Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
 
   6 * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
   7 */
   8
   9/*
  10 * Cross Partition Communication (XPC) support - standard version.
  11 *
  12 *	XPC provides a message passing capability that crosses partition
  13 *	boundaries. This module is made up of two parts:
  14 *
  15 *	    partition	This part detects the presence/absence of other
  16 *			partitions. It provides a heartbeat and monitors
  17 *			the heartbeats of other partitions.
  18 *
  19 *	    channel	This part manages the channels and sends/receives
  20 *			messages across them to/from other partitions.
  21 *
  22 *	There are a couple of additional functions residing in XP, which
  23 *	provide an interface to XPC for its users.
  24 *
  25 *
  26 *	Caveats:
  27 *
  28 *	  . Currently on sn2, we have no way to determine which nasid an IRQ
  29 *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
  30 *	    followed by an IPI. The amo indicates where data is to be pulled
  31 *	    from, so after the IPI arrives, the remote partition checks the amo
  32 *	    word. The IPI can actually arrive before the amo however, so other
  33 *	    code must periodically check for this case. Also, remote amo
  34 *	    operations do not reliably time out. Thus we do a remote PIO read
  35 *	    solely to know whether the remote partition is down and whether we
  36 *	    should stop sending IPIs to it. This remote PIO read operation is
  37 *	    set up in a special nofault region so SAL knows to ignore (and
  38 *	    cleanup) any errors due to the remote amo write, PIO read, and/or
  39 *	    PIO write operations.
  40 *
  41 *	    If/when new hardware solves this IPI problem, we should abandon
  42 *	    the current approach.
  43 *
  44 */
  45
  46#include <linux/module.h>
  47#include <linux/slab.h>
  48#include <linux/sysctl.h>
  49#include <linux/device.h>
  50#include <linux/delay.h>
  51#include <linux/reboot.h>
  52#include <linux/kdebug.h>
  53#include <linux/kthread.h>
  54#include "xpc.h"
  55
 
 
 
 
  56/* define two XPC debug device structures to be used with dev_dbg() et al */
  57
  58struct device_driver xpc_dbg_name = {
  59	.name = "xpc"
  60};
  61
  62struct device xpc_part_dbg_subname = {
  63	.init_name = "",	/* set to "part" at xpc_init() time */
  64	.driver = &xpc_dbg_name
  65};
  66
  67struct device xpc_chan_dbg_subname = {
  68	.init_name = "",	/* set to "chan" at xpc_init() time */
  69	.driver = &xpc_dbg_name
  70};
  71
  72struct device *xpc_part = &xpc_part_dbg_subname;
  73struct device *xpc_chan = &xpc_chan_dbg_subname;
  74
  75static int xpc_kdebug_ignore;
  76
  77/* systune related variables for /proc/sys directories */
  78
  79static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
  80static int xpc_hb_min_interval = 1;
  81static int xpc_hb_max_interval = 10;
  82
  83static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
  84static int xpc_hb_check_min_interval = 10;
  85static int xpc_hb_check_max_interval = 120;
  86
  87int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
  88static int xpc_disengage_min_timelimit;	/* = 0 */
  89static int xpc_disengage_max_timelimit = 120;
  90
  91static ctl_table xpc_sys_xpc_hb_dir[] = {
  92	{
  93	 .procname = "hb_interval",
  94	 .data = &xpc_hb_interval,
  95	 .maxlen = sizeof(int),
  96	 .mode = 0644,
  97	 .proc_handler = proc_dointvec_minmax,
  98	 .extra1 = &xpc_hb_min_interval,
  99	 .extra2 = &xpc_hb_max_interval},
 100	{
 101	 .procname = "hb_check_interval",
 102	 .data = &xpc_hb_check_interval,
 103	 .maxlen = sizeof(int),
 104	 .mode = 0644,
 105	 .proc_handler = proc_dointvec_minmax,
 106	 .extra1 = &xpc_hb_check_min_interval,
 107	 .extra2 = &xpc_hb_check_max_interval},
 108	{}
 109};
 110static ctl_table xpc_sys_xpc_dir[] = {
 111	{
 112	 .procname = "hb",
 113	 .mode = 0555,
 114	 .child = xpc_sys_xpc_hb_dir},
 115	{
 116	 .procname = "disengage_timelimit",
 117	 .data = &xpc_disengage_timelimit,
 118	 .maxlen = sizeof(int),
 119	 .mode = 0644,
 120	 .proc_handler = proc_dointvec_minmax,
 121	 .extra1 = &xpc_disengage_min_timelimit,
 122	 .extra2 = &xpc_disengage_max_timelimit},
 123	{}
 124};
 125static ctl_table xpc_sys_dir[] = {
 126	{
 127	 .procname = "xpc",
 128	 .mode = 0555,
 129	 .child = xpc_sys_xpc_dir},
 130	{}
 131};
 
 132static struct ctl_table_header *xpc_sysctl;
 
 133
 134/* non-zero if any remote partition disengage was timed out */
 135int xpc_disengage_timedout;
 136
 137/* #of activate IRQs received and not yet processed */
 138int xpc_activate_IRQ_rcvd;
 139DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
 140
 141/* IRQ handler notifies this wait queue on receipt of an IRQ */
 142DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
 143
 144static unsigned long xpc_hb_check_timeout;
 145static struct timer_list xpc_hb_timer;
 146
 147/* notification that the xpc_hb_checker thread has exited */
 148static DECLARE_COMPLETION(xpc_hb_checker_exited);
 149
 150/* notification that the xpc_discovery thread has exited */
 151static DECLARE_COMPLETION(xpc_discovery_exited);
 152
 153static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
 154
 155static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
 156static struct notifier_block xpc_reboot_notifier = {
 157	.notifier_call = xpc_system_reboot,
 158};
 159
 160static int xpc_system_die(struct notifier_block *, unsigned long, void *);
 161static struct notifier_block xpc_die_notifier = {
 162	.notifier_call = xpc_system_die,
 163};
 164
 165struct xpc_arch_operations xpc_arch_ops;
 166
 167/*
 168 * Timer function to enforce the timelimit on the partition disengage.
 169 */
 170static void
 171xpc_timeout_partition_disengage(unsigned long data)
 172{
 173	struct xpc_partition *part = (struct xpc_partition *)data;
 174
 175	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
 176
 177	(void)xpc_partition_disengaged(part);
 178
 179	DBUG_ON(part->disengage_timeout != 0);
 180	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
 181}
 182
 183/*
 184 * Timer to produce the heartbeat.  The timer structures function is
 185 * already set when this is initially called.  A tunable is used to
 186 * specify when the next timeout should occur.
 187 */
 188static void
 189xpc_hb_beater(unsigned long dummy)
 190{
 191	xpc_arch_ops.increment_heartbeat();
 192
 193	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
 194		wake_up_interruptible(&xpc_activate_IRQ_wq);
 195
 196	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
 197	add_timer(&xpc_hb_timer);
 198}
 199
 200static void
 201xpc_start_hb_beater(void)
 202{
 203	xpc_arch_ops.heartbeat_init();
 204	init_timer(&xpc_hb_timer);
 205	xpc_hb_timer.function = xpc_hb_beater;
 206	xpc_hb_beater(0);
 207}
 208
 209static void
 210xpc_stop_hb_beater(void)
 211{
 212	del_timer_sync(&xpc_hb_timer);
 213	xpc_arch_ops.heartbeat_exit();
 214}
 215
 216/*
 217 * At periodic intervals, scan through all active partitions and ensure
 218 * their heartbeat is still active.  If not, the partition is deactivated.
 219 */
 220static void
 221xpc_check_remote_hb(void)
 222{
 223	struct xpc_partition *part;
 224	short partid;
 225	enum xp_retval ret;
 226
 227	for (partid = 0; partid < xp_max_npartitions; partid++) {
 228
 229		if (xpc_exiting)
 230			break;
 231
 232		if (partid == xp_partition_id)
 233			continue;
 234
 235		part = &xpc_partitions[partid];
 236
 237		if (part->act_state == XPC_P_AS_INACTIVE ||
 238		    part->act_state == XPC_P_AS_DEACTIVATING) {
 239			continue;
 240		}
 241
 242		ret = xpc_arch_ops.get_remote_heartbeat(part);
 243		if (ret != xpSuccess)
 244			XPC_DEACTIVATE_PARTITION(part, ret);
 245	}
 246}
 247
 248/*
 249 * This thread is responsible for nearly all of the partition
 250 * activation/deactivation.
 251 */
 252static int
 253xpc_hb_checker(void *ignore)
 254{
 255	int force_IRQ = 0;
 256
 257	/* this thread was marked active by xpc_hb_init() */
 258
 259	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
 260
 261	/* set our heartbeating to other partitions into motion */
 262	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
 263	xpc_start_hb_beater();
 264
 265	while (!xpc_exiting) {
 266
 267		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
 268			"been received\n",
 269			(int)(xpc_hb_check_timeout - jiffies),
 270			xpc_activate_IRQ_rcvd);
 271
 272		/* checking of remote heartbeats is skewed by IRQ handling */
 273		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
 274			xpc_hb_check_timeout = jiffies +
 275			    (xpc_hb_check_interval * HZ);
 276
 277			dev_dbg(xpc_part, "checking remote heartbeats\n");
 278			xpc_check_remote_hb();
 279
 280			/*
 281			 * On sn2 we need to periodically recheck to ensure no
 282			 * IRQ/amo pairs have been missed.
 283			 */
 284			if (is_shub())
 285				force_IRQ = 1;
 286		}
 287
 288		/* check for outstanding IRQs */
 289		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
 290			force_IRQ = 0;
 291			dev_dbg(xpc_part, "processing activate IRQs "
 292				"received\n");
 293			xpc_arch_ops.process_activate_IRQ_rcvd();
 294		}
 295
 296		/* wait for IRQ or timeout */
 297		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
 298					       (time_is_before_eq_jiffies(
 299						xpc_hb_check_timeout) ||
 300						xpc_activate_IRQ_rcvd > 0 ||
 301						xpc_exiting));
 302	}
 303
 304	xpc_stop_hb_beater();
 305
 306	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
 307
 308	/* mark this thread as having exited */
 309	complete(&xpc_hb_checker_exited);
 310	return 0;
 311}
 312
 313/*
 314 * This thread will attempt to discover other partitions to activate
 315 * based on info provided by SAL. This new thread is short lived and
 316 * will exit once discovery is complete.
 317 */
 318static int
 319xpc_initiate_discovery(void *ignore)
 320{
 321	xpc_discovery();
 322
 323	dev_dbg(xpc_part, "discovery thread is exiting\n");
 324
 325	/* mark this thread as having exited */
 326	complete(&xpc_discovery_exited);
 327	return 0;
 328}
 329
 330/*
 331 * The first kthread assigned to a newly activated partition is the one
 332 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
 333 * that kthread until the partition is brought down, at which time that kthread
 334 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
 335 * that XPC has dismantled all communication infrastructure for the associated
 336 * partition.) This kthread becomes the channel manager for that partition.
 337 *
 338 * Each active partition has a channel manager, who, besides connecting and
 339 * disconnecting channels, will ensure that each of the partition's connected
 340 * channels has the required number of assigned kthreads to get the work done.
 341 */
 342static void
 343xpc_channel_mgr(struct xpc_partition *part)
 344{
 345	while (part->act_state != XPC_P_AS_DEACTIVATING ||
 346	       atomic_read(&part->nchannels_active) > 0 ||
 347	       !xpc_partition_disengaged(part)) {
 348
 349		xpc_process_sent_chctl_flags(part);
 350
 351		/*
 352		 * Wait until we've been requested to activate kthreads or
 353		 * all of the channel's message queues have been torn down or
 354		 * a signal is pending.
 355		 *
 356		 * The channel_mgr_requests is set to 1 after being awakened,
 357		 * This is done to prevent the channel mgr from making one pass
 358		 * through the loop for each request, since he will
 359		 * be servicing all the requests in one pass. The reason it's
 360		 * set to 1 instead of 0 is so that other kthreads will know
 361		 * that the channel mgr is running and won't bother trying to
 362		 * wake him up.
 363		 */
 364		atomic_dec(&part->channel_mgr_requests);
 365		(void)wait_event_interruptible(part->channel_mgr_wq,
 366				(atomic_read(&part->channel_mgr_requests) > 0 ||
 367				 part->chctl.all_flags != 0 ||
 368				 (part->act_state == XPC_P_AS_DEACTIVATING &&
 369				 atomic_read(&part->nchannels_active) == 0 &&
 370				 xpc_partition_disengaged(part))));
 371		atomic_set(&part->channel_mgr_requests, 1);
 372	}
 373}
 374
 375/*
 376 * Guarantee that the kzalloc'd memory is cacheline aligned.
 377 */
 378void *
 379xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
 380{
 381	/* see if kzalloc will give us cachline aligned memory by default */
 382	*base = kzalloc(size, flags);
 383	if (*base == NULL)
 384		return NULL;
 385
 386	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
 387		return *base;
 388
 389	kfree(*base);
 390
 391	/* nope, we'll have to do it ourselves */
 392	*base = kzalloc(size + L1_CACHE_BYTES, flags);
 393	if (*base == NULL)
 394		return NULL;
 395
 396	return (void *)L1_CACHE_ALIGN((u64)*base);
 397}
 398
 399/*
 400 * Setup the channel structures necessary to support XPartition Communication
 401 * between the specified remote partition and the local one.
 402 */
 403static enum xp_retval
 404xpc_setup_ch_structures(struct xpc_partition *part)
 405{
 406	enum xp_retval ret;
 407	int ch_number;
 408	struct xpc_channel *ch;
 409	short partid = XPC_PARTID(part);
 410
 411	/*
 412	 * Allocate all of the channel structures as a contiguous chunk of
 413	 * memory.
 414	 */
 415	DBUG_ON(part->channels != NULL);
 416	part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
 
 417				 GFP_KERNEL);
 418	if (part->channels == NULL) {
 419		dev_err(xpc_chan, "can't get memory for channels\n");
 420		return xpNoMemory;
 421	}
 422
 423	/* allocate the remote open and close args */
 424
 425	part->remote_openclose_args =
 426	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
 427					  GFP_KERNEL, &part->
 428					  remote_openclose_args_base);
 429	if (part->remote_openclose_args == NULL) {
 430		dev_err(xpc_chan, "can't get memory for remote connect args\n");
 431		ret = xpNoMemory;
 432		goto out_1;
 433	}
 434
 435	part->chctl.all_flags = 0;
 436	spin_lock_init(&part->chctl_lock);
 437
 438	atomic_set(&part->channel_mgr_requests, 1);
 439	init_waitqueue_head(&part->channel_mgr_wq);
 440
 441	part->nchannels = XPC_MAX_NCHANNELS;
 442
 443	atomic_set(&part->nchannels_active, 0);
 444	atomic_set(&part->nchannels_engaged, 0);
 445
 446	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
 447		ch = &part->channels[ch_number];
 448
 449		ch->partid = partid;
 450		ch->number = ch_number;
 451		ch->flags = XPC_C_DISCONNECTED;
 452
 453		atomic_set(&ch->kthreads_assigned, 0);
 454		atomic_set(&ch->kthreads_idle, 0);
 455		atomic_set(&ch->kthreads_active, 0);
 456
 457		atomic_set(&ch->references, 0);
 458		atomic_set(&ch->n_to_notify, 0);
 459
 460		spin_lock_init(&ch->lock);
 461		init_completion(&ch->wdisconnect_wait);
 462
 463		atomic_set(&ch->n_on_msg_allocate_wq, 0);
 464		init_waitqueue_head(&ch->msg_allocate_wq);
 465		init_waitqueue_head(&ch->idle_wq);
 466	}
 467
 468	ret = xpc_arch_ops.setup_ch_structures(part);
 469	if (ret != xpSuccess)
 470		goto out_2;
 471
 472	/*
 473	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
 474	 * we're declaring that this partition is ready to go.
 475	 */
 476	part->setup_state = XPC_P_SS_SETUP;
 477
 478	return xpSuccess;
 479
 480	/* setup of ch structures failed */
 481out_2:
 482	kfree(part->remote_openclose_args_base);
 483	part->remote_openclose_args = NULL;
 484out_1:
 485	kfree(part->channels);
 486	part->channels = NULL;
 487	return ret;
 488}
 489
 490/*
 491 * Teardown the channel structures necessary to support XPartition Communication
 492 * between the specified remote partition and the local one.
 493 */
 494static void
 495xpc_teardown_ch_structures(struct xpc_partition *part)
 496{
 497	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
 498	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
 499
 500	/*
 501	 * Make this partition inaccessible to local processes by marking it
 502	 * as no longer setup. Then wait before proceeding with the teardown
 503	 * until all existing references cease.
 504	 */
 505	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
 506	part->setup_state = XPC_P_SS_WTEARDOWN;
 507
 508	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
 509
 510	/* now we can begin tearing down the infrastructure */
 511
 512	xpc_arch_ops.teardown_ch_structures(part);
 513
 514	kfree(part->remote_openclose_args_base);
 515	part->remote_openclose_args = NULL;
 516	kfree(part->channels);
 517	part->channels = NULL;
 518
 519	part->setup_state = XPC_P_SS_TORNDOWN;
 520}
 521
 522/*
 523 * When XPC HB determines that a partition has come up, it will create a new
 524 * kthread and that kthread will call this function to attempt to set up the
 525 * basic infrastructure used for Cross Partition Communication with the newly
 526 * upped partition.
 527 *
 528 * The kthread that was created by XPC HB and which setup the XPC
 529 * infrastructure will remain assigned to the partition becoming the channel
 530 * manager for that partition until the partition is deactivating, at which
 531 * time the kthread will teardown the XPC infrastructure and then exit.
 532 */
 533static int
 534xpc_activating(void *__partid)
 535{
 536	short partid = (u64)__partid;
 537	struct xpc_partition *part = &xpc_partitions[partid];
 538	unsigned long irq_flags;
 539
 540	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
 541
 542	spin_lock_irqsave(&part->act_lock, irq_flags);
 543
 544	if (part->act_state == XPC_P_AS_DEACTIVATING) {
 545		part->act_state = XPC_P_AS_INACTIVE;
 546		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 547		part->remote_rp_pa = 0;
 548		return 0;
 549	}
 550
 551	/* indicate the thread is activating */
 552	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
 553	part->act_state = XPC_P_AS_ACTIVATING;
 554
 555	XPC_SET_REASON(part, 0, 0);
 556	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 557
 558	dev_dbg(xpc_part, "activating partition %d\n", partid);
 559
 560	xpc_arch_ops.allow_hb(partid);
 561
 562	if (xpc_setup_ch_structures(part) == xpSuccess) {
 563		(void)xpc_part_ref(part);	/* this will always succeed */
 564
 565		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
 566			xpc_mark_partition_active(part);
 567			xpc_channel_mgr(part);
 568			/* won't return until partition is deactivating */
 569		}
 570
 571		xpc_part_deref(part);
 572		xpc_teardown_ch_structures(part);
 573	}
 574
 575	xpc_arch_ops.disallow_hb(partid);
 576	xpc_mark_partition_inactive(part);
 577
 578	if (part->reason == xpReactivating) {
 579		/* interrupting ourselves results in activating partition */
 580		xpc_arch_ops.request_partition_reactivation(part);
 581	}
 582
 583	return 0;
 584}
 585
 586void
 587xpc_activate_partition(struct xpc_partition *part)
 588{
 589	short partid = XPC_PARTID(part);
 590	unsigned long irq_flags;
 591	struct task_struct *kthread;
 592
 593	spin_lock_irqsave(&part->act_lock, irq_flags);
 594
 595	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
 596
 597	part->act_state = XPC_P_AS_ACTIVATION_REQ;
 598	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
 599
 600	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 601
 602	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
 603			      partid);
 604	if (IS_ERR(kthread)) {
 605		spin_lock_irqsave(&part->act_lock, irq_flags);
 606		part->act_state = XPC_P_AS_INACTIVE;
 607		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
 608		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 609	}
 610}
 611
 612void
 613xpc_activate_kthreads(struct xpc_channel *ch, int needed)
 614{
 615	int idle = atomic_read(&ch->kthreads_idle);
 616	int assigned = atomic_read(&ch->kthreads_assigned);
 617	int wakeup;
 618
 619	DBUG_ON(needed <= 0);
 620
 621	if (idle > 0) {
 622		wakeup = (needed > idle) ? idle : needed;
 623		needed -= wakeup;
 624
 625		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
 626			"channel=%d\n", wakeup, ch->partid, ch->number);
 627
 628		/* only wakeup the requested number of kthreads */
 629		wake_up_nr(&ch->idle_wq, wakeup);
 630	}
 631
 632	if (needed <= 0)
 633		return;
 634
 635	if (needed + assigned > ch->kthreads_assigned_limit) {
 636		needed = ch->kthreads_assigned_limit - assigned;
 637		if (needed <= 0)
 638			return;
 639	}
 640
 641	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
 642		needed, ch->partid, ch->number);
 643
 644	xpc_create_kthreads(ch, needed, 0);
 645}
 646
 647/*
 648 * This function is where XPC's kthreads wait for messages to deliver.
 649 */
 650static void
 651xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
 652{
 653	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 654		xpc_arch_ops.n_of_deliverable_payloads;
 655
 656	do {
 657		/* deliver messages to their intended recipients */
 658
 659		while (n_of_deliverable_payloads(ch) > 0 &&
 660		       !(ch->flags & XPC_C_DISCONNECTING)) {
 661			xpc_deliver_payload(ch);
 662		}
 663
 664		if (atomic_inc_return(&ch->kthreads_idle) >
 665		    ch->kthreads_idle_limit) {
 666			/* too many idle kthreads on this channel */
 667			atomic_dec(&ch->kthreads_idle);
 668			break;
 669		}
 670
 671		dev_dbg(xpc_chan, "idle kthread calling "
 672			"wait_event_interruptible_exclusive()\n");
 673
 674		(void)wait_event_interruptible_exclusive(ch->idle_wq,
 675				(n_of_deliverable_payloads(ch) > 0 ||
 676				 (ch->flags & XPC_C_DISCONNECTING)));
 677
 678		atomic_dec(&ch->kthreads_idle);
 679
 680	} while (!(ch->flags & XPC_C_DISCONNECTING));
 681}
 682
 683static int
 684xpc_kthread_start(void *args)
 685{
 686	short partid = XPC_UNPACK_ARG1(args);
 687	u16 ch_number = XPC_UNPACK_ARG2(args);
 688	struct xpc_partition *part = &xpc_partitions[partid];
 689	struct xpc_channel *ch;
 690	int n_needed;
 691	unsigned long irq_flags;
 692	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 693		xpc_arch_ops.n_of_deliverable_payloads;
 694
 695	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
 696		partid, ch_number);
 697
 698	ch = &part->channels[ch_number];
 699
 700	if (!(ch->flags & XPC_C_DISCONNECTING)) {
 701
 702		/* let registerer know that connection has been established */
 703
 704		spin_lock_irqsave(&ch->lock, irq_flags);
 705		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
 706			ch->flags |= XPC_C_CONNECTEDCALLOUT;
 707			spin_unlock_irqrestore(&ch->lock, irq_flags);
 708
 709			xpc_connected_callout(ch);
 710
 711			spin_lock_irqsave(&ch->lock, irq_flags);
 712			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
 713			spin_unlock_irqrestore(&ch->lock, irq_flags);
 714
 715			/*
 716			 * It is possible that while the callout was being
 717			 * made that the remote partition sent some messages.
 718			 * If that is the case, we may need to activate
 719			 * additional kthreads to help deliver them. We only
 720			 * need one less than total #of messages to deliver.
 721			 */
 722			n_needed = n_of_deliverable_payloads(ch) - 1;
 723			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
 724				xpc_activate_kthreads(ch, n_needed);
 725
 726		} else {
 727			spin_unlock_irqrestore(&ch->lock, irq_flags);
 728		}
 729
 730		xpc_kthread_waitmsgs(part, ch);
 731	}
 732
 733	/* let registerer know that connection is disconnecting */
 734
 735	spin_lock_irqsave(&ch->lock, irq_flags);
 736	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
 737	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
 738		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
 739		spin_unlock_irqrestore(&ch->lock, irq_flags);
 740
 741		xpc_disconnect_callout(ch, xpDisconnecting);
 742
 743		spin_lock_irqsave(&ch->lock, irq_flags);
 744		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
 745	}
 746	spin_unlock_irqrestore(&ch->lock, irq_flags);
 747
 748	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 749	    atomic_dec_return(&part->nchannels_engaged) == 0) {
 750		xpc_arch_ops.indicate_partition_disengaged(part);
 751	}
 752
 753	xpc_msgqueue_deref(ch);
 754
 755	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
 756		partid, ch_number);
 757
 758	xpc_part_deref(part);
 759	return 0;
 760}
 761
 762/*
 763 * For each partition that XPC has established communications with, there is
 764 * a minimum of one kernel thread assigned to perform any operation that
 765 * may potentially sleep or block (basically the callouts to the asynchronous
 766 * functions registered via xpc_connect()).
 767 *
 768 * Additional kthreads are created and destroyed by XPC as the workload
 769 * demands.
 770 *
 771 * A kthread is assigned to one of the active channels that exists for a given
 772 * partition.
 773 */
 774void
 775xpc_create_kthreads(struct xpc_channel *ch, int needed,
 776		    int ignore_disconnecting)
 777{
 778	unsigned long irq_flags;
 779	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
 780	struct xpc_partition *part = &xpc_partitions[ch->partid];
 781	struct task_struct *kthread;
 782	void (*indicate_partition_disengaged) (struct xpc_partition *) =
 783		xpc_arch_ops.indicate_partition_disengaged;
 784
 785	while (needed-- > 0) {
 786
 787		/*
 788		 * The following is done on behalf of the newly created
 789		 * kthread. That kthread is responsible for doing the
 790		 * counterpart to the following before it exits.
 791		 */
 792		if (ignore_disconnecting) {
 793			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
 794				/* kthreads assigned had gone to zero */
 795				BUG_ON(!(ch->flags &
 796					 XPC_C_DISCONNECTINGCALLOUT_MADE));
 797				break;
 798			}
 799
 800		} else if (ch->flags & XPC_C_DISCONNECTING) {
 801			break;
 802
 803		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
 804			   atomic_inc_return(&part->nchannels_engaged) == 1) {
 805			xpc_arch_ops.indicate_partition_engaged(part);
 806		}
 807		(void)xpc_part_ref(part);
 808		xpc_msgqueue_ref(ch);
 809
 810		kthread = kthread_run(xpc_kthread_start, (void *)args,
 811				      "xpc%02dc%d", ch->partid, ch->number);
 812		if (IS_ERR(kthread)) {
 813			/* the fork failed */
 814
 815			/*
 816			 * NOTE: if (ignore_disconnecting &&
 817			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
 818			 * then we'll deadlock if all other kthreads assigned
 819			 * to this channel are blocked in the channel's
 820			 * registerer, because the only thing that will unblock
 821			 * them is the xpDisconnecting callout that this
 822			 * failed kthread_run() would have made.
 823			 */
 824
 825			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 826			    atomic_dec_return(&part->nchannels_engaged) == 0) {
 827				indicate_partition_disengaged(part);
 828			}
 829			xpc_msgqueue_deref(ch);
 830			xpc_part_deref(part);
 831
 832			if (atomic_read(&ch->kthreads_assigned) <
 833			    ch->kthreads_idle_limit) {
 834				/*
 835				 * Flag this as an error only if we have an
 836				 * insufficient #of kthreads for the channel
 837				 * to function.
 838				 */
 839				spin_lock_irqsave(&ch->lock, irq_flags);
 840				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
 841						       &irq_flags);
 842				spin_unlock_irqrestore(&ch->lock, irq_flags);
 843			}
 844			break;
 845		}
 846	}
 847}
 848
 849void
 850xpc_disconnect_wait(int ch_number)
 851{
 852	unsigned long irq_flags;
 853	short partid;
 854	struct xpc_partition *part;
 855	struct xpc_channel *ch;
 856	int wakeup_channel_mgr;
 857
 858	/* now wait for all callouts to the caller's function to cease */
 859	for (partid = 0; partid < xp_max_npartitions; partid++) {
 860		part = &xpc_partitions[partid];
 861
 862		if (!xpc_part_ref(part))
 863			continue;
 864
 865		ch = &part->channels[ch_number];
 866
 867		if (!(ch->flags & XPC_C_WDISCONNECT)) {
 868			xpc_part_deref(part);
 869			continue;
 870		}
 871
 872		wait_for_completion(&ch->wdisconnect_wait);
 873
 874		spin_lock_irqsave(&ch->lock, irq_flags);
 875		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
 876		wakeup_channel_mgr = 0;
 877
 878		if (ch->delayed_chctl_flags) {
 879			if (part->act_state != XPC_P_AS_DEACTIVATING) {
 880				spin_lock(&part->chctl_lock);
 881				part->chctl.flags[ch->number] |=
 882				    ch->delayed_chctl_flags;
 883				spin_unlock(&part->chctl_lock);
 884				wakeup_channel_mgr = 1;
 885			}
 886			ch->delayed_chctl_flags = 0;
 887		}
 888
 889		ch->flags &= ~XPC_C_WDISCONNECT;
 890		spin_unlock_irqrestore(&ch->lock, irq_flags);
 891
 892		if (wakeup_channel_mgr)
 893			xpc_wakeup_channel_mgr(part);
 894
 895		xpc_part_deref(part);
 896	}
 897}
 898
 899static int
 900xpc_setup_partitions(void)
 901{
 902	short partid;
 903	struct xpc_partition *part;
 904
 905	xpc_partitions = kzalloc(sizeof(struct xpc_partition) *
 906				 xp_max_npartitions, GFP_KERNEL);
 
 907	if (xpc_partitions == NULL) {
 908		dev_err(xpc_part, "can't get memory for partition structure\n");
 909		return -ENOMEM;
 910	}
 911
 912	/*
 913	 * The first few fields of each entry of xpc_partitions[] need to
 914	 * be initialized now so that calls to xpc_connect() and
 915	 * xpc_disconnect() can be made prior to the activation of any remote
 916	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
 917	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
 918	 * PARTITION HAS BEEN ACTIVATED.
 919	 */
 920	for (partid = 0; partid < xp_max_npartitions; partid++) {
 921		part = &xpc_partitions[partid];
 922
 923		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
 924
 925		part->activate_IRQ_rcvd = 0;
 926		spin_lock_init(&part->act_lock);
 927		part->act_state = XPC_P_AS_INACTIVE;
 928		XPC_SET_REASON(part, 0, 0);
 929
 930		init_timer(&part->disengage_timer);
 931		part->disengage_timer.function =
 932		    xpc_timeout_partition_disengage;
 933		part->disengage_timer.data = (unsigned long)part;
 934
 935		part->setup_state = XPC_P_SS_UNSET;
 936		init_waitqueue_head(&part->teardown_wq);
 937		atomic_set(&part->references, 0);
 938	}
 939
 940	return xpc_arch_ops.setup_partitions();
 941}
 942
 943static void
 944xpc_teardown_partitions(void)
 945{
 946	xpc_arch_ops.teardown_partitions();
 947	kfree(xpc_partitions);
 948}
 949
 950static void
 951xpc_do_exit(enum xp_retval reason)
 952{
 953	short partid;
 954	int active_part_count, printed_waiting_msg = 0;
 955	struct xpc_partition *part;
 956	unsigned long printmsg_time, disengage_timeout = 0;
 957
 958	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
 959	DBUG_ON(xpc_exiting == 1);
 960
 961	/*
 962	 * Let the heartbeat checker thread and the discovery thread
 963	 * (if one is running) know that they should exit. Also wake up
 964	 * the heartbeat checker thread in case it's sleeping.
 965	 */
 966	xpc_exiting = 1;
 967	wake_up_interruptible(&xpc_activate_IRQ_wq);
 968
 969	/* wait for the discovery thread to exit */
 970	wait_for_completion(&xpc_discovery_exited);
 971
 972	/* wait for the heartbeat checker thread to exit */
 973	wait_for_completion(&xpc_hb_checker_exited);
 974
 975	/* sleep for a 1/3 of a second or so */
 976	(void)msleep_interruptible(300);
 977
 978	/* wait for all partitions to become inactive */
 979
 980	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
 981	xpc_disengage_timedout = 0;
 982
 983	do {
 984		active_part_count = 0;
 985
 986		for (partid = 0; partid < xp_max_npartitions; partid++) {
 987			part = &xpc_partitions[partid];
 988
 989			if (xpc_partition_disengaged(part) &&
 990			    part->act_state == XPC_P_AS_INACTIVE) {
 991				continue;
 992			}
 993
 994			active_part_count++;
 995
 996			XPC_DEACTIVATE_PARTITION(part, reason);
 997
 998			if (part->disengage_timeout > disengage_timeout)
 999				disengage_timeout = part->disengage_timeout;
1000		}
1001
1002		if (xpc_arch_ops.any_partition_engaged()) {
1003			if (time_is_before_jiffies(printmsg_time)) {
1004				dev_info(xpc_part, "waiting for remote "
1005					 "partitions to deactivate, timeout in "
1006					 "%ld seconds\n", (disengage_timeout -
1007					 jiffies) / HZ);
1008				printmsg_time = jiffies +
1009				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
1010				printed_waiting_msg = 1;
1011			}
1012
1013		} else if (active_part_count > 0) {
1014			if (printed_waiting_msg) {
1015				dev_info(xpc_part, "waiting for local partition"
1016					 " to deactivate\n");
1017				printed_waiting_msg = 0;
1018			}
1019
1020		} else {
1021			if (!xpc_disengage_timedout) {
1022				dev_info(xpc_part, "all partitions have "
1023					 "deactivated\n");
1024			}
1025			break;
1026		}
1027
1028		/* sleep for a 1/3 of a second or so */
1029		(void)msleep_interruptible(300);
1030
1031	} while (1);
1032
1033	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1034
1035	xpc_teardown_rsvd_page();
1036
1037	if (reason == xpUnloading) {
1038		(void)unregister_die_notifier(&xpc_die_notifier);
1039		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1040	}
1041
1042	/* clear the interface to XPC's functions */
1043	xpc_clear_interface();
1044
1045	if (xpc_sysctl)
1046		unregister_sysctl_table(xpc_sysctl);
 
 
1047
1048	xpc_teardown_partitions();
1049
1050	if (is_shub())
1051		xpc_exit_sn2();
1052	else if (is_uv())
1053		xpc_exit_uv();
1054}
1055
1056/*
1057 * This function is called when the system is being rebooted.
1058 */
1059static int
1060xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1061{
1062	enum xp_retval reason;
1063
1064	switch (event) {
1065	case SYS_RESTART:
1066		reason = xpSystemReboot;
1067		break;
1068	case SYS_HALT:
1069		reason = xpSystemHalt;
1070		break;
1071	case SYS_POWER_OFF:
1072		reason = xpSystemPoweroff;
1073		break;
1074	default:
1075		reason = xpSystemGoingDown;
1076	}
1077
1078	xpc_do_exit(reason);
1079	return NOTIFY_DONE;
1080}
1081
 
 
 
1082/*
1083 * Notify other partitions to deactivate from us by first disengaging from all
1084 * references to our memory.
1085 */
1086static void
1087xpc_die_deactivate(void)
1088{
1089	struct xpc_partition *part;
1090	short partid;
1091	int any_engaged;
1092	long keep_waiting;
1093	long wait_to_print;
1094
 
 
 
1095	/* keep xpc_hb_checker thread from doing anything (just in case) */
1096	xpc_exiting = 1;
1097
1098	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1099
1100	for (partid = 0; partid < xp_max_npartitions; partid++) {
1101		part = &xpc_partitions[partid];
1102
1103		if (xpc_arch_ops.partition_engaged(partid) ||
1104		    part->act_state != XPC_P_AS_INACTIVE) {
1105			xpc_arch_ops.request_partition_deactivation(part);
1106			xpc_arch_ops.indicate_partition_disengaged(part);
1107		}
1108	}
1109
1110	/*
1111	 * Though we requested that all other partitions deactivate from us,
1112	 * we only wait until they've all disengaged or we've reached the
1113	 * defined timelimit.
1114	 *
1115	 * Given that one iteration through the following while-loop takes
1116	 * approximately 200 microseconds, calculate the #of loops to take
1117	 * before bailing and the #of loops before printing a waiting message.
1118	 */
1119	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1120	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1121
1122	while (1) {
1123		any_engaged = xpc_arch_ops.any_partition_engaged();
1124		if (!any_engaged) {
1125			dev_info(xpc_part, "all partitions have deactivated\n");
1126			break;
1127		}
1128
1129		if (!keep_waiting--) {
1130			for (partid = 0; partid < xp_max_npartitions;
1131			     partid++) {
1132				if (xpc_arch_ops.partition_engaged(partid)) {
1133					dev_info(xpc_part, "deactivate from "
1134						 "remote partition %d timed "
1135						 "out\n", partid);
1136				}
1137			}
1138			break;
1139		}
1140
1141		if (!wait_to_print--) {
1142			dev_info(xpc_part, "waiting for remote partitions to "
1143				 "deactivate, timeout in %ld seconds\n",
1144				 keep_waiting / (1000 * 5));
1145			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1146			    1000 * 5;
1147		}
1148
1149		udelay(200);
1150	}
1151}
1152
1153/*
1154 * This function is called when the system is being restarted or halted due
1155 * to some sort of system failure. If this is the case we need to notify the
1156 * other partitions to disengage from all references to our memory.
1157 * This function can also be called when our heartbeater could be offlined
1158 * for a time. In this case we need to notify other partitions to not worry
1159 * about the lack of a heartbeat.
1160 */
1161static int
1162xpc_system_die(struct notifier_block *nb, unsigned long event, void *unused)
1163{
1164#ifdef CONFIG_IA64		/* !!! temporary kludge */
1165	switch (event) {
1166	case DIE_MACHINE_RESTART:
1167	case DIE_MACHINE_HALT:
1168		xpc_die_deactivate();
1169		break;
1170
1171	case DIE_KDEBUG_ENTER:
1172		/* Should lack of heartbeat be ignored by other partitions? */
1173		if (!xpc_kdebug_ignore)
1174			break;
 
 
 
 
 
1175
1176		/* fall through */
1177	case DIE_MCA_MONARCH_ENTER:
1178	case DIE_INIT_MONARCH_ENTER:
1179		xpc_arch_ops.offline_heartbeat();
1180		break;
1181
1182	case DIE_KDEBUG_LEAVE:
1183		/* Is lack of heartbeat being ignored by other partitions? */
1184		if (!xpc_kdebug_ignore)
1185			break;
1186
1187		/* fall through */
1188	case DIE_MCA_MONARCH_LEAVE:
1189	case DIE_INIT_MONARCH_LEAVE:
1190		xpc_arch_ops.online_heartbeat();
1191		break;
 
 
 
 
1192	}
1193#else
1194	xpc_die_deactivate();
1195#endif
1196
1197	return NOTIFY_DONE;
1198}
1199
1200int __init
1201xpc_init(void)
1202{
1203	int ret;
1204	struct task_struct *kthread;
1205
1206	dev_set_name(xpc_part, "part");
1207	dev_set_name(xpc_chan, "chan");
1208
1209	if (is_shub()) {
1210		/*
1211		 * The ia64-sn2 architecture supports at most 64 partitions.
1212		 * And the inability to unregister remote amos restricts us
1213		 * further to only support exactly 64 partitions on this
1214		 * architecture, no less.
1215		 */
1216		if (xp_max_npartitions != 64) {
1217			dev_err(xpc_part, "max #of partitions not set to 64\n");
1218			ret = -EINVAL;
1219		} else {
1220			ret = xpc_init_sn2();
1221		}
1222
1223	} else if (is_uv()) {
1224		ret = xpc_init_uv();
1225
1226	} else {
1227		ret = -ENODEV;
1228	}
1229
1230	if (ret != 0)
1231		return ret;
1232
1233	ret = xpc_setup_partitions();
1234	if (ret != 0) {
1235		dev_err(xpc_part, "can't get memory for partition structure\n");
1236		goto out_1;
1237	}
1238
1239	xpc_sysctl = register_sysctl_table(xpc_sys_dir);
 
1240
1241	/*
1242	 * Fill the partition reserved page with the information needed by
1243	 * other partitions to discover we are alive and establish initial
1244	 * communications.
1245	 */
1246	ret = xpc_setup_rsvd_page();
1247	if (ret != 0) {
1248		dev_err(xpc_part, "can't setup our reserved page\n");
1249		goto out_2;
1250	}
1251
1252	/* add ourselves to the reboot_notifier_list */
1253	ret = register_reboot_notifier(&xpc_reboot_notifier);
1254	if (ret != 0)
1255		dev_warn(xpc_part, "can't register reboot notifier\n");
1256
1257	/* add ourselves to the die_notifier list */
1258	ret = register_die_notifier(&xpc_die_notifier);
1259	if (ret != 0)
1260		dev_warn(xpc_part, "can't register die notifier\n");
1261
1262	/*
1263	 * The real work-horse behind xpc.  This processes incoming
1264	 * interrupts and monitors remote heartbeats.
1265	 */
1266	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1267	if (IS_ERR(kthread)) {
1268		dev_err(xpc_part, "failed while forking hb check thread\n");
1269		ret = -EBUSY;
1270		goto out_3;
1271	}
1272
1273	/*
1274	 * Startup a thread that will attempt to discover other partitions to
1275	 * activate based on info provided by SAL. This new thread is short
1276	 * lived and will exit once discovery is complete.
1277	 */
1278	kthread = kthread_run(xpc_initiate_discovery, NULL,
1279			      XPC_DISCOVERY_THREAD_NAME);
1280	if (IS_ERR(kthread)) {
1281		dev_err(xpc_part, "failed while forking discovery thread\n");
1282
1283		/* mark this new thread as a non-starter */
1284		complete(&xpc_discovery_exited);
1285
1286		xpc_do_exit(xpUnloading);
1287		return -EBUSY;
1288	}
1289
1290	/* set the interface to point at XPC's functions */
1291	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1292			  xpc_initiate_send, xpc_initiate_send_notify,
1293			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1294
1295	return 0;
1296
1297	/* initialization was not successful */
1298out_3:
1299	xpc_teardown_rsvd_page();
1300
1301	(void)unregister_die_notifier(&xpc_die_notifier);
1302	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1303out_2:
 
 
1304	if (xpc_sysctl)
1305		unregister_sysctl_table(xpc_sysctl);
1306
1307	xpc_teardown_partitions();
1308out_1:
1309	if (is_shub())
1310		xpc_exit_sn2();
1311	else if (is_uv())
1312		xpc_exit_uv();
1313	return ret;
1314}
1315
1316module_init(xpc_init);
1317
1318void __exit
1319xpc_exit(void)
1320{
1321	xpc_do_exit(xpUnloading);
1322}
1323
1324module_exit(xpc_exit);
1325
1326MODULE_AUTHOR("Silicon Graphics, Inc.");
1327MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1328MODULE_LICENSE("GPL");
1329
1330module_param(xpc_hb_interval, int, 0);
1331MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1332		 "heartbeat increments.");
1333
1334module_param(xpc_hb_check_interval, int, 0);
1335MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1336		 "heartbeat checks.");
1337
1338module_param(xpc_disengage_timelimit, int, 0);
1339MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1340		 "for disengage to complete.");
1341
1342module_param(xpc_kdebug_ignore, int, 0);
1343MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1344		 "other partitions when dropping into kdebug.");
v6.13.7
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
   7 * Copyright (c) 2004-2009 Silicon Graphics, Inc.  All Rights Reserved.
   8 */
   9
  10/*
  11 * Cross Partition Communication (XPC) support - standard version.
  12 *
  13 *	XPC provides a message passing capability that crosses partition
  14 *	boundaries. This module is made up of two parts:
  15 *
  16 *	    partition	This part detects the presence/absence of other
  17 *			partitions. It provides a heartbeat and monitors
  18 *			the heartbeats of other partitions.
  19 *
  20 *	    channel	This part manages the channels and sends/receives
  21 *			messages across them to/from other partitions.
  22 *
  23 *	There are a couple of additional functions residing in XP, which
  24 *	provide an interface to XPC for its users.
  25 *
  26 *
  27 *	Caveats:
  28 *
  29 *	  . Currently on sn2, we have no way to determine which nasid an IRQ
  30 *	    came from. Thus, xpc_send_IRQ_sn2() does a remote amo write
  31 *	    followed by an IPI. The amo indicates where data is to be pulled
  32 *	    from, so after the IPI arrives, the remote partition checks the amo
  33 *	    word. The IPI can actually arrive before the amo however, so other
  34 *	    code must periodically check for this case. Also, remote amo
  35 *	    operations do not reliably time out. Thus we do a remote PIO read
  36 *	    solely to know whether the remote partition is down and whether we
  37 *	    should stop sending IPIs to it. This remote PIO read operation is
  38 *	    set up in a special nofault region so SAL knows to ignore (and
  39 *	    cleanup) any errors due to the remote amo write, PIO read, and/or
  40 *	    PIO write operations.
  41 *
  42 *	    If/when new hardware solves this IPI problem, we should abandon
  43 *	    the current approach.
  44 *
  45 */
  46
  47#include <linux/module.h>
  48#include <linux/slab.h>
  49#include <linux/sysctl.h>
  50#include <linux/device.h>
  51#include <linux/delay.h>
  52#include <linux/reboot.h>
  53#include <linux/kdebug.h>
  54#include <linux/kthread.h>
  55#include "xpc.h"
  56
  57#ifdef CONFIG_X86_64
  58#include <asm/traps.h>
  59#endif
  60
  61/* define two XPC debug device structures to be used with dev_dbg() et al */
  62
  63static struct device_driver xpc_dbg_name = {
  64	.name = "xpc"
  65};
  66
  67static struct device xpc_part_dbg_subname = {
  68	.init_name = "",	/* set to "part" at xpc_init() time */
  69	.driver = &xpc_dbg_name
  70};
  71
  72static struct device xpc_chan_dbg_subname = {
  73	.init_name = "",	/* set to "chan" at xpc_init() time */
  74	.driver = &xpc_dbg_name
  75};
  76
  77struct device *xpc_part = &xpc_part_dbg_subname;
  78struct device *xpc_chan = &xpc_chan_dbg_subname;
  79
  80static int xpc_kdebug_ignore;
  81
  82/* systune related variables for /proc/sys directories */
  83
  84static int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL;
  85static int xpc_hb_min_interval = 1;
  86static int xpc_hb_max_interval = 10;
  87
  88static int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_INTERVAL;
  89static int xpc_hb_check_min_interval = 10;
  90static int xpc_hb_check_max_interval = 120;
  91
  92int xpc_disengage_timelimit = XPC_DISENGAGE_DEFAULT_TIMELIMIT;
  93static int xpc_disengage_min_timelimit;	/* = 0 */
  94static int xpc_disengage_max_timelimit = 120;
  95
  96static struct ctl_table xpc_sys_xpc_hb[] = {
  97	{
  98	 .procname = "hb_interval",
  99	 .data = &xpc_hb_interval,
 100	 .maxlen = sizeof(int),
 101	 .mode = 0644,
 102	 .proc_handler = proc_dointvec_minmax,
 103	 .extra1 = &xpc_hb_min_interval,
 104	 .extra2 = &xpc_hb_max_interval},
 105	{
 106	 .procname = "hb_check_interval",
 107	 .data = &xpc_hb_check_interval,
 108	 .maxlen = sizeof(int),
 109	 .mode = 0644,
 110	 .proc_handler = proc_dointvec_minmax,
 111	 .extra1 = &xpc_hb_check_min_interval,
 112	 .extra2 = &xpc_hb_check_max_interval},
 
 113};
 114static struct ctl_table xpc_sys_xpc[] = {
 
 
 
 
 115	{
 116	 .procname = "disengage_timelimit",
 117	 .data = &xpc_disengage_timelimit,
 118	 .maxlen = sizeof(int),
 119	 .mode = 0644,
 120	 .proc_handler = proc_dointvec_minmax,
 121	 .extra1 = &xpc_disengage_min_timelimit,
 122	 .extra2 = &xpc_disengage_max_timelimit},
 
 
 
 
 
 
 
 
 123};
 124
 125static struct ctl_table_header *xpc_sysctl;
 126static struct ctl_table_header *xpc_sysctl_hb;
 127
 128/* non-zero if any remote partition disengage was timed out */
 129int xpc_disengage_timedout;
 130
 131/* #of activate IRQs received and not yet processed */
 132int xpc_activate_IRQ_rcvd;
 133DEFINE_SPINLOCK(xpc_activate_IRQ_rcvd_lock);
 134
 135/* IRQ handler notifies this wait queue on receipt of an IRQ */
 136DECLARE_WAIT_QUEUE_HEAD(xpc_activate_IRQ_wq);
 137
 138static unsigned long xpc_hb_check_timeout;
 139static struct timer_list xpc_hb_timer;
 140
 141/* notification that the xpc_hb_checker thread has exited */
 142static DECLARE_COMPLETION(xpc_hb_checker_exited);
 143
 144/* notification that the xpc_discovery thread has exited */
 145static DECLARE_COMPLETION(xpc_discovery_exited);
 146
 147static void xpc_kthread_waitmsgs(struct xpc_partition *, struct xpc_channel *);
 148
 149static int xpc_system_reboot(struct notifier_block *, unsigned long, void *);
 150static struct notifier_block xpc_reboot_notifier = {
 151	.notifier_call = xpc_system_reboot,
 152};
 153
 154static int xpc_system_die(struct notifier_block *, unsigned long, void *);
 155static struct notifier_block xpc_die_notifier = {
 156	.notifier_call = xpc_system_die,
 157};
 158
 159struct xpc_arch_operations xpc_arch_ops;
 160
 161/*
 162 * Timer function to enforce the timelimit on the partition disengage.
 163 */
 164static void
 165xpc_timeout_partition_disengage(struct timer_list *t)
 166{
 167	struct xpc_partition *part = from_timer(part, t, disengage_timer);
 168
 169	DBUG_ON(time_is_after_jiffies(part->disengage_timeout));
 170
 171	xpc_partition_disengaged_from_timer(part);
 172
 173	DBUG_ON(part->disengage_timeout != 0);
 174	DBUG_ON(xpc_arch_ops.partition_engaged(XPC_PARTID(part)));
 175}
 176
 177/*
 178 * Timer to produce the heartbeat.  The timer structures function is
 179 * already set when this is initially called.  A tunable is used to
 180 * specify when the next timeout should occur.
 181 */
 182static void
 183xpc_hb_beater(struct timer_list *unused)
 184{
 185	xpc_arch_ops.increment_heartbeat();
 186
 187	if (time_is_before_eq_jiffies(xpc_hb_check_timeout))
 188		wake_up_interruptible(&xpc_activate_IRQ_wq);
 189
 190	xpc_hb_timer.expires = jiffies + (xpc_hb_interval * HZ);
 191	add_timer(&xpc_hb_timer);
 192}
 193
 194static void
 195xpc_start_hb_beater(void)
 196{
 197	xpc_arch_ops.heartbeat_init();
 198	timer_setup(&xpc_hb_timer, xpc_hb_beater, 0);
 199	xpc_hb_beater(NULL);
 
 200}
 201
 202static void
 203xpc_stop_hb_beater(void)
 204{
 205	del_timer_sync(&xpc_hb_timer);
 206	xpc_arch_ops.heartbeat_exit();
 207}
 208
 209/*
 210 * At periodic intervals, scan through all active partitions and ensure
 211 * their heartbeat is still active.  If not, the partition is deactivated.
 212 */
 213static void
 214xpc_check_remote_hb(void)
 215{
 216	struct xpc_partition *part;
 217	short partid;
 218	enum xp_retval ret;
 219
 220	for (partid = 0; partid < xp_max_npartitions; partid++) {
 221
 222		if (xpc_exiting)
 223			break;
 224
 225		if (partid == xp_partition_id)
 226			continue;
 227
 228		part = &xpc_partitions[partid];
 229
 230		if (part->act_state == XPC_P_AS_INACTIVE ||
 231		    part->act_state == XPC_P_AS_DEACTIVATING) {
 232			continue;
 233		}
 234
 235		ret = xpc_arch_ops.get_remote_heartbeat(part);
 236		if (ret != xpSuccess)
 237			XPC_DEACTIVATE_PARTITION(part, ret);
 238	}
 239}
 240
 241/*
 242 * This thread is responsible for nearly all of the partition
 243 * activation/deactivation.
 244 */
 245static int
 246xpc_hb_checker(void *ignore)
 247{
 248	int force_IRQ = 0;
 249
 250	/* this thread was marked active by xpc_hb_init() */
 251
 252	set_cpus_allowed_ptr(current, cpumask_of(XPC_HB_CHECK_CPU));
 253
 254	/* set our heartbeating to other partitions into motion */
 255	xpc_hb_check_timeout = jiffies + (xpc_hb_check_interval * HZ);
 256	xpc_start_hb_beater();
 257
 258	while (!xpc_exiting) {
 259
 260		dev_dbg(xpc_part, "woke up with %d ticks rem; %d IRQs have "
 261			"been received\n",
 262			(int)(xpc_hb_check_timeout - jiffies),
 263			xpc_activate_IRQ_rcvd);
 264
 265		/* checking of remote heartbeats is skewed by IRQ handling */
 266		if (time_is_before_eq_jiffies(xpc_hb_check_timeout)) {
 267			xpc_hb_check_timeout = jiffies +
 268			    (xpc_hb_check_interval * HZ);
 269
 270			dev_dbg(xpc_part, "checking remote heartbeats\n");
 271			xpc_check_remote_hb();
 
 
 
 
 
 
 
 272		}
 273
 274		/* check for outstanding IRQs */
 275		if (xpc_activate_IRQ_rcvd > 0 || force_IRQ != 0) {
 276			force_IRQ = 0;
 277			dev_dbg(xpc_part, "processing activate IRQs "
 278				"received\n");
 279			xpc_arch_ops.process_activate_IRQ_rcvd();
 280		}
 281
 282		/* wait for IRQ or timeout */
 283		(void)wait_event_interruptible(xpc_activate_IRQ_wq,
 284					       (time_is_before_eq_jiffies(
 285						xpc_hb_check_timeout) ||
 286						xpc_activate_IRQ_rcvd > 0 ||
 287						xpc_exiting));
 288	}
 289
 290	xpc_stop_hb_beater();
 291
 292	dev_dbg(xpc_part, "heartbeat checker is exiting\n");
 293
 294	/* mark this thread as having exited */
 295	complete(&xpc_hb_checker_exited);
 296	return 0;
 297}
 298
 299/*
 300 * This thread will attempt to discover other partitions to activate
 301 * based on info provided by SAL. This new thread is short lived and
 302 * will exit once discovery is complete.
 303 */
 304static int
 305xpc_initiate_discovery(void *ignore)
 306{
 307	xpc_discovery();
 308
 309	dev_dbg(xpc_part, "discovery thread is exiting\n");
 310
 311	/* mark this thread as having exited */
 312	complete(&xpc_discovery_exited);
 313	return 0;
 314}
 315
 316/*
 317 * The first kthread assigned to a newly activated partition is the one
 318 * created by XPC HB with which it calls xpc_activating(). XPC hangs on to
 319 * that kthread until the partition is brought down, at which time that kthread
 320 * returns back to XPC HB. (The return of that kthread will signify to XPC HB
 321 * that XPC has dismantled all communication infrastructure for the associated
 322 * partition.) This kthread becomes the channel manager for that partition.
 323 *
 324 * Each active partition has a channel manager, who, besides connecting and
 325 * disconnecting channels, will ensure that each of the partition's connected
 326 * channels has the required number of assigned kthreads to get the work done.
 327 */
 328static void
 329xpc_channel_mgr(struct xpc_partition *part)
 330{
 331	while (part->act_state != XPC_P_AS_DEACTIVATING ||
 332	       atomic_read(&part->nchannels_active) > 0 ||
 333	       !xpc_partition_disengaged(part)) {
 334
 335		xpc_process_sent_chctl_flags(part);
 336
 337		/*
 338		 * Wait until we've been requested to activate kthreads or
 339		 * all of the channel's message queues have been torn down or
 340		 * a signal is pending.
 341		 *
 342		 * The channel_mgr_requests is set to 1 after being awakened,
 343		 * This is done to prevent the channel mgr from making one pass
 344		 * through the loop for each request, since he will
 345		 * be servicing all the requests in one pass. The reason it's
 346		 * set to 1 instead of 0 is so that other kthreads will know
 347		 * that the channel mgr is running and won't bother trying to
 348		 * wake him up.
 349		 */
 350		atomic_dec(&part->channel_mgr_requests);
 351		(void)wait_event_interruptible(part->channel_mgr_wq,
 352				(atomic_read(&part->channel_mgr_requests) > 0 ||
 353				 part->chctl.all_flags != 0 ||
 354				 (part->act_state == XPC_P_AS_DEACTIVATING &&
 355				 atomic_read(&part->nchannels_active) == 0 &&
 356				 xpc_partition_disengaged(part))));
 357		atomic_set(&part->channel_mgr_requests, 1);
 358	}
 359}
 360
 361/*
 362 * Guarantee that the kzalloc'd memory is cacheline aligned.
 363 */
 364void *
 365xpc_kzalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
 366{
 367	/* see if kzalloc will give us cachline aligned memory by default */
 368	*base = kzalloc(size, flags);
 369	if (*base == NULL)
 370		return NULL;
 371
 372	if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
 373		return *base;
 374
 375	kfree(*base);
 376
 377	/* nope, we'll have to do it ourselves */
 378	*base = kzalloc(size + L1_CACHE_BYTES, flags);
 379	if (*base == NULL)
 380		return NULL;
 381
 382	return (void *)L1_CACHE_ALIGN((u64)*base);
 383}
 384
 385/*
 386 * Setup the channel structures necessary to support XPartition Communication
 387 * between the specified remote partition and the local one.
 388 */
 389static enum xp_retval
 390xpc_setup_ch_structures(struct xpc_partition *part)
 391{
 392	enum xp_retval ret;
 393	int ch_number;
 394	struct xpc_channel *ch;
 395	short partid = XPC_PARTID(part);
 396
 397	/*
 398	 * Allocate all of the channel structures as a contiguous chunk of
 399	 * memory.
 400	 */
 401	DBUG_ON(part->channels != NULL);
 402	part->channels = kcalloc(XPC_MAX_NCHANNELS,
 403				 sizeof(struct xpc_channel),
 404				 GFP_KERNEL);
 405	if (part->channels == NULL) {
 406		dev_err(xpc_chan, "can't get memory for channels\n");
 407		return xpNoMemory;
 408	}
 409
 410	/* allocate the remote open and close args */
 411
 412	part->remote_openclose_args =
 413	    xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
 414					  GFP_KERNEL, &part->
 415					  remote_openclose_args_base);
 416	if (part->remote_openclose_args == NULL) {
 417		dev_err(xpc_chan, "can't get memory for remote connect args\n");
 418		ret = xpNoMemory;
 419		goto out_1;
 420	}
 421
 422	part->chctl.all_flags = 0;
 423	spin_lock_init(&part->chctl_lock);
 424
 425	atomic_set(&part->channel_mgr_requests, 1);
 426	init_waitqueue_head(&part->channel_mgr_wq);
 427
 428	part->nchannels = XPC_MAX_NCHANNELS;
 429
 430	atomic_set(&part->nchannels_active, 0);
 431	atomic_set(&part->nchannels_engaged, 0);
 432
 433	for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
 434		ch = &part->channels[ch_number];
 435
 436		ch->partid = partid;
 437		ch->number = ch_number;
 438		ch->flags = XPC_C_DISCONNECTED;
 439
 440		atomic_set(&ch->kthreads_assigned, 0);
 441		atomic_set(&ch->kthreads_idle, 0);
 442		atomic_set(&ch->kthreads_active, 0);
 443
 444		atomic_set(&ch->references, 0);
 445		atomic_set(&ch->n_to_notify, 0);
 446
 447		spin_lock_init(&ch->lock);
 448		init_completion(&ch->wdisconnect_wait);
 449
 450		atomic_set(&ch->n_on_msg_allocate_wq, 0);
 451		init_waitqueue_head(&ch->msg_allocate_wq);
 452		init_waitqueue_head(&ch->idle_wq);
 453	}
 454
 455	ret = xpc_arch_ops.setup_ch_structures(part);
 456	if (ret != xpSuccess)
 457		goto out_2;
 458
 459	/*
 460	 * With the setting of the partition setup_state to XPC_P_SS_SETUP,
 461	 * we're declaring that this partition is ready to go.
 462	 */
 463	part->setup_state = XPC_P_SS_SETUP;
 464
 465	return xpSuccess;
 466
 467	/* setup of ch structures failed */
 468out_2:
 469	kfree(part->remote_openclose_args_base);
 470	part->remote_openclose_args = NULL;
 471out_1:
 472	kfree(part->channels);
 473	part->channels = NULL;
 474	return ret;
 475}
 476
 477/*
 478 * Teardown the channel structures necessary to support XPartition Communication
 479 * between the specified remote partition and the local one.
 480 */
 481static void
 482xpc_teardown_ch_structures(struct xpc_partition *part)
 483{
 484	DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
 485	DBUG_ON(atomic_read(&part->nchannels_active) != 0);
 486
 487	/*
 488	 * Make this partition inaccessible to local processes by marking it
 489	 * as no longer setup. Then wait before proceeding with the teardown
 490	 * until all existing references cease.
 491	 */
 492	DBUG_ON(part->setup_state != XPC_P_SS_SETUP);
 493	part->setup_state = XPC_P_SS_WTEARDOWN;
 494
 495	wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
 496
 497	/* now we can begin tearing down the infrastructure */
 498
 499	xpc_arch_ops.teardown_ch_structures(part);
 500
 501	kfree(part->remote_openclose_args_base);
 502	part->remote_openclose_args = NULL;
 503	kfree(part->channels);
 504	part->channels = NULL;
 505
 506	part->setup_state = XPC_P_SS_TORNDOWN;
 507}
 508
 509/*
 510 * When XPC HB determines that a partition has come up, it will create a new
 511 * kthread and that kthread will call this function to attempt to set up the
 512 * basic infrastructure used for Cross Partition Communication with the newly
 513 * upped partition.
 514 *
 515 * The kthread that was created by XPC HB and which setup the XPC
 516 * infrastructure will remain assigned to the partition becoming the channel
 517 * manager for that partition until the partition is deactivating, at which
 518 * time the kthread will teardown the XPC infrastructure and then exit.
 519 */
 520static int
 521xpc_activating(void *__partid)
 522{
 523	short partid = (u64)__partid;
 524	struct xpc_partition *part = &xpc_partitions[partid];
 525	unsigned long irq_flags;
 526
 527	DBUG_ON(partid < 0 || partid >= xp_max_npartitions);
 528
 529	spin_lock_irqsave(&part->act_lock, irq_flags);
 530
 531	if (part->act_state == XPC_P_AS_DEACTIVATING) {
 532		part->act_state = XPC_P_AS_INACTIVE;
 533		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 534		part->remote_rp_pa = 0;
 535		return 0;
 536	}
 537
 538	/* indicate the thread is activating */
 539	DBUG_ON(part->act_state != XPC_P_AS_ACTIVATION_REQ);
 540	part->act_state = XPC_P_AS_ACTIVATING;
 541
 542	XPC_SET_REASON(part, 0, 0);
 543	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 544
 545	dev_dbg(xpc_part, "activating partition %d\n", partid);
 546
 547	xpc_arch_ops.allow_hb(partid);
 548
 549	if (xpc_setup_ch_structures(part) == xpSuccess) {
 550		(void)xpc_part_ref(part);	/* this will always succeed */
 551
 552		if (xpc_arch_ops.make_first_contact(part) == xpSuccess) {
 553			xpc_mark_partition_active(part);
 554			xpc_channel_mgr(part);
 555			/* won't return until partition is deactivating */
 556		}
 557
 558		xpc_part_deref(part);
 559		xpc_teardown_ch_structures(part);
 560	}
 561
 562	xpc_arch_ops.disallow_hb(partid);
 563	xpc_mark_partition_inactive(part);
 564
 565	if (part->reason == xpReactivating) {
 566		/* interrupting ourselves results in activating partition */
 567		xpc_arch_ops.request_partition_reactivation(part);
 568	}
 569
 570	return 0;
 571}
 572
 573void
 574xpc_activate_partition(struct xpc_partition *part)
 575{
 576	short partid = XPC_PARTID(part);
 577	unsigned long irq_flags;
 578	struct task_struct *kthread;
 579
 580	spin_lock_irqsave(&part->act_lock, irq_flags);
 581
 582	DBUG_ON(part->act_state != XPC_P_AS_INACTIVE);
 583
 584	part->act_state = XPC_P_AS_ACTIVATION_REQ;
 585	XPC_SET_REASON(part, xpCloneKThread, __LINE__);
 586
 587	spin_unlock_irqrestore(&part->act_lock, irq_flags);
 588
 589	kthread = kthread_run(xpc_activating, (void *)((u64)partid), "xpc%02d",
 590			      partid);
 591	if (IS_ERR(kthread)) {
 592		spin_lock_irqsave(&part->act_lock, irq_flags);
 593		part->act_state = XPC_P_AS_INACTIVE;
 594		XPC_SET_REASON(part, xpCloneKThreadFailed, __LINE__);
 595		spin_unlock_irqrestore(&part->act_lock, irq_flags);
 596	}
 597}
 598
 599void
 600xpc_activate_kthreads(struct xpc_channel *ch, int needed)
 601{
 602	int idle = atomic_read(&ch->kthreads_idle);
 603	int assigned = atomic_read(&ch->kthreads_assigned);
 604	int wakeup;
 605
 606	DBUG_ON(needed <= 0);
 607
 608	if (idle > 0) {
 609		wakeup = (needed > idle) ? idle : needed;
 610		needed -= wakeup;
 611
 612		dev_dbg(xpc_chan, "wakeup %d idle kthreads, partid=%d, "
 613			"channel=%d\n", wakeup, ch->partid, ch->number);
 614
 615		/* only wakeup the requested number of kthreads */
 616		wake_up_nr(&ch->idle_wq, wakeup);
 617	}
 618
 619	if (needed <= 0)
 620		return;
 621
 622	if (needed + assigned > ch->kthreads_assigned_limit) {
 623		needed = ch->kthreads_assigned_limit - assigned;
 624		if (needed <= 0)
 625			return;
 626	}
 627
 628	dev_dbg(xpc_chan, "create %d new kthreads, partid=%d, channel=%d\n",
 629		needed, ch->partid, ch->number);
 630
 631	xpc_create_kthreads(ch, needed, 0);
 632}
 633
 634/*
 635 * This function is where XPC's kthreads wait for messages to deliver.
 636 */
 637static void
 638xpc_kthread_waitmsgs(struct xpc_partition *part, struct xpc_channel *ch)
 639{
 640	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 641		xpc_arch_ops.n_of_deliverable_payloads;
 642
 643	do {
 644		/* deliver messages to their intended recipients */
 645
 646		while (n_of_deliverable_payloads(ch) > 0 &&
 647		       !(ch->flags & XPC_C_DISCONNECTING)) {
 648			xpc_deliver_payload(ch);
 649		}
 650
 651		if (atomic_inc_return(&ch->kthreads_idle) >
 652		    ch->kthreads_idle_limit) {
 653			/* too many idle kthreads on this channel */
 654			atomic_dec(&ch->kthreads_idle);
 655			break;
 656		}
 657
 658		dev_dbg(xpc_chan, "idle kthread calling "
 659			"wait_event_interruptible_exclusive()\n");
 660
 661		(void)wait_event_interruptible_exclusive(ch->idle_wq,
 662				(n_of_deliverable_payloads(ch) > 0 ||
 663				 (ch->flags & XPC_C_DISCONNECTING)));
 664
 665		atomic_dec(&ch->kthreads_idle);
 666
 667	} while (!(ch->flags & XPC_C_DISCONNECTING));
 668}
 669
 670static int
 671xpc_kthread_start(void *args)
 672{
 673	short partid = XPC_UNPACK_ARG1(args);
 674	u16 ch_number = XPC_UNPACK_ARG2(args);
 675	struct xpc_partition *part = &xpc_partitions[partid];
 676	struct xpc_channel *ch;
 677	int n_needed;
 678	unsigned long irq_flags;
 679	int (*n_of_deliverable_payloads) (struct xpc_channel *) =
 680		xpc_arch_ops.n_of_deliverable_payloads;
 681
 682	dev_dbg(xpc_chan, "kthread starting, partid=%d, channel=%d\n",
 683		partid, ch_number);
 684
 685	ch = &part->channels[ch_number];
 686
 687	if (!(ch->flags & XPC_C_DISCONNECTING)) {
 688
 689		/* let registerer know that connection has been established */
 690
 691		spin_lock_irqsave(&ch->lock, irq_flags);
 692		if (!(ch->flags & XPC_C_CONNECTEDCALLOUT)) {
 693			ch->flags |= XPC_C_CONNECTEDCALLOUT;
 694			spin_unlock_irqrestore(&ch->lock, irq_flags);
 695
 696			xpc_connected_callout(ch);
 697
 698			spin_lock_irqsave(&ch->lock, irq_flags);
 699			ch->flags |= XPC_C_CONNECTEDCALLOUT_MADE;
 700			spin_unlock_irqrestore(&ch->lock, irq_flags);
 701
 702			/*
 703			 * It is possible that while the callout was being
 704			 * made that the remote partition sent some messages.
 705			 * If that is the case, we may need to activate
 706			 * additional kthreads to help deliver them. We only
 707			 * need one less than total #of messages to deliver.
 708			 */
 709			n_needed = n_of_deliverable_payloads(ch) - 1;
 710			if (n_needed > 0 && !(ch->flags & XPC_C_DISCONNECTING))
 711				xpc_activate_kthreads(ch, n_needed);
 712
 713		} else {
 714			spin_unlock_irqrestore(&ch->lock, irq_flags);
 715		}
 716
 717		xpc_kthread_waitmsgs(part, ch);
 718	}
 719
 720	/* let registerer know that connection is disconnecting */
 721
 722	spin_lock_irqsave(&ch->lock, irq_flags);
 723	if ((ch->flags & XPC_C_CONNECTEDCALLOUT_MADE) &&
 724	    !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) {
 725		ch->flags |= XPC_C_DISCONNECTINGCALLOUT;
 726		spin_unlock_irqrestore(&ch->lock, irq_flags);
 727
 728		xpc_disconnect_callout(ch, xpDisconnecting);
 729
 730		spin_lock_irqsave(&ch->lock, irq_flags);
 731		ch->flags |= XPC_C_DISCONNECTINGCALLOUT_MADE;
 732	}
 733	spin_unlock_irqrestore(&ch->lock, irq_flags);
 734
 735	if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 736	    atomic_dec_return(&part->nchannels_engaged) == 0) {
 737		xpc_arch_ops.indicate_partition_disengaged(part);
 738	}
 739
 740	xpc_msgqueue_deref(ch);
 741
 742	dev_dbg(xpc_chan, "kthread exiting, partid=%d, channel=%d\n",
 743		partid, ch_number);
 744
 745	xpc_part_deref(part);
 746	return 0;
 747}
 748
 749/*
 750 * For each partition that XPC has established communications with, there is
 751 * a minimum of one kernel thread assigned to perform any operation that
 752 * may potentially sleep or block (basically the callouts to the asynchronous
 753 * functions registered via xpc_connect()).
 754 *
 755 * Additional kthreads are created and destroyed by XPC as the workload
 756 * demands.
 757 *
 758 * A kthread is assigned to one of the active channels that exists for a given
 759 * partition.
 760 */
 761void
 762xpc_create_kthreads(struct xpc_channel *ch, int needed,
 763		    int ignore_disconnecting)
 764{
 765	unsigned long irq_flags;
 766	u64 args = XPC_PACK_ARGS(ch->partid, ch->number);
 767	struct xpc_partition *part = &xpc_partitions[ch->partid];
 768	struct task_struct *kthread;
 769	void (*indicate_partition_disengaged) (struct xpc_partition *) =
 770		xpc_arch_ops.indicate_partition_disengaged;
 771
 772	while (needed-- > 0) {
 773
 774		/*
 775		 * The following is done on behalf of the newly created
 776		 * kthread. That kthread is responsible for doing the
 777		 * counterpart to the following before it exits.
 778		 */
 779		if (ignore_disconnecting) {
 780			if (!atomic_inc_not_zero(&ch->kthreads_assigned)) {
 781				/* kthreads assigned had gone to zero */
 782				BUG_ON(!(ch->flags &
 783					 XPC_C_DISCONNECTINGCALLOUT_MADE));
 784				break;
 785			}
 786
 787		} else if (ch->flags & XPC_C_DISCONNECTING) {
 788			break;
 789
 790		} else if (atomic_inc_return(&ch->kthreads_assigned) == 1 &&
 791			   atomic_inc_return(&part->nchannels_engaged) == 1) {
 792			xpc_arch_ops.indicate_partition_engaged(part);
 793		}
 794		(void)xpc_part_ref(part);
 795		xpc_msgqueue_ref(ch);
 796
 797		kthread = kthread_run(xpc_kthread_start, (void *)args,
 798				      "xpc%02dc%d", ch->partid, ch->number);
 799		if (IS_ERR(kthread)) {
 800			/* the fork failed */
 801
 802			/*
 803			 * NOTE: if (ignore_disconnecting &&
 804			 * !(ch->flags & XPC_C_DISCONNECTINGCALLOUT)) is true,
 805			 * then we'll deadlock if all other kthreads assigned
 806			 * to this channel are blocked in the channel's
 807			 * registerer, because the only thing that will unblock
 808			 * them is the xpDisconnecting callout that this
 809			 * failed kthread_run() would have made.
 810			 */
 811
 812			if (atomic_dec_return(&ch->kthreads_assigned) == 0 &&
 813			    atomic_dec_return(&part->nchannels_engaged) == 0) {
 814				indicate_partition_disengaged(part);
 815			}
 816			xpc_msgqueue_deref(ch);
 817			xpc_part_deref(part);
 818
 819			if (atomic_read(&ch->kthreads_assigned) <
 820			    ch->kthreads_idle_limit) {
 821				/*
 822				 * Flag this as an error only if we have an
 823				 * insufficient #of kthreads for the channel
 824				 * to function.
 825				 */
 826				spin_lock_irqsave(&ch->lock, irq_flags);
 827				XPC_DISCONNECT_CHANNEL(ch, xpLackOfResources,
 828						       &irq_flags);
 829				spin_unlock_irqrestore(&ch->lock, irq_flags);
 830			}
 831			break;
 832		}
 833	}
 834}
 835
 836void
 837xpc_disconnect_wait(int ch_number)
 838{
 839	unsigned long irq_flags;
 840	short partid;
 841	struct xpc_partition *part;
 842	struct xpc_channel *ch;
 843	int wakeup_channel_mgr;
 844
 845	/* now wait for all callouts to the caller's function to cease */
 846	for (partid = 0; partid < xp_max_npartitions; partid++) {
 847		part = &xpc_partitions[partid];
 848
 849		if (!xpc_part_ref(part))
 850			continue;
 851
 852		ch = &part->channels[ch_number];
 853
 854		if (!(ch->flags & XPC_C_WDISCONNECT)) {
 855			xpc_part_deref(part);
 856			continue;
 857		}
 858
 859		wait_for_completion(&ch->wdisconnect_wait);
 860
 861		spin_lock_irqsave(&ch->lock, irq_flags);
 862		DBUG_ON(!(ch->flags & XPC_C_DISCONNECTED));
 863		wakeup_channel_mgr = 0;
 864
 865		if (ch->delayed_chctl_flags) {
 866			if (part->act_state != XPC_P_AS_DEACTIVATING) {
 867				spin_lock(&part->chctl_lock);
 868				part->chctl.flags[ch->number] |=
 869				    ch->delayed_chctl_flags;
 870				spin_unlock(&part->chctl_lock);
 871				wakeup_channel_mgr = 1;
 872			}
 873			ch->delayed_chctl_flags = 0;
 874		}
 875
 876		ch->flags &= ~XPC_C_WDISCONNECT;
 877		spin_unlock_irqrestore(&ch->lock, irq_flags);
 878
 879		if (wakeup_channel_mgr)
 880			xpc_wakeup_channel_mgr(part);
 881
 882		xpc_part_deref(part);
 883	}
 884}
 885
 886static int
 887xpc_setup_partitions(void)
 888{
 889	short partid;
 890	struct xpc_partition *part;
 891
 892	xpc_partitions = kcalloc(xp_max_npartitions,
 893				 sizeof(struct xpc_partition),
 894				 GFP_KERNEL);
 895	if (xpc_partitions == NULL) {
 896		dev_err(xpc_part, "can't get memory for partition structure\n");
 897		return -ENOMEM;
 898	}
 899
 900	/*
 901	 * The first few fields of each entry of xpc_partitions[] need to
 902	 * be initialized now so that calls to xpc_connect() and
 903	 * xpc_disconnect() can be made prior to the activation of any remote
 904	 * partition. NOTE THAT NONE OF THE OTHER FIELDS BELONGING TO THESE
 905	 * ENTRIES ARE MEANINGFUL UNTIL AFTER AN ENTRY'S CORRESPONDING
 906	 * PARTITION HAS BEEN ACTIVATED.
 907	 */
 908	for (partid = 0; partid < xp_max_npartitions; partid++) {
 909		part = &xpc_partitions[partid];
 910
 911		DBUG_ON((u64)part != L1_CACHE_ALIGN((u64)part));
 912
 913		part->activate_IRQ_rcvd = 0;
 914		spin_lock_init(&part->act_lock);
 915		part->act_state = XPC_P_AS_INACTIVE;
 916		XPC_SET_REASON(part, 0, 0);
 917
 918		timer_setup(&part->disengage_timer,
 919			    xpc_timeout_partition_disengage, 0);
 
 
 920
 921		part->setup_state = XPC_P_SS_UNSET;
 922		init_waitqueue_head(&part->teardown_wq);
 923		atomic_set(&part->references, 0);
 924	}
 925
 926	return xpc_arch_ops.setup_partitions();
 927}
 928
 929static void
 930xpc_teardown_partitions(void)
 931{
 932	xpc_arch_ops.teardown_partitions();
 933	kfree(xpc_partitions);
 934}
 935
 936static void
 937xpc_do_exit(enum xp_retval reason)
 938{
 939	short partid;
 940	int active_part_count, printed_waiting_msg = 0;
 941	struct xpc_partition *part;
 942	unsigned long printmsg_time, disengage_timeout = 0;
 943
 944	/* a 'rmmod XPC' and a 'reboot' cannot both end up here together */
 945	DBUG_ON(xpc_exiting == 1);
 946
 947	/*
 948	 * Let the heartbeat checker thread and the discovery thread
 949	 * (if one is running) know that they should exit. Also wake up
 950	 * the heartbeat checker thread in case it's sleeping.
 951	 */
 952	xpc_exiting = 1;
 953	wake_up_interruptible(&xpc_activate_IRQ_wq);
 954
 955	/* wait for the discovery thread to exit */
 956	wait_for_completion(&xpc_discovery_exited);
 957
 958	/* wait for the heartbeat checker thread to exit */
 959	wait_for_completion(&xpc_hb_checker_exited);
 960
 961	/* sleep for a 1/3 of a second or so */
 962	(void)msleep_interruptible(300);
 963
 964	/* wait for all partitions to become inactive */
 965
 966	printmsg_time = jiffies + (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
 967	xpc_disengage_timedout = 0;
 968
 969	do {
 970		active_part_count = 0;
 971
 972		for (partid = 0; partid < xp_max_npartitions; partid++) {
 973			part = &xpc_partitions[partid];
 974
 975			if (xpc_partition_disengaged(part) &&
 976			    part->act_state == XPC_P_AS_INACTIVE) {
 977				continue;
 978			}
 979
 980			active_part_count++;
 981
 982			XPC_DEACTIVATE_PARTITION(part, reason);
 983
 984			if (part->disengage_timeout > disengage_timeout)
 985				disengage_timeout = part->disengage_timeout;
 986		}
 987
 988		if (xpc_arch_ops.any_partition_engaged()) {
 989			if (time_is_before_jiffies(printmsg_time)) {
 990				dev_info(xpc_part, "waiting for remote "
 991					 "partitions to deactivate, timeout in "
 992					 "%ld seconds\n", (disengage_timeout -
 993					 jiffies) / HZ);
 994				printmsg_time = jiffies +
 995				    (XPC_DEACTIVATE_PRINTMSG_INTERVAL * HZ);
 996				printed_waiting_msg = 1;
 997			}
 998
 999		} else if (active_part_count > 0) {
1000			if (printed_waiting_msg) {
1001				dev_info(xpc_part, "waiting for local partition"
1002					 " to deactivate\n");
1003				printed_waiting_msg = 0;
1004			}
1005
1006		} else {
1007			if (!xpc_disengage_timedout) {
1008				dev_info(xpc_part, "all partitions have "
1009					 "deactivated\n");
1010			}
1011			break;
1012		}
1013
1014		/* sleep for a 1/3 of a second or so */
1015		(void)msleep_interruptible(300);
1016
1017	} while (1);
1018
1019	DBUG_ON(xpc_arch_ops.any_partition_engaged());
1020
1021	xpc_teardown_rsvd_page();
1022
1023	if (reason == xpUnloading) {
1024		(void)unregister_die_notifier(&xpc_die_notifier);
1025		(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1026	}
1027
1028	/* clear the interface to XPC's functions */
1029	xpc_clear_interface();
1030
1031	if (xpc_sysctl)
1032		unregister_sysctl_table(xpc_sysctl);
1033	if (xpc_sysctl_hb)
1034		unregister_sysctl_table(xpc_sysctl_hb);
1035
1036	xpc_teardown_partitions();
1037
1038	if (is_uv_system())
 
 
1039		xpc_exit_uv();
1040}
1041
1042/*
1043 * This function is called when the system is being rebooted.
1044 */
1045static int
1046xpc_system_reboot(struct notifier_block *nb, unsigned long event, void *unused)
1047{
1048	enum xp_retval reason;
1049
1050	switch (event) {
1051	case SYS_RESTART:
1052		reason = xpSystemReboot;
1053		break;
1054	case SYS_HALT:
1055		reason = xpSystemHalt;
1056		break;
1057	case SYS_POWER_OFF:
1058		reason = xpSystemPoweroff;
1059		break;
1060	default:
1061		reason = xpSystemGoingDown;
1062	}
1063
1064	xpc_do_exit(reason);
1065	return NOTIFY_DONE;
1066}
1067
1068/* Used to only allow one cpu to complete disconnect */
1069static unsigned int xpc_die_disconnecting;
1070
1071/*
1072 * Notify other partitions to deactivate from us by first disengaging from all
1073 * references to our memory.
1074 */
1075static void
1076xpc_die_deactivate(void)
1077{
1078	struct xpc_partition *part;
1079	short partid;
1080	int any_engaged;
1081	long keep_waiting;
1082	long wait_to_print;
1083
1084	if (cmpxchg(&xpc_die_disconnecting, 0, 1))
1085		return;
1086
1087	/* keep xpc_hb_checker thread from doing anything (just in case) */
1088	xpc_exiting = 1;
1089
1090	xpc_arch_ops.disallow_all_hbs();   /*indicate we're deactivated */
1091
1092	for (partid = 0; partid < xp_max_npartitions; partid++) {
1093		part = &xpc_partitions[partid];
1094
1095		if (xpc_arch_ops.partition_engaged(partid) ||
1096		    part->act_state != XPC_P_AS_INACTIVE) {
1097			xpc_arch_ops.request_partition_deactivation(part);
1098			xpc_arch_ops.indicate_partition_disengaged(part);
1099		}
1100	}
1101
1102	/*
1103	 * Though we requested that all other partitions deactivate from us,
1104	 * we only wait until they've all disengaged or we've reached the
1105	 * defined timelimit.
1106	 *
1107	 * Given that one iteration through the following while-loop takes
1108	 * approximately 200 microseconds, calculate the #of loops to take
1109	 * before bailing and the #of loops before printing a waiting message.
1110	 */
1111	keep_waiting = xpc_disengage_timelimit * 1000 * 5;
1112	wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL * 1000 * 5;
1113
1114	while (1) {
1115		any_engaged = xpc_arch_ops.any_partition_engaged();
1116		if (!any_engaged) {
1117			dev_info(xpc_part, "all partitions have deactivated\n");
1118			break;
1119		}
1120
1121		if (!keep_waiting--) {
1122			for (partid = 0; partid < xp_max_npartitions;
1123			     partid++) {
1124				if (xpc_arch_ops.partition_engaged(partid)) {
1125					dev_info(xpc_part, "deactivate from "
1126						 "remote partition %d timed "
1127						 "out\n", partid);
1128				}
1129			}
1130			break;
1131		}
1132
1133		if (!wait_to_print--) {
1134			dev_info(xpc_part, "waiting for remote partitions to "
1135				 "deactivate, timeout in %ld seconds\n",
1136				 keep_waiting / (1000 * 5));
1137			wait_to_print = XPC_DEACTIVATE_PRINTMSG_INTERVAL *
1138			    1000 * 5;
1139		}
1140
1141		udelay(200);
1142	}
1143}
1144
1145/*
1146 * This function is called when the system is being restarted or halted due
1147 * to some sort of system failure. If this is the case we need to notify the
1148 * other partitions to disengage from all references to our memory.
1149 * This function can also be called when our heartbeater could be offlined
1150 * for a time. In this case we need to notify other partitions to not worry
1151 * about the lack of a heartbeat.
1152 */
1153static int
1154xpc_system_die(struct notifier_block *nb, unsigned long event, void *_die_args)
1155{
1156	struct die_args *die_args = _die_args;
 
 
 
 
 
1157
1158	switch (event) {
1159	case DIE_TRAP:
1160		if (die_args->trapnr == X86_TRAP_DF)
1161			xpc_die_deactivate();
1162
1163		if (((die_args->trapnr == X86_TRAP_MF) ||
1164		     (die_args->trapnr == X86_TRAP_XF)) &&
1165		    !user_mode(die_args->regs))
1166			xpc_die_deactivate();
1167
 
 
 
 
1168		break;
1169	case DIE_INT3:
1170	case DIE_DEBUG:
 
 
 
 
 
 
 
 
1171		break;
1172	case DIE_OOPS:
1173	case DIE_GPF:
1174	default:
1175		xpc_die_deactivate();
1176	}
 
 
 
1177
1178	return NOTIFY_DONE;
1179}
1180
1181static int __init
1182xpc_init(void)
1183{
1184	int ret;
1185	struct task_struct *kthread;
1186
1187	dev_set_name(xpc_part, "part");
1188	dev_set_name(xpc_chan, "chan");
1189
1190	if (is_uv_system()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1191		ret = xpc_init_uv();
1192
1193	} else {
1194		ret = -ENODEV;
1195	}
1196
1197	if (ret != 0)
1198		return ret;
1199
1200	ret = xpc_setup_partitions();
1201	if (ret != 0) {
1202		dev_err(xpc_part, "can't get memory for partition structure\n");
1203		goto out_1;
1204	}
1205
1206	xpc_sysctl = register_sysctl("xpc", xpc_sys_xpc);
1207	xpc_sysctl_hb = register_sysctl("xpc/hb", xpc_sys_xpc_hb);
1208
1209	/*
1210	 * Fill the partition reserved page with the information needed by
1211	 * other partitions to discover we are alive and establish initial
1212	 * communications.
1213	 */
1214	ret = xpc_setup_rsvd_page();
1215	if (ret != 0) {
1216		dev_err(xpc_part, "can't setup our reserved page\n");
1217		goto out_2;
1218	}
1219
1220	/* add ourselves to the reboot_notifier_list */
1221	ret = register_reboot_notifier(&xpc_reboot_notifier);
1222	if (ret != 0)
1223		dev_warn(xpc_part, "can't register reboot notifier\n");
1224
1225	/* add ourselves to the die_notifier list */
1226	ret = register_die_notifier(&xpc_die_notifier);
1227	if (ret != 0)
1228		dev_warn(xpc_part, "can't register die notifier\n");
1229
1230	/*
1231	 * The real work-horse behind xpc.  This processes incoming
1232	 * interrupts and monitors remote heartbeats.
1233	 */
1234	kthread = kthread_run(xpc_hb_checker, NULL, XPC_HB_CHECK_THREAD_NAME);
1235	if (IS_ERR(kthread)) {
1236		dev_err(xpc_part, "failed while forking hb check thread\n");
1237		ret = -EBUSY;
1238		goto out_3;
1239	}
1240
1241	/*
1242	 * Startup a thread that will attempt to discover other partitions to
1243	 * activate based on info provided by SAL. This new thread is short
1244	 * lived and will exit once discovery is complete.
1245	 */
1246	kthread = kthread_run(xpc_initiate_discovery, NULL,
1247			      XPC_DISCOVERY_THREAD_NAME);
1248	if (IS_ERR(kthread)) {
1249		dev_err(xpc_part, "failed while forking discovery thread\n");
1250
1251		/* mark this new thread as a non-starter */
1252		complete(&xpc_discovery_exited);
1253
1254		xpc_do_exit(xpUnloading);
1255		return -EBUSY;
1256	}
1257
1258	/* set the interface to point at XPC's functions */
1259	xpc_set_interface(xpc_initiate_connect, xpc_initiate_disconnect,
1260			  xpc_initiate_send, xpc_initiate_send_notify,
1261			  xpc_initiate_received, xpc_initiate_partid_to_nasids);
1262
1263	return 0;
1264
1265	/* initialization was not successful */
1266out_3:
1267	xpc_teardown_rsvd_page();
1268
1269	(void)unregister_die_notifier(&xpc_die_notifier);
1270	(void)unregister_reboot_notifier(&xpc_reboot_notifier);
1271out_2:
1272	if (xpc_sysctl_hb)
1273		unregister_sysctl_table(xpc_sysctl_hb);
1274	if (xpc_sysctl)
1275		unregister_sysctl_table(xpc_sysctl);
1276
1277	xpc_teardown_partitions();
1278out_1:
1279	if (is_uv_system())
 
 
1280		xpc_exit_uv();
1281	return ret;
1282}
1283
1284module_init(xpc_init);
1285
1286static void __exit
1287xpc_exit(void)
1288{
1289	xpc_do_exit(xpUnloading);
1290}
1291
1292module_exit(xpc_exit);
1293
1294MODULE_AUTHOR("Silicon Graphics, Inc.");
1295MODULE_DESCRIPTION("Cross Partition Communication (XPC) support");
1296MODULE_LICENSE("GPL");
1297
1298module_param(xpc_hb_interval, int, 0);
1299MODULE_PARM_DESC(xpc_hb_interval, "Number of seconds between "
1300		 "heartbeat increments.");
1301
1302module_param(xpc_hb_check_interval, int, 0);
1303MODULE_PARM_DESC(xpc_hb_check_interval, "Number of seconds between "
1304		 "heartbeat checks.");
1305
1306module_param(xpc_disengage_timelimit, int, 0);
1307MODULE_PARM_DESC(xpc_disengage_timelimit, "Number of seconds to wait "
1308		 "for disengage to complete.");
1309
1310module_param(xpc_kdebug_ignore, int, 0);
1311MODULE_PARM_DESC(xpc_kdebug_ignore, "Should lack of heartbeat be ignored by "
1312		 "other partitions when dropping into kdebug.");