ref counts appropriately.
 286 *
 287 * return true if parent was changed, 0 if unchanged, <0 on error.
 288 *
 289 * caller must hold snap_rwsem for write.
 290 */
 291static int adjust_snap_realm_parent(struct ceph_mds_client *mdsc,
 292				    struct ceph_snap_realm *realm,
 293				    u64 parentino)
 294{
 295	struct ceph_client *cl = mdsc->fsc->client;
 296	struct ceph_snap_realm *parent;
 297
 298	lockdep_assert_held_write(&mdsc->snap_rwsem);
 299
 300	if (realm->parent_ino == parentino)
 301		return 0;
 302
 303	parent = ceph_lookup_snap_realm(mdsc, parentino);
 304	if (!parent) {
 305		parent = ceph_create_snap_realm(mdsc, parentino);
 306		if (IS_ERR(parent))
 307			return PTR_ERR(parent);
 308	}
 309	doutc(cl, "%llx %p: %llx %p -> %llx %p\n", realm->ino, realm,
 310	      realm->parent_ino, realm->parent, parentino, parent);
 
 311	if (realm->parent) {
 312		list_del_init(&realm->child_item);
 313		ceph_put_snap_realm(mdsc, realm->parent);
 314	}
 315	realm->parent_ino = parentino;
 316	realm->parent = parent;
 
 317	list_add(&realm->child_item, &parent->children);
 318	return 1;
 319}
 320
 321
 322static int cmpu64_rev(const void *a, const void *b)
 323{
 324	if (*(u64 *)a < *(u64 *)b)
 325		return 1;
 326	if (*(u64 *)a > *(u64 *)b)
 327		return -1;
 328	return 0;
 329}
 330
 331
 332/*
 333 * build the snap context for a given realm.
 334 */
 335static int build_snap_context(struct ceph_mds_client *mdsc,
 336			      struct ceph_snap_realm *realm,
 337			      struct list_head *realm_queue,
 338			      struct list_head *dirty_realms)
 339{
 340	struct ceph_client *cl = mdsc->fsc->client;
 341	struct ceph_snap_realm *parent = realm->parent;
 342	struct ceph_snap_context *snapc;
 343	int err = 0;
 344	u32 num = realm->num_prior_parent_snaps + realm->num_snaps;
 
 345
 346	/*
 347	 * build parent context, if it hasn't been built.
 348	 * conservatively estimate that all parent snaps might be
 349	 * included by us.
 350	 */
 351	if (parent) {
 352		if (!parent->cached_context) {
 353			/* add to the queue head */
 354			list_add(&parent->rebuild_item, realm_queue);
 355			return 1;
 356		}
 357		num += parent->cached_context->num_snaps;
 358	}
 359
 360	/* do i actually need to update?  not if my context seq
 361	   matches realm seq, and my parents' does to.  (this works
 362	   because we rebuild_snap_realms() works _downward_ in
 363	   hierarchy after each update.) */
 364	if (realm->cached_context &&
 365	    realm->cached_context->seq == realm->seq &&
 366	    (!parent ||
 367	     realm->cached_context->seq >= parent->cached_context->seq)) {
 368		doutc(cl, "%llx %p: %p seq %lld (%u snaps) (unchanged)\n",
 369		      realm->ino, realm, realm->cached_context,
 370		      realm->cached_context->seq,
 371		      (unsigned int)realm->cached_context->num_snaps);
 
 372		return 0;
 373	}
 374
 375	/* alloc new snap context */
 376	err = -ENOMEM;
 377	if (num > (SIZE_MAX - sizeof(*snapc)) / sizeof(u64))
 378		goto fail;
 379	snapc = ceph_create_snap_context(num, GFP_NOFS);
 380	if (!snapc)
 381		goto fail;
 
 382
 383	/* build (reverse sorted) snap vector */
 384	num = 0;
 385	snapc->seq = realm->seq;
 386	if (parent) {
 387		u32 i;
 388
 389		/* include any of parent's snaps occurring _after_ my
 390		   parent became my parent */
 391		for (i = 0; i < parent->cached_context->num_snaps; i++)
 392			if (parent->cached_context->snaps[i] >=
 393			    realm->parent_since)
 394				snapc->snaps[num++] =
 395					parent->cached_context->snaps[i];
 396		if (parent->cached_context->seq > snapc->seq)
 397			snapc->seq = parent->cached_context->seq;
 398	}
 399	memcpy(snapc->snaps + num, realm->snaps,
 400	       sizeof(u64)*realm->num_snaps);
 401	num += realm->num_snaps;
 402	memcpy(snapc->snaps + num, realm->prior_parent_snaps,
 403	       sizeof(u64)*realm->num_prior_parent_snaps);
 404	num += realm->num_prior_parent_snaps;
 405
 406	sort(snapc->snaps, num, sizeof(u64), cmpu64_rev, NULL);
 407	snapc->num_snaps = num;
 408	doutc(cl, "%llx %p: %p seq %lld (%u snaps)\n", realm->ino, realm,
 409	      snapc, snapc->seq, (unsigned int) snapc->num_snaps);
 410
 411	ceph_put_snap_context(realm->cached_context);
 
 412	realm->cached_context = snapc;
 413	/* queue realm for cap_snap creation */
 414	list_add_tail(&realm->dirty_item, dirty_realms);
 415	return 0;
 416
 417fail:
 418	/*
 419	 * if we fail, clear old (incorrect) cached_context... hopefully
 420	 * we'll have better luck building it later
 421	 */
 422	if (realm->cached_context) {
 423		ceph_put_snap_context(realm->cached_context);
 424		realm->cached_context = NULL;
 425	}
 426	pr_err_client(cl, "%llx %p fail %d\n", realm->ino, realm, err);
 
 427	return err;
 428}
 429
 430/*
 431 * rebuild snap context for the given realm and all of its children.
 432 */
 433static void rebuild_snap_realms(struct ceph_mds_client *mdsc,
 434				struct ceph_snap_realm *realm,
 435				struct list_head *dirty_realms)
 436{
 437	struct ceph_client *cl = mdsc->fsc->client;
 438	LIST_HEAD(realm_queue);
 439	int last = 0;
 440	bool skip = false;
 441
 442	list_add_tail(&realm->rebuild_item, &realm_queue);
 443
 444	while (!list_empty(&realm_queue)) {
 445		struct ceph_snap_realm *_realm, *child;
 446
 447		_realm = list_first_entry(&realm_queue,
 448					  struct ceph_snap_realm,
 449					  rebuild_item);
 450
 451		/*
 452		 * If the last building failed dues to memory
 453		 * issue, just empty the realm_queue and return
 454		 * to avoid infinite loop.
 455		 */
 456		if (last < 0) {
 457			list_del_init(&_realm->rebuild_item);
 458			continue;
 459		}
 460
 461		last = build_snap_context(mdsc, _realm, &realm_queue,
 462					  dirty_realms);
 463		doutc(cl, "%llx %p, %s\n", realm->ino, realm,
 464		      last > 0 ? "is deferred" : !last ? "succeeded" : "failed");
 465
 466		/* is any child in the list ? */
 467		list_for_each_entry(child, &_realm->children, child_item) {
 468			if (!list_empty(&child->rebuild_item)) {
 469				skip = true;
 470				break;
 471			}
 472		}
 473
 474		if (!skip) {
 475			list_for_each_entry(child, &_realm->children, child_item)
 476				list_add_tail(&child->rebuild_item, &realm_queue);
 477		}
 478
 479		/* last == 1 means need to build parent first */
 480		if (last <= 0)
 481			list_del_init(&_realm->rebuild_item);
 482	}
 483}
 484
 485
 486/*
 487 * helper to allocate and decode an array of snapids.  free prior
 488 * instance, if any.
 489 */
 490static int dup_array(u64 **dst, __le64 *src, u32 num)
 491{
 492	u32 i;
 493
 494	kfree(*dst);
 495	if (num) {
 496		*dst = kcalloc(num, sizeof(u64), GFP_NOFS);
 497		if (!*dst)
 498			return -ENOMEM;
 499		for (i = 0; i < num; i++)
 500			(*dst)[i] = get_unaligned_le64(src + i);
 501	} else {
 502		*dst = NULL;
 503	}
 504	return 0;
 505}
 506
 507static bool has_new_snaps(struct ceph_snap_context *o,
 508			  struct ceph_snap_context *n)
 509{
 510	if (n->num_snaps == 0)
 511		return false;
 512	/* snaps are in descending order */
 513	return n->snaps[0] > o->seq;
 514}
 515
 516/*
 517 * When a snapshot is applied, the size/mtime inode metadata is queued
 518 * in a ceph_cap_snap (one for each snapshot) until writeback
 519 * completes and the metadata can be flushed back to the MDS.
 520 *
 521 * However, if a (sync) write is currently in-progress when we apply
 522 * the snapshot, we have to wait until the write succeeds or fails
 523 * (and a final size/mtime is known).  In this case the
 524 * cap_snap->writing = 1, and is said to be "pending."  When the write
 525 * finishes, we __ceph_finish_cap_snap().
 526 *
 527 * Caller must hold snap_rwsem for read (i.e., the realm topology won't
 528 * change).
 529 */
 530static void ceph_queue_cap_snap(struct ceph_inode_info *ci,
 531				struct ceph_cap_snap **pcapsnap)
 532{
 533	struct inode *inode = &ci->netfs.inode;
 534	struct ceph_client *cl = ceph_inode_to_client(inode);
 535	struct ceph_snap_context *old_snapc, *new_snapc;
 536	struct ceph_cap_snap *capsnap = *pcapsnap;
 537	struct ceph_buffer *old_blob = NULL;
 538	int used, dirty;
 539
 540	spin_lock(&ci->i_ceph_lock);
 
 
 
 
 
 
 541	used = __ceph_caps_used(ci);
 542	dirty = __ceph_caps_dirty(ci);
 543
 544	old_snapc = ci->i_head_snapc;
 545	new_snapc = ci->i_snap_realm->cached_context;
 546
 547	/*
 548	 * If there is a write in progress, treat that as a dirty Fw,
 549	 * even though it hasn't completed yet; by the time we finish
 550	 * up this capsnap it will be.
 551	 */
 552	if (used & CEPH_CAP_FILE_WR)
 553		dirty |= CEPH_CAP_FILE_WR;
 554
 555	if (__ceph_have_pending_cap_snap(ci)) {
 556		/* there is no point in queuing multiple "pending" cap_snaps,
 557		   as no new writes are allowed to start when pending, so any
 558		   writes in progress now were started before the previous
 559		   cap_snap.  lucky us. */
 560		doutc(cl, "%p %llx.%llx already pending\n", inode,
 561		      ceph_vinop(inode));
 562		goto update_snapc;
 563	}
 564	if (ci->i_wrbuffer_ref_head == 0 &&
 565	    !(dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))) {
 566		doutc(cl, "%p %llx.%llx nothing dirty|writing\n", inode,
 567		      ceph_vinop(inode));
 568		goto update_snapc;
 569	}
 570
 571	BUG_ON(!old_snapc);
 
 
 
 
 
 572
 573	/*
 574	 * There is no need to send FLUSHSNAP message to MDS if there is
 575	 * no new snapshot. But when there is dirty pages or on-going
 576	 * writes, we still need to create cap_snap. cap_snap is needed
 577	 * by the write path and page writeback path.
 578	 *
 579	 * also see ceph_try_drop_cap_snap()
 580	 */
 581	if (has_new_snaps(old_snapc, new_snapc)) {
 582		if (dirty & (CEPH_CAP_ANY_EXCL|CEPH_CAP_FILE_WR))
 583			capsnap->need_flush = true;
 584	} else {
 585		if (!(used & CEPH_CAP_FILE_WR) &&
 586		    ci->i_wrbuffer_ref_head == 0) {
 587			doutc(cl, "%p %llx.%llx no new_snap|dirty_page|writing\n",
 588			      inode, ceph_vinop(inode));
 589			goto update_snapc;
 590		}
 591	}
 592
 593	doutc(cl, "%p %llx.%llx cap_snap %p queuing under %p %s %s\n",
 594	      inode, ceph_vinop(inode), capsnap, old_snapc,
 595	      ceph_cap_string(dirty), capsnap->need_flush ? "" : "no_flush");
 596	ihold(inode);
 597
 598	capsnap->follows = old_snapc->seq;
 599	capsnap->issued = __ceph_caps_issued(ci, NULL);
 600	capsnap->dirty = dirty;
 601
 602	capsnap->mode = inode->i_mode;
 603	capsnap->uid = inode->i_uid;
 604	capsnap->gid = inode->i_gid;
 605
 606	if (dirty & CEPH_CAP_XATTR_EXCL) {
 607		old_blob = __ceph_build_xattrs_blob(ci);
 608		capsnap->xattr_blob =
 609			ceph_buffer_get(ci->i_xattrs.blob);
 610		capsnap->xattr_version = ci->i_xattrs.version;
 611	} else {
 612		capsnap->xattr_blob = NULL;
 613		capsnap->xattr_version = 0;
 614	}
 615
 616	capsnap->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 617
 618	/* dirty page count moved from _head to this cap_snap;
 619	   all subsequent writes page dirties occur _after_ this
 620	   snapshot. */
 621	capsnap->dirty_pages = ci->i_wrbuffer_ref_head;
 622	ci->i_wrbuffer_ref_head = 0;
 623	capsnap->context = old_snapc;
 624	list_add_tail(&capsnap->ci_item, &ci->i_cap_snaps);
 625
 626	if (used & CEPH_CAP_FILE_WR) {
 627		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p seq %llu used WR,"
 628		      " now pending\n", inode, ceph_vinop(inode), capsnap,
 629		      old_snapc, old_snapc->seq);
 630		capsnap->writing = 1;
 
 
 
 
 
 
 
 631	} else {
 632		/* note mtime, size NOW. */
 633		__ceph_finish_cap_snap(ci, capsnap);
 634	}
 635	*pcapsnap = NULL;
 636	old_snapc = NULL;
 637
 638update_snapc:
 639	if (ci->i_wrbuffer_ref_head == 0 &&
 640	    ci->i_wr_ref == 0 &&
 641	    ci->i_dirty_caps == 0 &&
 642	    ci->i_flushing_caps == 0) {
 643		ci->i_head_snapc = NULL;
 644	} else {
 645		ci->i_head_snapc = ceph_get_snap_context(new_snapc);
 646		doutc(cl, " new snapc is %p\n", new_snapc);
 647	}
 648	spin_unlock(&ci->i_ceph_lock);
 649
 650	ceph_buffer_put(old_blob);
 651	ceph_put_snap_context(old_snapc);
 652}
 653
 654/*
 655 * Finalize the size, mtime for a cap_snap.. that is, settle on final values
 656 * to be used for the snapshot, to be flushed back to the mds.
 657 *
 658 * If capsnap can now be flushed, add to snap_flush list, and return 1.
 659 *
 660 * Caller must hold i_ceph_lock.
 661 */
 662int __ceph_finish_cap_snap(struct ceph_inode_info *ci,
 663			    struct ceph_cap_snap *capsnap)
 664{
 665	struct inode *inode = &ci->netfs.inode;
 666	struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
 667	struct ceph_client *cl = mdsc->fsc->client;
 668
 669	BUG_ON(capsnap->writing);
 670	capsnap->size = i_size_read(inode);
 671	capsnap->mtime = inode_get_mtime(inode);
 672	capsnap->atime = inode_get_atime(inode);
 673	capsnap->ctime = inode_get_ctime(inode);
 674	capsnap->btime = ci->i_btime;
 675	capsnap->change_attr = inode_peek_iversion_raw(inode);
 676	capsnap->time_warp_seq = ci->i_time_warp_seq;
 677	capsnap->truncate_size = ci->i_truncate_size;
 678	capsnap->truncate_seq = ci->i_truncate_seq;
 679	if (capsnap->dirty_pages) {
 680		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s "
 681		      "s=%llu still has %d dirty pages\n", inode,
 682		      ceph_vinop(inode), capsnap, capsnap->context,
 683		      capsnap->context->seq,
 684		      ceph_cap_string(capsnap->dirty),
 685		      capsnap->size, capsnap->dirty_pages);
 686		return 0;
 687	}
 688
 689	/*
 690	 * Defer flushing the capsnap if the dirty buffer not flushed yet.
 691	 * And trigger to flush the buffer immediately.
 692	 */
 693	if (ci->i_wrbuffer_ref) {
 694		doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s "
 695		      "s=%llu used WRBUFFER, delaying\n", inode,
 696		      ceph_vinop(inode), capsnap, capsnap->context,
 697		      capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 698		      capsnap->size);
 699		ceph_queue_writeback(inode);
 700		return 0;
 701	}
 702
 703	ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
 704	doutc(cl, "%p %llx.%llx cap_snap %p snapc %p %llu %s s=%llu\n",
 705	      inode, ceph_vinop(inode), capsnap, capsnap->context,
 706	      capsnap->context->seq, ceph_cap_string(capsnap->dirty),
 707	      capsnap->size);
 708
 709	spin_lock(&mdsc->snap_flush_lock);
 710	if (list_empty(&ci->i_snap_flush_item)) {
 711		ihold(inode);
 712		list_add_tail(&ci->i_snap_flush_item, &mdsc->snap_flush_list);
 713	}
 714	spin_unlock(&mdsc->snap_flush_lock);
 715	return 1;  /* caller may want to ceph_flush_snaps */
 716}
 717
 718/*
 719 * Queue cap_snaps for snap writeback for this realm and its children.
 720 * Called under snap_rwsem, so realm topology won't change.
 721 */
 722static void queue_realm_cap_snaps(struct ceph_mds_client *mdsc,
 723				  struct ceph_snap_realm *realm)
 724{
 725	struct ceph_client *cl = mdsc->fsc->client;
 726	struct ceph_inode_info *ci;
 727	struct inode *lastinode = NULL;
 728	struct ceph_cap_snap *capsnap = NULL;
 729
 730	doutc(cl, "%p %llx inode\n", realm, realm->ino);
 731
 732	spin_lock(&realm->inodes_with_caps_lock);
 733	list_for_each_entry(ci, &realm->inodes_with_caps, i_snap_realm_item) {
 734		struct inode *inode = igrab(&ci->netfs.inode);
 
 735		if (!inode)
 736			continue;
 737		spin_unlock(&realm->inodes_with_caps_lock);
 738		iput(lastinode);
 
 739		lastinode = inode;
 740
 741		/*
 742		 * Allocate the capsnap memory outside of ceph_queue_cap_snap()
 743		 * to reduce very possible but unnecessary frequently memory
 744		 * allocate/free in this loop.
 745		 */
 746		if (!capsnap) {
 747			capsnap = kmem_cache_zalloc(ceph_cap_snap_cachep, GFP_NOFS);
 748			if (!capsnap) {
 749				pr_err_client(cl,
 750					"ENOMEM allocating ceph_cap_snap on %p\n",
 751					inode);
 752				return;
 753			}
 754		}
 755		capsnap->cap_flush.is_capsnap = true;
 756		refcount_set(&capsnap->nref, 1);
 757		INIT_LIST_HEAD(&capsnap->cap_flush.i_list);
 758		INIT_LIST_HEAD(&capsnap->cap_flush.g_list);
 759		INIT_LIST_HEAD(&capsnap->ci_item);
 760
 761		ceph_queue_cap_snap(ci, &capsnap);
 762		spin_lock(&realm->inodes_with_caps_lock);
 763	}
 764	spin_unlock(&realm->inodes_with_caps_lock);
 765	iput(lastinode);
 
 766
 767	if (capsnap)
 768		kmem_cache_free(ceph_cap_snap_cachep, capsnap);
 769	doutc(cl, "%p %llx done\n", realm, realm->ino);
 
 
 
 
 
 
 770}
 771
 772/*
 773 * Parse and apply a snapblob "snap trace" from the MDS.  This specifies
 774 * the snap realm parameters from a given realm and all of its ancestors,
 775 * up to the root.
 776 *
 777 * Caller must hold snap_rwsem for write.
 778 */
 779int ceph_update_snap_trace(struct ceph_mds_client *mdsc,
 780			   void *p, void *e, bool deletion,
 781			   struct ceph_snap_realm **realm_ret)
 782{
 783	struct ceph_client *cl = mdsc->fsc->client;
 784	struct ceph_mds_snap_realm *ri;    /* encoded */
 785	__le64 *snaps;                     /* encoded */
 786	__le64 *prior_parent_snaps;        /* encoded */
 787	struct ceph_snap_realm *realm;
 788	struct ceph_snap_realm *first_realm = NULL;
 789	struct ceph_snap_realm *realm_to_rebuild = NULL;
 790	struct ceph_client *client = mdsc->fsc->client;
 791	int rebuild_snapcs;
 792	int err = -ENOMEM;
 793	int ret;
 794	LIST_HEAD(dirty_realms);
 795
 796	lockdep_assert_held_write(&mdsc->snap_rwsem);
 797
 798	doutc(cl, "deletion=%d\n", deletion);
 799more:
 800	realm = NULL;
 801	rebuild_snapcs = 0;
 802	ceph_decode_need(&p, e, sizeof(*ri), bad);
 803	ri = p;
 804	p += sizeof(*ri);
 805	ceph_decode_need(&p, e, sizeof(u64)*(le32_to_cpu(ri->num_snaps) +
 806			    le32_to_cpu(ri->num_prior_parent_snaps)), bad);
 807	snaps = p;
 808	p += sizeof(u64) * le32_to_cpu(ri->num_snaps);
 809	prior_parent_snaps = p;
 810	p += sizeof(u64) * le32_to_cpu(ri->num_prior_parent_snaps);
 811
 812	realm = ceph_lookup_snap_realm(mdsc, le64_to_cpu(ri->ino));
 813	if (!realm) {
 814		realm = ceph_create_snap_realm(mdsc, le64_to_cpu(ri->ino));
 815		if (IS_ERR(realm)) {
 816			err = PTR_ERR(realm);
 817			goto fail;
 818		}
 819	}
 820
 821	/* ensure the parent is correct */
 822	err = adjust_snap_realm_parent(mdsc, realm, le64_to_cpu(ri->parent));
 823	if (err < 0)
 824		goto fail;
 825	rebuild_snapcs += err;
 826
 827	if (le64_to_cpu(ri->seq) > realm->seq) {
 828		doutc(cl, "updating %llx %p %lld -> %lld\n", realm->ino,
 829		      realm, realm->seq, le64_to_cpu(ri->seq));
 830		/* update realm parameters, snap lists */
 831		realm->seq = le64_to_cpu(ri->seq);
 832		realm->created = le64_to_cpu(ri->created);
 833		realm->parent_since = le64_to_cpu(ri->parent_since);
 834
 835		realm->num_snaps = le32_to_cpu(ri->num_snaps);
 836		err = dup_array(&realm->snaps, snaps, realm->num_snaps);
 837		if (err < 0)
 838			goto fail;
 839
 840		realm->num_prior_parent_snaps =
 841			le32_to_cpu(ri->num_prior_parent_snaps);
 842		err = dup_array(&realm->prior_parent_snaps, prior_parent_snaps,
 843				realm->num_prior_parent_snaps);
 844		if (err < 0)
 845			goto fail;
 846
 847		if (realm->seq > mdsc->last_snap_seq)
 848			mdsc->last_snap_seq = realm->seq;
 849
 850		rebuild_snapcs = 1;
 851	} else if (!realm->cached_context) {
 852		doutc(cl, "%llx %p seq %lld new\n", realm->ino, realm,
 853		      realm->seq);
 854		rebuild_snapcs = 1;
 855	} else {
 856		doutc(cl, "%llx %p seq %lld unchanged\n", realm->ino, realm,
 857		      realm->seq);
 858	}
 859
 860	doutc(cl, "done with %llx %p, rebuild_snapcs=%d, %p %p\n", realm->ino,
 861	      realm, rebuild_snapcs, p, e);
 862
 863	/*
 864	 * this will always track the uppest parent realm from which
 865	 * we need to rebuild the snapshot contexts _downward_ in
 866	 * hierarchy.
 867	 */
 868	if (rebuild_snapcs)
 869		realm_to_rebuild = realm;
 870
 871	/* rebuild_snapcs when we reach the _end_ (root) of the trace */
 872	if (realm_to_rebuild && p >= e)
 873		rebuild_snap_realms(mdsc, realm_to_rebuild, &dirty_realms);
 874
 875	if (!first_realm)
 876		first_realm = realm;
 877	else
 878		ceph_put_snap_realm(mdsc, realm);
 879
 880	if (p < e)
 881		goto more;
 882
 
 
 
 
 883	/*
 884	 * queue cap snaps _after_ we've built the new snap contexts,
 885	 * so that i_head_snapc can be set appropriately.
 886	 */
 887	while (!list_empty(&dirty_realms)) {
 888		realm = list_first_entry(&dirty_realms, struct ceph_snap_realm,
 889					 dirty_item);
 890		list_del_init(&realm->dirty_item);
 891		queue_realm_cap_snaps(mdsc, realm);
 892	}
 893
 894	if (realm_ret)
 895		*realm_ret = first_realm;
 896	else
 897		ceph_put_snap_realm(mdsc, first_realm);
 898
 899	__cleanup_empty_realms(mdsc);
 900	return 0;
 901
 902bad:
 903	err = -EIO;
 904fail:
 905	if (realm && !IS_ERR(realm))
 906		ceph_put_snap_realm(mdsc, realm);
 907	if (first_realm)
 908		ceph_put_snap_realm(mdsc, first_realm);
 909	pr_err_client(cl, "error %d\n", err);
 910
 911	/*
 912	 * When receiving a corrupted snap trace we don't know what
 913	 * exactly has happened in MDS side. And we shouldn't continue
 914	 * writing to OSD, which may corrupt the snapshot contents.
 915	 *
 916	 * Just try to blocklist this kclient and then this kclient
 917	 * must be remounted to continue after the corrupted metadata
 918	 * fixed in the MDS side.
 919	 */
 920	WRITE_ONCE(mdsc->fsc->mount_state, CEPH_MOUNT_FENCE_IO);
 921	ret = ceph_monc_blocklist_add(&client->monc, &client->msgr.inst.addr);
 922	if (ret)
 923		pr_err_client(cl, "failed to blocklist %s: %d\n",
 924			      ceph_pr_addr(&client->msgr.inst.addr), ret);
 925
 926	WARN(1, "[client.%lld] %s %s%sdo remount to continue%s",
 927	     client->monc.auth->global_id, __func__,
 928	     ret ? "" : ceph_pr_addr(&client->msgr.inst.addr),
 929	     ret ? "" : " was blocklisted, ",
 930	     err == -EIO ? " after corrupted snaptrace is fixed" : "");
 931
 932	return err;
 933}
 934
 935
 936/*
 937 * Send any cap_snaps that are queued for flush.  Try to carry
 938 * s_mutex across multiple snap flushes to avoid locking overhead.
 939 *
 940 * Caller holds no locks.
 941 */
 942static void flush_snaps(struct ceph_mds_client *mdsc)
 943{
 944	struct ceph_client *cl = mdsc->fsc->client;
 945	struct ceph_inode_info *ci;
 946	struct inode *inode;
 947	struct ceph_mds_session *session = NULL;
 948
 949	doutc(cl, "begin\n");
 950	spin_lock(&mdsc->snap_flush_lock);
 951	while (!list_empty(&mdsc->snap_flush_list)) {
 952		ci = list_first_entry(&mdsc->snap_flush_list,
 953				struct ceph_inode_info, i_snap_flush_item);
 954		inode = &ci->netfs.inode;
 955		ihold(inode);
 956		spin_unlock(&mdsc->snap_flush_lock);
 957		ceph_flush_snaps(ci, &session);
 
 
 958		iput(inode);
 959		spin_lock(&mdsc->snap_flush_lock);
 960	}
 961	spin_unlock(&mdsc->snap_flush_lock);
 962
 963	ceph_put_mds_session(session);
 964	doutc(cl, "done\n");
 
 
 
 965}
 966
 967/**
 968 * ceph_change_snap_realm - change the snap_realm for an inode
 969 * @inode: inode to move to new snap realm
 970 * @realm: new realm to move inode into (may be NULL)
 971 *
 972 * Detach an inode from its old snaprealm (if any) and attach it to
 973 * the new snaprealm (if any). The old snap realm reference held by
 974 * the inode is put. If realm is non-NULL, then the caller's reference
 975 * to it is taken over by the inode.
 976 */
 977void ceph_change_snap_realm(struct inode *inode, struct ceph_snap_realm *realm)
 978{
 979	struct ceph_inode_info *ci = ceph_inode(inode);
 980	struct ceph_mds_client *mdsc = ceph_inode_to_fs_client(inode)->mdsc;
 981	struct ceph_snap_realm *oldrealm = ci->i_snap_realm;
 982
 983	lockdep_assert_held(&ci->i_ceph_lock);
 984
 985	if (oldrealm) {
 986		spin_lock(&oldrealm->inodes_with_caps_lock);
 987		list_del_init(&ci->i_snap_realm_item);
 988		if (oldrealm->ino == ci->i_vino.ino)
 989			oldrealm->inode = NULL;
 990		spin_unlock(&oldrealm->inodes_with_caps_lock);
 991		ceph_put_snap_realm(mdsc, oldrealm);
 992	}
 993
 994	ci->i_snap_realm = realm;
 995
 996	if (realm) {
 997		spin_lock(&realm->inodes_with_caps_lock);
 998		list_add(&ci->i_snap_realm_item, &realm->inodes_with_caps);
 999		if (realm->ino == ci->i_vino.ino)
1000			realm->inode = inode;
1001		spin_unlock(&realm->inodes_with_caps_lock);
1002	}
1003}
1004
1005/*
1006 * Handle a snap notification from the MDS.
1007 *
1008 * This can take two basic forms: the simplest is just a snap creation
1009 * or deletion notification on an existing realm.  This should update the
1010 * realm and its children.
1011 *
1012 * The more difficult case is realm creation, due to snap creation at a
1013 * new point in the file hierarchy, or due to a rename that moves a file or
1014 * directory into another realm.
1015 */
1016void ceph_handle_snap(struct ceph_mds_client *mdsc,
1017		      struct ceph_mds_session *session,
1018		      struct ceph_msg *msg)
1019{
1020	struct ceph_client *cl = mdsc->fsc->client;
1021	struct super_block *sb = mdsc->fsc->sb;
1022	int mds = session->s_mds;
1023	u64 split;
1024	int op;
1025	int trace_len;
1026	struct ceph_snap_realm *realm = NULL;
1027	void *p = msg->front.iov_base;
1028	void *e = p + msg->front.iov_len;
1029	struct ceph_mds_snap_head *h;
1030	int num_split_inos, num_split_realms;
1031	__le64 *split_inos = NULL, *split_realms = NULL;
1032	int i;
1033	int locked_rwsem = 0;
1034	bool close_sessions = false;
1035
1036	if (!ceph_inc_mds_stopping_blocker(mdsc, session))
1037		return;
1038
1039	/* decode */
1040	if (msg->front.iov_len < sizeof(*h))
1041		goto bad;
1042	h = p;
1043	op = le32_to_cpu(h->op);
1044	split = le64_to_cpu(h->split);   /* non-zero if we are splitting an
1045					  * existing realm */
1046	num_split_inos = le32_to_cpu(h->num_split_inos);
1047	num_split_realms = le32_to_cpu(h->num_split_realms);
1048	trace_len = le32_to_cpu(h->trace_len);
1049	p += sizeof(*h);
1050
1051	doutc(cl, "from mds%d op %s split %llx tracelen %d\n", mds,
1052	      ceph_snap_op_name(op), split, trace_len);
 
 
 
 
1053
1054	down_write(&mdsc->snap_rwsem);
1055	locked_rwsem = 1;
1056
1057	if (op == CEPH_SNAP_OP_SPLIT) {
1058		struct ceph_mds_snap_realm *ri;
1059
1060		/*
1061		 * A "split" breaks part of an existing realm off into
1062		 * a new realm.  The MDS provides a list of inodes
1063		 * (with caps) and child realms that belong to the new
1064		 * child.
1065		 */
1066		split_inos = p;
1067		p += sizeof(u64) * num_split_inos;
1068		split_realms = p;
1069		p += sizeof(u64) * num_split_realms;
1070		ceph_decode_need(&p, e, sizeof(*ri), bad);
1071		/* we will peek at realm info here, but will _not_
1072		 * advance p, as the realm update will occur below in
1073		 * ceph_update_snap_trace. */
1074		ri = p;
1075
1076		realm = ceph_lookup_snap_realm(mdsc, split);
1077		if (!realm) {
1078			realm = ceph_create_snap_realm(mdsc, split);
1079			if (IS_ERR(realm))
1080				goto out;
1081		}
 
1082
1083		doutc(cl, "splitting snap_realm %llx %p\n", realm->ino, realm);
1084		for (i = 0; i < num_split_inos; i++) {
1085			struct ceph_vino vino = {
1086				.ino = le64_to_cpu(split_inos[i]),
1087				.snap = CEPH_NOSNAP,
1088			};
1089			struct inode *inode = ceph_find_inode(sb, vino);
1090			struct ceph_inode_info *ci;
 
1091
1092			if (!inode)
1093				continue;
1094			ci = ceph_inode(inode);
1095
1096			spin_lock(&ci->i_ceph_lock);
1097			if (!ci->i_snap_realm)
1098				goto skip_inode;
1099			/*
1100			 * If this inode belongs to a realm that was
1101			 * created after our new realm, we experienced
1102			 * a race (due to another split notifications
1103			 * arriving from a different MDS).  So skip
1104			 * this inode.
1105			 */
1106			if (ci->i_snap_realm->created >
1107			    le64_to_cpu(ri->created)) {
1108				doutc(cl, " leaving %p %llx.%llx in newer realm %llx %p\n",
1109				      inode, ceph_vinop(inode), ci->i_snap_realm->ino,
1110				      ci->i_snap_realm);
1111				goto skip_inode;
1112			}
1113			doutc(cl, " will move %p %llx.%llx to split realm %llx %p\n",
1114			      inode, ceph_vinop(inode), realm->ino, realm);
 
 
 
 
 
 
 
 
 
 
 
1115
1116			ceph_get_snap_realm(mdsc, realm);
1117			ceph_change_snap_realm(inode, realm);
1118			spin_unlock(&ci->i_ceph_lock);
1119			iput(inode);
1120			continue;
1121
1122skip_inode:
1123			spin_unlock(&ci->i_ceph_lock);
1124			iput(inode);
1125		}
1126
1127		/* we may have taken some of the old realm's children. */
1128		for (i = 0; i < num_split_realms; i++) {
1129			struct ceph_snap_realm *child =
1130				__lookup_snap_realm(mdsc,
1131					   le64_to_cpu(split_realms[i]));
1132			if (!child)
1133				continue;
1134			adjust_snap_realm_parent(mdsc, child, realm->ino);
1135		}
1136	} else {
1137		/*
1138		 * In the non-split case both 'num_split_inos' and
1139		 * 'num_split_realms' should be 0, making this a no-op.
1140		 * However the MDS happens to populate 'split_realms' list
1141		 * in one of the UPDATE op cases by mistake.
1142		 *
1143		 * Skip both lists just in case to ensure that 'p' is
1144		 * positioned at the start of realm info, as expected by
1145		 * ceph_update_snap_trace().
1146		 */
1147		p += sizeof(u64) * num_split_inos;
1148		p += sizeof(u64) * num_split_realms;
1149	}
1150
1151	/*
1152	 * update using the provided snap trace. if we are deleting a
1153	 * snap, we can avoid queueing cap_snaps.
1154	 */
1155	if (ceph_update_snap_trace(mdsc, p, e,
1156				   op == CEPH_SNAP_OP_DESTROY,
1157				   NULL)) {
1158		close_sessions = true;
1159		goto bad;
1160	}
1161
1162	if (op == CEPH_SNAP_OP_SPLIT)
1163		/* we took a reference when we created the realm, above */
1164		ceph_put_snap_realm(mdsc, realm);
1165
1166	__cleanup_empty_realms(mdsc);
1167
1168	up_write(&mdsc->snap_rwsem);
1169
1170	flush_snaps(mdsc);
1171	ceph_dec_mds_stopping_blocker(mdsc);
1172	return;
1173
1174bad:
1175	pr_err_client(cl, "corrupt snap message from mds%d\n", mds);
1176	ceph_msg_dump(msg);
1177out:
1178	if (locked_rwsem)
1179		up_write(&mdsc->snap_rwsem);
1180
1181	ceph_dec_mds_stopping_blocker(mdsc);
1182
1183	if (close_sessions)
1184		ceph_mdsc_close_sessions(mdsc);
1185	return;
1186}
1187
1188struct ceph_snapid_map* ceph_get_snapid_map(struct ceph_mds_client *mdsc,
1189					    u64 snap)
1190{
1191	struct ceph_client *cl = mdsc->fsc->client;
1192	struct ceph_snapid_map *sm, *exist;
1193	struct rb_node **p, *parent;
1194	int ret;
1195
1196	exist = NULL;
1197	spin_lock(&mdsc->snapid_map_lock);
1198	p = &mdsc->snapid_map_tree.rb_node;
1199	while (*p) {
1200		exist = rb_entry(*p, struct ceph_snapid_map, node);
1201		if (snap > exist->snap) {
1202			p = &(*p)->rb_left;
1203		} else if (snap < exist->snap) {
1204			p = &(*p)->rb_right;
1205		} else {
1206			if (atomic_inc_return(&exist->ref) == 1)
1207				list_del_init(&exist->lru);
1208			break;
1209		}
1210		exist = NULL;
1211	}
1212	spin_unlock(&mdsc->snapid_map_lock);
1213	if (exist) {
1214		doutc(cl, "found snapid map %llx -> %x\n", exist->snap,
1215		      exist->dev);
1216		return exist;
1217	}
1218
1219	sm = kmalloc(sizeof(*sm), GFP_NOFS);
1220	if (!sm)
1221		return NULL;
1222
1223	ret = get_anon_bdev(&sm->dev);
1224	if (ret < 0) {
1225		kfree(sm);
1226		return NULL;
1227	}
1228
1229	INIT_LIST_HEAD(&sm->lru);
1230	atomic_set(&sm->ref, 1);
1231	sm->snap = snap;
1232
1233	exist = NULL;
1234	parent = NULL;
1235	p = &mdsc->snapid_map_tree.rb_node;
1236	spin_lock(&mdsc->snapid_map_lock);
1237	while (*p) {
1238		parent = *p;
1239		exist = rb_entry(*p, struct ceph_snapid_map, node);
1240		if (snap > exist->snap)
1241			p = &(*p)->rb_left;
1242		else if (snap < exist->snap)
1243			p = &(*p)->rb_right;
1244		else
1245			break;
1246		exist = NULL;
1247	}
1248	if (exist) {
1249		if (atomic_inc_return(&exist->ref) == 1)
1250			list_del_init(&exist->lru);
1251	} else {
1252		rb_link_node(&sm->node, parent, p);
1253		rb_insert_color(&sm->node, &mdsc->snapid_map_tree);
1254	}
1255	spin_unlock(&mdsc->snapid_map_lock);
1256	if (exist) {
1257		free_anon_bdev(sm->dev);
1258		kfree(sm);
1259		doutc(cl, "found snapid map %llx -> %x\n", exist->snap,
1260		      exist->dev);
1261		return exist;
1262	}
1263
1264	doutc(cl, "create snapid map %llx -> %x\n", sm->snap, sm->dev);
1265	return sm;
1266}
1267
1268void ceph_put_snapid_map(struct ceph_mds_client* mdsc,
1269			 struct ceph_snapid_map *sm)
1270{
1271	if (!sm)
1272		return;
1273	if (atomic_dec_and_lock(&sm->ref, &mdsc->snapid_map_lock)) {
1274		if (!RB_EMPTY_NODE(&sm->node)) {
1275			sm->last_used = jiffies;
1276			list_add_tail(&sm->lru, &mdsc->snapid_map_lru);
1277			spin_unlock(&mdsc->snapid_map_lock);
1278		} else {
1279			/* already cleaned up by
1280			 * ceph_cleanup_snapid_map() */
1281			spin_unlock(&mdsc->snapid_map_lock);
1282			kfree(sm);
1283		}
1284	}
1285}
1286
1287void ceph_trim_snapid_map(struct ceph_mds_client *mdsc)
1288{
1289	struct ceph_client *cl = mdsc->fsc->client;
1290	struct ceph_snapid_map *sm;
1291	unsigned long now;
1292	LIST_HEAD(to_free);
1293
1294	spin_lock(&mdsc->snapid_map_lock);
1295	now = jiffies;
1296
1297	while (!list_empty(&mdsc->snapid_map_lru)) {
1298		sm = list_first_entry(&mdsc->snapid_map_lru,
1299				      struct ceph_snapid_map, lru);
1300		if (time_after(sm->last_used + CEPH_SNAPID_MAP_TIMEOUT, now))
1301			break;
1302
1303		rb_erase(&sm->node, &mdsc->snapid_map_tree);
1304		list_move(&sm->lru, &to_free);
1305	}
1306	spin_unlock(&mdsc->snapid_map_lock);
1307
1308	while (!list_empty(&to_free)) {
1309		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1310		list_del(&sm->lru);
1311		doutc(cl, "trim snapid map %llx -> %x\n", sm->snap, sm->dev);
1312		free_anon_bdev(sm->dev);
1313		kfree(sm);
1314	}
1315}
1316
1317void ceph_cleanup_snapid_map(struct ceph_mds_client *mdsc)
1318{
1319	struct ceph_client *cl = mdsc->fsc->client;
1320	struct ceph_snapid_map *sm;
1321	struct rb_node *p;
1322	LIST_HEAD(to_free);
1323
1324	spin_lock(&mdsc->snapid_map_lock);
1325	while ((p = rb_first(&mdsc->snapid_map_tree))) {
1326		sm = rb_entry(p, struct ceph_snapid_map, node);
1327		rb_erase(p, &mdsc->snapid_map_tree);
1328		RB_CLEAR_NODE(p);
1329		list_move(&sm->lru, &to_free);
1330	}
1331	spin_unlock(&mdsc->snapid_map_lock);
1332
1333	while (!list_empty(&to_free)) {
1334		sm = list_first_entry(&to_free, struct ceph_snapid_map, lru);
1335		list_del(&sm->lru);
1336		free_anon_bdev(sm->dev);
1337		if (WARN_ON_ONCE(atomic_read(&sm->ref))) {
1338			pr_err_client(cl, "snapid map %llx -> %x still in use\n",
1339				      sm->snap, sm->dev);
1340		}
1341		kfree(sm);
1342	}
1343}