Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v3.1
 
   1/*
   2 * Copyright (C) 2004 Texas Instruments, Inc.
   3 *
   4 * Some parts based tps65010.c:
   5 * Copyright (C) 2004 Texas Instruments and
   6 * Copyright (C) 2004-2005 David Brownell
   7 *
   8 * Some parts based on tlv320aic24.c:
   9 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
  10 *
  11 * Changes for interrupt handling and clean-up by
  12 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
  13 * Cleanup and generalized support for voltage setting by
  14 * Juha Yrjola
  15 * Added support for controlling VCORE and regulator sleep states,
  16 * Amit Kucheria <amit.kucheria@nokia.com>
  17 * Copyright (C) 2005, 2006 Nokia Corporation
  18 *
  19 * This program is free software; you can redistribute it and/or modify
  20 * it under the terms of the GNU General Public License as published by
  21 * the Free Software Foundation; either version 2 of the License, or
  22 * (at your option) any later version.
  23 *
  24 * This program is distributed in the hope that it will be useful,
  25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27 * GNU General Public License for more details.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * along with this program; if not, write to the Free Software
  31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/i2c.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/mutex.h>
  39#include <linux/workqueue.h>
  40#include <linux/delay.h>
  41#include <linux/rtc.h>
  42#include <linux/bcd.h>
  43#include <linux/slab.h>
 
  44
  45#include <asm/mach/irq.h>
  46
  47#include <mach/gpio.h>
  48#include <plat/menelaus.h>
  49
  50#define DRIVER_NAME			"menelaus"
  51
  52#define MENELAUS_I2C_ADDRESS		0x72
  53
  54#define MENELAUS_REV			0x01
  55#define MENELAUS_VCORE_CTRL1		0x02
  56#define MENELAUS_VCORE_CTRL2		0x03
  57#define MENELAUS_VCORE_CTRL3		0x04
  58#define MENELAUS_VCORE_CTRL4		0x05
  59#define MENELAUS_VCORE_CTRL5		0x06
  60#define MENELAUS_DCDC_CTRL1		0x07
  61#define MENELAUS_DCDC_CTRL2		0x08
  62#define MENELAUS_DCDC_CTRL3		0x09
  63#define MENELAUS_LDO_CTRL1		0x0A
  64#define MENELAUS_LDO_CTRL2		0x0B
  65#define MENELAUS_LDO_CTRL3		0x0C
  66#define MENELAUS_LDO_CTRL4		0x0D
  67#define MENELAUS_LDO_CTRL5		0x0E
  68#define MENELAUS_LDO_CTRL6		0x0F
  69#define MENELAUS_LDO_CTRL7		0x10
  70#define MENELAUS_LDO_CTRL8		0x11
  71#define MENELAUS_SLEEP_CTRL1		0x12
  72#define MENELAUS_SLEEP_CTRL2		0x13
  73#define MENELAUS_DEVICE_OFF		0x14
  74#define MENELAUS_OSC_CTRL		0x15
  75#define MENELAUS_DETECT_CTRL		0x16
  76#define MENELAUS_INT_MASK1		0x17
  77#define MENELAUS_INT_MASK2		0x18
  78#define MENELAUS_INT_STATUS1		0x19
  79#define MENELAUS_INT_STATUS2		0x1A
  80#define MENELAUS_INT_ACK1		0x1B
  81#define MENELAUS_INT_ACK2		0x1C
  82#define MENELAUS_GPIO_CTRL		0x1D
  83#define MENELAUS_GPIO_IN		0x1E
  84#define MENELAUS_GPIO_OUT		0x1F
  85#define MENELAUS_BBSMS			0x20
  86#define MENELAUS_RTC_CTRL		0x21
  87#define MENELAUS_RTC_UPDATE		0x22
  88#define MENELAUS_RTC_SEC		0x23
  89#define MENELAUS_RTC_MIN		0x24
  90#define MENELAUS_RTC_HR			0x25
  91#define MENELAUS_RTC_DAY		0x26
  92#define MENELAUS_RTC_MON		0x27
  93#define MENELAUS_RTC_YR			0x28
  94#define MENELAUS_RTC_WKDAY		0x29
  95#define MENELAUS_RTC_AL_SEC		0x2A
  96#define MENELAUS_RTC_AL_MIN		0x2B
  97#define MENELAUS_RTC_AL_HR		0x2C
  98#define MENELAUS_RTC_AL_DAY		0x2D
  99#define MENELAUS_RTC_AL_MON		0x2E
 100#define MENELAUS_RTC_AL_YR		0x2F
 101#define MENELAUS_RTC_COMP_MSB		0x30
 102#define MENELAUS_RTC_COMP_LSB		0x31
 103#define MENELAUS_S1_PULL_EN		0x32
 104#define MENELAUS_S1_PULL_DIR		0x33
 105#define MENELAUS_S2_PULL_EN		0x34
 106#define MENELAUS_S2_PULL_DIR		0x35
 107#define MENELAUS_MCT_CTRL1		0x36
 108#define MENELAUS_MCT_CTRL2		0x37
 109#define MENELAUS_MCT_CTRL3		0x38
 110#define MENELAUS_MCT_PIN_ST		0x39
 111#define MENELAUS_DEBOUNCE1		0x3A
 112
 113#define IH_MENELAUS_IRQS		12
 114#define MENELAUS_MMC_S1CD_IRQ		0	/* MMC slot 1 card change */
 115#define MENELAUS_MMC_S2CD_IRQ		1	/* MMC slot 2 card change */
 116#define MENELAUS_MMC_S1D1_IRQ		2	/* MMC DAT1 low in slot 1 */
 117#define MENELAUS_MMC_S2D1_IRQ		3	/* MMC DAT1 low in slot 2 */
 118#define MENELAUS_LOWBAT_IRQ		4	/* Low battery */
 119#define MENELAUS_HOTDIE_IRQ		5	/* Hot die detect */
 120#define MENELAUS_UVLO_IRQ		6	/* UVLO detect */
 121#define MENELAUS_TSHUT_IRQ		7	/* Thermal shutdown */
 122#define MENELAUS_RTCTMR_IRQ		8	/* RTC timer */
 123#define MENELAUS_RTCALM_IRQ		9	/* RTC alarm */
 124#define MENELAUS_RTCERR_IRQ		10	/* RTC error */
 125#define MENELAUS_PSHBTN_IRQ		11	/* Push button */
 126#define MENELAUS_RESERVED12_IRQ		12	/* Reserved */
 127#define MENELAUS_RESERVED13_IRQ		13	/* Reserved */
 128#define MENELAUS_RESERVED14_IRQ		14	/* Reserved */
 129#define MENELAUS_RESERVED15_IRQ		15	/* Reserved */
 130
 131/* VCORE_CTRL1 register */
 132#define VCORE_CTRL1_BYP_COMP		(1 << 5)
 133#define VCORE_CTRL1_HW_NSW		(1 << 7)
 134
 135/* GPIO_CTRL register */
 136#define GPIO_CTRL_SLOTSELEN		(1 << 5)
 137#define GPIO_CTRL_SLPCTLEN		(1 << 6)
 138#define GPIO1_DIR_INPUT			(1 << 0)
 139#define GPIO2_DIR_INPUT			(1 << 1)
 140#define GPIO3_DIR_INPUT			(1 << 2)
 141
 142/* MCT_CTRL1 register */
 143#define MCT_CTRL1_S1_CMD_OD		(1 << 2)
 144#define MCT_CTRL1_S2_CMD_OD		(1 << 3)
 145
 146/* MCT_CTRL2 register */
 147#define MCT_CTRL2_VS2_SEL_D0		(1 << 0)
 148#define MCT_CTRL2_VS2_SEL_D1		(1 << 1)
 149#define MCT_CTRL2_S1CD_BUFEN		(1 << 4)
 150#define MCT_CTRL2_S2CD_BUFEN		(1 << 5)
 151#define MCT_CTRL2_S1CD_DBEN		(1 << 6)
 152#define MCT_CTRL2_S2CD_BEN		(1 << 7)
 153
 154/* MCT_CTRL3 register */
 155#define MCT_CTRL3_SLOT1_EN		(1 << 0)
 156#define MCT_CTRL3_SLOT2_EN		(1 << 1)
 157#define MCT_CTRL3_S1_AUTO_EN		(1 << 2)
 158#define MCT_CTRL3_S2_AUTO_EN		(1 << 3)
 159
 160/* MCT_PIN_ST register */
 161#define MCT_PIN_ST_S1_CD_ST		(1 << 0)
 162#define MCT_PIN_ST_S2_CD_ST		(1 << 1)
 163
 164static void menelaus_work(struct work_struct *_menelaus);
 165
 166struct menelaus_chip {
 167	struct mutex		lock;
 168	struct i2c_client	*client;
 169	struct work_struct	work;
 170#ifdef CONFIG_RTC_DRV_TWL92330
 171	struct rtc_device	*rtc;
 172	u8			rtc_control;
 173	unsigned		uie:1;
 174#endif
 175	unsigned		vcore_hw_mode:1;
 176	u8			mask1, mask2;
 177	void			(*handlers[16])(struct menelaus_chip *);
 178	void			(*mmc_callback)(void *data, u8 mask);
 179	void			*mmc_callback_data;
 180};
 181
 182static struct menelaus_chip *the_menelaus;
 183
 184static int menelaus_write_reg(int reg, u8 value)
 185{
 186	int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
 187
 188	if (val < 0) {
 189		pr_err(DRIVER_NAME ": write error");
 190		return val;
 191	}
 192
 193	return 0;
 194}
 195
 196static int menelaus_read_reg(int reg)
 197{
 198	int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
 199
 200	if (val < 0)
 201		pr_err(DRIVER_NAME ": read error");
 202
 203	return val;
 204}
 205
 206static int menelaus_enable_irq(int irq)
 207{
 208	if (irq > 7) {
 209		irq -= 8;
 210		the_menelaus->mask2 &= ~(1 << irq);
 211		return menelaus_write_reg(MENELAUS_INT_MASK2,
 212				the_menelaus->mask2);
 213	} else {
 214		the_menelaus->mask1 &= ~(1 << irq);
 215		return menelaus_write_reg(MENELAUS_INT_MASK1,
 216				the_menelaus->mask1);
 217	}
 218}
 219
 220static int menelaus_disable_irq(int irq)
 221{
 222	if (irq > 7) {
 223		irq -= 8;
 224		the_menelaus->mask2 |= (1 << irq);
 225		return menelaus_write_reg(MENELAUS_INT_MASK2,
 226				the_menelaus->mask2);
 227	} else {
 228		the_menelaus->mask1 |= (1 << irq);
 229		return menelaus_write_reg(MENELAUS_INT_MASK1,
 230				the_menelaus->mask1);
 231	}
 232}
 233
 234static int menelaus_ack_irq(int irq)
 235{
 236	if (irq > 7)
 237		return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
 238	else
 239		return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
 240}
 241
 242/* Adds a handler for an interrupt. Does not run in interrupt context */
 243static int menelaus_add_irq_work(int irq,
 244		void (*handler)(struct menelaus_chip *))
 245{
 246	int ret = 0;
 247
 248	mutex_lock(&the_menelaus->lock);
 249	the_menelaus->handlers[irq] = handler;
 250	ret = menelaus_enable_irq(irq);
 251	mutex_unlock(&the_menelaus->lock);
 252
 253	return ret;
 254}
 255
 256/* Removes handler for an interrupt */
 257static int menelaus_remove_irq_work(int irq)
 258{
 259	int ret = 0;
 260
 261	mutex_lock(&the_menelaus->lock);
 262	ret = menelaus_disable_irq(irq);
 263	the_menelaus->handlers[irq] = NULL;
 264	mutex_unlock(&the_menelaus->lock);
 265
 266	return ret;
 267}
 268
 269/*
 270 * Gets scheduled when a card detect interrupt happens. Note that in some cases
 271 * this line is wired to card cover switch rather than the card detect switch
 272 * in each slot. In this case the cards are not seen by menelaus.
 273 * FIXME: Add handling for D1 too
 274 */
 275static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
 276{
 277	int reg;
 278	unsigned char card_mask = 0;
 279
 280	reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
 281	if (reg < 0)
 282		return;
 283
 284	if (!(reg & 0x1))
 285		card_mask |= MCT_PIN_ST_S1_CD_ST;
 286
 287	if (!(reg & 0x2))
 288		card_mask |= MCT_PIN_ST_S2_CD_ST;
 289
 290	if (menelaus_hw->mmc_callback)
 291		menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
 292					  card_mask);
 293}
 294
 295/*
 296 * Toggles the MMC slots between open-drain and push-pull mode.
 297 */
 298int menelaus_set_mmc_opendrain(int slot, int enable)
 299{
 300	int ret, val;
 301
 302	if (slot != 1 && slot != 2)
 303		return -EINVAL;
 304	mutex_lock(&the_menelaus->lock);
 305	ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
 306	if (ret < 0) {
 307		mutex_unlock(&the_menelaus->lock);
 308		return ret;
 309	}
 310	val = ret;
 311	if (slot == 1) {
 312		if (enable)
 313			val |= MCT_CTRL1_S1_CMD_OD;
 314		else
 315			val &= ~MCT_CTRL1_S1_CMD_OD;
 316	} else {
 317		if (enable)
 318			val |= MCT_CTRL1_S2_CMD_OD;
 319		else
 320			val &= ~MCT_CTRL1_S2_CMD_OD;
 321	}
 322	ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
 323	mutex_unlock(&the_menelaus->lock);
 324
 325	return ret;
 326}
 327EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
 328
 329int menelaus_set_slot_sel(int enable)
 330{
 331	int ret;
 332
 333	mutex_lock(&the_menelaus->lock);
 334	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
 335	if (ret < 0)
 336		goto out;
 337	ret |= GPIO2_DIR_INPUT;
 338	if (enable)
 339		ret |= GPIO_CTRL_SLOTSELEN;
 340	else
 341		ret &= ~GPIO_CTRL_SLOTSELEN;
 342	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
 343out:
 344	mutex_unlock(&the_menelaus->lock);
 345	return ret;
 346}
 347EXPORT_SYMBOL(menelaus_set_slot_sel);
 348
 349int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
 350{
 351	int ret, val;
 352
 353	if (slot != 1 && slot != 2)
 354		return -EINVAL;
 355	if (power >= 3)
 356		return -EINVAL;
 357
 358	mutex_lock(&the_menelaus->lock);
 359
 360	ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
 361	if (ret < 0)
 362		goto out;
 363	val = ret;
 364	if (slot == 1) {
 365		if (cd_en)
 366			val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
 367		else
 368			val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
 369	} else {
 370		if (cd_en)
 371			val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
 372		else
 373			val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
 374	}
 375	ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
 376	if (ret < 0)
 377		goto out;
 378
 379	ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
 380	if (ret < 0)
 381		goto out;
 382	val = ret;
 383	if (slot == 1) {
 384		if (enable)
 385			val |= MCT_CTRL3_SLOT1_EN;
 386		else
 387			val &= ~MCT_CTRL3_SLOT1_EN;
 388	} else {
 389		int b;
 390
 391		if (enable)
 392			val |= MCT_CTRL3_SLOT2_EN;
 393		else
 394			val &= ~MCT_CTRL3_SLOT2_EN;
 395		b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
 396		b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
 397		b |= power;
 398		ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
 399		if (ret < 0)
 400			goto out;
 401	}
 402	/* Disable autonomous shutdown */
 403	val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
 404	ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
 405out:
 406	mutex_unlock(&the_menelaus->lock);
 407	return ret;
 408}
 409EXPORT_SYMBOL(menelaus_set_mmc_slot);
 410
 411int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
 412				   void *data)
 413{
 414	int ret = 0;
 415
 416	the_menelaus->mmc_callback_data = data;
 417	the_menelaus->mmc_callback = callback;
 418	ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
 419				    menelaus_mmc_cd_work);
 420	if (ret < 0)
 421		return ret;
 422	ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
 423				    menelaus_mmc_cd_work);
 424	if (ret < 0)
 425		return ret;
 426	ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
 427				    menelaus_mmc_cd_work);
 428	if (ret < 0)
 429		return ret;
 430	ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
 431				    menelaus_mmc_cd_work);
 432
 433	return ret;
 434}
 435EXPORT_SYMBOL(menelaus_register_mmc_callback);
 436
 437void menelaus_unregister_mmc_callback(void)
 438{
 439	menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
 440	menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
 441	menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
 442	menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
 443
 444	the_menelaus->mmc_callback = NULL;
 445	the_menelaus->mmc_callback_data = 0;
 446}
 447EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
 448
 449struct menelaus_vtg {
 450	const char *name;
 451	u8 vtg_reg;
 452	u8 vtg_shift;
 453	u8 vtg_bits;
 454	u8 mode_reg;
 455};
 456
 457struct menelaus_vtg_value {
 458	u16 vtg;
 459	u16 val;
 460};
 461
 462static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
 463				int vtg_val, int mode)
 464{
 465	int val, ret;
 466	struct i2c_client *c = the_menelaus->client;
 467
 468	mutex_lock(&the_menelaus->lock);
 469	if (vtg == 0)
 470		goto set_voltage;
 471
 472	ret = menelaus_read_reg(vtg->vtg_reg);
 473	if (ret < 0)
 474		goto out;
 475	val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
 476	val |= vtg_val << vtg->vtg_shift;
 477
 478	dev_dbg(&c->dev, "Setting voltage '%s'"
 479			 "to %d mV (reg 0x%02x, val 0x%02x)\n",
 480			vtg->name, mV, vtg->vtg_reg, val);
 481
 482	ret = menelaus_write_reg(vtg->vtg_reg, val);
 483	if (ret < 0)
 484		goto out;
 485set_voltage:
 486	ret = menelaus_write_reg(vtg->mode_reg, mode);
 487out:
 488	mutex_unlock(&the_menelaus->lock);
 489	if (ret == 0) {
 490		/* Wait for voltage to stabilize */
 491		msleep(1);
 492	}
 493	return ret;
 494}
 495
 496static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
 497				  int n)
 498{
 499	int i;
 500
 501	for (i = 0; i < n; i++, tbl++)
 502		if (tbl->vtg == vtg)
 503			return tbl->val;
 504	return -EINVAL;
 505}
 506
 507/*
 508 * Vcore can be programmed in two ways:
 509 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
 510 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
 511 * and VCORE_CTRL4
 512 *
 513 * Call correct 'set' function accordingly
 514 */
 515
 516static const struct menelaus_vtg_value vcore_values[] = {
 517	{ 1000, 0 },
 518	{ 1025, 1 },
 519	{ 1050, 2 },
 520	{ 1075, 3 },
 521	{ 1100, 4 },
 522	{ 1125, 5 },
 523	{ 1150, 6 },
 524	{ 1175, 7 },
 525	{ 1200, 8 },
 526	{ 1225, 9 },
 527	{ 1250, 10 },
 528	{ 1275, 11 },
 529	{ 1300, 12 },
 530	{ 1325, 13 },
 531	{ 1350, 14 },
 532	{ 1375, 15 },
 533	{ 1400, 16 },
 534	{ 1425, 17 },
 535	{ 1450, 18 },
 536};
 537
 538int menelaus_set_vcore_sw(unsigned int mV)
 539{
 540	int val, ret;
 541	struct i2c_client *c = the_menelaus->client;
 542
 543	val = menelaus_get_vtg_value(mV, vcore_values,
 544				     ARRAY_SIZE(vcore_values));
 545	if (val < 0)
 546		return -EINVAL;
 547
 548	dev_dbg(&c->dev, "Setting VCORE to %d mV (val 0x%02x)\n", mV, val);
 549
 550	/* Set SW mode and the voltage in one go. */
 551	mutex_lock(&the_menelaus->lock);
 552	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
 553	if (ret == 0)
 554		the_menelaus->vcore_hw_mode = 0;
 555	mutex_unlock(&the_menelaus->lock);
 556	msleep(1);
 557
 558	return ret;
 559}
 560
 561int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
 562{
 563	int fval, rval, val, ret;
 564	struct i2c_client *c = the_menelaus->client;
 565
 566	rval = menelaus_get_vtg_value(roof_mV, vcore_values,
 567				      ARRAY_SIZE(vcore_values));
 568	if (rval < 0)
 569		return -EINVAL;
 570	fval = menelaus_get_vtg_value(floor_mV, vcore_values,
 571				      ARRAY_SIZE(vcore_values));
 572	if (fval < 0)
 573		return -EINVAL;
 574
 575	dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
 576	       floor_mV, roof_mV);
 577
 578	mutex_lock(&the_menelaus->lock);
 579	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
 580	if (ret < 0)
 581		goto out;
 582	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
 583	if (ret < 0)
 584		goto out;
 585	if (!the_menelaus->vcore_hw_mode) {
 586		val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
 587		/* HW mode, turn OFF byte comparator */
 588		val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
 589		ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
 590		the_menelaus->vcore_hw_mode = 1;
 591	}
 592	msleep(1);
 593out:
 594	mutex_unlock(&the_menelaus->lock);
 595	return ret;
 596}
 597
 598static const struct menelaus_vtg vmem_vtg = {
 599	.name = "VMEM",
 600	.vtg_reg = MENELAUS_LDO_CTRL1,
 601	.vtg_shift = 0,
 602	.vtg_bits = 2,
 603	.mode_reg = MENELAUS_LDO_CTRL3,
 604};
 605
 606static const struct menelaus_vtg_value vmem_values[] = {
 607	{ 1500, 0 },
 608	{ 1800, 1 },
 609	{ 1900, 2 },
 610	{ 2500, 3 },
 611};
 612
 613int menelaus_set_vmem(unsigned int mV)
 614{
 615	int val;
 616
 617	if (mV == 0)
 618		return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
 619
 620	val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
 621	if (val < 0)
 622		return -EINVAL;
 623	return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
 624}
 625EXPORT_SYMBOL(menelaus_set_vmem);
 626
 627static const struct menelaus_vtg vio_vtg = {
 628	.name = "VIO",
 629	.vtg_reg = MENELAUS_LDO_CTRL1,
 630	.vtg_shift = 2,
 631	.vtg_bits = 2,
 632	.mode_reg = MENELAUS_LDO_CTRL4,
 633};
 634
 635static const struct menelaus_vtg_value vio_values[] = {
 636	{ 1500, 0 },
 637	{ 1800, 1 },
 638	{ 2500, 2 },
 639	{ 2800, 3 },
 640};
 641
 642int menelaus_set_vio(unsigned int mV)
 643{
 644	int val;
 645
 646	if (mV == 0)
 647		return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
 648
 649	val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
 650	if (val < 0)
 651		return -EINVAL;
 652	return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
 653}
 654EXPORT_SYMBOL(menelaus_set_vio);
 655
 656static const struct menelaus_vtg_value vdcdc_values[] = {
 657	{ 1500, 0 },
 658	{ 1800, 1 },
 659	{ 2000, 2 },
 660	{ 2200, 3 },
 661	{ 2400, 4 },
 662	{ 2800, 5 },
 663	{ 3000, 6 },
 664	{ 3300, 7 },
 665};
 666
 667static const struct menelaus_vtg vdcdc2_vtg = {
 668	.name = "VDCDC2",
 669	.vtg_reg = MENELAUS_DCDC_CTRL1,
 670	.vtg_shift = 0,
 671	.vtg_bits = 3,
 672	.mode_reg = MENELAUS_DCDC_CTRL2,
 673};
 674
 675static const struct menelaus_vtg vdcdc3_vtg = {
 676	.name = "VDCDC3",
 677	.vtg_reg = MENELAUS_DCDC_CTRL1,
 678	.vtg_shift = 3,
 679	.vtg_bits = 3,
 680	.mode_reg = MENELAUS_DCDC_CTRL3,
 681};
 682
 683int menelaus_set_vdcdc(int dcdc, unsigned int mV)
 684{
 685	const struct menelaus_vtg *vtg;
 686	int val;
 687
 688	if (dcdc != 2 && dcdc != 3)
 689		return -EINVAL;
 690	if (dcdc == 2)
 691		vtg = &vdcdc2_vtg;
 692	else
 693		vtg = &vdcdc3_vtg;
 694
 695	if (mV == 0)
 696		return menelaus_set_voltage(vtg, 0, 0, 0);
 697
 698	val = menelaus_get_vtg_value(mV, vdcdc_values,
 699				     ARRAY_SIZE(vdcdc_values));
 700	if (val < 0)
 701		return -EINVAL;
 702	return menelaus_set_voltage(vtg, mV, val, 0x03);
 703}
 704
 705static const struct menelaus_vtg_value vmmc_values[] = {
 706	{ 1850, 0 },
 707	{ 2800, 1 },
 708	{ 3000, 2 },
 709	{ 3100, 3 },
 710};
 711
 712static const struct menelaus_vtg vmmc_vtg = {
 713	.name = "VMMC",
 714	.vtg_reg = MENELAUS_LDO_CTRL1,
 715	.vtg_shift = 6,
 716	.vtg_bits = 2,
 717	.mode_reg = MENELAUS_LDO_CTRL7,
 718};
 719
 720int menelaus_set_vmmc(unsigned int mV)
 721{
 722	int val;
 723
 724	if (mV == 0)
 725		return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
 726
 727	val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
 728	if (val < 0)
 729		return -EINVAL;
 730	return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
 731}
 732EXPORT_SYMBOL(menelaus_set_vmmc);
 733
 734
 735static const struct menelaus_vtg_value vaux_values[] = {
 736	{ 1500, 0 },
 737	{ 1800, 1 },
 738	{ 2500, 2 },
 739	{ 2800, 3 },
 740};
 741
 742static const struct menelaus_vtg vaux_vtg = {
 743	.name = "VAUX",
 744	.vtg_reg = MENELAUS_LDO_CTRL1,
 745	.vtg_shift = 4,
 746	.vtg_bits = 2,
 747	.mode_reg = MENELAUS_LDO_CTRL6,
 748};
 749
 750int menelaus_set_vaux(unsigned int mV)
 751{
 752	int val;
 753
 754	if (mV == 0)
 755		return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
 756
 757	val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
 758	if (val < 0)
 759		return -EINVAL;
 760	return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
 761}
 762EXPORT_SYMBOL(menelaus_set_vaux);
 763
 764int menelaus_get_slot_pin_states(void)
 765{
 766	return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
 767}
 768EXPORT_SYMBOL(menelaus_get_slot_pin_states);
 769
 770int menelaus_set_regulator_sleep(int enable, u32 val)
 771{
 772	int t, ret;
 773	struct i2c_client *c = the_menelaus->client;
 774
 775	mutex_lock(&the_menelaus->lock);
 776	ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
 777	if (ret < 0)
 778		goto out;
 779
 780	dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
 781
 782	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
 783	if (ret < 0)
 784		goto out;
 785	t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
 786	if (enable)
 787		ret |= t;
 788	else
 789		ret &= ~t;
 790	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
 791out:
 792	mutex_unlock(&the_menelaus->lock);
 793	return ret;
 794}
 795
 796/*-----------------------------------------------------------------------*/
 797
 798/* Handles Menelaus interrupts. Does not run in interrupt context */
 799static void menelaus_work(struct work_struct *_menelaus)
 800{
 801	struct menelaus_chip *menelaus =
 802			container_of(_menelaus, struct menelaus_chip, work);
 803	void (*handler)(struct menelaus_chip *menelaus);
 804
 805	while (1) {
 806		unsigned isr;
 807
 808		isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
 809				& ~menelaus->mask2) << 8;
 810		isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
 811				& ~menelaus->mask1;
 812		if (!isr)
 813			break;
 814
 815		while (isr) {
 816			int irq = fls(isr) - 1;
 817			isr &= ~(1 << irq);
 818
 819			mutex_lock(&menelaus->lock);
 820			menelaus_disable_irq(irq);
 821			menelaus_ack_irq(irq);
 822			handler = menelaus->handlers[irq];
 823			if (handler)
 824				handler(menelaus);
 825			menelaus_enable_irq(irq);
 826			mutex_unlock(&menelaus->lock);
 827		}
 828	}
 829	enable_irq(menelaus->client->irq);
 830}
 831
 832/*
 833 * We cannot use I2C in interrupt context, so we just schedule work.
 834 */
 835static irqreturn_t menelaus_irq(int irq, void *_menelaus)
 836{
 837	struct menelaus_chip *menelaus = _menelaus;
 838
 839	disable_irq_nosync(irq);
 840	(void)schedule_work(&menelaus->work);
 841
 842	return IRQ_HANDLED;
 843}
 844
 845/*-----------------------------------------------------------------------*/
 846
 847/*
 848 * The RTC needs to be set once, then it runs on backup battery power.
 849 * It supports alarms, including system wake alarms (from some modes);
 850 * and 1/second IRQs if requested.
 851 */
 852#ifdef CONFIG_RTC_DRV_TWL92330
 853
 854#define RTC_CTRL_RTC_EN		(1 << 0)
 855#define RTC_CTRL_AL_EN		(1 << 1)
 856#define RTC_CTRL_MODE12		(1 << 2)
 857#define RTC_CTRL_EVERY_MASK	(3 << 3)
 858#define RTC_CTRL_EVERY_SEC	(0 << 3)
 859#define RTC_CTRL_EVERY_MIN	(1 << 3)
 860#define RTC_CTRL_EVERY_HR	(2 << 3)
 861#define RTC_CTRL_EVERY_DAY	(3 << 3)
 862
 863#define RTC_UPDATE_EVERY	0x08
 864
 865#define RTC_HR_PM		(1 << 7)
 866
 867static void menelaus_to_time(char *regs, struct rtc_time *t)
 868{
 869	t->tm_sec = bcd2bin(regs[0]);
 870	t->tm_min = bcd2bin(regs[1]);
 871	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
 872		t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
 873		if (regs[2] & RTC_HR_PM)
 874			t->tm_hour += 12;
 875	} else
 876		t->tm_hour = bcd2bin(regs[2] & 0x3f);
 877	t->tm_mday = bcd2bin(regs[3]);
 878	t->tm_mon = bcd2bin(regs[4]) - 1;
 879	t->tm_year = bcd2bin(regs[5]) + 100;
 880}
 881
 882static int time_to_menelaus(struct rtc_time *t, int regnum)
 883{
 884	int	hour, status;
 885
 886	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
 887	if (status < 0)
 888		goto fail;
 889
 890	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
 891	if (status < 0)
 892		goto fail;
 893
 894	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
 895		hour = t->tm_hour + 1;
 896		if (hour > 12)
 897			hour = RTC_HR_PM | bin2bcd(hour - 12);
 898		else
 899			hour = bin2bcd(hour);
 900	} else
 901		hour = bin2bcd(t->tm_hour);
 902	status = menelaus_write_reg(regnum++, hour);
 903	if (status < 0)
 904		goto fail;
 905
 906	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
 907	if (status < 0)
 908		goto fail;
 909
 910	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
 911	if (status < 0)
 912		goto fail;
 913
 914	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
 915	if (status < 0)
 916		goto fail;
 917
 918	return 0;
 919fail:
 920	dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
 921			--regnum, status);
 922	return status;
 923}
 924
 925static int menelaus_read_time(struct device *dev, struct rtc_time *t)
 926{
 927	struct i2c_msg	msg[2];
 928	char		regs[7];
 929	int		status;
 930
 931	/* block read date and time registers */
 932	regs[0] = MENELAUS_RTC_SEC;
 933
 934	msg[0].addr = MENELAUS_I2C_ADDRESS;
 935	msg[0].flags = 0;
 936	msg[0].len = 1;
 937	msg[0].buf = regs;
 938
 939	msg[1].addr = MENELAUS_I2C_ADDRESS;
 940	msg[1].flags = I2C_M_RD;
 941	msg[1].len = sizeof(regs);
 942	msg[1].buf = regs;
 943
 944	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
 945	if (status != 2) {
 946		dev_err(dev, "%s error %d\n", "read", status);
 947		return -EIO;
 948	}
 949
 950	menelaus_to_time(regs, t);
 951	t->tm_wday = bcd2bin(regs[6]);
 952
 953	return 0;
 954}
 955
 956static int menelaus_set_time(struct device *dev, struct rtc_time *t)
 957{
 958	int		status;
 959
 960	/* write date and time registers */
 961	status = time_to_menelaus(t, MENELAUS_RTC_SEC);
 962	if (status < 0)
 963		return status;
 964	status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
 965	if (status < 0) {
 966		dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
 967				"err %d\n", MENELAUS_RTC_WKDAY, status);
 968		return status;
 969	}
 970
 971	/* now commit the write */
 972	status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
 973	if (status < 0)
 974		dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
 975				status);
 976
 977	return 0;
 978}
 979
 980static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
 981{
 982	struct i2c_msg	msg[2];
 983	char		regs[6];
 984	int		status;
 985
 986	/* block read alarm registers */
 987	regs[0] = MENELAUS_RTC_AL_SEC;
 988
 989	msg[0].addr = MENELAUS_I2C_ADDRESS;
 990	msg[0].flags = 0;
 991	msg[0].len = 1;
 992	msg[0].buf = regs;
 993
 994	msg[1].addr = MENELAUS_I2C_ADDRESS;
 995	msg[1].flags = I2C_M_RD;
 996	msg[1].len = sizeof(regs);
 997	msg[1].buf = regs;
 998
 999	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
1000	if (status != 2) {
1001		dev_err(dev, "%s error %d\n", "alarm read", status);
1002		return -EIO;
1003	}
1004
1005	menelaus_to_time(regs, &w->time);
1006
1007	w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
1008
1009	/* NOTE we *could* check if actually pending... */
1010	w->pending = 0;
1011
1012	return 0;
1013}
1014
1015static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
1016{
1017	int		status;
1018
1019	if (the_menelaus->client->irq <= 0 && w->enabled)
1020		return -ENODEV;
1021
1022	/* clear previous alarm enable */
1023	if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
1024		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1025		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1026				the_menelaus->rtc_control);
1027		if (status < 0)
1028			return status;
1029	}
1030
1031	/* write alarm registers */
1032	status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
1033	if (status < 0)
1034		return status;
1035
1036	/* enable alarm if requested */
1037	if (w->enabled) {
1038		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1039		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1040				the_menelaus->rtc_control);
1041	}
1042
1043	return status;
1044}
1045
1046#ifdef CONFIG_RTC_INTF_DEV
1047
1048static void menelaus_rtc_update_work(struct menelaus_chip *m)
1049{
1050	/* report 1/sec update */
1051	local_irq_disable();
1052	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
1053	local_irq_enable();
1054}
1055
1056static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1057{
1058	int	status;
1059
1060	if (the_menelaus->client->irq <= 0)
1061		return -ENOIOCTLCMD;
1062
1063	switch (cmd) {
1064	/* alarm IRQ */
1065	case RTC_AIE_ON:
1066		if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1067			return 0;
1068		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1069		break;
1070	case RTC_AIE_OFF:
1071		if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1072			return 0;
1073		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1074		break;
1075	/* 1/second "update" IRQ */
1076	case RTC_UIE_ON:
1077		if (the_menelaus->uie)
1078			return 0;
1079		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1080		status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1081				menelaus_rtc_update_work);
1082		if (status == 0)
1083			the_menelaus->uie = 1;
1084		return status;
1085	case RTC_UIE_OFF:
1086		if (!the_menelaus->uie)
1087			return 0;
1088		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1089		if (status == 0)
1090			the_menelaus->uie = 0;
1091		return status;
1092	default:
1093		return -ENOIOCTLCMD;
1094	}
1095	return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1096}
1097
1098#else
1099#define menelaus_ioctl	NULL
1100#endif
1101
1102/* REVISIT no compensation register support ... */
1103
1104static const struct rtc_class_ops menelaus_rtc_ops = {
1105	.ioctl			= menelaus_ioctl,
1106	.read_time		= menelaus_read_time,
1107	.set_time		= menelaus_set_time,
1108	.read_alarm		= menelaus_read_alarm,
1109	.set_alarm		= menelaus_set_alarm,
1110};
1111
1112static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1113{
1114	/* report alarm */
1115	local_irq_disable();
1116	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
1117	local_irq_enable();
1118
1119	/* then disable it; alarms are oneshot */
1120	the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1121	menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1122}
1123
1124static inline void menelaus_rtc_init(struct menelaus_chip *m)
1125{
1126	int	alarm = (m->client->irq > 0);
 
1127
1128	/* assume 32KDETEN pin is pulled high */
1129	if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1130		dev_dbg(&m->client->dev, "no 32k oscillator\n");
1131		return;
1132	}
1133
 
 
 
 
 
 
1134	/* support RTC alarm; it can issue wakeups */
1135	if (alarm) {
1136		if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1137				menelaus_rtc_alarm_work) < 0) {
1138			dev_err(&m->client->dev, "can't handle RTC alarm\n");
1139			return;
1140		}
1141		device_init_wakeup(&m->client->dev, 1);
1142	}
1143
1144	/* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1145	m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1146	if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1147			|| (m->rtc_control & RTC_CTRL_AL_EN)
1148			|| (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1149		if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1150			dev_warn(&m->client->dev, "rtc clock needs setting\n");
1151			m->rtc_control |= RTC_CTRL_RTC_EN;
1152		}
1153		m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1154		m->rtc_control &= ~RTC_CTRL_AL_EN;
1155		menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1156	}
1157
1158	m->rtc = rtc_device_register(DRIVER_NAME,
1159			&m->client->dev,
1160			&menelaus_rtc_ops, THIS_MODULE);
1161	if (IS_ERR(m->rtc)) {
1162		if (alarm) {
1163			menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1164			device_init_wakeup(&m->client->dev, 0);
1165		}
1166		dev_err(&m->client->dev, "can't register RTC: %d\n",
1167				(int) PTR_ERR(m->rtc));
1168		the_menelaus->rtc = NULL;
1169	}
1170}
1171
1172#else
1173
1174static inline void menelaus_rtc_init(struct menelaus_chip *m)
1175{
1176	/* nothing */
1177}
1178
1179#endif
1180
1181/*-----------------------------------------------------------------------*/
1182
1183static struct i2c_driver menelaus_i2c_driver;
1184
1185static int menelaus_probe(struct i2c_client *client,
1186			  const struct i2c_device_id *id)
1187{
1188	struct menelaus_chip	*menelaus;
1189	int			rev = 0, val;
1190	int			err = 0;
1191	struct menelaus_platform_data *menelaus_pdata =
1192					client->dev.platform_data;
1193
1194	if (the_menelaus) {
1195		dev_dbg(&client->dev, "only one %s for now\n",
1196				DRIVER_NAME);
1197		return -ENODEV;
1198	}
1199
1200	menelaus = kzalloc(sizeof *menelaus, GFP_KERNEL);
1201	if (!menelaus)
1202		return -ENOMEM;
1203
1204	i2c_set_clientdata(client, menelaus);
1205
1206	the_menelaus = menelaus;
1207	menelaus->client = client;
1208
1209	/* If a true probe check the device */
1210	rev = menelaus_read_reg(MENELAUS_REV);
1211	if (rev < 0) {
1212		pr_err(DRIVER_NAME ": device not found");
1213		err = -ENODEV;
1214		goto fail1;
1215	}
1216
1217	/* Ack and disable all Menelaus interrupts */
1218	menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1219	menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1220	menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1221	menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1222	menelaus->mask1 = 0xff;
1223	menelaus->mask2 = 0xff;
1224
1225	/* Set output buffer strengths */
1226	menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1227
1228	if (client->irq > 0) {
1229		err = request_irq(client->irq, menelaus_irq, IRQF_DISABLED,
1230				  DRIVER_NAME, menelaus);
1231		if (err) {
1232			dev_dbg(&client->dev,  "can't get IRQ %d, err %d\n",
1233					client->irq, err);
1234			goto fail1;
1235		}
1236	}
1237
1238	mutex_init(&menelaus->lock);
1239	INIT_WORK(&menelaus->work, menelaus_work);
1240
1241	pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1242
1243	val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1244	if (val < 0)
1245		goto fail2;
1246	if (val & (1 << 7))
1247		menelaus->vcore_hw_mode = 1;
1248	else
1249		menelaus->vcore_hw_mode = 0;
1250
1251	if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1252		err = menelaus_pdata->late_init(&client->dev);
1253		if (err < 0)
1254			goto fail2;
1255	}
1256
1257	menelaus_rtc_init(menelaus);
1258
1259	return 0;
1260fail2:
1261	free_irq(client->irq, menelaus);
1262	flush_work_sync(&menelaus->work);
1263fail1:
1264	kfree(menelaus);
1265	return err;
1266}
1267
1268static int __exit menelaus_remove(struct i2c_client *client)
1269{
1270	struct menelaus_chip	*menelaus = i2c_get_clientdata(client);
1271
1272	free_irq(client->irq, menelaus);
1273	flush_work_sync(&menelaus->work);
1274	kfree(menelaus);
1275	the_menelaus = NULL;
1276	return 0;
1277}
1278
1279static const struct i2c_device_id menelaus_id[] = {
1280	{ "menelaus", 0 },
1281	{ }
1282};
1283MODULE_DEVICE_TABLE(i2c, menelaus_id);
1284
1285static struct i2c_driver menelaus_i2c_driver = {
1286	.driver = {
1287		.name		= DRIVER_NAME,
1288	},
1289	.probe		= menelaus_probe,
1290	.remove		= __exit_p(menelaus_remove),
1291	.id_table	= menelaus_id,
1292};
1293
1294static int __init menelaus_init(void)
1295{
1296	int res;
1297
1298	res = i2c_add_driver(&menelaus_i2c_driver);
1299	if (res < 0) {
1300		pr_err(DRIVER_NAME ": driver registration failed\n");
1301		return res;
1302	}
1303
1304	return 0;
1305}
1306
1307static void __exit menelaus_exit(void)
1308{
1309	i2c_del_driver(&menelaus_i2c_driver);
1310
1311	/* FIXME: Shutdown menelaus parts that can be shut down */
1312}
1313
1314MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1315MODULE_DESCRIPTION("I2C interface for Menelaus.");
1316MODULE_LICENSE("GPL");
1317
1318module_init(menelaus_init);
1319module_exit(menelaus_exit);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2004 Texas Instruments, Inc.
   4 *
   5 * Some parts based tps65010.c:
   6 * Copyright (C) 2004 Texas Instruments and
   7 * Copyright (C) 2004-2005 David Brownell
   8 *
   9 * Some parts based on tlv320aic24.c:
  10 * Copyright (C) by Kai Svahn <kai.svahn@nokia.com>
  11 *
  12 * Changes for interrupt handling and clean-up by
  13 * Tony Lindgren <tony@atomide.com> and Imre Deak <imre.deak@nokia.com>
  14 * Cleanup and generalized support for voltage setting by
  15 * Juha Yrjola
  16 * Added support for controlling VCORE and regulator sleep states,
  17 * Amit Kucheria <amit.kucheria@nokia.com>
  18 * Copyright (C) 2005, 2006 Nokia Corporation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  19 */
  20
  21#include <linux/module.h>
  22#include <linux/i2c.h>
  23#include <linux/interrupt.h>
  24#include <linux/sched.h>
  25#include <linux/mutex.h>
  26#include <linux/workqueue.h>
  27#include <linux/delay.h>
  28#include <linux/rtc.h>
  29#include <linux/bcd.h>
  30#include <linux/slab.h>
  31#include <linux/mfd/menelaus.h>
  32
  33#include <asm/mach/irq.h>
  34
 
 
  35
  36#define DRIVER_NAME			"menelaus"
  37
  38#define MENELAUS_I2C_ADDRESS		0x72
  39
  40#define MENELAUS_REV			0x01
  41#define MENELAUS_VCORE_CTRL1		0x02
  42#define MENELAUS_VCORE_CTRL2		0x03
  43#define MENELAUS_VCORE_CTRL3		0x04
  44#define MENELAUS_VCORE_CTRL4		0x05
  45#define MENELAUS_VCORE_CTRL5		0x06
  46#define MENELAUS_DCDC_CTRL1		0x07
  47#define MENELAUS_DCDC_CTRL2		0x08
  48#define MENELAUS_DCDC_CTRL3		0x09
  49#define MENELAUS_LDO_CTRL1		0x0A
  50#define MENELAUS_LDO_CTRL2		0x0B
  51#define MENELAUS_LDO_CTRL3		0x0C
  52#define MENELAUS_LDO_CTRL4		0x0D
  53#define MENELAUS_LDO_CTRL5		0x0E
  54#define MENELAUS_LDO_CTRL6		0x0F
  55#define MENELAUS_LDO_CTRL7		0x10
  56#define MENELAUS_LDO_CTRL8		0x11
  57#define MENELAUS_SLEEP_CTRL1		0x12
  58#define MENELAUS_SLEEP_CTRL2		0x13
  59#define MENELAUS_DEVICE_OFF		0x14
  60#define MENELAUS_OSC_CTRL		0x15
  61#define MENELAUS_DETECT_CTRL		0x16
  62#define MENELAUS_INT_MASK1		0x17
  63#define MENELAUS_INT_MASK2		0x18
  64#define MENELAUS_INT_STATUS1		0x19
  65#define MENELAUS_INT_STATUS2		0x1A
  66#define MENELAUS_INT_ACK1		0x1B
  67#define MENELAUS_INT_ACK2		0x1C
  68#define MENELAUS_GPIO_CTRL		0x1D
  69#define MENELAUS_GPIO_IN		0x1E
  70#define MENELAUS_GPIO_OUT		0x1F
  71#define MENELAUS_BBSMS			0x20
  72#define MENELAUS_RTC_CTRL		0x21
  73#define MENELAUS_RTC_UPDATE		0x22
  74#define MENELAUS_RTC_SEC		0x23
  75#define MENELAUS_RTC_MIN		0x24
  76#define MENELAUS_RTC_HR			0x25
  77#define MENELAUS_RTC_DAY		0x26
  78#define MENELAUS_RTC_MON		0x27
  79#define MENELAUS_RTC_YR			0x28
  80#define MENELAUS_RTC_WKDAY		0x29
  81#define MENELAUS_RTC_AL_SEC		0x2A
  82#define MENELAUS_RTC_AL_MIN		0x2B
  83#define MENELAUS_RTC_AL_HR		0x2C
  84#define MENELAUS_RTC_AL_DAY		0x2D
  85#define MENELAUS_RTC_AL_MON		0x2E
  86#define MENELAUS_RTC_AL_YR		0x2F
  87#define MENELAUS_RTC_COMP_MSB		0x30
  88#define MENELAUS_RTC_COMP_LSB		0x31
  89#define MENELAUS_S1_PULL_EN		0x32
  90#define MENELAUS_S1_PULL_DIR		0x33
  91#define MENELAUS_S2_PULL_EN		0x34
  92#define MENELAUS_S2_PULL_DIR		0x35
  93#define MENELAUS_MCT_CTRL1		0x36
  94#define MENELAUS_MCT_CTRL2		0x37
  95#define MENELAUS_MCT_CTRL3		0x38
  96#define MENELAUS_MCT_PIN_ST		0x39
  97#define MENELAUS_DEBOUNCE1		0x3A
  98
  99#define IH_MENELAUS_IRQS		12
 100#define MENELAUS_MMC_S1CD_IRQ		0	/* MMC slot 1 card change */
 101#define MENELAUS_MMC_S2CD_IRQ		1	/* MMC slot 2 card change */
 102#define MENELAUS_MMC_S1D1_IRQ		2	/* MMC DAT1 low in slot 1 */
 103#define MENELAUS_MMC_S2D1_IRQ		3	/* MMC DAT1 low in slot 2 */
 104#define MENELAUS_LOWBAT_IRQ		4	/* Low battery */
 105#define MENELAUS_HOTDIE_IRQ		5	/* Hot die detect */
 106#define MENELAUS_UVLO_IRQ		6	/* UVLO detect */
 107#define MENELAUS_TSHUT_IRQ		7	/* Thermal shutdown */
 108#define MENELAUS_RTCTMR_IRQ		8	/* RTC timer */
 109#define MENELAUS_RTCALM_IRQ		9	/* RTC alarm */
 110#define MENELAUS_RTCERR_IRQ		10	/* RTC error */
 111#define MENELAUS_PSHBTN_IRQ		11	/* Push button */
 112#define MENELAUS_RESERVED12_IRQ		12	/* Reserved */
 113#define MENELAUS_RESERVED13_IRQ		13	/* Reserved */
 114#define MENELAUS_RESERVED14_IRQ		14	/* Reserved */
 115#define MENELAUS_RESERVED15_IRQ		15	/* Reserved */
 116
 117/* VCORE_CTRL1 register */
 118#define VCORE_CTRL1_BYP_COMP		(1 << 5)
 119#define VCORE_CTRL1_HW_NSW		(1 << 7)
 120
 121/* GPIO_CTRL register */
 122#define GPIO_CTRL_SLOTSELEN		(1 << 5)
 123#define GPIO_CTRL_SLPCTLEN		(1 << 6)
 124#define GPIO1_DIR_INPUT			(1 << 0)
 125#define GPIO2_DIR_INPUT			(1 << 1)
 126#define GPIO3_DIR_INPUT			(1 << 2)
 127
 128/* MCT_CTRL1 register */
 129#define MCT_CTRL1_S1_CMD_OD		(1 << 2)
 130#define MCT_CTRL1_S2_CMD_OD		(1 << 3)
 131
 132/* MCT_CTRL2 register */
 133#define MCT_CTRL2_VS2_SEL_D0		(1 << 0)
 134#define MCT_CTRL2_VS2_SEL_D1		(1 << 1)
 135#define MCT_CTRL2_S1CD_BUFEN		(1 << 4)
 136#define MCT_CTRL2_S2CD_BUFEN		(1 << 5)
 137#define MCT_CTRL2_S1CD_DBEN		(1 << 6)
 138#define MCT_CTRL2_S2CD_BEN		(1 << 7)
 139
 140/* MCT_CTRL3 register */
 141#define MCT_CTRL3_SLOT1_EN		(1 << 0)
 142#define MCT_CTRL3_SLOT2_EN		(1 << 1)
 143#define MCT_CTRL3_S1_AUTO_EN		(1 << 2)
 144#define MCT_CTRL3_S2_AUTO_EN		(1 << 3)
 145
 146/* MCT_PIN_ST register */
 147#define MCT_PIN_ST_S1_CD_ST		(1 << 0)
 148#define MCT_PIN_ST_S2_CD_ST		(1 << 1)
 149
 150static void menelaus_work(struct work_struct *_menelaus);
 151
 152struct menelaus_chip {
 153	struct mutex		lock;
 154	struct i2c_client	*client;
 155	struct work_struct	work;
 156#ifdef CONFIG_RTC_DRV_TWL92330
 157	struct rtc_device	*rtc;
 158	u8			rtc_control;
 159	unsigned		uie:1;
 160#endif
 161	unsigned		vcore_hw_mode:1;
 162	u8			mask1, mask2;
 163	void			(*handlers[16])(struct menelaus_chip *);
 164	void			(*mmc_callback)(void *data, u8 mask);
 165	void			*mmc_callback_data;
 166};
 167
 168static struct menelaus_chip *the_menelaus;
 169
 170static int menelaus_write_reg(int reg, u8 value)
 171{
 172	int val = i2c_smbus_write_byte_data(the_menelaus->client, reg, value);
 173
 174	if (val < 0) {
 175		pr_err(DRIVER_NAME ": write error");
 176		return val;
 177	}
 178
 179	return 0;
 180}
 181
 182static int menelaus_read_reg(int reg)
 183{
 184	int val = i2c_smbus_read_byte_data(the_menelaus->client, reg);
 185
 186	if (val < 0)
 187		pr_err(DRIVER_NAME ": read error");
 188
 189	return val;
 190}
 191
 192static int menelaus_enable_irq(int irq)
 193{
 194	if (irq > 7) {
 195		irq -= 8;
 196		the_menelaus->mask2 &= ~(1 << irq);
 197		return menelaus_write_reg(MENELAUS_INT_MASK2,
 198				the_menelaus->mask2);
 199	} else {
 200		the_menelaus->mask1 &= ~(1 << irq);
 201		return menelaus_write_reg(MENELAUS_INT_MASK1,
 202				the_menelaus->mask1);
 203	}
 204}
 205
 206static int menelaus_disable_irq(int irq)
 207{
 208	if (irq > 7) {
 209		irq -= 8;
 210		the_menelaus->mask2 |= (1 << irq);
 211		return menelaus_write_reg(MENELAUS_INT_MASK2,
 212				the_menelaus->mask2);
 213	} else {
 214		the_menelaus->mask1 |= (1 << irq);
 215		return menelaus_write_reg(MENELAUS_INT_MASK1,
 216				the_menelaus->mask1);
 217	}
 218}
 219
 220static int menelaus_ack_irq(int irq)
 221{
 222	if (irq > 7)
 223		return menelaus_write_reg(MENELAUS_INT_ACK2, 1 << (irq - 8));
 224	else
 225		return menelaus_write_reg(MENELAUS_INT_ACK1, 1 << irq);
 226}
 227
 228/* Adds a handler for an interrupt. Does not run in interrupt context */
 229static int menelaus_add_irq_work(int irq,
 230		void (*handler)(struct menelaus_chip *))
 231{
 232	int ret = 0;
 233
 234	mutex_lock(&the_menelaus->lock);
 235	the_menelaus->handlers[irq] = handler;
 236	ret = menelaus_enable_irq(irq);
 237	mutex_unlock(&the_menelaus->lock);
 238
 239	return ret;
 240}
 241
 242/* Removes handler for an interrupt */
 243static int menelaus_remove_irq_work(int irq)
 244{
 245	int ret = 0;
 246
 247	mutex_lock(&the_menelaus->lock);
 248	ret = menelaus_disable_irq(irq);
 249	the_menelaus->handlers[irq] = NULL;
 250	mutex_unlock(&the_menelaus->lock);
 251
 252	return ret;
 253}
 254
 255/*
 256 * Gets scheduled when a card detect interrupt happens. Note that in some cases
 257 * this line is wired to card cover switch rather than the card detect switch
 258 * in each slot. In this case the cards are not seen by menelaus.
 259 * FIXME: Add handling for D1 too
 260 */
 261static void menelaus_mmc_cd_work(struct menelaus_chip *menelaus_hw)
 262{
 263	int reg;
 264	unsigned char card_mask = 0;
 265
 266	reg = menelaus_read_reg(MENELAUS_MCT_PIN_ST);
 267	if (reg < 0)
 268		return;
 269
 270	if (!(reg & 0x1))
 271		card_mask |= MCT_PIN_ST_S1_CD_ST;
 272
 273	if (!(reg & 0x2))
 274		card_mask |= MCT_PIN_ST_S2_CD_ST;
 275
 276	if (menelaus_hw->mmc_callback)
 277		menelaus_hw->mmc_callback(menelaus_hw->mmc_callback_data,
 278					  card_mask);
 279}
 280
 281/*
 282 * Toggles the MMC slots between open-drain and push-pull mode.
 283 */
 284int menelaus_set_mmc_opendrain(int slot, int enable)
 285{
 286	int ret, val;
 287
 288	if (slot != 1 && slot != 2)
 289		return -EINVAL;
 290	mutex_lock(&the_menelaus->lock);
 291	ret = menelaus_read_reg(MENELAUS_MCT_CTRL1);
 292	if (ret < 0) {
 293		mutex_unlock(&the_menelaus->lock);
 294		return ret;
 295	}
 296	val = ret;
 297	if (slot == 1) {
 298		if (enable)
 299			val |= MCT_CTRL1_S1_CMD_OD;
 300		else
 301			val &= ~MCT_CTRL1_S1_CMD_OD;
 302	} else {
 303		if (enable)
 304			val |= MCT_CTRL1_S2_CMD_OD;
 305		else
 306			val &= ~MCT_CTRL1_S2_CMD_OD;
 307	}
 308	ret = menelaus_write_reg(MENELAUS_MCT_CTRL1, val);
 309	mutex_unlock(&the_menelaus->lock);
 310
 311	return ret;
 312}
 313EXPORT_SYMBOL(menelaus_set_mmc_opendrain);
 314
 315int menelaus_set_slot_sel(int enable)
 316{
 317	int ret;
 318
 319	mutex_lock(&the_menelaus->lock);
 320	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
 321	if (ret < 0)
 322		goto out;
 323	ret |= GPIO2_DIR_INPUT;
 324	if (enable)
 325		ret |= GPIO_CTRL_SLOTSELEN;
 326	else
 327		ret &= ~GPIO_CTRL_SLOTSELEN;
 328	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
 329out:
 330	mutex_unlock(&the_menelaus->lock);
 331	return ret;
 332}
 333EXPORT_SYMBOL(menelaus_set_slot_sel);
 334
 335int menelaus_set_mmc_slot(int slot, int enable, int power, int cd_en)
 336{
 337	int ret, val;
 338
 339	if (slot != 1 && slot != 2)
 340		return -EINVAL;
 341	if (power >= 3)
 342		return -EINVAL;
 343
 344	mutex_lock(&the_menelaus->lock);
 345
 346	ret = menelaus_read_reg(MENELAUS_MCT_CTRL2);
 347	if (ret < 0)
 348		goto out;
 349	val = ret;
 350	if (slot == 1) {
 351		if (cd_en)
 352			val |= MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN;
 353		else
 354			val &= ~(MCT_CTRL2_S1CD_BUFEN | MCT_CTRL2_S1CD_DBEN);
 355	} else {
 356		if (cd_en)
 357			val |= MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN;
 358		else
 359			val &= ~(MCT_CTRL2_S2CD_BUFEN | MCT_CTRL2_S2CD_BEN);
 360	}
 361	ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, val);
 362	if (ret < 0)
 363		goto out;
 364
 365	ret = menelaus_read_reg(MENELAUS_MCT_CTRL3);
 366	if (ret < 0)
 367		goto out;
 368	val = ret;
 369	if (slot == 1) {
 370		if (enable)
 371			val |= MCT_CTRL3_SLOT1_EN;
 372		else
 373			val &= ~MCT_CTRL3_SLOT1_EN;
 374	} else {
 375		int b;
 376
 377		if (enable)
 378			val |= MCT_CTRL3_SLOT2_EN;
 379		else
 380			val &= ~MCT_CTRL3_SLOT2_EN;
 381		b = menelaus_read_reg(MENELAUS_MCT_CTRL2);
 382		b &= ~(MCT_CTRL2_VS2_SEL_D0 | MCT_CTRL2_VS2_SEL_D1);
 383		b |= power;
 384		ret = menelaus_write_reg(MENELAUS_MCT_CTRL2, b);
 385		if (ret < 0)
 386			goto out;
 387	}
 388	/* Disable autonomous shutdown */
 389	val &= ~(MCT_CTRL3_S1_AUTO_EN | MCT_CTRL3_S2_AUTO_EN);
 390	ret = menelaus_write_reg(MENELAUS_MCT_CTRL3, val);
 391out:
 392	mutex_unlock(&the_menelaus->lock);
 393	return ret;
 394}
 395EXPORT_SYMBOL(menelaus_set_mmc_slot);
 396
 397int menelaus_register_mmc_callback(void (*callback)(void *data, u8 card_mask),
 398				   void *data)
 399{
 400	int ret = 0;
 401
 402	the_menelaus->mmc_callback_data = data;
 403	the_menelaus->mmc_callback = callback;
 404	ret = menelaus_add_irq_work(MENELAUS_MMC_S1CD_IRQ,
 405				    menelaus_mmc_cd_work);
 406	if (ret < 0)
 407		return ret;
 408	ret = menelaus_add_irq_work(MENELAUS_MMC_S2CD_IRQ,
 409				    menelaus_mmc_cd_work);
 410	if (ret < 0)
 411		return ret;
 412	ret = menelaus_add_irq_work(MENELAUS_MMC_S1D1_IRQ,
 413				    menelaus_mmc_cd_work);
 414	if (ret < 0)
 415		return ret;
 416	ret = menelaus_add_irq_work(MENELAUS_MMC_S2D1_IRQ,
 417				    menelaus_mmc_cd_work);
 418
 419	return ret;
 420}
 421EXPORT_SYMBOL(menelaus_register_mmc_callback);
 422
 423void menelaus_unregister_mmc_callback(void)
 424{
 425	menelaus_remove_irq_work(MENELAUS_MMC_S1CD_IRQ);
 426	menelaus_remove_irq_work(MENELAUS_MMC_S2CD_IRQ);
 427	menelaus_remove_irq_work(MENELAUS_MMC_S1D1_IRQ);
 428	menelaus_remove_irq_work(MENELAUS_MMC_S2D1_IRQ);
 429
 430	the_menelaus->mmc_callback = NULL;
 431	the_menelaus->mmc_callback_data = NULL;
 432}
 433EXPORT_SYMBOL(menelaus_unregister_mmc_callback);
 434
 435struct menelaus_vtg {
 436	const char *name;
 437	u8 vtg_reg;
 438	u8 vtg_shift;
 439	u8 vtg_bits;
 440	u8 mode_reg;
 441};
 442
 443struct menelaus_vtg_value {
 444	u16 vtg;
 445	u16 val;
 446};
 447
 448static int menelaus_set_voltage(const struct menelaus_vtg *vtg, int mV,
 449				int vtg_val, int mode)
 450{
 451	int val, ret;
 452	struct i2c_client *c = the_menelaus->client;
 453
 454	mutex_lock(&the_menelaus->lock);
 
 
 455
 456	ret = menelaus_read_reg(vtg->vtg_reg);
 457	if (ret < 0)
 458		goto out;
 459	val = ret & ~(((1 << vtg->vtg_bits) - 1) << vtg->vtg_shift);
 460	val |= vtg_val << vtg->vtg_shift;
 461
 462	dev_dbg(&c->dev, "Setting voltage '%s'"
 463			 "to %d mV (reg 0x%02x, val 0x%02x)\n",
 464			vtg->name, mV, vtg->vtg_reg, val);
 465
 466	ret = menelaus_write_reg(vtg->vtg_reg, val);
 467	if (ret < 0)
 468		goto out;
 
 469	ret = menelaus_write_reg(vtg->mode_reg, mode);
 470out:
 471	mutex_unlock(&the_menelaus->lock);
 472	if (ret == 0) {
 473		/* Wait for voltage to stabilize */
 474		msleep(1);
 475	}
 476	return ret;
 477}
 478
 479static int menelaus_get_vtg_value(int vtg, const struct menelaus_vtg_value *tbl,
 480				  int n)
 481{
 482	int i;
 483
 484	for (i = 0; i < n; i++, tbl++)
 485		if (tbl->vtg == vtg)
 486			return tbl->val;
 487	return -EINVAL;
 488}
 489
 490/*
 491 * Vcore can be programmed in two ways:
 492 * SW-controlled: Required voltage is programmed into VCORE_CTRL1
 493 * HW-controlled: Required range (roof-floor) is programmed into VCORE_CTRL3
 494 * and VCORE_CTRL4
 495 *
 496 * Call correct 'set' function accordingly
 497 */
 498
 499static const struct menelaus_vtg_value vcore_values[] = {
 500	{ 1000, 0 },
 501	{ 1025, 1 },
 502	{ 1050, 2 },
 503	{ 1075, 3 },
 504	{ 1100, 4 },
 505	{ 1125, 5 },
 506	{ 1150, 6 },
 507	{ 1175, 7 },
 508	{ 1200, 8 },
 509	{ 1225, 9 },
 510	{ 1250, 10 },
 511	{ 1275, 11 },
 512	{ 1300, 12 },
 513	{ 1325, 13 },
 514	{ 1350, 14 },
 515	{ 1375, 15 },
 516	{ 1400, 16 },
 517	{ 1425, 17 },
 518	{ 1450, 18 },
 519};
 520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 521int menelaus_set_vcore_hw(unsigned int roof_mV, unsigned int floor_mV)
 522{
 523	int fval, rval, val, ret;
 524	struct i2c_client *c = the_menelaus->client;
 525
 526	rval = menelaus_get_vtg_value(roof_mV, vcore_values,
 527				      ARRAY_SIZE(vcore_values));
 528	if (rval < 0)
 529		return -EINVAL;
 530	fval = menelaus_get_vtg_value(floor_mV, vcore_values,
 531				      ARRAY_SIZE(vcore_values));
 532	if (fval < 0)
 533		return -EINVAL;
 534
 535	dev_dbg(&c->dev, "Setting VCORE FLOOR to %d mV and ROOF to %d mV\n",
 536	       floor_mV, roof_mV);
 537
 538	mutex_lock(&the_menelaus->lock);
 539	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL3, fval);
 540	if (ret < 0)
 541		goto out;
 542	ret = menelaus_write_reg(MENELAUS_VCORE_CTRL4, rval);
 543	if (ret < 0)
 544		goto out;
 545	if (!the_menelaus->vcore_hw_mode) {
 546		val = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
 547		/* HW mode, turn OFF byte comparator */
 548		val |= (VCORE_CTRL1_HW_NSW | VCORE_CTRL1_BYP_COMP);
 549		ret = menelaus_write_reg(MENELAUS_VCORE_CTRL1, val);
 550		the_menelaus->vcore_hw_mode = 1;
 551	}
 552	msleep(1);
 553out:
 554	mutex_unlock(&the_menelaus->lock);
 555	return ret;
 556}
 557
 558static const struct menelaus_vtg vmem_vtg = {
 559	.name = "VMEM",
 560	.vtg_reg = MENELAUS_LDO_CTRL1,
 561	.vtg_shift = 0,
 562	.vtg_bits = 2,
 563	.mode_reg = MENELAUS_LDO_CTRL3,
 564};
 565
 566static const struct menelaus_vtg_value vmem_values[] = {
 567	{ 1500, 0 },
 568	{ 1800, 1 },
 569	{ 1900, 2 },
 570	{ 2500, 3 },
 571};
 572
 573int menelaus_set_vmem(unsigned int mV)
 574{
 575	int val;
 576
 577	if (mV == 0)
 578		return menelaus_set_voltage(&vmem_vtg, 0, 0, 0);
 579
 580	val = menelaus_get_vtg_value(mV, vmem_values, ARRAY_SIZE(vmem_values));
 581	if (val < 0)
 582		return -EINVAL;
 583	return menelaus_set_voltage(&vmem_vtg, mV, val, 0x02);
 584}
 585EXPORT_SYMBOL(menelaus_set_vmem);
 586
 587static const struct menelaus_vtg vio_vtg = {
 588	.name = "VIO",
 589	.vtg_reg = MENELAUS_LDO_CTRL1,
 590	.vtg_shift = 2,
 591	.vtg_bits = 2,
 592	.mode_reg = MENELAUS_LDO_CTRL4,
 593};
 594
 595static const struct menelaus_vtg_value vio_values[] = {
 596	{ 1500, 0 },
 597	{ 1800, 1 },
 598	{ 2500, 2 },
 599	{ 2800, 3 },
 600};
 601
 602int menelaus_set_vio(unsigned int mV)
 603{
 604	int val;
 605
 606	if (mV == 0)
 607		return menelaus_set_voltage(&vio_vtg, 0, 0, 0);
 608
 609	val = menelaus_get_vtg_value(mV, vio_values, ARRAY_SIZE(vio_values));
 610	if (val < 0)
 611		return -EINVAL;
 612	return menelaus_set_voltage(&vio_vtg, mV, val, 0x02);
 613}
 614EXPORT_SYMBOL(menelaus_set_vio);
 615
 616static const struct menelaus_vtg_value vdcdc_values[] = {
 617	{ 1500, 0 },
 618	{ 1800, 1 },
 619	{ 2000, 2 },
 620	{ 2200, 3 },
 621	{ 2400, 4 },
 622	{ 2800, 5 },
 623	{ 3000, 6 },
 624	{ 3300, 7 },
 625};
 626
 627static const struct menelaus_vtg vdcdc2_vtg = {
 628	.name = "VDCDC2",
 629	.vtg_reg = MENELAUS_DCDC_CTRL1,
 630	.vtg_shift = 0,
 631	.vtg_bits = 3,
 632	.mode_reg = MENELAUS_DCDC_CTRL2,
 633};
 634
 635static const struct menelaus_vtg vdcdc3_vtg = {
 636	.name = "VDCDC3",
 637	.vtg_reg = MENELAUS_DCDC_CTRL1,
 638	.vtg_shift = 3,
 639	.vtg_bits = 3,
 640	.mode_reg = MENELAUS_DCDC_CTRL3,
 641};
 642
 643int menelaus_set_vdcdc(int dcdc, unsigned int mV)
 644{
 645	const struct menelaus_vtg *vtg;
 646	int val;
 647
 648	if (dcdc != 2 && dcdc != 3)
 649		return -EINVAL;
 650	if (dcdc == 2)
 651		vtg = &vdcdc2_vtg;
 652	else
 653		vtg = &vdcdc3_vtg;
 654
 655	if (mV == 0)
 656		return menelaus_set_voltage(vtg, 0, 0, 0);
 657
 658	val = menelaus_get_vtg_value(mV, vdcdc_values,
 659				     ARRAY_SIZE(vdcdc_values));
 660	if (val < 0)
 661		return -EINVAL;
 662	return menelaus_set_voltage(vtg, mV, val, 0x03);
 663}
 664
 665static const struct menelaus_vtg_value vmmc_values[] = {
 666	{ 1850, 0 },
 667	{ 2800, 1 },
 668	{ 3000, 2 },
 669	{ 3100, 3 },
 670};
 671
 672static const struct menelaus_vtg vmmc_vtg = {
 673	.name = "VMMC",
 674	.vtg_reg = MENELAUS_LDO_CTRL1,
 675	.vtg_shift = 6,
 676	.vtg_bits = 2,
 677	.mode_reg = MENELAUS_LDO_CTRL7,
 678};
 679
 680int menelaus_set_vmmc(unsigned int mV)
 681{
 682	int val;
 683
 684	if (mV == 0)
 685		return menelaus_set_voltage(&vmmc_vtg, 0, 0, 0);
 686
 687	val = menelaus_get_vtg_value(mV, vmmc_values, ARRAY_SIZE(vmmc_values));
 688	if (val < 0)
 689		return -EINVAL;
 690	return menelaus_set_voltage(&vmmc_vtg, mV, val, 0x02);
 691}
 692EXPORT_SYMBOL(menelaus_set_vmmc);
 693
 694
 695static const struct menelaus_vtg_value vaux_values[] = {
 696	{ 1500, 0 },
 697	{ 1800, 1 },
 698	{ 2500, 2 },
 699	{ 2800, 3 },
 700};
 701
 702static const struct menelaus_vtg vaux_vtg = {
 703	.name = "VAUX",
 704	.vtg_reg = MENELAUS_LDO_CTRL1,
 705	.vtg_shift = 4,
 706	.vtg_bits = 2,
 707	.mode_reg = MENELAUS_LDO_CTRL6,
 708};
 709
 710int menelaus_set_vaux(unsigned int mV)
 711{
 712	int val;
 713
 714	if (mV == 0)
 715		return menelaus_set_voltage(&vaux_vtg, 0, 0, 0);
 716
 717	val = menelaus_get_vtg_value(mV, vaux_values, ARRAY_SIZE(vaux_values));
 718	if (val < 0)
 719		return -EINVAL;
 720	return menelaus_set_voltage(&vaux_vtg, mV, val, 0x02);
 721}
 722EXPORT_SYMBOL(menelaus_set_vaux);
 723
 724int menelaus_get_slot_pin_states(void)
 725{
 726	return menelaus_read_reg(MENELAUS_MCT_PIN_ST);
 727}
 728EXPORT_SYMBOL(menelaus_get_slot_pin_states);
 729
 730int menelaus_set_regulator_sleep(int enable, u32 val)
 731{
 732	int t, ret;
 733	struct i2c_client *c = the_menelaus->client;
 734
 735	mutex_lock(&the_menelaus->lock);
 736	ret = menelaus_write_reg(MENELAUS_SLEEP_CTRL2, val);
 737	if (ret < 0)
 738		goto out;
 739
 740	dev_dbg(&c->dev, "regulator sleep configuration: %02x\n", val);
 741
 742	ret = menelaus_read_reg(MENELAUS_GPIO_CTRL);
 743	if (ret < 0)
 744		goto out;
 745	t = (GPIO_CTRL_SLPCTLEN | GPIO3_DIR_INPUT);
 746	if (enable)
 747		ret |= t;
 748	else
 749		ret &= ~t;
 750	ret = menelaus_write_reg(MENELAUS_GPIO_CTRL, ret);
 751out:
 752	mutex_unlock(&the_menelaus->lock);
 753	return ret;
 754}
 755
 756/*-----------------------------------------------------------------------*/
 757
 758/* Handles Menelaus interrupts. Does not run in interrupt context */
 759static void menelaus_work(struct work_struct *_menelaus)
 760{
 761	struct menelaus_chip *menelaus =
 762			container_of(_menelaus, struct menelaus_chip, work);
 763	void (*handler)(struct menelaus_chip *menelaus);
 764
 765	while (1) {
 766		unsigned isr;
 767
 768		isr = (menelaus_read_reg(MENELAUS_INT_STATUS2)
 769				& ~menelaus->mask2) << 8;
 770		isr |= menelaus_read_reg(MENELAUS_INT_STATUS1)
 771				& ~menelaus->mask1;
 772		if (!isr)
 773			break;
 774
 775		while (isr) {
 776			int irq = fls(isr) - 1;
 777			isr &= ~(1 << irq);
 778
 779			mutex_lock(&menelaus->lock);
 780			menelaus_disable_irq(irq);
 781			menelaus_ack_irq(irq);
 782			handler = menelaus->handlers[irq];
 783			if (handler)
 784				handler(menelaus);
 785			menelaus_enable_irq(irq);
 786			mutex_unlock(&menelaus->lock);
 787		}
 788	}
 789	enable_irq(menelaus->client->irq);
 790}
 791
 792/*
 793 * We cannot use I2C in interrupt context, so we just schedule work.
 794 */
 795static irqreturn_t menelaus_irq(int irq, void *_menelaus)
 796{
 797	struct menelaus_chip *menelaus = _menelaus;
 798
 799	disable_irq_nosync(irq);
 800	(void)schedule_work(&menelaus->work);
 801
 802	return IRQ_HANDLED;
 803}
 804
 805/*-----------------------------------------------------------------------*/
 806
 807/*
 808 * The RTC needs to be set once, then it runs on backup battery power.
 809 * It supports alarms, including system wake alarms (from some modes);
 810 * and 1/second IRQs if requested.
 811 */
 812#ifdef CONFIG_RTC_DRV_TWL92330
 813
 814#define RTC_CTRL_RTC_EN		(1 << 0)
 815#define RTC_CTRL_AL_EN		(1 << 1)
 816#define RTC_CTRL_MODE12		(1 << 2)
 817#define RTC_CTRL_EVERY_MASK	(3 << 3)
 818#define RTC_CTRL_EVERY_SEC	(0 << 3)
 819#define RTC_CTRL_EVERY_MIN	(1 << 3)
 820#define RTC_CTRL_EVERY_HR	(2 << 3)
 821#define RTC_CTRL_EVERY_DAY	(3 << 3)
 822
 823#define RTC_UPDATE_EVERY	0x08
 824
 825#define RTC_HR_PM		(1 << 7)
 826
 827static void menelaus_to_time(char *regs, struct rtc_time *t)
 828{
 829	t->tm_sec = bcd2bin(regs[0]);
 830	t->tm_min = bcd2bin(regs[1]);
 831	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
 832		t->tm_hour = bcd2bin(regs[2] & 0x1f) - 1;
 833		if (regs[2] & RTC_HR_PM)
 834			t->tm_hour += 12;
 835	} else
 836		t->tm_hour = bcd2bin(regs[2] & 0x3f);
 837	t->tm_mday = bcd2bin(regs[3]);
 838	t->tm_mon = bcd2bin(regs[4]) - 1;
 839	t->tm_year = bcd2bin(regs[5]) + 100;
 840}
 841
 842static int time_to_menelaus(struct rtc_time *t, int regnum)
 843{
 844	int	hour, status;
 845
 846	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_sec));
 847	if (status < 0)
 848		goto fail;
 849
 850	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_min));
 851	if (status < 0)
 852		goto fail;
 853
 854	if (the_menelaus->rtc_control & RTC_CTRL_MODE12) {
 855		hour = t->tm_hour + 1;
 856		if (hour > 12)
 857			hour = RTC_HR_PM | bin2bcd(hour - 12);
 858		else
 859			hour = bin2bcd(hour);
 860	} else
 861		hour = bin2bcd(t->tm_hour);
 862	status = menelaus_write_reg(regnum++, hour);
 863	if (status < 0)
 864		goto fail;
 865
 866	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mday));
 867	if (status < 0)
 868		goto fail;
 869
 870	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_mon + 1));
 871	if (status < 0)
 872		goto fail;
 873
 874	status = menelaus_write_reg(regnum++, bin2bcd(t->tm_year - 100));
 875	if (status < 0)
 876		goto fail;
 877
 878	return 0;
 879fail:
 880	dev_err(&the_menelaus->client->dev, "rtc write reg %02x, err %d\n",
 881			--regnum, status);
 882	return status;
 883}
 884
 885static int menelaus_read_time(struct device *dev, struct rtc_time *t)
 886{
 887	struct i2c_msg	msg[2];
 888	char		regs[7];
 889	int		status;
 890
 891	/* block read date and time registers */
 892	regs[0] = MENELAUS_RTC_SEC;
 893
 894	msg[0].addr = MENELAUS_I2C_ADDRESS;
 895	msg[0].flags = 0;
 896	msg[0].len = 1;
 897	msg[0].buf = regs;
 898
 899	msg[1].addr = MENELAUS_I2C_ADDRESS;
 900	msg[1].flags = I2C_M_RD;
 901	msg[1].len = sizeof(regs);
 902	msg[1].buf = regs;
 903
 904	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
 905	if (status != 2) {
 906		dev_err(dev, "%s error %d\n", "read", status);
 907		return -EIO;
 908	}
 909
 910	menelaus_to_time(regs, t);
 911	t->tm_wday = bcd2bin(regs[6]);
 912
 913	return 0;
 914}
 915
 916static int menelaus_set_time(struct device *dev, struct rtc_time *t)
 917{
 918	int		status;
 919
 920	/* write date and time registers */
 921	status = time_to_menelaus(t, MENELAUS_RTC_SEC);
 922	if (status < 0)
 923		return status;
 924	status = menelaus_write_reg(MENELAUS_RTC_WKDAY, bin2bcd(t->tm_wday));
 925	if (status < 0) {
 926		dev_err(&the_menelaus->client->dev, "rtc write reg %02x "
 927				"err %d\n", MENELAUS_RTC_WKDAY, status);
 928		return status;
 929	}
 930
 931	/* now commit the write */
 932	status = menelaus_write_reg(MENELAUS_RTC_UPDATE, RTC_UPDATE_EVERY);
 933	if (status < 0)
 934		dev_err(&the_menelaus->client->dev, "rtc commit time, err %d\n",
 935				status);
 936
 937	return 0;
 938}
 939
 940static int menelaus_read_alarm(struct device *dev, struct rtc_wkalrm *w)
 941{
 942	struct i2c_msg	msg[2];
 943	char		regs[6];
 944	int		status;
 945
 946	/* block read alarm registers */
 947	regs[0] = MENELAUS_RTC_AL_SEC;
 948
 949	msg[0].addr = MENELAUS_I2C_ADDRESS;
 950	msg[0].flags = 0;
 951	msg[0].len = 1;
 952	msg[0].buf = regs;
 953
 954	msg[1].addr = MENELAUS_I2C_ADDRESS;
 955	msg[1].flags = I2C_M_RD;
 956	msg[1].len = sizeof(regs);
 957	msg[1].buf = regs;
 958
 959	status = i2c_transfer(the_menelaus->client->adapter, msg, 2);
 960	if (status != 2) {
 961		dev_err(dev, "%s error %d\n", "alarm read", status);
 962		return -EIO;
 963	}
 964
 965	menelaus_to_time(regs, &w->time);
 966
 967	w->enabled = !!(the_menelaus->rtc_control & RTC_CTRL_AL_EN);
 968
 969	/* NOTE we *could* check if actually pending... */
 970	w->pending = 0;
 971
 972	return 0;
 973}
 974
 975static int menelaus_set_alarm(struct device *dev, struct rtc_wkalrm *w)
 976{
 977	int		status;
 978
 979	if (the_menelaus->client->irq <= 0 && w->enabled)
 980		return -ENODEV;
 981
 982	/* clear previous alarm enable */
 983	if (the_menelaus->rtc_control & RTC_CTRL_AL_EN) {
 984		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
 985		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
 986				the_menelaus->rtc_control);
 987		if (status < 0)
 988			return status;
 989	}
 990
 991	/* write alarm registers */
 992	status = time_to_menelaus(&w->time, MENELAUS_RTC_AL_SEC);
 993	if (status < 0)
 994		return status;
 995
 996	/* enable alarm if requested */
 997	if (w->enabled) {
 998		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
 999		status = menelaus_write_reg(MENELAUS_RTC_CTRL,
1000				the_menelaus->rtc_control);
1001	}
1002
1003	return status;
1004}
1005
1006#ifdef CONFIG_RTC_INTF_DEV
1007
1008static void menelaus_rtc_update_work(struct menelaus_chip *m)
1009{
1010	/* report 1/sec update */
 
1011	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_UF);
 
1012}
1013
1014static int menelaus_ioctl(struct device *dev, unsigned cmd, unsigned long arg)
1015{
1016	int	status;
1017
1018	if (the_menelaus->client->irq <= 0)
1019		return -ENOIOCTLCMD;
1020
1021	switch (cmd) {
1022	/* alarm IRQ */
1023	case RTC_AIE_ON:
1024		if (the_menelaus->rtc_control & RTC_CTRL_AL_EN)
1025			return 0;
1026		the_menelaus->rtc_control |= RTC_CTRL_AL_EN;
1027		break;
1028	case RTC_AIE_OFF:
1029		if (!(the_menelaus->rtc_control & RTC_CTRL_AL_EN))
1030			return 0;
1031		the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1032		break;
1033	/* 1/second "update" IRQ */
1034	case RTC_UIE_ON:
1035		if (the_menelaus->uie)
1036			return 0;
1037		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1038		status = menelaus_add_irq_work(MENELAUS_RTCTMR_IRQ,
1039				menelaus_rtc_update_work);
1040		if (status == 0)
1041			the_menelaus->uie = 1;
1042		return status;
1043	case RTC_UIE_OFF:
1044		if (!the_menelaus->uie)
1045			return 0;
1046		status = menelaus_remove_irq_work(MENELAUS_RTCTMR_IRQ);
1047		if (status == 0)
1048			the_menelaus->uie = 0;
1049		return status;
1050	default:
1051		return -ENOIOCTLCMD;
1052	}
1053	return menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1054}
1055
1056#else
1057#define menelaus_ioctl	NULL
1058#endif
1059
1060/* REVISIT no compensation register support ... */
1061
1062static const struct rtc_class_ops menelaus_rtc_ops = {
1063	.ioctl			= menelaus_ioctl,
1064	.read_time		= menelaus_read_time,
1065	.set_time		= menelaus_set_time,
1066	.read_alarm		= menelaus_read_alarm,
1067	.set_alarm		= menelaus_set_alarm,
1068};
1069
1070static void menelaus_rtc_alarm_work(struct menelaus_chip *m)
1071{
1072	/* report alarm */
 
1073	rtc_update_irq(m->rtc, 1, RTC_IRQF | RTC_AF);
 
1074
1075	/* then disable it; alarms are oneshot */
1076	the_menelaus->rtc_control &= ~RTC_CTRL_AL_EN;
1077	menelaus_write_reg(MENELAUS_RTC_CTRL, the_menelaus->rtc_control);
1078}
1079
1080static inline void menelaus_rtc_init(struct menelaus_chip *m)
1081{
1082	int	alarm = (m->client->irq > 0);
1083	int	err;
1084
1085	/* assume 32KDETEN pin is pulled high */
1086	if (!(menelaus_read_reg(MENELAUS_OSC_CTRL) & 0x80)) {
1087		dev_dbg(&m->client->dev, "no 32k oscillator\n");
1088		return;
1089	}
1090
1091	m->rtc = devm_rtc_allocate_device(&m->client->dev);
1092	if (IS_ERR(m->rtc))
1093		return;
1094
1095	m->rtc->ops = &menelaus_rtc_ops;
1096
1097	/* support RTC alarm; it can issue wakeups */
1098	if (alarm) {
1099		if (menelaus_add_irq_work(MENELAUS_RTCALM_IRQ,
1100				menelaus_rtc_alarm_work) < 0) {
1101			dev_err(&m->client->dev, "can't handle RTC alarm\n");
1102			return;
1103		}
1104		device_init_wakeup(&m->client->dev, 1);
1105	}
1106
1107	/* be sure RTC is enabled; allow 1/sec irqs; leave 12hr mode alone */
1108	m->rtc_control = menelaus_read_reg(MENELAUS_RTC_CTRL);
1109	if (!(m->rtc_control & RTC_CTRL_RTC_EN)
1110			|| (m->rtc_control & RTC_CTRL_AL_EN)
1111			|| (m->rtc_control & RTC_CTRL_EVERY_MASK)) {
1112		if (!(m->rtc_control & RTC_CTRL_RTC_EN)) {
1113			dev_warn(&m->client->dev, "rtc clock needs setting\n");
1114			m->rtc_control |= RTC_CTRL_RTC_EN;
1115		}
1116		m->rtc_control &= ~RTC_CTRL_EVERY_MASK;
1117		m->rtc_control &= ~RTC_CTRL_AL_EN;
1118		menelaus_write_reg(MENELAUS_RTC_CTRL, m->rtc_control);
1119	}
1120
1121	err = devm_rtc_register_device(m->rtc);
1122	if (err) {
 
 
1123		if (alarm) {
1124			menelaus_remove_irq_work(MENELAUS_RTCALM_IRQ);
1125			device_init_wakeup(&m->client->dev, 0);
1126		}
 
 
1127		the_menelaus->rtc = NULL;
1128	}
1129}
1130
1131#else
1132
1133static inline void menelaus_rtc_init(struct menelaus_chip *m)
1134{
1135	/* nothing */
1136}
1137
1138#endif
1139
1140/*-----------------------------------------------------------------------*/
1141
1142static struct i2c_driver menelaus_i2c_driver;
1143
1144static int menelaus_probe(struct i2c_client *client)
 
1145{
1146	struct menelaus_chip	*menelaus;
1147	int			rev = 0;
1148	int			err = 0;
1149	struct menelaus_platform_data *menelaus_pdata =
1150					dev_get_platdata(&client->dev);
1151
1152	if (the_menelaus) {
1153		dev_dbg(&client->dev, "only one %s for now\n",
1154				DRIVER_NAME);
1155		return -ENODEV;
1156	}
1157
1158	menelaus = devm_kzalloc(&client->dev, sizeof(*menelaus), GFP_KERNEL);
1159	if (!menelaus)
1160		return -ENOMEM;
1161
1162	i2c_set_clientdata(client, menelaus);
1163
1164	the_menelaus = menelaus;
1165	menelaus->client = client;
1166
1167	/* If a true probe check the device */
1168	rev = menelaus_read_reg(MENELAUS_REV);
1169	if (rev < 0) {
1170		pr_err(DRIVER_NAME ": device not found");
1171		return -ENODEV;
 
1172	}
1173
1174	/* Ack and disable all Menelaus interrupts */
1175	menelaus_write_reg(MENELAUS_INT_ACK1, 0xff);
1176	menelaus_write_reg(MENELAUS_INT_ACK2, 0xff);
1177	menelaus_write_reg(MENELAUS_INT_MASK1, 0xff);
1178	menelaus_write_reg(MENELAUS_INT_MASK2, 0xff);
1179	menelaus->mask1 = 0xff;
1180	menelaus->mask2 = 0xff;
1181
1182	/* Set output buffer strengths */
1183	menelaus_write_reg(MENELAUS_MCT_CTRL1, 0x73);
1184
1185	if (client->irq > 0) {
1186		err = request_irq(client->irq, menelaus_irq, 0,
1187				  DRIVER_NAME, menelaus);
1188		if (err) {
1189			dev_dbg(&client->dev,  "can't get IRQ %d, err %d\n",
1190					client->irq, err);
1191			return err;
1192		}
1193	}
1194
1195	mutex_init(&menelaus->lock);
1196	INIT_WORK(&menelaus->work, menelaus_work);
1197
1198	pr_info("Menelaus rev %d.%d\n", rev >> 4, rev & 0x0f);
1199
1200	err = menelaus_read_reg(MENELAUS_VCORE_CTRL1);
1201	if (err < 0)
1202		goto fail;
1203	if (err & VCORE_CTRL1_HW_NSW)
1204		menelaus->vcore_hw_mode = 1;
1205	else
1206		menelaus->vcore_hw_mode = 0;
1207
1208	if (menelaus_pdata != NULL && menelaus_pdata->late_init != NULL) {
1209		err = menelaus_pdata->late_init(&client->dev);
1210		if (err < 0)
1211			goto fail;
1212	}
1213
1214	menelaus_rtc_init(menelaus);
1215
1216	return 0;
1217fail:
1218	free_irq(client->irq, menelaus);
1219	flush_work(&menelaus->work);
 
 
1220	return err;
1221}
1222
1223static void menelaus_remove(struct i2c_client *client)
1224{
1225	struct menelaus_chip	*menelaus = i2c_get_clientdata(client);
1226
1227	free_irq(client->irq, menelaus);
1228	flush_work(&menelaus->work);
 
1229	the_menelaus = NULL;
 
1230}
1231
1232static const struct i2c_device_id menelaus_id[] = {
1233	{ "menelaus" },
1234	{ }
1235};
1236MODULE_DEVICE_TABLE(i2c, menelaus_id);
1237
1238static struct i2c_driver menelaus_i2c_driver = {
1239	.driver = {
1240		.name		= DRIVER_NAME,
1241	},
1242	.probe		= menelaus_probe,
1243	.remove		= menelaus_remove,
1244	.id_table	= menelaus_id,
1245};
1246
1247module_i2c_driver(menelaus_i2c_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1248
1249MODULE_AUTHOR("Texas Instruments, Inc. (and others)");
1250MODULE_DESCRIPTION("I2C interface for Menelaus.");
1251MODULE_LICENSE("GPL");