Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/****************************************************************************
  3 * Driver for Solarflare network controllers and boards
  4 * Copyright 2005-2006 Fen Systems Ltd.
  5 * Copyright 2005-2013 Solarflare Communications Inc.
  6 */
  7
  8#include <linux/pci.h>
  9#include <linux/tcp.h>
 10#include <linux/ip.h>
 11#include <linux/in.h>
 12#include <linux/ipv6.h>
 13#include <linux/slab.h>
 14#include <net/ipv6.h>
 15#include <linux/if_ether.h>
 16#include <linux/highmem.h>
 17#include <linux/cache.h>
 18#include "net_driver.h"
 19#include "efx.h"
 20#include "io.h"
 21#include "nic.h"
 22#include "tx.h"
 23#include "tx_common.h"
 24#include "workarounds.h"
 25#include "ef10_regs.h"
 26
 27#ifdef EFX_USE_PIO
 28
 29#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
 30unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
 31
 32#endif /* EFX_USE_PIO */
 33
 34static inline u8 *efx_tx_get_copy_buffer(struct efx_tx_queue *tx_queue,
 35					 struct efx_tx_buffer *buffer)
 36{
 37	unsigned int index = efx_tx_queue_get_insert_index(tx_queue);
 38	struct efx_buffer *page_buf =
 39		&tx_queue->cb_page[index >> (PAGE_SHIFT - EFX_TX_CB_ORDER)];
 40	unsigned int offset =
 41		((index << EFX_TX_CB_ORDER) + NET_IP_ALIGN) & (PAGE_SIZE - 1);
 42
 43	if (unlikely(!page_buf->addr) &&
 44	    efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
 45				 GFP_ATOMIC))
 46		return NULL;
 47	buffer->dma_addr = page_buf->dma_addr + offset;
 48	buffer->unmap_len = 0;
 49	return (u8 *)page_buf->addr + offset;
 50}
 51
 52static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
 53{
 54	/* We need to consider all queues that the net core sees as one */
 55	struct efx_nic *efx = txq1->efx;
 56	struct efx_tx_queue *txq2;
 57	unsigned int fill_level;
 58
 59	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
 60	if (likely(fill_level < efx->txq_stop_thresh))
 61		return;
 62
 63	/* We used the stale old_read_count above, which gives us a
 64	 * pessimistic estimate of the fill level (which may even
 65	 * validly be >= efx->txq_entries).  Now try again using
 66	 * read_count (more likely to be a cache miss).
 67	 *
 68	 * If we read read_count and then conditionally stop the
 69	 * queue, it is possible for the completion path to race with
 70	 * us and complete all outstanding descriptors in the middle,
 71	 * after which there will be no more completions to wake it.
 72	 * Therefore we stop the queue first, then read read_count
 73	 * (with a memory barrier to ensure the ordering), then
 74	 * restart the queue if the fill level turns out to be low
 75	 * enough.
 76	 */
 77	netif_tx_stop_queue(txq1->core_txq);
 78	smp_mb();
 79	efx_for_each_channel_tx_queue(txq2, txq1->channel)
 80		txq2->old_read_count = READ_ONCE(txq2->read_count);
 81
 82	fill_level = efx_channel_tx_old_fill_level(txq1->channel);
 83	EFX_WARN_ON_ONCE_PARANOID(fill_level >= efx->txq_entries);
 84	if (likely(fill_level < efx->txq_stop_thresh)) {
 85		smp_mb();
 86		if (likely(!efx->loopback_selftest))
 87			netif_tx_start_queue(txq1->core_txq);
 88	}
 89}
 90
 91static int efx_enqueue_skb_copy(struct efx_tx_queue *tx_queue,
 92				struct sk_buff *skb)
 93{
 94	unsigned int copy_len = skb->len;
 95	struct efx_tx_buffer *buffer;
 96	u8 *copy_buffer;
 97	int rc;
 98
 99	EFX_WARN_ON_ONCE_PARANOID(copy_len > EFX_TX_CB_SIZE);
100
101	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
102
103	copy_buffer = efx_tx_get_copy_buffer(tx_queue, buffer);
104	if (unlikely(!copy_buffer))
105		return -ENOMEM;
106
107	rc = skb_copy_bits(skb, 0, copy_buffer, copy_len);
108	EFX_WARN_ON_PARANOID(rc);
109	buffer->len = copy_len;
110
111	buffer->skb = skb;
112	buffer->flags = EFX_TX_BUF_SKB;
113
114	++tx_queue->insert_count;
115	return rc;
116}
117
118#ifdef EFX_USE_PIO
119
120struct efx_short_copy_buffer {
121	int used;
122	u8 buf[L1_CACHE_BYTES];
123};
124
125/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
126 * Advances piobuf pointer. Leaves additional data in the copy buffer.
127 */
128static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
129				    u8 *data, int len,
130				    struct efx_short_copy_buffer *copy_buf)
131{
132	int block_len = len & ~(sizeof(copy_buf->buf) - 1);
133
134	__iowrite64_copy(*piobuf, data, block_len >> 3);
135	*piobuf += block_len;
136	len -= block_len;
137
138	if (len) {
139		data += block_len;
140		BUG_ON(copy_buf->used);
141		BUG_ON(len > sizeof(copy_buf->buf));
142		memcpy(copy_buf->buf, data, len);
143		copy_buf->used = len;
144	}
145}
146
147/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
148 * Advances piobuf pointer. Leaves additional data in the copy buffer.
149 */
150static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
151				       u8 *data, int len,
152				       struct efx_short_copy_buffer *copy_buf)
153{
154	if (copy_buf->used) {
155		/* if the copy buffer is partially full, fill it up and write */
156		int copy_to_buf =
157			min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
158
159		memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
160		copy_buf->used += copy_to_buf;
161
162		/* if we didn't fill it up then we're done for now */
163		if (copy_buf->used < sizeof(copy_buf->buf))
164			return;
165
166		__iowrite64_copy(*piobuf, copy_buf->buf,
167				 sizeof(copy_buf->buf) >> 3);
168		*piobuf += sizeof(copy_buf->buf);
169		data += copy_to_buf;
170		len -= copy_to_buf;
171		copy_buf->used = 0;
172	}
173
174	efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
175}
176
177static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
178				  struct efx_short_copy_buffer *copy_buf)
179{
180	/* if there's anything in it, write the whole buffer, including junk */
181	if (copy_buf->used)
182		__iowrite64_copy(piobuf, copy_buf->buf,
183				 sizeof(copy_buf->buf) >> 3);
184}
185
186/* Traverse skb structure and copy fragments in to PIO buffer.
187 * Advances piobuf pointer.
188 */
189static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
190				     u8 __iomem **piobuf,
191				     struct efx_short_copy_buffer *copy_buf)
192{
193	int i;
194
195	efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
196				copy_buf);
197
198	for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
199		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
200		u8 *vaddr;
201
202		vaddr = kmap_local_page(skb_frag_page(f));
203
204		efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + skb_frag_off(f),
205					   skb_frag_size(f), copy_buf);
206		kunmap_local(vaddr);
207	}
208
209	EFX_WARN_ON_ONCE_PARANOID(skb_shinfo(skb)->frag_list);
210}
211
212static int efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue,
213			       struct sk_buff *skb)
214{
215	struct efx_tx_buffer *buffer =
216		efx_tx_queue_get_insert_buffer(tx_queue);
217	u8 __iomem *piobuf = tx_queue->piobuf;
218
219	/* Copy to PIO buffer. Ensure the writes are padded to the end
220	 * of a cache line, as this is required for write-combining to be
221	 * effective on at least x86.
222	 */
223
224	if (skb_shinfo(skb)->nr_frags) {
225		/* The size of the copy buffer will ensure all writes
226		 * are the size of a cache line.
227		 */
228		struct efx_short_copy_buffer copy_buf;
229
230		copy_buf.used = 0;
231
232		efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
233					 &piobuf, &copy_buf);
234		efx_flush_copy_buffer(tx_queue->efx, piobuf, &copy_buf);
235	} else {
236		/* Pad the write to the size of a cache line.
237		 * We can do this because we know the skb_shared_info struct is
238		 * after the source, and the destination buffer is big enough.
239		 */
240		BUILD_BUG_ON(L1_CACHE_BYTES >
241			     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
242		__iowrite64_copy(tx_queue->piobuf, skb->data,
243				 ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
244	}
245
246	buffer->skb = skb;
247	buffer->flags = EFX_TX_BUF_SKB | EFX_TX_BUF_OPTION;
248
249	EFX_POPULATE_QWORD_5(buffer->option,
250			     ESF_DZ_TX_DESC_IS_OPT, 1,
251			     ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
252			     ESF_DZ_TX_PIO_CONT, 0,
253			     ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
254			     ESF_DZ_TX_PIO_BUF_ADDR,
255			     tx_queue->piobuf_offset);
256	++tx_queue->insert_count;
257	return 0;
258}
259
260/* Decide whether we can use TX PIO, ie. write packet data directly into
261 * a buffer on the device.  This can reduce latency at the expense of
262 * throughput, so we only do this if both hardware and software TX rings
263 * are empty, including all queues for the channel.  This also ensures that
264 * only one packet at a time can be using the PIO buffer. If the xmit_more
265 * flag is set then we don't use this - there'll be another packet along
266 * shortly and we want to hold off the doorbell.
267 */
268static bool efx_tx_may_pio(struct efx_tx_queue *tx_queue)
269{
270	struct efx_channel *channel = tx_queue->channel;
271
272	if (!tx_queue->piobuf)
273		return false;
274
275	EFX_WARN_ON_ONCE_PARANOID(!channel->efx->type->option_descriptors);
276
277	efx_for_each_channel_tx_queue(tx_queue, channel)
278		if (!efx_nic_tx_is_empty(tx_queue, tx_queue->packet_write_count))
279			return false;
280
281	return true;
282}
283#endif /* EFX_USE_PIO */
284
285/* Send any pending traffic for a channel. xmit_more is shared across all
286 * queues for a channel, so we must check all of them.
287 */
288static void efx_tx_send_pending(struct efx_channel *channel)
289{
290	struct efx_tx_queue *q;
291
292	efx_for_each_channel_tx_queue(q, channel) {
293		if (q->xmit_pending)
294			efx_nic_push_buffers(q);
295	}
296}
297
298/*
299 * Add a socket buffer to a TX queue
300 *
301 * This maps all fragments of a socket buffer for DMA and adds them to
302 * the TX queue.  The queue's insert pointer will be incremented by
303 * the number of fragments in the socket buffer.
304 *
305 * If any DMA mapping fails, any mapped fragments will be unmapped,
306 * the queue's insert pointer will be restored to its original value.
307 *
308 * This function is split out from efx_hard_start_xmit to allow the
309 * loopback test to direct packets via specific TX queues.
310 *
311 * Returns NETDEV_TX_OK.
312 * You must hold netif_tx_lock() to call this function.
313 */
314netdev_tx_t __efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
315{
316	unsigned int old_insert_count = tx_queue->insert_count;
317	bool xmit_more = netdev_xmit_more();
318	bool data_mapped = false;
319	unsigned int segments;
320	unsigned int skb_len;
321	int rc;
322
323	skb_len = skb->len;
324	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
325	if (segments == 1)
326		segments = 0; /* Don't use TSO for a single segment. */
327
328	/* Handle TSO first - it's *possible* (although unlikely) that we might
329	 * be passed a packet to segment that's smaller than the copybreak/PIO
330	 * size limit.
331	 */
332	if (segments) {
333		switch (tx_queue->tso_version) {
334		case 1:
335			rc = efx_enqueue_skb_tso(tx_queue, skb, &data_mapped);
336			break;
337		case 2:
338			rc = efx_ef10_tx_tso_desc(tx_queue, skb, &data_mapped);
339			break;
340		case 0: /* No TSO on this queue, SW fallback needed */
341		default:
342			rc = -EINVAL;
343			break;
344		}
345		if (rc == -EINVAL) {
346			rc = efx_tx_tso_fallback(tx_queue, skb);
347			tx_queue->tso_fallbacks++;
348			if (rc == 0)
349				return 0;
350		}
351		if (rc)
352			goto err;
353#ifdef EFX_USE_PIO
354	} else if (skb_len <= efx_piobuf_size && !xmit_more &&
355		   efx_tx_may_pio(tx_queue)) {
356		/* Use PIO for short packets with an empty queue. */
357		if (efx_enqueue_skb_pio(tx_queue, skb))
358			goto err;
359		tx_queue->pio_packets++;
360		data_mapped = true;
361#endif
362	} else if (skb->data_len && skb_len <= EFX_TX_CB_SIZE) {
363		/* Pad short packets or coalesce short fragmented packets. */
364		if (efx_enqueue_skb_copy(tx_queue, skb))
365			goto err;
366		tx_queue->cb_packets++;
367		data_mapped = true;
368	}
369
370	/* Map for DMA and create descriptors if we haven't done so already. */
371	if (!data_mapped && (efx_tx_map_data(tx_queue, skb, segments)))
372		goto err;
373
374	efx_tx_maybe_stop_queue(tx_queue);
375
376	tx_queue->xmit_pending = true;
377
378	/* Pass off to hardware */
379	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb_len, xmit_more))
380		efx_tx_send_pending(tx_queue->channel);
381
382	if (segments) {
383		tx_queue->tso_bursts++;
384		tx_queue->tso_packets += segments;
385		tx_queue->tx_packets  += segments;
386	} else {
387		tx_queue->tx_packets++;
388	}
389
390	return NETDEV_TX_OK;
391
392
393err:
394	efx_enqueue_unwind(tx_queue, old_insert_count);
395	dev_kfree_skb_any(skb);
396
397	/* If we're not expecting another transmit and we had something to push
398	 * on this queue or a partner queue then we need to push here to get the
399	 * previous packets out.
400	 */
401	if (!xmit_more)
402		efx_tx_send_pending(tx_queue->channel);
403
404	return NETDEV_TX_OK;
405}
406
407/* Transmit a packet from an XDP buffer
408 *
409 * Returns number of packets sent on success, error code otherwise.
410 * Runs in NAPI context, either in our poll (for XDP TX) or a different NIC
411 * (for XDP redirect).
412 */
413int efx_xdp_tx_buffers(struct efx_nic *efx, int n, struct xdp_frame **xdpfs,
414		       bool flush)
415{
416	struct efx_tx_buffer *tx_buffer;
417	struct efx_tx_queue *tx_queue;
418	struct xdp_frame *xdpf;
419	dma_addr_t dma_addr;
420	unsigned int len;
421	int space;
422	int cpu;
423	int i = 0;
424
425	if (unlikely(n && !xdpfs))
426		return -EINVAL;
427	if (unlikely(!n))
428		return 0;
429
430	cpu = raw_smp_processor_id();
431	if (unlikely(cpu >= efx->xdp_tx_queue_count))
432		return -EINVAL;
433
434	tx_queue = efx->xdp_tx_queues[cpu];
435	if (unlikely(!tx_queue))
436		return -EINVAL;
437
438	if (!tx_queue->initialised)
439		return -EINVAL;
440
441	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
442		HARD_TX_LOCK(efx->net_dev, tx_queue->core_txq, cpu);
443
444	/* If we're borrowing net stack queues we have to handle stop-restart
445	 * or we might block the queue and it will be considered as frozen
446	 */
447	if (efx->xdp_txq_queues_mode == EFX_XDP_TX_QUEUES_BORROWED) {
448		if (netif_tx_queue_stopped(tx_queue->core_txq))
449			goto unlock;
450		efx_tx_maybe_stop_queue(tx_queue);
451	}
452
453	/* Check for available space. We should never need multiple
454	 * descriptors per frame.
455	 */
456	space = efx->txq_entries +
457		tx_queue->read_count - tx_queue->insert_count;
458
459	for (i = 0; i < n; i++) {
460		xdpf = xdpfs[i];
461
462		if (i >= space)
463			break;
464
465		/* We'll want a descriptor for this tx. */
466		prefetchw(__efx_tx_queue_get_insert_buffer(tx_queue));
467
468		len = xdpf->len;
469
470		/* Map for DMA. */
471		dma_addr = dma_map_single(&efx->pci_dev->dev,
472					  xdpf->data, len,
473					  DMA_TO_DEVICE);
474		if (dma_mapping_error(&efx->pci_dev->dev, dma_addr))
475			break;
476
477		/*  Create descriptor and set up for unmapping DMA. */
478		tx_buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
479		tx_buffer->xdpf = xdpf;
480		tx_buffer->flags = EFX_TX_BUF_XDP |
481				   EFX_TX_BUF_MAP_SINGLE;
482		tx_buffer->dma_offset = 0;
483		tx_buffer->unmap_len = len;
484		tx_queue->tx_packets++;
485	}
486
487	/* Pass mapped frames to hardware. */
488	if (flush && i > 0)
489		efx_nic_push_buffers(tx_queue);
490
491unlock:
492	if (efx->xdp_txq_queues_mode != EFX_XDP_TX_QUEUES_DEDICATED)
493		HARD_TX_UNLOCK(efx->net_dev, tx_queue->core_txq);
494
495	return i == 0 ? -EIO : i;
496}
497
498/* Initiate a packet transmission.  We use one channel per CPU
499 * (sharing when we have more CPUs than channels).
500 *
501 * Context: non-blocking.
502 * Should always return NETDEV_TX_OK and consume the skb.
503 */
504netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
505				struct net_device *net_dev)
506{
507	struct efx_nic *efx = efx_netdev_priv(net_dev);
508	struct efx_tx_queue *tx_queue;
509	unsigned index, type;
510
511	EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
512	index = skb_get_queue_mapping(skb);
513	type = efx_tx_csum_type_skb(skb);
514
515	/* PTP "event" packet */
516	if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
517	    ((efx_ptp_use_mac_tx_timestamps(efx) && efx->ptp_data) ||
518	    unlikely(efx_ptp_is_ptp_tx(efx, skb)))) {
519		/* There may be existing transmits on the channel that are
520		 * waiting for this packet to trigger the doorbell write.
521		 * We need to send the packets at this point.
522		 */
523		efx_tx_send_pending(efx_get_tx_channel(efx, index));
524		return efx_ptp_tx(efx, skb);
525	}
526
527	tx_queue = efx_get_tx_queue(efx, index, type);
528	if (WARN_ON_ONCE(!tx_queue)) {
529		/* We don't have a TXQ of the right type.
530		 * This should never happen, as we don't advertise offload
531		 * features unless we can support them.
532		 */
533		dev_kfree_skb_any(skb);
534		/* If we're not expecting another transmit and we had something to push
535		 * on this queue or a partner queue then we need to push here to get the
536		 * previous packets out.
537		 */
538		if (!netdev_xmit_more())
539			efx_tx_send_pending(efx_get_tx_channel(efx, index));
540		return NETDEV_TX_OK;
541	}
542
543	return __efx_enqueue_skb(tx_queue, skb);
544}
545
546void efx_xmit_done_single(struct efx_tx_queue *tx_queue)
547{
548	unsigned int xdp_pkts_compl = 0, xdp_bytes_compl = 0;
549	unsigned int pkts_compl = 0, bytes_compl = 0;
550	unsigned int efv_pkts_compl = 0;
551	unsigned int read_ptr;
552	bool finished = false;
553
554	read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
555
556	while (!finished) {
557		struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
558
559		if (!efx_tx_buffer_in_use(buffer)) {
560			struct efx_nic *efx = tx_queue->efx;
561
562			netif_err(efx, hw, efx->net_dev,
563				  "TX queue %d spurious single TX completion\n",
564				  tx_queue->queue);
565			efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
566			return;
567		}
568
569		/* Need to check the flag before dequeueing. */
570		if (buffer->flags & EFX_TX_BUF_SKB)
571			finished = true;
572		efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl,
573				   &efv_pkts_compl, &xdp_pkts_compl,
574				   &xdp_bytes_compl);
575
576		++tx_queue->read_count;
577		read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
578	}
579
580	tx_queue->pkts_compl += pkts_compl;
581	tx_queue->bytes_compl += bytes_compl;
582	tx_queue->complete_xdp_packets += xdp_pkts_compl;
583	tx_queue->complete_xdp_bytes += xdp_bytes_compl;
584
585	EFX_WARN_ON_PARANOID(pkts_compl + efv_pkts_compl != 1);
586
587	efx_xmit_done_check_empty(tx_queue);
588}
589
590void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
591{
592	struct efx_nic *efx = tx_queue->efx;
593
594	/* Must be inverse of queue lookup in efx_hard_start_xmit() */
595	tx_queue->core_txq =
596		netdev_get_tx_queue(efx->net_dev,
597				    tx_queue->channel->channel);
598}