Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Isochronous I/O functionality:
  3 *   - Isochronous DMA context management
  4 *   - Isochronous bus resource management (channels, bandwidth), client side
  5 *
  6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software Foundation,
 20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 21 */
 22
 23#include <linux/dma-mapping.h>
 24#include <linux/errno.h>
 25#include <linux/firewire.h>
 26#include <linux/firewire-constants.h>
 27#include <linux/kernel.h>
 28#include <linux/mm.h>
 29#include <linux/slab.h>
 30#include <linux/spinlock.h>
 31#include <linux/vmalloc.h>
 
 32
 33#include <asm/byteorder.h>
 34
 35#include "core.h"
 36
 
 
 37/*
 38 * Isochronous DMA context management
 39 */
 40
 41int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
 42		       int page_count, enum dma_data_direction direction)
 43{
 44	int i, j;
 45	dma_addr_t address;
 46
 47	buffer->page_count = page_count;
 48	buffer->direction = direction;
 49
 50	buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
 51				GFP_KERNEL);
 
 
 52	if (buffer->pages == NULL)
 53		goto out;
 54
 55	for (i = 0; i < buffer->page_count; i++) {
 56		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
 57		if (buffer->pages[i] == NULL)
 58			goto out_pages;
 59
 60		address = dma_map_page(card->device, buffer->pages[i],
 61				       0, PAGE_SIZE, direction);
 62		if (dma_mapping_error(card->device, address)) {
 63			__free_page(buffer->pages[i]);
 64			goto out_pages;
 65		}
 66		set_page_private(buffer->pages[i], address);
 67	}
 68
 69	return 0;
 70
 71 out_pages:
 72	for (j = 0; j < i; j++) {
 73		address = page_private(buffer->pages[j]);
 74		dma_unmap_page(card->device, address,
 75			       PAGE_SIZE, direction);
 76		__free_page(buffer->pages[j]);
 77	}
 78	kfree(buffer->pages);
 79 out:
 80	buffer->pages = NULL;
 81
 82	return -ENOMEM;
 83}
 84EXPORT_SYMBOL(fw_iso_buffer_init);
 85
 86int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
 
 87{
 88	unsigned long uaddr;
 89	int i, err;
 
 
 90
 91	uaddr = vma->vm_start;
 92	for (i = 0; i < buffer->page_count; i++) {
 93		err = vm_insert_page(vma, uaddr, buffer->pages[i]);
 94		if (err)
 95			return err;
 
 96
 97		uaddr += PAGE_SIZE;
 98	}
 
 
 
 99
100	return 0;
101}
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
104			   struct fw_card *card)
105{
106	int i;
107	dma_addr_t address;
108
109	for (i = 0; i < buffer->page_count; i++) {
110		address = page_private(buffer->pages[i]);
111		dma_unmap_page(card->device, address,
112			       PAGE_SIZE, buffer->direction);
113		__free_page(buffer->pages[i]);
114	}
 
 
115
116	kfree(buffer->pages);
117	buffer->pages = NULL;
 
 
118}
119EXPORT_SYMBOL(fw_iso_buffer_destroy);
120
121/* Convert DMA address to offset into virtually contiguous buffer. */
122size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
123{
124	int i;
125	dma_addr_t address;
126	ssize_t offset;
127
128	for (i = 0; i < buffer->page_count; i++) {
129		address = page_private(buffer->pages[i]);
130		offset = (ssize_t)completed - (ssize_t)address;
131		if (offset > 0 && offset <= PAGE_SIZE)
132			return (i << PAGE_SHIFT) + offset;
133	}
134
135	return 0;
136}
137
138struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
139		int type, int channel, int speed, size_t header_size,
140		fw_iso_callback_t callback, void *callback_data)
141{
142	struct fw_iso_context *ctx;
143
144	ctx = card->driver->allocate_iso_context(card,
145						 type, channel, header_size);
146	if (IS_ERR(ctx))
147		return ctx;
148
149	ctx->card = card;
150	ctx->type = type;
151	ctx->channel = channel;
152	ctx->speed = speed;
153	ctx->header_size = header_size;
154	ctx->callback.sc = callback;
155	ctx->callback_data = callback_data;
156
 
 
 
 
157	return ctx;
158}
159EXPORT_SYMBOL(fw_iso_context_create);
160
161void fw_iso_context_destroy(struct fw_iso_context *ctx)
162{
 
 
 
 
163	ctx->card->driver->free_iso_context(ctx);
164}
165EXPORT_SYMBOL(fw_iso_context_destroy);
166
167int fw_iso_context_start(struct fw_iso_context *ctx,
168			 int cycle, int sync, int tags)
169{
 
 
 
 
170	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
171}
172EXPORT_SYMBOL(fw_iso_context_start);
173
174int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
175{
 
 
176	return ctx->card->driver->set_iso_channels(ctx, channels);
177}
178
179int fw_iso_context_queue(struct fw_iso_context *ctx,
180			 struct fw_iso_packet *packet,
181			 struct fw_iso_buffer *buffer,
182			 unsigned long payload)
183{
 
 
 
 
184	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
185}
186EXPORT_SYMBOL(fw_iso_context_queue);
187
188void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
189{
 
 
 
 
190	ctx->card->driver->flush_queue_iso(ctx);
191}
192EXPORT_SYMBOL(fw_iso_context_queue_flush);
193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194int fw_iso_context_stop(struct fw_iso_context *ctx)
195{
196	return ctx->card->driver->stop_iso(ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197}
198EXPORT_SYMBOL(fw_iso_context_stop);
199
200/*
201 * Isochronous bus resource management (channels, bandwidth), client side
202 */
203
204static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
205			    int bandwidth, bool allocate)
206{
207	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
208	__be32 data[2];
209
210	/*
211	 * On a 1394a IRM with low contention, try < 1 is enough.
212	 * On a 1394-1995 IRM, we need at least try < 2.
213	 * Let's just do try < 5.
214	 */
215	for (try = 0; try < 5; try++) {
216		new = allocate ? old - bandwidth : old + bandwidth;
217		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
218			return -EBUSY;
219
220		data[0] = cpu_to_be32(old);
221		data[1] = cpu_to_be32(new);
222		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
223				irm_id, generation, SCODE_100,
224				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
225				data, 8)) {
226		case RCODE_GENERATION:
227			/* A generation change frees all bandwidth. */
228			return allocate ? -EAGAIN : bandwidth;
229
230		case RCODE_COMPLETE:
231			if (be32_to_cpup(data) == old)
232				return bandwidth;
233
234			old = be32_to_cpup(data);
235			/* Fall through. */
236		}
237	}
238
239	return -EIO;
240}
241
242static int manage_channel(struct fw_card *card, int irm_id, int generation,
243		u32 channels_mask, u64 offset, bool allocate)
244{
245	__be32 bit, all, old;
246	__be32 data[2];
247	int channel, ret = -EIO, retry = 5;
248
249	old = all = allocate ? cpu_to_be32(~0) : 0;
250
251	for (channel = 0; channel < 32; channel++) {
252		if (!(channels_mask & 1 << channel))
253			continue;
254
255		ret = -EBUSY;
256
257		bit = cpu_to_be32(1 << (31 - channel));
258		if ((old & bit) != (all & bit))
259			continue;
260
261		data[0] = old;
262		data[1] = old ^ bit;
263		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
264					   irm_id, generation, SCODE_100,
265					   offset, data, 8)) {
266		case RCODE_GENERATION:
267			/* A generation change frees all channels. */
268			return allocate ? -EAGAIN : channel;
269
270		case RCODE_COMPLETE:
271			if (data[0] == old)
272				return channel;
273
274			old = data[0];
275
276			/* Is the IRM 1394a-2000 compliant? */
277			if ((data[0] & bit) == (data[1] & bit))
278				continue;
279
280			/* 1394-1995 IRM, fall through to retry. */
281		default:
282			if (retry) {
283				retry--;
284				channel--;
285			} else {
286				ret = -EIO;
287			}
288		}
289	}
290
291	return ret;
292}
293
294static void deallocate_channel(struct fw_card *card, int irm_id,
295			       int generation, int channel)
296{
297	u32 mask;
298	u64 offset;
299
300	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
301	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
302				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
303
304	manage_channel(card, irm_id, generation, mask, offset, false);
305}
306
307/**
308 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
 
 
 
 
 
 
309 *
310 * In parameters: card, generation, channels_mask, bandwidth, allocate
311 * Out parameters: channel, bandwidth
 
312 * This function blocks (sleeps) during communication with the IRM.
313 *
314 * Allocates or deallocates at most one channel out of channels_mask.
315 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
316 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
317 * channel 0 and LSB for channel 63.)
318 * Allocates or deallocates as many bandwidth allocation units as specified.
319 *
320 * Returns channel < 0 if no channel was allocated or deallocated.
321 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
322 *
323 * If generation is stale, deallocations succeed but allocations fail with
324 * channel = -EAGAIN.
325 *
326 * If channel allocation fails, no bandwidth will be allocated either.
327 * If bandwidth allocation fails, no channel will be allocated either.
328 * But deallocations of channel and bandwidth are tried independently
329 * of each other's success.
330 */
331void fw_iso_resource_manage(struct fw_card *card, int generation,
332			    u64 channels_mask, int *channel, int *bandwidth,
333			    bool allocate)
334{
335	u32 channels_hi = channels_mask;	/* channels 31...0 */
336	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
337	int irm_id, ret, c = -EINVAL;
338
339	spin_lock_irq(&card->lock);
340	irm_id = card->irm_node->node_id;
341	spin_unlock_irq(&card->lock);
342
343	if (channels_hi)
344		c = manage_channel(card, irm_id, generation, channels_hi,
345				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
346				allocate);
347	if (channels_lo && c < 0) {
348		c = manage_channel(card, irm_id, generation, channels_lo,
349				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
350				allocate);
351		if (c >= 0)
352			c += 32;
353	}
354	*channel = c;
355
356	if (allocate && channels_mask != 0 && c < 0)
357		*bandwidth = 0;
358
359	if (*bandwidth == 0)
360		return;
361
362	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
363	if (ret < 0)
364		*bandwidth = 0;
365
366	if (allocate && ret < 0) {
367		if (c >= 0)
368			deallocate_channel(card, irm_id, generation, c);
369		*channel = ret;
370	}
371}
372EXPORT_SYMBOL(fw_iso_resource_manage);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Isochronous I/O functionality:
  4 *   - Isochronous DMA context management
  5 *   - Isochronous bus resource management (channels, bandwidth), client side
  6 *
  7 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <linux/dma-mapping.h>
 11#include <linux/errno.h>
 12#include <linux/firewire.h>
 13#include <linux/firewire-constants.h>
 14#include <linux/kernel.h>
 15#include <linux/mm.h>
 16#include <linux/slab.h>
 17#include <linux/spinlock.h>
 18#include <linux/vmalloc.h>
 19#include <linux/export.h>
 20
 21#include <asm/byteorder.h>
 22
 23#include "core.h"
 24
 25#include <trace/events/firewire.h>
 26
 27/*
 28 * Isochronous DMA context management
 29 */
 30
 31int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
 
 32{
 33	int i;
 
 
 
 
 34
 35	buffer->page_count = 0;
 36	buffer->page_count_mapped = 0;
 37	buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
 38				      GFP_KERNEL);
 39	if (buffer->pages == NULL)
 40		return -ENOMEM;
 41
 42	for (i = 0; i < page_count; i++) {
 43		buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
 44		if (buffer->pages[i] == NULL)
 45			break;
 
 
 
 
 
 
 
 
 46	}
 47	buffer->page_count = i;
 48	if (i < page_count) {
 49		fw_iso_buffer_destroy(buffer, NULL);
 50		return -ENOMEM;
 
 
 
 
 
 51	}
 
 
 
 52
 53	return 0;
 54}
 
 55
 56int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
 57			  enum dma_data_direction direction)
 58{
 59	dma_addr_t address;
 60	int i;
 61
 62	buffer->direction = direction;
 63
 
 64	for (i = 0; i < buffer->page_count; i++) {
 65		address = dma_map_page(card->device, buffer->pages[i],
 66				       0, PAGE_SIZE, direction);
 67		if (dma_mapping_error(card->device, address))
 68			break;
 69
 70		set_page_private(buffer->pages[i], address);
 71	}
 72	buffer->page_count_mapped = i;
 73	if (i < buffer->page_count)
 74		return -ENOMEM;
 75
 76	return 0;
 77}
 78
 79int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
 80		       int page_count, enum dma_data_direction direction)
 81{
 82	int ret;
 83
 84	ret = fw_iso_buffer_alloc(buffer, page_count);
 85	if (ret < 0)
 86		return ret;
 87
 88	ret = fw_iso_buffer_map_dma(buffer, card, direction);
 89	if (ret < 0)
 90		fw_iso_buffer_destroy(buffer, card);
 91
 92	return ret;
 93}
 94EXPORT_SYMBOL(fw_iso_buffer_init);
 95
 96void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
 97			   struct fw_card *card)
 98{
 99	int i;
100	dma_addr_t address;
101
102	for (i = 0; i < buffer->page_count_mapped; i++) {
103		address = page_private(buffer->pages[i]);
104		dma_unmap_page(card->device, address,
105			       PAGE_SIZE, buffer->direction);
 
106	}
107	for (i = 0; i < buffer->page_count; i++)
108		__free_page(buffer->pages[i]);
109
110	kfree(buffer->pages);
111	buffer->pages = NULL;
112	buffer->page_count = 0;
113	buffer->page_count_mapped = 0;
114}
115EXPORT_SYMBOL(fw_iso_buffer_destroy);
116
117/* Convert DMA address to offset into virtually contiguous buffer. */
118size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
119{
120	size_t i;
121	dma_addr_t address;
122	ssize_t offset;
123
124	for (i = 0; i < buffer->page_count; i++) {
125		address = page_private(buffer->pages[i]);
126		offset = (ssize_t)completed - (ssize_t)address;
127		if (offset > 0 && offset <= PAGE_SIZE)
128			return (i << PAGE_SHIFT) + offset;
129	}
130
131	return 0;
132}
133
134struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
135		int type, int channel, int speed, size_t header_size,
136		fw_iso_callback_t callback, void *callback_data)
137{
138	struct fw_iso_context *ctx;
139
140	ctx = card->driver->allocate_iso_context(card,
141						 type, channel, header_size);
142	if (IS_ERR(ctx))
143		return ctx;
144
145	ctx->card = card;
146	ctx->type = type;
147	ctx->channel = channel;
148	ctx->speed = speed;
149	ctx->header_size = header_size;
150	ctx->callback.sc = callback;
151	ctx->callback_data = callback_data;
152
153	trace_isoc_outbound_allocate(ctx, channel, speed);
154	trace_isoc_inbound_single_allocate(ctx, channel, header_size);
155	trace_isoc_inbound_multiple_allocate(ctx);
156
157	return ctx;
158}
159EXPORT_SYMBOL(fw_iso_context_create);
160
161void fw_iso_context_destroy(struct fw_iso_context *ctx)
162{
163	trace_isoc_outbound_destroy(ctx);
164	trace_isoc_inbound_single_destroy(ctx);
165	trace_isoc_inbound_multiple_destroy(ctx);
166
167	ctx->card->driver->free_iso_context(ctx);
168}
169EXPORT_SYMBOL(fw_iso_context_destroy);
170
171int fw_iso_context_start(struct fw_iso_context *ctx,
172			 int cycle, int sync, int tags)
173{
174	trace_isoc_outbound_start(ctx, cycle);
175	trace_isoc_inbound_single_start(ctx, cycle, sync, tags);
176	trace_isoc_inbound_multiple_start(ctx, cycle, sync, tags);
177
178	return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
179}
180EXPORT_SYMBOL(fw_iso_context_start);
181
182int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
183{
184	trace_isoc_inbound_multiple_channels(ctx, *channels);
185
186	return ctx->card->driver->set_iso_channels(ctx, channels);
187}
188
189int fw_iso_context_queue(struct fw_iso_context *ctx,
190			 struct fw_iso_packet *packet,
191			 struct fw_iso_buffer *buffer,
192			 unsigned long payload)
193{
194	trace_isoc_outbound_queue(ctx, payload, packet);
195	trace_isoc_inbound_single_queue(ctx, payload, packet);
196	trace_isoc_inbound_multiple_queue(ctx, payload, packet);
197
198	return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
199}
200EXPORT_SYMBOL(fw_iso_context_queue);
201
202void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
203{
204	trace_isoc_outbound_flush(ctx);
205	trace_isoc_inbound_single_flush(ctx);
206	trace_isoc_inbound_multiple_flush(ctx);
207
208	ctx->card->driver->flush_queue_iso(ctx);
209}
210EXPORT_SYMBOL(fw_iso_context_queue_flush);
211
212/**
213 * fw_iso_context_flush_completions() - process isochronous context in current process context.
214 * @ctx: the isochronous context
215 *
216 * Process the isochronous context in the current process context. The registered callback function
217 * is called when a queued packet buffer with the interrupt flag is completed, either after
218 * transmission in the IT context or after being filled in the IR context. Additionally, the
219 * callback function is also called for the packet buffer completed at last. Furthermore, the
220 * callback function is called as well when the header buffer in the context becomes full. If it is
221 * required to process the context asynchronously, fw_iso_context_schedule_flush_completions() is
222 * available instead.
223 *
224 * Context: Process context. May sleep due to disable_work_sync().
225 */
226int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
227{
228	int err;
229
230	trace_isoc_outbound_flush_completions(ctx);
231	trace_isoc_inbound_single_flush_completions(ctx);
232	trace_isoc_inbound_multiple_flush_completions(ctx);
233
234	might_sleep();
235
236	// Avoid dead lock due to programming mistake.
237	if (WARN_ON_ONCE(current_work() == &ctx->work))
238		return 0;
239
240	disable_work_sync(&ctx->work);
241
242	err = ctx->card->driver->flush_iso_completions(ctx);
243
244	enable_work(&ctx->work);
245
246	return err;
247}
248EXPORT_SYMBOL(fw_iso_context_flush_completions);
249
250int fw_iso_context_stop(struct fw_iso_context *ctx)
251{
252	int err;
253
254	trace_isoc_outbound_stop(ctx);
255	trace_isoc_inbound_single_stop(ctx);
256	trace_isoc_inbound_multiple_stop(ctx);
257
258	might_sleep();
259
260	// Avoid dead lock due to programming mistake.
261	if (WARN_ON_ONCE(current_work() == &ctx->work))
262		return 0;
263
264	err = ctx->card->driver->stop_iso(ctx);
265
266	cancel_work_sync(&ctx->work);
267
268	return err;
269}
270EXPORT_SYMBOL(fw_iso_context_stop);
271
272/*
273 * Isochronous bus resource management (channels, bandwidth), client side
274 */
275
276static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
277			    int bandwidth, bool allocate)
278{
279	int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
280	__be32 data[2];
281
282	/*
283	 * On a 1394a IRM with low contention, try < 1 is enough.
284	 * On a 1394-1995 IRM, we need at least try < 2.
285	 * Let's just do try < 5.
286	 */
287	for (try = 0; try < 5; try++) {
288		new = allocate ? old - bandwidth : old + bandwidth;
289		if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
290			return -EBUSY;
291
292		data[0] = cpu_to_be32(old);
293		data[1] = cpu_to_be32(new);
294		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
295				irm_id, generation, SCODE_100,
296				CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
297				data, 8)) {
298		case RCODE_GENERATION:
299			/* A generation change frees all bandwidth. */
300			return allocate ? -EAGAIN : bandwidth;
301
302		case RCODE_COMPLETE:
303			if (be32_to_cpup(data) == old)
304				return bandwidth;
305
306			old = be32_to_cpup(data);
307			/* Fall through. */
308		}
309	}
310
311	return -EIO;
312}
313
314static int manage_channel(struct fw_card *card, int irm_id, int generation,
315		u32 channels_mask, u64 offset, bool allocate)
316{
317	__be32 bit, all, old;
318	__be32 data[2];
319	int channel, ret = -EIO, retry = 5;
320
321	old = all = allocate ? cpu_to_be32(~0) : 0;
322
323	for (channel = 0; channel < 32; channel++) {
324		if (!(channels_mask & 1 << channel))
325			continue;
326
327		ret = -EBUSY;
328
329		bit = cpu_to_be32(1 << (31 - channel));
330		if ((old & bit) != (all & bit))
331			continue;
332
333		data[0] = old;
334		data[1] = old ^ bit;
335		switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
336					   irm_id, generation, SCODE_100,
337					   offset, data, 8)) {
338		case RCODE_GENERATION:
339			/* A generation change frees all channels. */
340			return allocate ? -EAGAIN : channel;
341
342		case RCODE_COMPLETE:
343			if (data[0] == old)
344				return channel;
345
346			old = data[0];
347
348			/* Is the IRM 1394a-2000 compliant? */
349			if ((data[0] & bit) == (data[1] & bit))
350				continue;
351
352			fallthrough;	/* It's a 1394-1995 IRM, retry */
353		default:
354			if (retry) {
355				retry--;
356				channel--;
357			} else {
358				ret = -EIO;
359			}
360		}
361	}
362
363	return ret;
364}
365
366static void deallocate_channel(struct fw_card *card, int irm_id,
367			       int generation, int channel)
368{
369	u32 mask;
370	u64 offset;
371
372	mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
373	offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
374				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
375
376	manage_channel(card, irm_id, generation, mask, offset, false);
377}
378
379/**
380 * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
381 * @card: card interface for this action
382 * @generation: bus generation
383 * @channels_mask: bitmask for channel allocation
384 * @channel: pointer for returning channel allocation result
385 * @bandwidth: pointer for returning bandwidth allocation result
386 * @allocate: whether to allocate (true) or deallocate (false)
387 *
388 * In parameters: card, generation, channels_mask, bandwidth, allocate
389 * Out parameters: channel, bandwidth
390 *
391 * This function blocks (sleeps) during communication with the IRM.
392 *
393 * Allocates or deallocates at most one channel out of channels_mask.
394 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
395 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
396 * channel 0 and LSB for channel 63.)
397 * Allocates or deallocates as many bandwidth allocation units as specified.
398 *
399 * Returns channel < 0 if no channel was allocated or deallocated.
400 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
401 *
402 * If generation is stale, deallocations succeed but allocations fail with
403 * channel = -EAGAIN.
404 *
405 * If channel allocation fails, no bandwidth will be allocated either.
406 * If bandwidth allocation fails, no channel will be allocated either.
407 * But deallocations of channel and bandwidth are tried independently
408 * of each other's success.
409 */
410void fw_iso_resource_manage(struct fw_card *card, int generation,
411			    u64 channels_mask, int *channel, int *bandwidth,
412			    bool allocate)
413{
414	u32 channels_hi = channels_mask;	/* channels 31...0 */
415	u32 channels_lo = channels_mask >> 32;	/* channels 63...32 */
416	int irm_id, ret, c = -EINVAL;
417
418	scoped_guard(spinlock_irq, &card->lock)
419		irm_id = card->irm_node->node_id;
 
420
421	if (channels_hi)
422		c = manage_channel(card, irm_id, generation, channels_hi,
423				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
424				allocate);
425	if (channels_lo && c < 0) {
426		c = manage_channel(card, irm_id, generation, channels_lo,
427				CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
428				allocate);
429		if (c >= 0)
430			c += 32;
431	}
432	*channel = c;
433
434	if (allocate && channels_mask != 0 && c < 0)
435		*bandwidth = 0;
436
437	if (*bandwidth == 0)
438		return;
439
440	ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
441	if (ret < 0)
442		*bandwidth = 0;
443
444	if (allocate && ret < 0) {
445		if (c >= 0)
446			deallocate_channel(card, irm_id, generation, c);
447		*channel = ret;
448	}
449}
450EXPORT_SYMBOL(fw_iso_resource_manage);