Loading...
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
57#include <linux/scatterlist.h>
58#include <linux/io.h>
59#include <linux/async.h>
60#include <linux/log2.h>
61#include <linux/slab.h>
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
66#include <asm/byteorder.h>
67#include <linux/cdrom.h>
68#include <linux/ratelimit.h>
69
70#include "libata.h"
71#include "libata-transport.h"
72
73/* debounce timing parameters in msecs { interval, duration, timeout } */
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
77
78const struct ata_port_operations ata_base_port_ops = {
79 .prereset = ata_std_prereset,
80 .postreset = ata_std_postreset,
81 .error_handler = ata_std_error_handler,
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
88 .hardreset = sata_std_hardreset,
89};
90
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94static void ata_dev_xfermask(struct ata_device *dev);
95static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
96
97unsigned int ata_print_id = 1;
98
99struct ata_force_param {
100 const char *name;
101 unsigned int cbl;
102 int spd_limit;
103 unsigned long xfer_mask;
104 unsigned int horkage_on;
105 unsigned int horkage_off;
106 unsigned int lflags;
107};
108
109struct ata_force_ent {
110 int port;
111 int device;
112 struct ata_force_param param;
113};
114
115static struct ata_force_ent *ata_force_tbl;
116static int ata_force_tbl_size;
117
118static char ata_force_param_buf[PAGE_SIZE] __initdata;
119/* param_buf is thrown away after initialization, disallow read */
120module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
121MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
122
123static int atapi_enabled = 1;
124module_param(atapi_enabled, int, 0444);
125MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
126
127static int atapi_dmadir = 0;
128module_param(atapi_dmadir, int, 0444);
129MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
130
131int atapi_passthru16 = 1;
132module_param(atapi_passthru16, int, 0444);
133MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
134
135int libata_fua = 0;
136module_param_named(fua, libata_fua, int, 0444);
137MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
138
139static int ata_ignore_hpa;
140module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
141MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
142
143static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
144module_param_named(dma, libata_dma_mask, int, 0444);
145MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
146
147static int ata_probe_timeout;
148module_param(ata_probe_timeout, int, 0444);
149MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
150
151int libata_noacpi = 0;
152module_param_named(noacpi, libata_noacpi, int, 0444);
153MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
154
155int libata_allow_tpm = 0;
156module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
157MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
158
159static int atapi_an;
160module_param(atapi_an, int, 0444);
161MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
162
163MODULE_AUTHOR("Jeff Garzik");
164MODULE_DESCRIPTION("Library module for ATA devices");
165MODULE_LICENSE("GPL");
166MODULE_VERSION(DRV_VERSION);
167
168
169static bool ata_sstatus_online(u32 sstatus)
170{
171 return (sstatus & 0xf) == 0x3;
172}
173
174/**
175 * ata_link_next - link iteration helper
176 * @link: the previous link, NULL to start
177 * @ap: ATA port containing links to iterate
178 * @mode: iteration mode, one of ATA_LITER_*
179 *
180 * LOCKING:
181 * Host lock or EH context.
182 *
183 * RETURNS:
184 * Pointer to the next link.
185 */
186struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
187 enum ata_link_iter_mode mode)
188{
189 BUG_ON(mode != ATA_LITER_EDGE &&
190 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191
192 /* NULL link indicates start of iteration */
193 if (!link)
194 switch (mode) {
195 case ATA_LITER_EDGE:
196 case ATA_LITER_PMP_FIRST:
197 if (sata_pmp_attached(ap))
198 return ap->pmp_link;
199 /* fall through */
200 case ATA_LITER_HOST_FIRST:
201 return &ap->link;
202 }
203
204 /* we just iterated over the host link, what's next? */
205 if (link == &ap->link)
206 switch (mode) {
207 case ATA_LITER_HOST_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_PMP_FIRST:
212 if (unlikely(ap->slave_link))
213 return ap->slave_link;
214 /* fall through */
215 case ATA_LITER_EDGE:
216 return NULL;
217 }
218
219 /* slave_link excludes PMP */
220 if (unlikely(link == ap->slave_link))
221 return NULL;
222
223 /* we were over a PMP link */
224 if (++link < ap->pmp_link + ap->nr_pmp_links)
225 return link;
226
227 if (mode == ATA_LITER_PMP_FIRST)
228 return &ap->link;
229
230 return NULL;
231}
232
233/**
234 * ata_dev_next - device iteration helper
235 * @dev: the previous device, NULL to start
236 * @link: ATA link containing devices to iterate
237 * @mode: iteration mode, one of ATA_DITER_*
238 *
239 * LOCKING:
240 * Host lock or EH context.
241 *
242 * RETURNS:
243 * Pointer to the next device.
244 */
245struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
246 enum ata_dev_iter_mode mode)
247{
248 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
249 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250
251 /* NULL dev indicates start of iteration */
252 if (!dev)
253 switch (mode) {
254 case ATA_DITER_ENABLED:
255 case ATA_DITER_ALL:
256 dev = link->device;
257 goto check;
258 case ATA_DITER_ENABLED_REVERSE:
259 case ATA_DITER_ALL_REVERSE:
260 dev = link->device + ata_link_max_devices(link) - 1;
261 goto check;
262 }
263
264 next:
265 /* move to the next one */
266 switch (mode) {
267 case ATA_DITER_ENABLED:
268 case ATA_DITER_ALL:
269 if (++dev < link->device + ata_link_max_devices(link))
270 goto check;
271 return NULL;
272 case ATA_DITER_ENABLED_REVERSE:
273 case ATA_DITER_ALL_REVERSE:
274 if (--dev >= link->device)
275 goto check;
276 return NULL;
277 }
278
279 check:
280 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
281 !ata_dev_enabled(dev))
282 goto next;
283 return dev;
284}
285
286/**
287 * ata_dev_phys_link - find physical link for a device
288 * @dev: ATA device to look up physical link for
289 *
290 * Look up physical link which @dev is attached to. Note that
291 * this is different from @dev->link only when @dev is on slave
292 * link. For all other cases, it's the same as @dev->link.
293 *
294 * LOCKING:
295 * Don't care.
296 *
297 * RETURNS:
298 * Pointer to the found physical link.
299 */
300struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301{
302 struct ata_port *ap = dev->link->ap;
303
304 if (!ap->slave_link)
305 return dev->link;
306 if (!dev->devno)
307 return &ap->link;
308 return ap->slave_link;
309}
310
311/**
312 * ata_force_cbl - force cable type according to libata.force
313 * @ap: ATA port of interest
314 *
315 * Force cable type according to libata.force and whine about it.
316 * The last entry which has matching port number is used, so it
317 * can be specified as part of device force parameters. For
318 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
319 * same effect.
320 *
321 * LOCKING:
322 * EH context.
323 */
324void ata_force_cbl(struct ata_port *ap)
325{
326 int i;
327
328 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
329 const struct ata_force_ent *fe = &ata_force_tbl[i];
330
331 if (fe->port != -1 && fe->port != ap->print_id)
332 continue;
333
334 if (fe->param.cbl == ATA_CBL_NONE)
335 continue;
336
337 ap->cbl = fe->param.cbl;
338 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
339 return;
340 }
341}
342
343/**
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
346 *
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
355 *
356 * LOCKING:
357 * EH context.
358 */
359static void ata_force_link_limits(struct ata_link *link)
360{
361 bool did_spd = false;
362 int linkno = link->pmp;
363 int i;
364
365 if (ata_is_host_link(link))
366 linkno += 15;
367
368 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 const struct ata_force_ent *fe = &ata_force_tbl[i];
370
371 if (fe->port != -1 && fe->port != link->ap->print_id)
372 continue;
373
374 if (fe->device != -1 && fe->device != linkno)
375 continue;
376
377 /* only honor the first spd limit */
378 if (!did_spd && fe->param.spd_limit) {
379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
381 fe->param.name);
382 did_spd = true;
383 }
384
385 /* let lflags stack */
386 if (fe->param.lflags) {
387 link->flags |= fe->param.lflags;
388 ata_link_notice(link,
389 "FORCE: link flag 0x%x forced -> 0x%x\n",
390 fe->param.lflags, link->flags);
391 }
392 }
393}
394
395/**
396 * ata_force_xfermask - force xfermask according to libata.force
397 * @dev: ATA device of interest
398 *
399 * Force xfer_mask according to libata.force and whine about it.
400 * For consistency with link selection, device number 15 selects
401 * the first device connected to the host link.
402 *
403 * LOCKING:
404 * EH context.
405 */
406static void ata_force_xfermask(struct ata_device *dev)
407{
408 int devno = dev->link->pmp + dev->devno;
409 int alt_devno = devno;
410 int i;
411
412 /* allow n.15/16 for devices attached to host port */
413 if (ata_is_host_link(dev->link))
414 alt_devno += 15;
415
416 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
417 const struct ata_force_ent *fe = &ata_force_tbl[i];
418 unsigned long pio_mask, mwdma_mask, udma_mask;
419
420 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
421 continue;
422
423 if (fe->device != -1 && fe->device != devno &&
424 fe->device != alt_devno)
425 continue;
426
427 if (!fe->param.xfer_mask)
428 continue;
429
430 ata_unpack_xfermask(fe->param.xfer_mask,
431 &pio_mask, &mwdma_mask, &udma_mask);
432 if (udma_mask)
433 dev->udma_mask = udma_mask;
434 else if (mwdma_mask) {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = mwdma_mask;
437 } else {
438 dev->udma_mask = 0;
439 dev->mwdma_mask = 0;
440 dev->pio_mask = pio_mask;
441 }
442
443 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
444 fe->param.name);
445 return;
446 }
447}
448
449/**
450 * ata_force_horkage - force horkage according to libata.force
451 * @dev: ATA device of interest
452 *
453 * Force horkage according to libata.force and whine about it.
454 * For consistency with link selection, device number 15 selects
455 * the first device connected to the host link.
456 *
457 * LOCKING:
458 * EH context.
459 */
460static void ata_force_horkage(struct ata_device *dev)
461{
462 int devno = dev->link->pmp + dev->devno;
463 int alt_devno = devno;
464 int i;
465
466 /* allow n.15/16 for devices attached to host port */
467 if (ata_is_host_link(dev->link))
468 alt_devno += 15;
469
470 for (i = 0; i < ata_force_tbl_size; i++) {
471 const struct ata_force_ent *fe = &ata_force_tbl[i];
472
473 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
474 continue;
475
476 if (fe->device != -1 && fe->device != devno &&
477 fe->device != alt_devno)
478 continue;
479
480 if (!(~dev->horkage & fe->param.horkage_on) &&
481 !(dev->horkage & fe->param.horkage_off))
482 continue;
483
484 dev->horkage |= fe->param.horkage_on;
485 dev->horkage &= ~fe->param.horkage_off;
486
487 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
488 fe->param.name);
489 }
490}
491
492/**
493 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
494 * @opcode: SCSI opcode
495 *
496 * Determine ATAPI command type from @opcode.
497 *
498 * LOCKING:
499 * None.
500 *
501 * RETURNS:
502 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
503 */
504int atapi_cmd_type(u8 opcode)
505{
506 switch (opcode) {
507 case GPCMD_READ_10:
508 case GPCMD_READ_12:
509 return ATAPI_READ;
510
511 case GPCMD_WRITE_10:
512 case GPCMD_WRITE_12:
513 case GPCMD_WRITE_AND_VERIFY_10:
514 return ATAPI_WRITE;
515
516 case GPCMD_READ_CD:
517 case GPCMD_READ_CD_MSF:
518 return ATAPI_READ_CD;
519
520 case ATA_16:
521 case ATA_12:
522 if (atapi_passthru16)
523 return ATAPI_PASS_THRU;
524 /* fall thru */
525 default:
526 return ATAPI_MISC;
527 }
528}
529
530/**
531 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
532 * @tf: Taskfile to convert
533 * @pmp: Port multiplier port
534 * @is_cmd: This FIS is for command
535 * @fis: Buffer into which data will output
536 *
537 * Converts a standard ATA taskfile to a Serial ATA
538 * FIS structure (Register - Host to Device).
539 *
540 * LOCKING:
541 * Inherited from caller.
542 */
543void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
544{
545 fis[0] = 0x27; /* Register - Host to Device FIS */
546 fis[1] = pmp & 0xf; /* Port multiplier number*/
547 if (is_cmd)
548 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
549
550 fis[2] = tf->command;
551 fis[3] = tf->feature;
552
553 fis[4] = tf->lbal;
554 fis[5] = tf->lbam;
555 fis[6] = tf->lbah;
556 fis[7] = tf->device;
557
558 fis[8] = tf->hob_lbal;
559 fis[9] = tf->hob_lbam;
560 fis[10] = tf->hob_lbah;
561 fis[11] = tf->hob_feature;
562
563 fis[12] = tf->nsect;
564 fis[13] = tf->hob_nsect;
565 fis[14] = 0;
566 fis[15] = tf->ctl;
567
568 fis[16] = 0;
569 fis[17] = 0;
570 fis[18] = 0;
571 fis[19] = 0;
572}
573
574/**
575 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
576 * @fis: Buffer from which data will be input
577 * @tf: Taskfile to output
578 *
579 * Converts a serial ATA FIS structure to a standard ATA taskfile.
580 *
581 * LOCKING:
582 * Inherited from caller.
583 */
584
585void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
586{
587 tf->command = fis[2]; /* status */
588 tf->feature = fis[3]; /* error */
589
590 tf->lbal = fis[4];
591 tf->lbam = fis[5];
592 tf->lbah = fis[6];
593 tf->device = fis[7];
594
595 tf->hob_lbal = fis[8];
596 tf->hob_lbam = fis[9];
597 tf->hob_lbah = fis[10];
598
599 tf->nsect = fis[12];
600 tf->hob_nsect = fis[13];
601}
602
603static const u8 ata_rw_cmds[] = {
604 /* pio multi */
605 ATA_CMD_READ_MULTI,
606 ATA_CMD_WRITE_MULTI,
607 ATA_CMD_READ_MULTI_EXT,
608 ATA_CMD_WRITE_MULTI_EXT,
609 0,
610 0,
611 0,
612 ATA_CMD_WRITE_MULTI_FUA_EXT,
613 /* pio */
614 ATA_CMD_PIO_READ,
615 ATA_CMD_PIO_WRITE,
616 ATA_CMD_PIO_READ_EXT,
617 ATA_CMD_PIO_WRITE_EXT,
618 0,
619 0,
620 0,
621 0,
622 /* dma */
623 ATA_CMD_READ,
624 ATA_CMD_WRITE,
625 ATA_CMD_READ_EXT,
626 ATA_CMD_WRITE_EXT,
627 0,
628 0,
629 0,
630 ATA_CMD_WRITE_FUA_EXT
631};
632
633/**
634 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
635 * @tf: command to examine and configure
636 * @dev: device tf belongs to
637 *
638 * Examine the device configuration and tf->flags to calculate
639 * the proper read/write commands and protocol to use.
640 *
641 * LOCKING:
642 * caller.
643 */
644static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
645{
646 u8 cmd;
647
648 int index, fua, lba48, write;
649
650 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
651 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
652 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
653
654 if (dev->flags & ATA_DFLAG_PIO) {
655 tf->protocol = ATA_PROT_PIO;
656 index = dev->multi_count ? 0 : 8;
657 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
658 /* Unable to use DMA due to host limitation */
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else {
662 tf->protocol = ATA_PROT_DMA;
663 index = 16;
664 }
665
666 cmd = ata_rw_cmds[index + fua + lba48 + write];
667 if (cmd) {
668 tf->command = cmd;
669 return 0;
670 }
671 return -1;
672}
673
674/**
675 * ata_tf_read_block - Read block address from ATA taskfile
676 * @tf: ATA taskfile of interest
677 * @dev: ATA device @tf belongs to
678 *
679 * LOCKING:
680 * None.
681 *
682 * Read block address from @tf. This function can handle all
683 * three address formats - LBA, LBA48 and CHS. tf->protocol and
684 * flags select the address format to use.
685 *
686 * RETURNS:
687 * Block address read from @tf.
688 */
689u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
690{
691 u64 block = 0;
692
693 if (tf->flags & ATA_TFLAG_LBA) {
694 if (tf->flags & ATA_TFLAG_LBA48) {
695 block |= (u64)tf->hob_lbah << 40;
696 block |= (u64)tf->hob_lbam << 32;
697 block |= (u64)tf->hob_lbal << 24;
698 } else
699 block |= (tf->device & 0xf) << 24;
700
701 block |= tf->lbah << 16;
702 block |= tf->lbam << 8;
703 block |= tf->lbal;
704 } else {
705 u32 cyl, head, sect;
706
707 cyl = tf->lbam | (tf->lbah << 8);
708 head = tf->device & 0xf;
709 sect = tf->lbal;
710
711 if (!sect) {
712 ata_dev_warn(dev,
713 "device reported invalid CHS sector 0\n");
714 sect = 1; /* oh well */
715 }
716
717 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
718 }
719
720 return block;
721}
722
723/**
724 * ata_build_rw_tf - Build ATA taskfile for given read/write request
725 * @tf: Target ATA taskfile
726 * @dev: ATA device @tf belongs to
727 * @block: Block address
728 * @n_block: Number of blocks
729 * @tf_flags: RW/FUA etc...
730 * @tag: tag
731 *
732 * LOCKING:
733 * None.
734 *
735 * Build ATA taskfile @tf for read/write request described by
736 * @block, @n_block, @tf_flags and @tag on @dev.
737 *
738 * RETURNS:
739 *
740 * 0 on success, -ERANGE if the request is too large for @dev,
741 * -EINVAL if the request is invalid.
742 */
743int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
744 u64 block, u32 n_block, unsigned int tf_flags,
745 unsigned int tag)
746{
747 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
748 tf->flags |= tf_flags;
749
750 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
751 /* yay, NCQ */
752 if (!lba_48_ok(block, n_block))
753 return -ERANGE;
754
755 tf->protocol = ATA_PROT_NCQ;
756 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
757
758 if (tf->flags & ATA_TFLAG_WRITE)
759 tf->command = ATA_CMD_FPDMA_WRITE;
760 else
761 tf->command = ATA_CMD_FPDMA_READ;
762
763 tf->nsect = tag << 3;
764 tf->hob_feature = (n_block >> 8) & 0xff;
765 tf->feature = n_block & 0xff;
766
767 tf->hob_lbah = (block >> 40) & 0xff;
768 tf->hob_lbam = (block >> 32) & 0xff;
769 tf->hob_lbal = (block >> 24) & 0xff;
770 tf->lbah = (block >> 16) & 0xff;
771 tf->lbam = (block >> 8) & 0xff;
772 tf->lbal = block & 0xff;
773
774 tf->device = 1 << 6;
775 if (tf->flags & ATA_TFLAG_FUA)
776 tf->device |= 1 << 7;
777 } else if (dev->flags & ATA_DFLAG_LBA) {
778 tf->flags |= ATA_TFLAG_LBA;
779
780 if (lba_28_ok(block, n_block)) {
781 /* use LBA28 */
782 tf->device |= (block >> 24) & 0xf;
783 } else if (lba_48_ok(block, n_block)) {
784 if (!(dev->flags & ATA_DFLAG_LBA48))
785 return -ERANGE;
786
787 /* use LBA48 */
788 tf->flags |= ATA_TFLAG_LBA48;
789
790 tf->hob_nsect = (n_block >> 8) & 0xff;
791
792 tf->hob_lbah = (block >> 40) & 0xff;
793 tf->hob_lbam = (block >> 32) & 0xff;
794 tf->hob_lbal = (block >> 24) & 0xff;
795 } else
796 /* request too large even for LBA48 */
797 return -ERANGE;
798
799 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
800 return -EINVAL;
801
802 tf->nsect = n_block & 0xff;
803
804 tf->lbah = (block >> 16) & 0xff;
805 tf->lbam = (block >> 8) & 0xff;
806 tf->lbal = block & 0xff;
807
808 tf->device |= ATA_LBA;
809 } else {
810 /* CHS */
811 u32 sect, head, cyl, track;
812
813 /* The request -may- be too large for CHS addressing. */
814 if (!lba_28_ok(block, n_block))
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 /* Convert LBA to CHS */
821 track = (u32)block / dev->sectors;
822 cyl = track / dev->heads;
823 head = track % dev->heads;
824 sect = (u32)block % dev->sectors + 1;
825
826 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
827 (u32)block, track, cyl, head, sect);
828
829 /* Check whether the converted CHS can fit.
830 Cylinder: 0-65535
831 Head: 0-15
832 Sector: 1-255*/
833 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
834 return -ERANGE;
835
836 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
837 tf->lbal = sect;
838 tf->lbam = cyl;
839 tf->lbah = cyl >> 8;
840 tf->device |= head;
841 }
842
843 return 0;
844}
845
846/**
847 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
848 * @pio_mask: pio_mask
849 * @mwdma_mask: mwdma_mask
850 * @udma_mask: udma_mask
851 *
852 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
853 * unsigned int xfer_mask.
854 *
855 * LOCKING:
856 * None.
857 *
858 * RETURNS:
859 * Packed xfer_mask.
860 */
861unsigned long ata_pack_xfermask(unsigned long pio_mask,
862 unsigned long mwdma_mask,
863 unsigned long udma_mask)
864{
865 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
866 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
867 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
868}
869
870/**
871 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
872 * @xfer_mask: xfer_mask to unpack
873 * @pio_mask: resulting pio_mask
874 * @mwdma_mask: resulting mwdma_mask
875 * @udma_mask: resulting udma_mask
876 *
877 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
878 * Any NULL distination masks will be ignored.
879 */
880void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
881 unsigned long *mwdma_mask, unsigned long *udma_mask)
882{
883 if (pio_mask)
884 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
885 if (mwdma_mask)
886 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
887 if (udma_mask)
888 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
889}
890
891static const struct ata_xfer_ent {
892 int shift, bits;
893 u8 base;
894} ata_xfer_tbl[] = {
895 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
896 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
897 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
898 { -1, },
899};
900
901/**
902 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
903 * @xfer_mask: xfer_mask of interest
904 *
905 * Return matching XFER_* value for @xfer_mask. Only the highest
906 * bit of @xfer_mask is considered.
907 *
908 * LOCKING:
909 * None.
910 *
911 * RETURNS:
912 * Matching XFER_* value, 0xff if no match found.
913 */
914u8 ata_xfer_mask2mode(unsigned long xfer_mask)
915{
916 int highbit = fls(xfer_mask) - 1;
917 const struct ata_xfer_ent *ent;
918
919 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
920 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
921 return ent->base + highbit - ent->shift;
922 return 0xff;
923}
924
925/**
926 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
927 * @xfer_mode: XFER_* of interest
928 *
929 * Return matching xfer_mask for @xfer_mode.
930 *
931 * LOCKING:
932 * None.
933 *
934 * RETURNS:
935 * Matching xfer_mask, 0 if no match found.
936 */
937unsigned long ata_xfer_mode2mask(u8 xfer_mode)
938{
939 const struct ata_xfer_ent *ent;
940
941 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
942 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
943 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
944 & ~((1 << ent->shift) - 1);
945 return 0;
946}
947
948/**
949 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
950 * @xfer_mode: XFER_* of interest
951 *
952 * Return matching xfer_shift for @xfer_mode.
953 *
954 * LOCKING:
955 * None.
956 *
957 * RETURNS:
958 * Matching xfer_shift, -1 if no match found.
959 */
960int ata_xfer_mode2shift(unsigned long xfer_mode)
961{
962 const struct ata_xfer_ent *ent;
963
964 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
965 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
966 return ent->shift;
967 return -1;
968}
969
970/**
971 * ata_mode_string - convert xfer_mask to string
972 * @xfer_mask: mask of bits supported; only highest bit counts.
973 *
974 * Determine string which represents the highest speed
975 * (highest bit in @modemask).
976 *
977 * LOCKING:
978 * None.
979 *
980 * RETURNS:
981 * Constant C string representing highest speed listed in
982 * @mode_mask, or the constant C string "<n/a>".
983 */
984const char *ata_mode_string(unsigned long xfer_mask)
985{
986 static const char * const xfer_mode_str[] = {
987 "PIO0",
988 "PIO1",
989 "PIO2",
990 "PIO3",
991 "PIO4",
992 "PIO5",
993 "PIO6",
994 "MWDMA0",
995 "MWDMA1",
996 "MWDMA2",
997 "MWDMA3",
998 "MWDMA4",
999 "UDMA/16",
1000 "UDMA/25",
1001 "UDMA/33",
1002 "UDMA/44",
1003 "UDMA/66",
1004 "UDMA/100",
1005 "UDMA/133",
1006 "UDMA7",
1007 };
1008 int highbit;
1009
1010 highbit = fls(xfer_mask) - 1;
1011 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1012 return xfer_mode_str[highbit];
1013 return "<n/a>";
1014}
1015
1016const char *sata_spd_string(unsigned int spd)
1017{
1018 static const char * const spd_str[] = {
1019 "1.5 Gbps",
1020 "3.0 Gbps",
1021 "6.0 Gbps",
1022 };
1023
1024 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1025 return "<unknown>";
1026 return spd_str[spd - 1];
1027}
1028
1029/**
1030 * ata_dev_classify - determine device type based on ATA-spec signature
1031 * @tf: ATA taskfile register set for device to be identified
1032 *
1033 * Determine from taskfile register contents whether a device is
1034 * ATA or ATAPI, as per "Signature and persistence" section
1035 * of ATA/PI spec (volume 1, sect 5.14).
1036 *
1037 * LOCKING:
1038 * None.
1039 *
1040 * RETURNS:
1041 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1042 * %ATA_DEV_UNKNOWN the event of failure.
1043 */
1044unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1045{
1046 /* Apple's open source Darwin code hints that some devices only
1047 * put a proper signature into the LBA mid/high registers,
1048 * So, we only check those. It's sufficient for uniqueness.
1049 *
1050 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1051 * signatures for ATA and ATAPI devices attached on SerialATA,
1052 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1053 * spec has never mentioned about using different signatures
1054 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1055 * Multiplier specification began to use 0x69/0x96 to identify
1056 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1057 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1058 * 0x69/0x96 shortly and described them as reserved for
1059 * SerialATA.
1060 *
1061 * We follow the current spec and consider that 0x69/0x96
1062 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1063 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1064 * SEMB signature. This is worked around in
1065 * ata_dev_read_id().
1066 */
1067 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1068 DPRINTK("found ATA device by sig\n");
1069 return ATA_DEV_ATA;
1070 }
1071
1072 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1073 DPRINTK("found ATAPI device by sig\n");
1074 return ATA_DEV_ATAPI;
1075 }
1076
1077 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1078 DPRINTK("found PMP device by sig\n");
1079 return ATA_DEV_PMP;
1080 }
1081
1082 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1083 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1084 return ATA_DEV_SEMB;
1085 }
1086
1087 DPRINTK("unknown device\n");
1088 return ATA_DEV_UNKNOWN;
1089}
1090
1091/**
1092 * ata_id_string - Convert IDENTIFY DEVICE page into string
1093 * @id: IDENTIFY DEVICE results we will examine
1094 * @s: string into which data is output
1095 * @ofs: offset into identify device page
1096 * @len: length of string to return. must be an even number.
1097 *
1098 * The strings in the IDENTIFY DEVICE page are broken up into
1099 * 16-bit chunks. Run through the string, and output each
1100 * 8-bit chunk linearly, regardless of platform.
1101 *
1102 * LOCKING:
1103 * caller.
1104 */
1105
1106void ata_id_string(const u16 *id, unsigned char *s,
1107 unsigned int ofs, unsigned int len)
1108{
1109 unsigned int c;
1110
1111 BUG_ON(len & 1);
1112
1113 while (len > 0) {
1114 c = id[ofs] >> 8;
1115 *s = c;
1116 s++;
1117
1118 c = id[ofs] & 0xff;
1119 *s = c;
1120 s++;
1121
1122 ofs++;
1123 len -= 2;
1124 }
1125}
1126
1127/**
1128 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1129 * @id: IDENTIFY DEVICE results we will examine
1130 * @s: string into which data is output
1131 * @ofs: offset into identify device page
1132 * @len: length of string to return. must be an odd number.
1133 *
1134 * This function is identical to ata_id_string except that it
1135 * trims trailing spaces and terminates the resulting string with
1136 * null. @len must be actual maximum length (even number) + 1.
1137 *
1138 * LOCKING:
1139 * caller.
1140 */
1141void ata_id_c_string(const u16 *id, unsigned char *s,
1142 unsigned int ofs, unsigned int len)
1143{
1144 unsigned char *p;
1145
1146 ata_id_string(id, s, ofs, len - 1);
1147
1148 p = s + strnlen(s, len - 1);
1149 while (p > s && p[-1] == ' ')
1150 p--;
1151 *p = '\0';
1152}
1153
1154static u64 ata_id_n_sectors(const u16 *id)
1155{
1156 if (ata_id_has_lba(id)) {
1157 if (ata_id_has_lba48(id))
1158 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1159 else
1160 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1161 } else {
1162 if (ata_id_current_chs_valid(id))
1163 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1164 id[ATA_ID_CUR_SECTORS];
1165 else
1166 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1167 id[ATA_ID_SECTORS];
1168 }
1169}
1170
1171u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1172{
1173 u64 sectors = 0;
1174
1175 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1176 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1177 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1178 sectors |= (tf->lbah & 0xff) << 16;
1179 sectors |= (tf->lbam & 0xff) << 8;
1180 sectors |= (tf->lbal & 0xff);
1181
1182 return sectors;
1183}
1184
1185u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1186{
1187 u64 sectors = 0;
1188
1189 sectors |= (tf->device & 0x0f) << 24;
1190 sectors |= (tf->lbah & 0xff) << 16;
1191 sectors |= (tf->lbam & 0xff) << 8;
1192 sectors |= (tf->lbal & 0xff);
1193
1194 return sectors;
1195}
1196
1197/**
1198 * ata_read_native_max_address - Read native max address
1199 * @dev: target device
1200 * @max_sectors: out parameter for the result native max address
1201 *
1202 * Perform an LBA48 or LBA28 native size query upon the device in
1203 * question.
1204 *
1205 * RETURNS:
1206 * 0 on success, -EACCES if command is aborted by the drive.
1207 * -EIO on other errors.
1208 */
1209static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1210{
1211 unsigned int err_mask;
1212 struct ata_taskfile tf;
1213 int lba48 = ata_id_has_lba48(dev->id);
1214
1215 ata_tf_init(dev, &tf);
1216
1217 /* always clear all address registers */
1218 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1219
1220 if (lba48) {
1221 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1222 tf.flags |= ATA_TFLAG_LBA48;
1223 } else
1224 tf.command = ATA_CMD_READ_NATIVE_MAX;
1225
1226 tf.protocol |= ATA_PROT_NODATA;
1227 tf.device |= ATA_LBA;
1228
1229 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1230 if (err_mask) {
1231 ata_dev_warn(dev,
1232 "failed to read native max address (err_mask=0x%x)\n",
1233 err_mask);
1234 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1235 return -EACCES;
1236 return -EIO;
1237 }
1238
1239 if (lba48)
1240 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1241 else
1242 *max_sectors = ata_tf_to_lba(&tf) + 1;
1243 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1244 (*max_sectors)--;
1245 return 0;
1246}
1247
1248/**
1249 * ata_set_max_sectors - Set max sectors
1250 * @dev: target device
1251 * @new_sectors: new max sectors value to set for the device
1252 *
1253 * Set max sectors of @dev to @new_sectors.
1254 *
1255 * RETURNS:
1256 * 0 on success, -EACCES if command is aborted or denied (due to
1257 * previous non-volatile SET_MAX) by the drive. -EIO on other
1258 * errors.
1259 */
1260static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1261{
1262 unsigned int err_mask;
1263 struct ata_taskfile tf;
1264 int lba48 = ata_id_has_lba48(dev->id);
1265
1266 new_sectors--;
1267
1268 ata_tf_init(dev, &tf);
1269
1270 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1271
1272 if (lba48) {
1273 tf.command = ATA_CMD_SET_MAX_EXT;
1274 tf.flags |= ATA_TFLAG_LBA48;
1275
1276 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1277 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1278 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1279 } else {
1280 tf.command = ATA_CMD_SET_MAX;
1281
1282 tf.device |= (new_sectors >> 24) & 0xf;
1283 }
1284
1285 tf.protocol |= ATA_PROT_NODATA;
1286 tf.device |= ATA_LBA;
1287
1288 tf.lbal = (new_sectors >> 0) & 0xff;
1289 tf.lbam = (new_sectors >> 8) & 0xff;
1290 tf.lbah = (new_sectors >> 16) & 0xff;
1291
1292 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1293 if (err_mask) {
1294 ata_dev_warn(dev,
1295 "failed to set max address (err_mask=0x%x)\n",
1296 err_mask);
1297 if (err_mask == AC_ERR_DEV &&
1298 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1299 return -EACCES;
1300 return -EIO;
1301 }
1302
1303 return 0;
1304}
1305
1306/**
1307 * ata_hpa_resize - Resize a device with an HPA set
1308 * @dev: Device to resize
1309 *
1310 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1311 * it if required to the full size of the media. The caller must check
1312 * the drive has the HPA feature set enabled.
1313 *
1314 * RETURNS:
1315 * 0 on success, -errno on failure.
1316 */
1317static int ata_hpa_resize(struct ata_device *dev)
1318{
1319 struct ata_eh_context *ehc = &dev->link->eh_context;
1320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1321 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1322 u64 sectors = ata_id_n_sectors(dev->id);
1323 u64 native_sectors;
1324 int rc;
1325
1326 /* do we need to do it? */
1327 if (dev->class != ATA_DEV_ATA ||
1328 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1329 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1330 return 0;
1331
1332 /* read native max address */
1333 rc = ata_read_native_max_address(dev, &native_sectors);
1334 if (rc) {
1335 /* If device aborted the command or HPA isn't going to
1336 * be unlocked, skip HPA resizing.
1337 */
1338 if (rc == -EACCES || !unlock_hpa) {
1339 ata_dev_warn(dev,
1340 "HPA support seems broken, skipping HPA handling\n");
1341 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1342
1343 /* we can continue if device aborted the command */
1344 if (rc == -EACCES)
1345 rc = 0;
1346 }
1347
1348 return rc;
1349 }
1350 dev->n_native_sectors = native_sectors;
1351
1352 /* nothing to do? */
1353 if (native_sectors <= sectors || !unlock_hpa) {
1354 if (!print_info || native_sectors == sectors)
1355 return 0;
1356
1357 if (native_sectors > sectors)
1358 ata_dev_info(dev,
1359 "HPA detected: current %llu, native %llu\n",
1360 (unsigned long long)sectors,
1361 (unsigned long long)native_sectors);
1362 else if (native_sectors < sectors)
1363 ata_dev_warn(dev,
1364 "native sectors (%llu) is smaller than sectors (%llu)\n",
1365 (unsigned long long)native_sectors,
1366 (unsigned long long)sectors);
1367 return 0;
1368 }
1369
1370 /* let's unlock HPA */
1371 rc = ata_set_max_sectors(dev, native_sectors);
1372 if (rc == -EACCES) {
1373 /* if device aborted the command, skip HPA resizing */
1374 ata_dev_warn(dev,
1375 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1376 (unsigned long long)sectors,
1377 (unsigned long long)native_sectors);
1378 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1379 return 0;
1380 } else if (rc)
1381 return rc;
1382
1383 /* re-read IDENTIFY data */
1384 rc = ata_dev_reread_id(dev, 0);
1385 if (rc) {
1386 ata_dev_err(dev,
1387 "failed to re-read IDENTIFY data after HPA resizing\n");
1388 return rc;
1389 }
1390
1391 if (print_info) {
1392 u64 new_sectors = ata_id_n_sectors(dev->id);
1393 ata_dev_info(dev,
1394 "HPA unlocked: %llu -> %llu, native %llu\n",
1395 (unsigned long long)sectors,
1396 (unsigned long long)new_sectors,
1397 (unsigned long long)native_sectors);
1398 }
1399
1400 return 0;
1401}
1402
1403/**
1404 * ata_dump_id - IDENTIFY DEVICE info debugging output
1405 * @id: IDENTIFY DEVICE page to dump
1406 *
1407 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1408 * page.
1409 *
1410 * LOCKING:
1411 * caller.
1412 */
1413
1414static inline void ata_dump_id(const u16 *id)
1415{
1416 DPRINTK("49==0x%04x "
1417 "53==0x%04x "
1418 "63==0x%04x "
1419 "64==0x%04x "
1420 "75==0x%04x \n",
1421 id[49],
1422 id[53],
1423 id[63],
1424 id[64],
1425 id[75]);
1426 DPRINTK("80==0x%04x "
1427 "81==0x%04x "
1428 "82==0x%04x "
1429 "83==0x%04x "
1430 "84==0x%04x \n",
1431 id[80],
1432 id[81],
1433 id[82],
1434 id[83],
1435 id[84]);
1436 DPRINTK("88==0x%04x "
1437 "93==0x%04x\n",
1438 id[88],
1439 id[93]);
1440}
1441
1442/**
1443 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1444 * @id: IDENTIFY data to compute xfer mask from
1445 *
1446 * Compute the xfermask for this device. This is not as trivial
1447 * as it seems if we must consider early devices correctly.
1448 *
1449 * FIXME: pre IDE drive timing (do we care ?).
1450 *
1451 * LOCKING:
1452 * None.
1453 *
1454 * RETURNS:
1455 * Computed xfermask
1456 */
1457unsigned long ata_id_xfermask(const u16 *id)
1458{
1459 unsigned long pio_mask, mwdma_mask, udma_mask;
1460
1461 /* Usual case. Word 53 indicates word 64 is valid */
1462 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1463 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1464 pio_mask <<= 3;
1465 pio_mask |= 0x7;
1466 } else {
1467 /* If word 64 isn't valid then Word 51 high byte holds
1468 * the PIO timing number for the maximum. Turn it into
1469 * a mask.
1470 */
1471 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1472 if (mode < 5) /* Valid PIO range */
1473 pio_mask = (2 << mode) - 1;
1474 else
1475 pio_mask = 1;
1476
1477 /* But wait.. there's more. Design your standards by
1478 * committee and you too can get a free iordy field to
1479 * process. However its the speeds not the modes that
1480 * are supported... Note drivers using the timing API
1481 * will get this right anyway
1482 */
1483 }
1484
1485 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1486
1487 if (ata_id_is_cfa(id)) {
1488 /*
1489 * Process compact flash extended modes
1490 */
1491 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1492 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1493
1494 if (pio)
1495 pio_mask |= (1 << 5);
1496 if (pio > 1)
1497 pio_mask |= (1 << 6);
1498 if (dma)
1499 mwdma_mask |= (1 << 3);
1500 if (dma > 1)
1501 mwdma_mask |= (1 << 4);
1502 }
1503
1504 udma_mask = 0;
1505 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1506 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1507
1508 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1509}
1510
1511static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1512{
1513 struct completion *waiting = qc->private_data;
1514
1515 complete(waiting);
1516}
1517
1518/**
1519 * ata_exec_internal_sg - execute libata internal command
1520 * @dev: Device to which the command is sent
1521 * @tf: Taskfile registers for the command and the result
1522 * @cdb: CDB for packet command
1523 * @dma_dir: Data tranfer direction of the command
1524 * @sgl: sg list for the data buffer of the command
1525 * @n_elem: Number of sg entries
1526 * @timeout: Timeout in msecs (0 for default)
1527 *
1528 * Executes libata internal command with timeout. @tf contains
1529 * command on entry and result on return. Timeout and error
1530 * conditions are reported via return value. No recovery action
1531 * is taken after a command times out. It's caller's duty to
1532 * clean up after timeout.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540unsigned ata_exec_internal_sg(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, struct scatterlist *sgl,
1543 unsigned int n_elem, unsigned long timeout)
1544{
1545 struct ata_link *link = dev->link;
1546 struct ata_port *ap = link->ap;
1547 u8 command = tf->command;
1548 int auto_timeout = 0;
1549 struct ata_queued_cmd *qc;
1550 unsigned int tag, preempted_tag;
1551 u32 preempted_sactive, preempted_qc_active;
1552 int preempted_nr_active_links;
1553 DECLARE_COMPLETION_ONSTACK(wait);
1554 unsigned long flags;
1555 unsigned int err_mask;
1556 int rc;
1557
1558 spin_lock_irqsave(ap->lock, flags);
1559
1560 /* no internal command while frozen */
1561 if (ap->pflags & ATA_PFLAG_FROZEN) {
1562 spin_unlock_irqrestore(ap->lock, flags);
1563 return AC_ERR_SYSTEM;
1564 }
1565
1566 /* initialize internal qc */
1567
1568 /* XXX: Tag 0 is used for drivers with legacy EH as some
1569 * drivers choke if any other tag is given. This breaks
1570 * ata_tag_internal() test for those drivers. Don't use new
1571 * EH stuff without converting to it.
1572 */
1573 if (ap->ops->error_handler)
1574 tag = ATA_TAG_INTERNAL;
1575 else
1576 tag = 0;
1577
1578 if (test_and_set_bit(tag, &ap->qc_allocated))
1579 BUG();
1580 qc = __ata_qc_from_tag(ap, tag);
1581
1582 qc->tag = tag;
1583 qc->scsicmd = NULL;
1584 qc->ap = ap;
1585 qc->dev = dev;
1586 ata_qc_reinit(qc);
1587
1588 preempted_tag = link->active_tag;
1589 preempted_sactive = link->sactive;
1590 preempted_qc_active = ap->qc_active;
1591 preempted_nr_active_links = ap->nr_active_links;
1592 link->active_tag = ATA_TAG_POISON;
1593 link->sactive = 0;
1594 ap->qc_active = 0;
1595 ap->nr_active_links = 0;
1596
1597 /* prepare & issue qc */
1598 qc->tf = *tf;
1599 if (cdb)
1600 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1601 qc->flags |= ATA_QCFLAG_RESULT_TF;
1602 qc->dma_dir = dma_dir;
1603 if (dma_dir != DMA_NONE) {
1604 unsigned int i, buflen = 0;
1605 struct scatterlist *sg;
1606
1607 for_each_sg(sgl, sg, n_elem, i)
1608 buflen += sg->length;
1609
1610 ata_sg_init(qc, sgl, n_elem);
1611 qc->nbytes = buflen;
1612 }
1613
1614 qc->private_data = &wait;
1615 qc->complete_fn = ata_qc_complete_internal;
1616
1617 ata_qc_issue(qc);
1618
1619 spin_unlock_irqrestore(ap->lock, flags);
1620
1621 if (!timeout) {
1622 if (ata_probe_timeout)
1623 timeout = ata_probe_timeout * 1000;
1624 else {
1625 timeout = ata_internal_cmd_timeout(dev, command);
1626 auto_timeout = 1;
1627 }
1628 }
1629
1630 if (ap->ops->error_handler)
1631 ata_eh_release(ap);
1632
1633 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1634
1635 if (ap->ops->error_handler)
1636 ata_eh_acquire(ap);
1637
1638 ata_sff_flush_pio_task(ap);
1639
1640 if (!rc) {
1641 spin_lock_irqsave(ap->lock, flags);
1642
1643 /* We're racing with irq here. If we lose, the
1644 * following test prevents us from completing the qc
1645 * twice. If we win, the port is frozen and will be
1646 * cleaned up by ->post_internal_cmd().
1647 */
1648 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1649 qc->err_mask |= AC_ERR_TIMEOUT;
1650
1651 if (ap->ops->error_handler)
1652 ata_port_freeze(ap);
1653 else
1654 ata_qc_complete(qc);
1655
1656 if (ata_msg_warn(ap))
1657 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1658 command);
1659 }
1660
1661 spin_unlock_irqrestore(ap->lock, flags);
1662 }
1663
1664 /* do post_internal_cmd */
1665 if (ap->ops->post_internal_cmd)
1666 ap->ops->post_internal_cmd(qc);
1667
1668 /* perform minimal error analysis */
1669 if (qc->flags & ATA_QCFLAG_FAILED) {
1670 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1671 qc->err_mask |= AC_ERR_DEV;
1672
1673 if (!qc->err_mask)
1674 qc->err_mask |= AC_ERR_OTHER;
1675
1676 if (qc->err_mask & ~AC_ERR_OTHER)
1677 qc->err_mask &= ~AC_ERR_OTHER;
1678 }
1679
1680 /* finish up */
1681 spin_lock_irqsave(ap->lock, flags);
1682
1683 *tf = qc->result_tf;
1684 err_mask = qc->err_mask;
1685
1686 ata_qc_free(qc);
1687 link->active_tag = preempted_tag;
1688 link->sactive = preempted_sactive;
1689 ap->qc_active = preempted_qc_active;
1690 ap->nr_active_links = preempted_nr_active_links;
1691
1692 spin_unlock_irqrestore(ap->lock, flags);
1693
1694 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1695 ata_internal_cmd_timed_out(dev, command);
1696
1697 return err_mask;
1698}
1699
1700/**
1701 * ata_exec_internal - execute libata internal command
1702 * @dev: Device to which the command is sent
1703 * @tf: Taskfile registers for the command and the result
1704 * @cdb: CDB for packet command
1705 * @dma_dir: Data tranfer direction of the command
1706 * @buf: Data buffer of the command
1707 * @buflen: Length of data buffer
1708 * @timeout: Timeout in msecs (0 for default)
1709 *
1710 * Wrapper around ata_exec_internal_sg() which takes simple
1711 * buffer instead of sg list.
1712 *
1713 * LOCKING:
1714 * None. Should be called with kernel context, might sleep.
1715 *
1716 * RETURNS:
1717 * Zero on success, AC_ERR_* mask on failure
1718 */
1719unsigned ata_exec_internal(struct ata_device *dev,
1720 struct ata_taskfile *tf, const u8 *cdb,
1721 int dma_dir, void *buf, unsigned int buflen,
1722 unsigned long timeout)
1723{
1724 struct scatterlist *psg = NULL, sg;
1725 unsigned int n_elem = 0;
1726
1727 if (dma_dir != DMA_NONE) {
1728 WARN_ON(!buf);
1729 sg_init_one(&sg, buf, buflen);
1730 psg = &sg;
1731 n_elem++;
1732 }
1733
1734 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1735 timeout);
1736}
1737
1738/**
1739 * ata_do_simple_cmd - execute simple internal command
1740 * @dev: Device to which the command is sent
1741 * @cmd: Opcode to execute
1742 *
1743 * Execute a 'simple' command, that only consists of the opcode
1744 * 'cmd' itself, without filling any other registers
1745 *
1746 * LOCKING:
1747 * Kernel thread context (may sleep).
1748 *
1749 * RETURNS:
1750 * Zero on success, AC_ERR_* mask on failure
1751 */
1752unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1753{
1754 struct ata_taskfile tf;
1755
1756 ata_tf_init(dev, &tf);
1757
1758 tf.command = cmd;
1759 tf.flags |= ATA_TFLAG_DEVICE;
1760 tf.protocol = ATA_PROT_NODATA;
1761
1762 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1763}
1764
1765/**
1766 * ata_pio_need_iordy - check if iordy needed
1767 * @adev: ATA device
1768 *
1769 * Check if the current speed of the device requires IORDY. Used
1770 * by various controllers for chip configuration.
1771 */
1772unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1773{
1774 /* Don't set IORDY if we're preparing for reset. IORDY may
1775 * lead to controller lock up on certain controllers if the
1776 * port is not occupied. See bko#11703 for details.
1777 */
1778 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1779 return 0;
1780 /* Controller doesn't support IORDY. Probably a pointless
1781 * check as the caller should know this.
1782 */
1783 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1784 return 0;
1785 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1786 if (ata_id_is_cfa(adev->id)
1787 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1788 return 0;
1789 /* PIO3 and higher it is mandatory */
1790 if (adev->pio_mode > XFER_PIO_2)
1791 return 1;
1792 /* We turn it on when possible */
1793 if (ata_id_has_iordy(adev->id))
1794 return 1;
1795 return 0;
1796}
1797
1798/**
1799 * ata_pio_mask_no_iordy - Return the non IORDY mask
1800 * @adev: ATA device
1801 *
1802 * Compute the highest mode possible if we are not using iordy. Return
1803 * -1 if no iordy mode is available.
1804 */
1805static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1806{
1807 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1808 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1809 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1810 /* Is the speed faster than the drive allows non IORDY ? */
1811 if (pio) {
1812 /* This is cycle times not frequency - watch the logic! */
1813 if (pio > 240) /* PIO2 is 240nS per cycle */
1814 return 3 << ATA_SHIFT_PIO;
1815 return 7 << ATA_SHIFT_PIO;
1816 }
1817 }
1818 return 3 << ATA_SHIFT_PIO;
1819}
1820
1821/**
1822 * ata_do_dev_read_id - default ID read method
1823 * @dev: device
1824 * @tf: proposed taskfile
1825 * @id: data buffer
1826 *
1827 * Issue the identify taskfile and hand back the buffer containing
1828 * identify data. For some RAID controllers and for pre ATA devices
1829 * this function is wrapped or replaced by the driver
1830 */
1831unsigned int ata_do_dev_read_id(struct ata_device *dev,
1832 struct ata_taskfile *tf, u16 *id)
1833{
1834 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1835 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1836}
1837
1838/**
1839 * ata_dev_read_id - Read ID data from the specified device
1840 * @dev: target device
1841 * @p_class: pointer to class of the target device (may be changed)
1842 * @flags: ATA_READID_* flags
1843 * @id: buffer to read IDENTIFY data into
1844 *
1845 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1846 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1847 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1848 * for pre-ATA4 drives.
1849 *
1850 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1851 * now we abort if we hit that case.
1852 *
1853 * LOCKING:
1854 * Kernel thread context (may sleep)
1855 *
1856 * RETURNS:
1857 * 0 on success, -errno otherwise.
1858 */
1859int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1860 unsigned int flags, u16 *id)
1861{
1862 struct ata_port *ap = dev->link->ap;
1863 unsigned int class = *p_class;
1864 struct ata_taskfile tf;
1865 unsigned int err_mask = 0;
1866 const char *reason;
1867 bool is_semb = class == ATA_DEV_SEMB;
1868 int may_fallback = 1, tried_spinup = 0;
1869 int rc;
1870
1871 if (ata_msg_ctl(ap))
1872 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1873
1874retry:
1875 ata_tf_init(dev, &tf);
1876
1877 switch (class) {
1878 case ATA_DEV_SEMB:
1879 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1880 case ATA_DEV_ATA:
1881 tf.command = ATA_CMD_ID_ATA;
1882 break;
1883 case ATA_DEV_ATAPI:
1884 tf.command = ATA_CMD_ID_ATAPI;
1885 break;
1886 default:
1887 rc = -ENODEV;
1888 reason = "unsupported class";
1889 goto err_out;
1890 }
1891
1892 tf.protocol = ATA_PROT_PIO;
1893
1894 /* Some devices choke if TF registers contain garbage. Make
1895 * sure those are properly initialized.
1896 */
1897 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1898
1899 /* Device presence detection is unreliable on some
1900 * controllers. Always poll IDENTIFY if available.
1901 */
1902 tf.flags |= ATA_TFLAG_POLLING;
1903
1904 if (ap->ops->read_id)
1905 err_mask = ap->ops->read_id(dev, &tf, id);
1906 else
1907 err_mask = ata_do_dev_read_id(dev, &tf, id);
1908
1909 if (err_mask) {
1910 if (err_mask & AC_ERR_NODEV_HINT) {
1911 ata_dev_dbg(dev, "NODEV after polling detection\n");
1912 return -ENOENT;
1913 }
1914
1915 if (is_semb) {
1916 ata_dev_info(dev,
1917 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1918 /* SEMB is not supported yet */
1919 *p_class = ATA_DEV_SEMB_UNSUP;
1920 return 0;
1921 }
1922
1923 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1924 /* Device or controller might have reported
1925 * the wrong device class. Give a shot at the
1926 * other IDENTIFY if the current one is
1927 * aborted by the device.
1928 */
1929 if (may_fallback) {
1930 may_fallback = 0;
1931
1932 if (class == ATA_DEV_ATA)
1933 class = ATA_DEV_ATAPI;
1934 else
1935 class = ATA_DEV_ATA;
1936 goto retry;
1937 }
1938
1939 /* Control reaches here iff the device aborted
1940 * both flavors of IDENTIFYs which happens
1941 * sometimes with phantom devices.
1942 */
1943 ata_dev_dbg(dev,
1944 "both IDENTIFYs aborted, assuming NODEV\n");
1945 return -ENOENT;
1946 }
1947
1948 rc = -EIO;
1949 reason = "I/O error";
1950 goto err_out;
1951 }
1952
1953 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1954 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1955 "class=%d may_fallback=%d tried_spinup=%d\n",
1956 class, may_fallback, tried_spinup);
1957 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1958 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1959 }
1960
1961 /* Falling back doesn't make sense if ID data was read
1962 * successfully at least once.
1963 */
1964 may_fallback = 0;
1965
1966 swap_buf_le16(id, ATA_ID_WORDS);
1967
1968 /* sanity check */
1969 rc = -EINVAL;
1970 reason = "device reports invalid type";
1971
1972 if (class == ATA_DEV_ATA) {
1973 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1974 goto err_out;
1975 } else {
1976 if (ata_id_is_ata(id))
1977 goto err_out;
1978 }
1979
1980 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1981 tried_spinup = 1;
1982 /*
1983 * Drive powered-up in standby mode, and requires a specific
1984 * SET_FEATURES spin-up subcommand before it will accept
1985 * anything other than the original IDENTIFY command.
1986 */
1987 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1988 if (err_mask && id[2] != 0x738c) {
1989 rc = -EIO;
1990 reason = "SPINUP failed";
1991 goto err_out;
1992 }
1993 /*
1994 * If the drive initially returned incomplete IDENTIFY info,
1995 * we now must reissue the IDENTIFY command.
1996 */
1997 if (id[2] == 0x37c8)
1998 goto retry;
1999 }
2000
2001 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2002 /*
2003 * The exact sequence expected by certain pre-ATA4 drives is:
2004 * SRST RESET
2005 * IDENTIFY (optional in early ATA)
2006 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2007 * anything else..
2008 * Some drives were very specific about that exact sequence.
2009 *
2010 * Note that ATA4 says lba is mandatory so the second check
2011 * should never trigger.
2012 */
2013 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2014 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2015 if (err_mask) {
2016 rc = -EIO;
2017 reason = "INIT_DEV_PARAMS failed";
2018 goto err_out;
2019 }
2020
2021 /* current CHS translation info (id[53-58]) might be
2022 * changed. reread the identify device info.
2023 */
2024 flags &= ~ATA_READID_POSTRESET;
2025 goto retry;
2026 }
2027 }
2028
2029 *p_class = class;
2030
2031 return 0;
2032
2033 err_out:
2034 if (ata_msg_warn(ap))
2035 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2036 reason, err_mask);
2037 return rc;
2038}
2039
2040static int ata_do_link_spd_horkage(struct ata_device *dev)
2041{
2042 struct ata_link *plink = ata_dev_phys_link(dev);
2043 u32 target, target_limit;
2044
2045 if (!sata_scr_valid(plink))
2046 return 0;
2047
2048 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2049 target = 1;
2050 else
2051 return 0;
2052
2053 target_limit = (1 << target) - 1;
2054
2055 /* if already on stricter limit, no need to push further */
2056 if (plink->sata_spd_limit <= target_limit)
2057 return 0;
2058
2059 plink->sata_spd_limit = target_limit;
2060
2061 /* Request another EH round by returning -EAGAIN if link is
2062 * going faster than the target speed. Forward progress is
2063 * guaranteed by setting sata_spd_limit to target_limit above.
2064 */
2065 if (plink->sata_spd > target) {
2066 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2067 sata_spd_string(target));
2068 return -EAGAIN;
2069 }
2070 return 0;
2071}
2072
2073static inline u8 ata_dev_knobble(struct ata_device *dev)
2074{
2075 struct ata_port *ap = dev->link->ap;
2076
2077 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2078 return 0;
2079
2080 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2081}
2082
2083static int ata_dev_config_ncq(struct ata_device *dev,
2084 char *desc, size_t desc_sz)
2085{
2086 struct ata_port *ap = dev->link->ap;
2087 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2088 unsigned int err_mask;
2089 char *aa_desc = "";
2090
2091 if (!ata_id_has_ncq(dev->id)) {
2092 desc[0] = '\0';
2093 return 0;
2094 }
2095 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2096 snprintf(desc, desc_sz, "NCQ (not used)");
2097 return 0;
2098 }
2099 if (ap->flags & ATA_FLAG_NCQ) {
2100 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2101 dev->flags |= ATA_DFLAG_NCQ;
2102 }
2103
2104 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2105 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2106 ata_id_has_fpdma_aa(dev->id)) {
2107 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2108 SATA_FPDMA_AA);
2109 if (err_mask) {
2110 ata_dev_err(dev,
2111 "failed to enable AA (error_mask=0x%x)\n",
2112 err_mask);
2113 if (err_mask != AC_ERR_DEV) {
2114 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2115 return -EIO;
2116 }
2117 } else
2118 aa_desc = ", AA";
2119 }
2120
2121 if (hdepth >= ddepth)
2122 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2123 else
2124 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2125 ddepth, aa_desc);
2126 return 0;
2127}
2128
2129/**
2130 * ata_dev_configure - Configure the specified ATA/ATAPI device
2131 * @dev: Target device to configure
2132 *
2133 * Configure @dev according to @dev->id. Generic and low-level
2134 * driver specific fixups are also applied.
2135 *
2136 * LOCKING:
2137 * Kernel thread context (may sleep)
2138 *
2139 * RETURNS:
2140 * 0 on success, -errno otherwise
2141 */
2142int ata_dev_configure(struct ata_device *dev)
2143{
2144 struct ata_port *ap = dev->link->ap;
2145 struct ata_eh_context *ehc = &dev->link->eh_context;
2146 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2147 const u16 *id = dev->id;
2148 unsigned long xfer_mask;
2149 char revbuf[7]; /* XYZ-99\0 */
2150 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2151 char modelbuf[ATA_ID_PROD_LEN+1];
2152 int rc;
2153
2154 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2155 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2156 return 0;
2157 }
2158
2159 if (ata_msg_probe(ap))
2160 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2161
2162 /* set horkage */
2163 dev->horkage |= ata_dev_blacklisted(dev);
2164 ata_force_horkage(dev);
2165
2166 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2167 ata_dev_info(dev, "unsupported device, disabling\n");
2168 ata_dev_disable(dev);
2169 return 0;
2170 }
2171
2172 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2173 dev->class == ATA_DEV_ATAPI) {
2174 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2175 atapi_enabled ? "not supported with this driver"
2176 : "disabled");
2177 ata_dev_disable(dev);
2178 return 0;
2179 }
2180
2181 rc = ata_do_link_spd_horkage(dev);
2182 if (rc)
2183 return rc;
2184
2185 /* let ACPI work its magic */
2186 rc = ata_acpi_on_devcfg(dev);
2187 if (rc)
2188 return rc;
2189
2190 /* massage HPA, do it early as it might change IDENTIFY data */
2191 rc = ata_hpa_resize(dev);
2192 if (rc)
2193 return rc;
2194
2195 /* print device capabilities */
2196 if (ata_msg_probe(ap))
2197 ata_dev_dbg(dev,
2198 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2199 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2200 __func__,
2201 id[49], id[82], id[83], id[84],
2202 id[85], id[86], id[87], id[88]);
2203
2204 /* initialize to-be-configured parameters */
2205 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2206 dev->max_sectors = 0;
2207 dev->cdb_len = 0;
2208 dev->n_sectors = 0;
2209 dev->cylinders = 0;
2210 dev->heads = 0;
2211 dev->sectors = 0;
2212 dev->multi_count = 0;
2213
2214 /*
2215 * common ATA, ATAPI feature tests
2216 */
2217
2218 /* find max transfer mode; for printk only */
2219 xfer_mask = ata_id_xfermask(id);
2220
2221 if (ata_msg_probe(ap))
2222 ata_dump_id(id);
2223
2224 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2225 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2226 sizeof(fwrevbuf));
2227
2228 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2229 sizeof(modelbuf));
2230
2231 /* ATA-specific feature tests */
2232 if (dev->class == ATA_DEV_ATA) {
2233 if (ata_id_is_cfa(id)) {
2234 /* CPRM may make this media unusable */
2235 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2236 ata_dev_warn(dev,
2237 "supports DRM functions and may not be fully accessible\n");
2238 snprintf(revbuf, 7, "CFA");
2239 } else {
2240 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2241 /* Warn the user if the device has TPM extensions */
2242 if (ata_id_has_tpm(id))
2243 ata_dev_warn(dev,
2244 "supports DRM functions and may not be fully accessible\n");
2245 }
2246
2247 dev->n_sectors = ata_id_n_sectors(id);
2248
2249 /* get current R/W Multiple count setting */
2250 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2251 unsigned int max = dev->id[47] & 0xff;
2252 unsigned int cnt = dev->id[59] & 0xff;
2253 /* only recognize/allow powers of two here */
2254 if (is_power_of_2(max) && is_power_of_2(cnt))
2255 if (cnt <= max)
2256 dev->multi_count = cnt;
2257 }
2258
2259 if (ata_id_has_lba(id)) {
2260 const char *lba_desc;
2261 char ncq_desc[24];
2262
2263 lba_desc = "LBA";
2264 dev->flags |= ATA_DFLAG_LBA;
2265 if (ata_id_has_lba48(id)) {
2266 dev->flags |= ATA_DFLAG_LBA48;
2267 lba_desc = "LBA48";
2268
2269 if (dev->n_sectors >= (1UL << 28) &&
2270 ata_id_has_flush_ext(id))
2271 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2272 }
2273
2274 /* config NCQ */
2275 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2276 if (rc)
2277 return rc;
2278
2279 /* print device info to dmesg */
2280 if (ata_msg_drv(ap) && print_info) {
2281 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2282 revbuf, modelbuf, fwrevbuf,
2283 ata_mode_string(xfer_mask));
2284 ata_dev_info(dev,
2285 "%llu sectors, multi %u: %s %s\n",
2286 (unsigned long long)dev->n_sectors,
2287 dev->multi_count, lba_desc, ncq_desc);
2288 }
2289 } else {
2290 /* CHS */
2291
2292 /* Default translation */
2293 dev->cylinders = id[1];
2294 dev->heads = id[3];
2295 dev->sectors = id[6];
2296
2297 if (ata_id_current_chs_valid(id)) {
2298 /* Current CHS translation is valid. */
2299 dev->cylinders = id[54];
2300 dev->heads = id[55];
2301 dev->sectors = id[56];
2302 }
2303
2304 /* print device info to dmesg */
2305 if (ata_msg_drv(ap) && print_info) {
2306 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2307 revbuf, modelbuf, fwrevbuf,
2308 ata_mode_string(xfer_mask));
2309 ata_dev_info(dev,
2310 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2311 (unsigned long long)dev->n_sectors,
2312 dev->multi_count, dev->cylinders,
2313 dev->heads, dev->sectors);
2314 }
2315 }
2316
2317 dev->cdb_len = 16;
2318 }
2319
2320 /* ATAPI-specific feature tests */
2321 else if (dev->class == ATA_DEV_ATAPI) {
2322 const char *cdb_intr_string = "";
2323 const char *atapi_an_string = "";
2324 const char *dma_dir_string = "";
2325 u32 sntf;
2326
2327 rc = atapi_cdb_len(id);
2328 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2329 if (ata_msg_warn(ap))
2330 ata_dev_warn(dev, "unsupported CDB len\n");
2331 rc = -EINVAL;
2332 goto err_out_nosup;
2333 }
2334 dev->cdb_len = (unsigned int) rc;
2335
2336 /* Enable ATAPI AN if both the host and device have
2337 * the support. If PMP is attached, SNTF is required
2338 * to enable ATAPI AN to discern between PHY status
2339 * changed notifications and ATAPI ANs.
2340 */
2341 if (atapi_an &&
2342 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2343 (!sata_pmp_attached(ap) ||
2344 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2345 unsigned int err_mask;
2346
2347 /* issue SET feature command to turn this on */
2348 err_mask = ata_dev_set_feature(dev,
2349 SETFEATURES_SATA_ENABLE, SATA_AN);
2350 if (err_mask)
2351 ata_dev_err(dev,
2352 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2353 err_mask);
2354 else {
2355 dev->flags |= ATA_DFLAG_AN;
2356 atapi_an_string = ", ATAPI AN";
2357 }
2358 }
2359
2360 if (ata_id_cdb_intr(dev->id)) {
2361 dev->flags |= ATA_DFLAG_CDB_INTR;
2362 cdb_intr_string = ", CDB intr";
2363 }
2364
2365 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2366 dev->flags |= ATA_DFLAG_DMADIR;
2367 dma_dir_string = ", DMADIR";
2368 }
2369
2370 /* print device info to dmesg */
2371 if (ata_msg_drv(ap) && print_info)
2372 ata_dev_info(dev,
2373 "ATAPI: %s, %s, max %s%s%s%s\n",
2374 modelbuf, fwrevbuf,
2375 ata_mode_string(xfer_mask),
2376 cdb_intr_string, atapi_an_string,
2377 dma_dir_string);
2378 }
2379
2380 /* determine max_sectors */
2381 dev->max_sectors = ATA_MAX_SECTORS;
2382 if (dev->flags & ATA_DFLAG_LBA48)
2383 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2384
2385 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2386 200 sectors */
2387 if (ata_dev_knobble(dev)) {
2388 if (ata_msg_drv(ap) && print_info)
2389 ata_dev_info(dev, "applying bridge limits\n");
2390 dev->udma_mask &= ATA_UDMA5;
2391 dev->max_sectors = ATA_MAX_SECTORS;
2392 }
2393
2394 if ((dev->class == ATA_DEV_ATAPI) &&
2395 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2396 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2397 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2398 }
2399
2400 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2401 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2402 dev->max_sectors);
2403
2404 if (ap->ops->dev_config)
2405 ap->ops->dev_config(dev);
2406
2407 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2408 /* Let the user know. We don't want to disallow opens for
2409 rescue purposes, or in case the vendor is just a blithering
2410 idiot. Do this after the dev_config call as some controllers
2411 with buggy firmware may want to avoid reporting false device
2412 bugs */
2413
2414 if (print_info) {
2415 ata_dev_warn(dev,
2416"Drive reports diagnostics failure. This may indicate a drive\n");
2417 ata_dev_warn(dev,
2418"fault or invalid emulation. Contact drive vendor for information.\n");
2419 }
2420 }
2421
2422 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2423 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2424 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2425 }
2426
2427 return 0;
2428
2429err_out_nosup:
2430 if (ata_msg_probe(ap))
2431 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2432 return rc;
2433}
2434
2435/**
2436 * ata_cable_40wire - return 40 wire cable type
2437 * @ap: port
2438 *
2439 * Helper method for drivers which want to hardwire 40 wire cable
2440 * detection.
2441 */
2442
2443int ata_cable_40wire(struct ata_port *ap)
2444{
2445 return ATA_CBL_PATA40;
2446}
2447
2448/**
2449 * ata_cable_80wire - return 80 wire cable type
2450 * @ap: port
2451 *
2452 * Helper method for drivers which want to hardwire 80 wire cable
2453 * detection.
2454 */
2455
2456int ata_cable_80wire(struct ata_port *ap)
2457{
2458 return ATA_CBL_PATA80;
2459}
2460
2461/**
2462 * ata_cable_unknown - return unknown PATA cable.
2463 * @ap: port
2464 *
2465 * Helper method for drivers which have no PATA cable detection.
2466 */
2467
2468int ata_cable_unknown(struct ata_port *ap)
2469{
2470 return ATA_CBL_PATA_UNK;
2471}
2472
2473/**
2474 * ata_cable_ignore - return ignored PATA cable.
2475 * @ap: port
2476 *
2477 * Helper method for drivers which don't use cable type to limit
2478 * transfer mode.
2479 */
2480int ata_cable_ignore(struct ata_port *ap)
2481{
2482 return ATA_CBL_PATA_IGN;
2483}
2484
2485/**
2486 * ata_cable_sata - return SATA cable type
2487 * @ap: port
2488 *
2489 * Helper method for drivers which have SATA cables
2490 */
2491
2492int ata_cable_sata(struct ata_port *ap)
2493{
2494 return ATA_CBL_SATA;
2495}
2496
2497/**
2498 * ata_bus_probe - Reset and probe ATA bus
2499 * @ap: Bus to probe
2500 *
2501 * Master ATA bus probing function. Initiates a hardware-dependent
2502 * bus reset, then attempts to identify any devices found on
2503 * the bus.
2504 *
2505 * LOCKING:
2506 * PCI/etc. bus probe sem.
2507 *
2508 * RETURNS:
2509 * Zero on success, negative errno otherwise.
2510 */
2511
2512int ata_bus_probe(struct ata_port *ap)
2513{
2514 unsigned int classes[ATA_MAX_DEVICES];
2515 int tries[ATA_MAX_DEVICES];
2516 int rc;
2517 struct ata_device *dev;
2518
2519 ata_for_each_dev(dev, &ap->link, ALL)
2520 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2521
2522 retry:
2523 ata_for_each_dev(dev, &ap->link, ALL) {
2524 /* If we issue an SRST then an ATA drive (not ATAPI)
2525 * may change configuration and be in PIO0 timing. If
2526 * we do a hard reset (or are coming from power on)
2527 * this is true for ATA or ATAPI. Until we've set a
2528 * suitable controller mode we should not touch the
2529 * bus as we may be talking too fast.
2530 */
2531 dev->pio_mode = XFER_PIO_0;
2532
2533 /* If the controller has a pio mode setup function
2534 * then use it to set the chipset to rights. Don't
2535 * touch the DMA setup as that will be dealt with when
2536 * configuring devices.
2537 */
2538 if (ap->ops->set_piomode)
2539 ap->ops->set_piomode(ap, dev);
2540 }
2541
2542 /* reset and determine device classes */
2543 ap->ops->phy_reset(ap);
2544
2545 ata_for_each_dev(dev, &ap->link, ALL) {
2546 if (dev->class != ATA_DEV_UNKNOWN)
2547 classes[dev->devno] = dev->class;
2548 else
2549 classes[dev->devno] = ATA_DEV_NONE;
2550
2551 dev->class = ATA_DEV_UNKNOWN;
2552 }
2553
2554 /* read IDENTIFY page and configure devices. We have to do the identify
2555 specific sequence bass-ackwards so that PDIAG- is released by
2556 the slave device */
2557
2558 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2559 if (tries[dev->devno])
2560 dev->class = classes[dev->devno];
2561
2562 if (!ata_dev_enabled(dev))
2563 continue;
2564
2565 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2566 dev->id);
2567 if (rc)
2568 goto fail;
2569 }
2570
2571 /* Now ask for the cable type as PDIAG- should have been released */
2572 if (ap->ops->cable_detect)
2573 ap->cbl = ap->ops->cable_detect(ap);
2574
2575 /* We may have SATA bridge glue hiding here irrespective of
2576 * the reported cable types and sensed types. When SATA
2577 * drives indicate we have a bridge, we don't know which end
2578 * of the link the bridge is which is a problem.
2579 */
2580 ata_for_each_dev(dev, &ap->link, ENABLED)
2581 if (ata_id_is_sata(dev->id))
2582 ap->cbl = ATA_CBL_SATA;
2583
2584 /* After the identify sequence we can now set up the devices. We do
2585 this in the normal order so that the user doesn't get confused */
2586
2587 ata_for_each_dev(dev, &ap->link, ENABLED) {
2588 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2589 rc = ata_dev_configure(dev);
2590 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2591 if (rc)
2592 goto fail;
2593 }
2594
2595 /* configure transfer mode */
2596 rc = ata_set_mode(&ap->link, &dev);
2597 if (rc)
2598 goto fail;
2599
2600 ata_for_each_dev(dev, &ap->link, ENABLED)
2601 return 0;
2602
2603 return -ENODEV;
2604
2605 fail:
2606 tries[dev->devno]--;
2607
2608 switch (rc) {
2609 case -EINVAL:
2610 /* eeek, something went very wrong, give up */
2611 tries[dev->devno] = 0;
2612 break;
2613
2614 case -ENODEV:
2615 /* give it just one more chance */
2616 tries[dev->devno] = min(tries[dev->devno], 1);
2617 case -EIO:
2618 if (tries[dev->devno] == 1) {
2619 /* This is the last chance, better to slow
2620 * down than lose it.
2621 */
2622 sata_down_spd_limit(&ap->link, 0);
2623 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2624 }
2625 }
2626
2627 if (!tries[dev->devno])
2628 ata_dev_disable(dev);
2629
2630 goto retry;
2631}
2632
2633/**
2634 * sata_print_link_status - Print SATA link status
2635 * @link: SATA link to printk link status about
2636 *
2637 * This function prints link speed and status of a SATA link.
2638 *
2639 * LOCKING:
2640 * None.
2641 */
2642static void sata_print_link_status(struct ata_link *link)
2643{
2644 u32 sstatus, scontrol, tmp;
2645
2646 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2647 return;
2648 sata_scr_read(link, SCR_CONTROL, &scontrol);
2649
2650 if (ata_phys_link_online(link)) {
2651 tmp = (sstatus >> 4) & 0xf;
2652 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2653 sata_spd_string(tmp), sstatus, scontrol);
2654 } else {
2655 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2656 sstatus, scontrol);
2657 }
2658}
2659
2660/**
2661 * ata_dev_pair - return other device on cable
2662 * @adev: device
2663 *
2664 * Obtain the other device on the same cable, or if none is
2665 * present NULL is returned
2666 */
2667
2668struct ata_device *ata_dev_pair(struct ata_device *adev)
2669{
2670 struct ata_link *link = adev->link;
2671 struct ata_device *pair = &link->device[1 - adev->devno];
2672 if (!ata_dev_enabled(pair))
2673 return NULL;
2674 return pair;
2675}
2676
2677/**
2678 * sata_down_spd_limit - adjust SATA spd limit downward
2679 * @link: Link to adjust SATA spd limit for
2680 * @spd_limit: Additional limit
2681 *
2682 * Adjust SATA spd limit of @link downward. Note that this
2683 * function only adjusts the limit. The change must be applied
2684 * using sata_set_spd().
2685 *
2686 * If @spd_limit is non-zero, the speed is limited to equal to or
2687 * lower than @spd_limit if such speed is supported. If
2688 * @spd_limit is slower than any supported speed, only the lowest
2689 * supported speed is allowed.
2690 *
2691 * LOCKING:
2692 * Inherited from caller.
2693 *
2694 * RETURNS:
2695 * 0 on success, negative errno on failure
2696 */
2697int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2698{
2699 u32 sstatus, spd, mask;
2700 int rc, bit;
2701
2702 if (!sata_scr_valid(link))
2703 return -EOPNOTSUPP;
2704
2705 /* If SCR can be read, use it to determine the current SPD.
2706 * If not, use cached value in link->sata_spd.
2707 */
2708 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2709 if (rc == 0 && ata_sstatus_online(sstatus))
2710 spd = (sstatus >> 4) & 0xf;
2711 else
2712 spd = link->sata_spd;
2713
2714 mask = link->sata_spd_limit;
2715 if (mask <= 1)
2716 return -EINVAL;
2717
2718 /* unconditionally mask off the highest bit */
2719 bit = fls(mask) - 1;
2720 mask &= ~(1 << bit);
2721
2722 /* Mask off all speeds higher than or equal to the current
2723 * one. Force 1.5Gbps if current SPD is not available.
2724 */
2725 if (spd > 1)
2726 mask &= (1 << (spd - 1)) - 1;
2727 else
2728 mask &= 1;
2729
2730 /* were we already at the bottom? */
2731 if (!mask)
2732 return -EINVAL;
2733
2734 if (spd_limit) {
2735 if (mask & ((1 << spd_limit) - 1))
2736 mask &= (1 << spd_limit) - 1;
2737 else {
2738 bit = ffs(mask) - 1;
2739 mask = 1 << bit;
2740 }
2741 }
2742
2743 link->sata_spd_limit = mask;
2744
2745 ata_link_warn(link, "limiting SATA link speed to %s\n",
2746 sata_spd_string(fls(mask)));
2747
2748 return 0;
2749}
2750
2751static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2752{
2753 struct ata_link *host_link = &link->ap->link;
2754 u32 limit, target, spd;
2755
2756 limit = link->sata_spd_limit;
2757
2758 /* Don't configure downstream link faster than upstream link.
2759 * It doesn't speed up anything and some PMPs choke on such
2760 * configuration.
2761 */
2762 if (!ata_is_host_link(link) && host_link->sata_spd)
2763 limit &= (1 << host_link->sata_spd) - 1;
2764
2765 if (limit == UINT_MAX)
2766 target = 0;
2767 else
2768 target = fls(limit);
2769
2770 spd = (*scontrol >> 4) & 0xf;
2771 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2772
2773 return spd != target;
2774}
2775
2776/**
2777 * sata_set_spd_needed - is SATA spd configuration needed
2778 * @link: Link in question
2779 *
2780 * Test whether the spd limit in SControl matches
2781 * @link->sata_spd_limit. This function is used to determine
2782 * whether hardreset is necessary to apply SATA spd
2783 * configuration.
2784 *
2785 * LOCKING:
2786 * Inherited from caller.
2787 *
2788 * RETURNS:
2789 * 1 if SATA spd configuration is needed, 0 otherwise.
2790 */
2791static int sata_set_spd_needed(struct ata_link *link)
2792{
2793 u32 scontrol;
2794
2795 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2796 return 1;
2797
2798 return __sata_set_spd_needed(link, &scontrol);
2799}
2800
2801/**
2802 * sata_set_spd - set SATA spd according to spd limit
2803 * @link: Link to set SATA spd for
2804 *
2805 * Set SATA spd of @link according to sata_spd_limit.
2806 *
2807 * LOCKING:
2808 * Inherited from caller.
2809 *
2810 * RETURNS:
2811 * 0 if spd doesn't need to be changed, 1 if spd has been
2812 * changed. Negative errno if SCR registers are inaccessible.
2813 */
2814int sata_set_spd(struct ata_link *link)
2815{
2816 u32 scontrol;
2817 int rc;
2818
2819 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2820 return rc;
2821
2822 if (!__sata_set_spd_needed(link, &scontrol))
2823 return 0;
2824
2825 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2826 return rc;
2827
2828 return 1;
2829}
2830
2831/*
2832 * This mode timing computation functionality is ported over from
2833 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2834 */
2835/*
2836 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2837 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2838 * for UDMA6, which is currently supported only by Maxtor drives.
2839 *
2840 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2841 */
2842
2843static const struct ata_timing ata_timing[] = {
2844/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2845 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2846 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2847 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2848 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2849 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2850 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2851 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2852
2853 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2854 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2855 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2856
2857 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2858 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2859 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2860 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2861 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2862
2863/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2864 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2865 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2866 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2867 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2868 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2869 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2870 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2871
2872 { 0xFF }
2873};
2874
2875#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2876#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2877
2878static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2879{
2880 q->setup = EZ(t->setup * 1000, T);
2881 q->act8b = EZ(t->act8b * 1000, T);
2882 q->rec8b = EZ(t->rec8b * 1000, T);
2883 q->cyc8b = EZ(t->cyc8b * 1000, T);
2884 q->active = EZ(t->active * 1000, T);
2885 q->recover = EZ(t->recover * 1000, T);
2886 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2887 q->cycle = EZ(t->cycle * 1000, T);
2888 q->udma = EZ(t->udma * 1000, UT);
2889}
2890
2891void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2892 struct ata_timing *m, unsigned int what)
2893{
2894 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2895 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2896 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2897 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2898 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2899 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2900 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2901 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2902 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2903}
2904
2905const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2906{
2907 const struct ata_timing *t = ata_timing;
2908
2909 while (xfer_mode > t->mode)
2910 t++;
2911
2912 if (xfer_mode == t->mode)
2913 return t;
2914 return NULL;
2915}
2916
2917int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2918 struct ata_timing *t, int T, int UT)
2919{
2920 const u16 *id = adev->id;
2921 const struct ata_timing *s;
2922 struct ata_timing p;
2923
2924 /*
2925 * Find the mode.
2926 */
2927
2928 if (!(s = ata_timing_find_mode(speed)))
2929 return -EINVAL;
2930
2931 memcpy(t, s, sizeof(*s));
2932
2933 /*
2934 * If the drive is an EIDE drive, it can tell us it needs extended
2935 * PIO/MW_DMA cycle timing.
2936 */
2937
2938 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2939 memset(&p, 0, sizeof(p));
2940
2941 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2942 if (speed <= XFER_PIO_2)
2943 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
2944 else if ((speed <= XFER_PIO_4) ||
2945 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
2946 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
2947 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
2948 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
2949
2950 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2951 }
2952
2953 /*
2954 * Convert the timing to bus clock counts.
2955 */
2956
2957 ata_timing_quantize(t, t, T, UT);
2958
2959 /*
2960 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2961 * S.M.A.R.T * and some other commands. We have to ensure that the
2962 * DMA cycle timing is slower/equal than the fastest PIO timing.
2963 */
2964
2965 if (speed > XFER_PIO_6) {
2966 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2967 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2968 }
2969
2970 /*
2971 * Lengthen active & recovery time so that cycle time is correct.
2972 */
2973
2974 if (t->act8b + t->rec8b < t->cyc8b) {
2975 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2976 t->rec8b = t->cyc8b - t->act8b;
2977 }
2978
2979 if (t->active + t->recover < t->cycle) {
2980 t->active += (t->cycle - (t->active + t->recover)) / 2;
2981 t->recover = t->cycle - t->active;
2982 }
2983
2984 /* In a few cases quantisation may produce enough errors to
2985 leave t->cycle too low for the sum of active and recovery
2986 if so we must correct this */
2987 if (t->active + t->recover > t->cycle)
2988 t->cycle = t->active + t->recover;
2989
2990 return 0;
2991}
2992
2993/**
2994 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
2995 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
2996 * @cycle: cycle duration in ns
2997 *
2998 * Return matching xfer mode for @cycle. The returned mode is of
2999 * the transfer type specified by @xfer_shift. If @cycle is too
3000 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3001 * than the fastest known mode, the fasted mode is returned.
3002 *
3003 * LOCKING:
3004 * None.
3005 *
3006 * RETURNS:
3007 * Matching xfer_mode, 0xff if no match found.
3008 */
3009u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3010{
3011 u8 base_mode = 0xff, last_mode = 0xff;
3012 const struct ata_xfer_ent *ent;
3013 const struct ata_timing *t;
3014
3015 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3016 if (ent->shift == xfer_shift)
3017 base_mode = ent->base;
3018
3019 for (t = ata_timing_find_mode(base_mode);
3020 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3021 unsigned short this_cycle;
3022
3023 switch (xfer_shift) {
3024 case ATA_SHIFT_PIO:
3025 case ATA_SHIFT_MWDMA:
3026 this_cycle = t->cycle;
3027 break;
3028 case ATA_SHIFT_UDMA:
3029 this_cycle = t->udma;
3030 break;
3031 default:
3032 return 0xff;
3033 }
3034
3035 if (cycle > this_cycle)
3036 break;
3037
3038 last_mode = t->mode;
3039 }
3040
3041 return last_mode;
3042}
3043
3044/**
3045 * ata_down_xfermask_limit - adjust dev xfer masks downward
3046 * @dev: Device to adjust xfer masks
3047 * @sel: ATA_DNXFER_* selector
3048 *
3049 * Adjust xfer masks of @dev downward. Note that this function
3050 * does not apply the change. Invoking ata_set_mode() afterwards
3051 * will apply the limit.
3052 *
3053 * LOCKING:
3054 * Inherited from caller.
3055 *
3056 * RETURNS:
3057 * 0 on success, negative errno on failure
3058 */
3059int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3060{
3061 char buf[32];
3062 unsigned long orig_mask, xfer_mask;
3063 unsigned long pio_mask, mwdma_mask, udma_mask;
3064 int quiet, highbit;
3065
3066 quiet = !!(sel & ATA_DNXFER_QUIET);
3067 sel &= ~ATA_DNXFER_QUIET;
3068
3069 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3070 dev->mwdma_mask,
3071 dev->udma_mask);
3072 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3073
3074 switch (sel) {
3075 case ATA_DNXFER_PIO:
3076 highbit = fls(pio_mask) - 1;
3077 pio_mask &= ~(1 << highbit);
3078 break;
3079
3080 case ATA_DNXFER_DMA:
3081 if (udma_mask) {
3082 highbit = fls(udma_mask) - 1;
3083 udma_mask &= ~(1 << highbit);
3084 if (!udma_mask)
3085 return -ENOENT;
3086 } else if (mwdma_mask) {
3087 highbit = fls(mwdma_mask) - 1;
3088 mwdma_mask &= ~(1 << highbit);
3089 if (!mwdma_mask)
3090 return -ENOENT;
3091 }
3092 break;
3093
3094 case ATA_DNXFER_40C:
3095 udma_mask &= ATA_UDMA_MASK_40C;
3096 break;
3097
3098 case ATA_DNXFER_FORCE_PIO0:
3099 pio_mask &= 1;
3100 case ATA_DNXFER_FORCE_PIO:
3101 mwdma_mask = 0;
3102 udma_mask = 0;
3103 break;
3104
3105 default:
3106 BUG();
3107 }
3108
3109 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3110
3111 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3112 return -ENOENT;
3113
3114 if (!quiet) {
3115 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3116 snprintf(buf, sizeof(buf), "%s:%s",
3117 ata_mode_string(xfer_mask),
3118 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3119 else
3120 snprintf(buf, sizeof(buf), "%s",
3121 ata_mode_string(xfer_mask));
3122
3123 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3124 }
3125
3126 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3127 &dev->udma_mask);
3128
3129 return 0;
3130}
3131
3132static int ata_dev_set_mode(struct ata_device *dev)
3133{
3134 struct ata_port *ap = dev->link->ap;
3135 struct ata_eh_context *ehc = &dev->link->eh_context;
3136 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3137 const char *dev_err_whine = "";
3138 int ign_dev_err = 0;
3139 unsigned int err_mask = 0;
3140 int rc;
3141
3142 dev->flags &= ~ATA_DFLAG_PIO;
3143 if (dev->xfer_shift == ATA_SHIFT_PIO)
3144 dev->flags |= ATA_DFLAG_PIO;
3145
3146 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3147 dev_err_whine = " (SET_XFERMODE skipped)";
3148 else {
3149 if (nosetxfer)
3150 ata_dev_warn(dev,
3151 "NOSETXFER but PATA detected - can't "
3152 "skip SETXFER, might malfunction\n");
3153 err_mask = ata_dev_set_xfermode(dev);
3154 }
3155
3156 if (err_mask & ~AC_ERR_DEV)
3157 goto fail;
3158
3159 /* revalidate */
3160 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3161 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3162 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3163 if (rc)
3164 return rc;
3165
3166 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3167 /* Old CFA may refuse this command, which is just fine */
3168 if (ata_id_is_cfa(dev->id))
3169 ign_dev_err = 1;
3170 /* Catch several broken garbage emulations plus some pre
3171 ATA devices */
3172 if (ata_id_major_version(dev->id) == 0 &&
3173 dev->pio_mode <= XFER_PIO_2)
3174 ign_dev_err = 1;
3175 /* Some very old devices and some bad newer ones fail
3176 any kind of SET_XFERMODE request but support PIO0-2
3177 timings and no IORDY */
3178 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3179 ign_dev_err = 1;
3180 }
3181 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3182 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3183 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3184 dev->dma_mode == XFER_MW_DMA_0 &&
3185 (dev->id[63] >> 8) & 1)
3186 ign_dev_err = 1;
3187
3188 /* if the device is actually configured correctly, ignore dev err */
3189 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3190 ign_dev_err = 1;
3191
3192 if (err_mask & AC_ERR_DEV) {
3193 if (!ign_dev_err)
3194 goto fail;
3195 else
3196 dev_err_whine = " (device error ignored)";
3197 }
3198
3199 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3200 dev->xfer_shift, (int)dev->xfer_mode);
3201
3202 ata_dev_info(dev, "configured for %s%s\n",
3203 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3204 dev_err_whine);
3205
3206 return 0;
3207
3208 fail:
3209 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3210 return -EIO;
3211}
3212
3213/**
3214 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3215 * @link: link on which timings will be programmed
3216 * @r_failed_dev: out parameter for failed device
3217 *
3218 * Standard implementation of the function used to tune and set
3219 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3220 * ata_dev_set_mode() fails, pointer to the failing device is
3221 * returned in @r_failed_dev.
3222 *
3223 * LOCKING:
3224 * PCI/etc. bus probe sem.
3225 *
3226 * RETURNS:
3227 * 0 on success, negative errno otherwise
3228 */
3229
3230int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3231{
3232 struct ata_port *ap = link->ap;
3233 struct ata_device *dev;
3234 int rc = 0, used_dma = 0, found = 0;
3235
3236 /* step 1: calculate xfer_mask */
3237 ata_for_each_dev(dev, link, ENABLED) {
3238 unsigned long pio_mask, dma_mask;
3239 unsigned int mode_mask;
3240
3241 mode_mask = ATA_DMA_MASK_ATA;
3242 if (dev->class == ATA_DEV_ATAPI)
3243 mode_mask = ATA_DMA_MASK_ATAPI;
3244 else if (ata_id_is_cfa(dev->id))
3245 mode_mask = ATA_DMA_MASK_CFA;
3246
3247 ata_dev_xfermask(dev);
3248 ata_force_xfermask(dev);
3249
3250 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3251 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3252
3253 if (libata_dma_mask & mode_mask)
3254 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3255 else
3256 dma_mask = 0;
3257
3258 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3259 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3260
3261 found = 1;
3262 if (ata_dma_enabled(dev))
3263 used_dma = 1;
3264 }
3265 if (!found)
3266 goto out;
3267
3268 /* step 2: always set host PIO timings */
3269 ata_for_each_dev(dev, link, ENABLED) {
3270 if (dev->pio_mode == 0xff) {
3271 ata_dev_warn(dev, "no PIO support\n");
3272 rc = -EINVAL;
3273 goto out;
3274 }
3275
3276 dev->xfer_mode = dev->pio_mode;
3277 dev->xfer_shift = ATA_SHIFT_PIO;
3278 if (ap->ops->set_piomode)
3279 ap->ops->set_piomode(ap, dev);
3280 }
3281
3282 /* step 3: set host DMA timings */
3283 ata_for_each_dev(dev, link, ENABLED) {
3284 if (!ata_dma_enabled(dev))
3285 continue;
3286
3287 dev->xfer_mode = dev->dma_mode;
3288 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3289 if (ap->ops->set_dmamode)
3290 ap->ops->set_dmamode(ap, dev);
3291 }
3292
3293 /* step 4: update devices' xfer mode */
3294 ata_for_each_dev(dev, link, ENABLED) {
3295 rc = ata_dev_set_mode(dev);
3296 if (rc)
3297 goto out;
3298 }
3299
3300 /* Record simplex status. If we selected DMA then the other
3301 * host channels are not permitted to do so.
3302 */
3303 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3304 ap->host->simplex_claimed = ap;
3305
3306 out:
3307 if (rc)
3308 *r_failed_dev = dev;
3309 return rc;
3310}
3311
3312/**
3313 * ata_wait_ready - wait for link to become ready
3314 * @link: link to be waited on
3315 * @deadline: deadline jiffies for the operation
3316 * @check_ready: callback to check link readiness
3317 *
3318 * Wait for @link to become ready. @check_ready should return
3319 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3320 * link doesn't seem to be occupied, other errno for other error
3321 * conditions.
3322 *
3323 * Transient -ENODEV conditions are allowed for
3324 * ATA_TMOUT_FF_WAIT.
3325 *
3326 * LOCKING:
3327 * EH context.
3328 *
3329 * RETURNS:
3330 * 0 if @linke is ready before @deadline; otherwise, -errno.
3331 */
3332int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3333 int (*check_ready)(struct ata_link *link))
3334{
3335 unsigned long start = jiffies;
3336 unsigned long nodev_deadline;
3337 int warned = 0;
3338
3339 /* choose which 0xff timeout to use, read comment in libata.h */
3340 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3341 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3342 else
3343 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3344
3345 /* Slave readiness can't be tested separately from master. On
3346 * M/S emulation configuration, this function should be called
3347 * only on the master and it will handle both master and slave.
3348 */
3349 WARN_ON(link == link->ap->slave_link);
3350
3351 if (time_after(nodev_deadline, deadline))
3352 nodev_deadline = deadline;
3353
3354 while (1) {
3355 unsigned long now = jiffies;
3356 int ready, tmp;
3357
3358 ready = tmp = check_ready(link);
3359 if (ready > 0)
3360 return 0;
3361
3362 /*
3363 * -ENODEV could be transient. Ignore -ENODEV if link
3364 * is online. Also, some SATA devices take a long
3365 * time to clear 0xff after reset. Wait for
3366 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3367 * offline.
3368 *
3369 * Note that some PATA controllers (pata_ali) explode
3370 * if status register is read more than once when
3371 * there's no device attached.
3372 */
3373 if (ready == -ENODEV) {
3374 if (ata_link_online(link))
3375 ready = 0;
3376 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3377 !ata_link_offline(link) &&
3378 time_before(now, nodev_deadline))
3379 ready = 0;
3380 }
3381
3382 if (ready)
3383 return ready;
3384 if (time_after(now, deadline))
3385 return -EBUSY;
3386
3387 if (!warned && time_after(now, start + 5 * HZ) &&
3388 (deadline - now > 3 * HZ)) {
3389 ata_link_warn(link,
3390 "link is slow to respond, please be patient "
3391 "(ready=%d)\n", tmp);
3392 warned = 1;
3393 }
3394
3395 ata_msleep(link->ap, 50);
3396 }
3397}
3398
3399/**
3400 * ata_wait_after_reset - wait for link to become ready after reset
3401 * @link: link to be waited on
3402 * @deadline: deadline jiffies for the operation
3403 * @check_ready: callback to check link readiness
3404 *
3405 * Wait for @link to become ready after reset.
3406 *
3407 * LOCKING:
3408 * EH context.
3409 *
3410 * RETURNS:
3411 * 0 if @linke is ready before @deadline; otherwise, -errno.
3412 */
3413int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3414 int (*check_ready)(struct ata_link *link))
3415{
3416 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3417
3418 return ata_wait_ready(link, deadline, check_ready);
3419}
3420
3421/**
3422 * sata_link_debounce - debounce SATA phy status
3423 * @link: ATA link to debounce SATA phy status for
3424 * @params: timing parameters { interval, duratinon, timeout } in msec
3425 * @deadline: deadline jiffies for the operation
3426 *
3427 * Make sure SStatus of @link reaches stable state, determined by
3428 * holding the same value where DET is not 1 for @duration polled
3429 * every @interval, before @timeout. Timeout constraints the
3430 * beginning of the stable state. Because DET gets stuck at 1 on
3431 * some controllers after hot unplugging, this functions waits
3432 * until timeout then returns 0 if DET is stable at 1.
3433 *
3434 * @timeout is further limited by @deadline. The sooner of the
3435 * two is used.
3436 *
3437 * LOCKING:
3438 * Kernel thread context (may sleep)
3439 *
3440 * RETURNS:
3441 * 0 on success, -errno on failure.
3442 */
3443int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3444 unsigned long deadline)
3445{
3446 unsigned long interval = params[0];
3447 unsigned long duration = params[1];
3448 unsigned long last_jiffies, t;
3449 u32 last, cur;
3450 int rc;
3451
3452 t = ata_deadline(jiffies, params[2]);
3453 if (time_before(t, deadline))
3454 deadline = t;
3455
3456 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3457 return rc;
3458 cur &= 0xf;
3459
3460 last = cur;
3461 last_jiffies = jiffies;
3462
3463 while (1) {
3464 ata_msleep(link->ap, interval);
3465 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3466 return rc;
3467 cur &= 0xf;
3468
3469 /* DET stable? */
3470 if (cur == last) {
3471 if (cur == 1 && time_before(jiffies, deadline))
3472 continue;
3473 if (time_after(jiffies,
3474 ata_deadline(last_jiffies, duration)))
3475 return 0;
3476 continue;
3477 }
3478
3479 /* unstable, start over */
3480 last = cur;
3481 last_jiffies = jiffies;
3482
3483 /* Check deadline. If debouncing failed, return
3484 * -EPIPE to tell upper layer to lower link speed.
3485 */
3486 if (time_after(jiffies, deadline))
3487 return -EPIPE;
3488 }
3489}
3490
3491/**
3492 * sata_link_resume - resume SATA link
3493 * @link: ATA link to resume SATA
3494 * @params: timing parameters { interval, duratinon, timeout } in msec
3495 * @deadline: deadline jiffies for the operation
3496 *
3497 * Resume SATA phy @link and debounce it.
3498 *
3499 * LOCKING:
3500 * Kernel thread context (may sleep)
3501 *
3502 * RETURNS:
3503 * 0 on success, -errno on failure.
3504 */
3505int sata_link_resume(struct ata_link *link, const unsigned long *params,
3506 unsigned long deadline)
3507{
3508 int tries = ATA_LINK_RESUME_TRIES;
3509 u32 scontrol, serror;
3510 int rc;
3511
3512 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3513 return rc;
3514
3515 /*
3516 * Writes to SControl sometimes get ignored under certain
3517 * controllers (ata_piix SIDPR). Make sure DET actually is
3518 * cleared.
3519 */
3520 do {
3521 scontrol = (scontrol & 0x0f0) | 0x300;
3522 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3523 return rc;
3524 /*
3525 * Some PHYs react badly if SStatus is pounded
3526 * immediately after resuming. Delay 200ms before
3527 * debouncing.
3528 */
3529 ata_msleep(link->ap, 200);
3530
3531 /* is SControl restored correctly? */
3532 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3533 return rc;
3534 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3535
3536 if ((scontrol & 0xf0f) != 0x300) {
3537 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3538 scontrol);
3539 return 0;
3540 }
3541
3542 if (tries < ATA_LINK_RESUME_TRIES)
3543 ata_link_warn(link, "link resume succeeded after %d retries\n",
3544 ATA_LINK_RESUME_TRIES - tries);
3545
3546 if ((rc = sata_link_debounce(link, params, deadline)))
3547 return rc;
3548
3549 /* clear SError, some PHYs require this even for SRST to work */
3550 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3551 rc = sata_scr_write(link, SCR_ERROR, serror);
3552
3553 return rc != -EINVAL ? rc : 0;
3554}
3555
3556/**
3557 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3558 * @link: ATA link to manipulate SControl for
3559 * @policy: LPM policy to configure
3560 * @spm_wakeup: initiate LPM transition to active state
3561 *
3562 * Manipulate the IPM field of the SControl register of @link
3563 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3564 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3565 * the link. This function also clears PHYRDY_CHG before
3566 * returning.
3567 *
3568 * LOCKING:
3569 * EH context.
3570 *
3571 * RETURNS:
3572 * 0 on succes, -errno otherwise.
3573 */
3574int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3575 bool spm_wakeup)
3576{
3577 struct ata_eh_context *ehc = &link->eh_context;
3578 bool woken_up = false;
3579 u32 scontrol;
3580 int rc;
3581
3582 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3583 if (rc)
3584 return rc;
3585
3586 switch (policy) {
3587 case ATA_LPM_MAX_POWER:
3588 /* disable all LPM transitions */
3589 scontrol |= (0x3 << 8);
3590 /* initiate transition to active state */
3591 if (spm_wakeup) {
3592 scontrol |= (0x4 << 12);
3593 woken_up = true;
3594 }
3595 break;
3596 case ATA_LPM_MED_POWER:
3597 /* allow LPM to PARTIAL */
3598 scontrol &= ~(0x1 << 8);
3599 scontrol |= (0x2 << 8);
3600 break;
3601 case ATA_LPM_MIN_POWER:
3602 if (ata_link_nr_enabled(link) > 0)
3603 /* no restrictions on LPM transitions */
3604 scontrol &= ~(0x3 << 8);
3605 else {
3606 /* empty port, power off */
3607 scontrol &= ~0xf;
3608 scontrol |= (0x1 << 2);
3609 }
3610 break;
3611 default:
3612 WARN_ON(1);
3613 }
3614
3615 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3616 if (rc)
3617 return rc;
3618
3619 /* give the link time to transit out of LPM state */
3620 if (woken_up)
3621 msleep(10);
3622
3623 /* clear PHYRDY_CHG from SError */
3624 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3625 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3626}
3627
3628/**
3629 * ata_std_prereset - prepare for reset
3630 * @link: ATA link to be reset
3631 * @deadline: deadline jiffies for the operation
3632 *
3633 * @link is about to be reset. Initialize it. Failure from
3634 * prereset makes libata abort whole reset sequence and give up
3635 * that port, so prereset should be best-effort. It does its
3636 * best to prepare for reset sequence but if things go wrong, it
3637 * should just whine, not fail.
3638 *
3639 * LOCKING:
3640 * Kernel thread context (may sleep)
3641 *
3642 * RETURNS:
3643 * 0 on success, -errno otherwise.
3644 */
3645int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3646{
3647 struct ata_port *ap = link->ap;
3648 struct ata_eh_context *ehc = &link->eh_context;
3649 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3650 int rc;
3651
3652 /* if we're about to do hardreset, nothing more to do */
3653 if (ehc->i.action & ATA_EH_HARDRESET)
3654 return 0;
3655
3656 /* if SATA, resume link */
3657 if (ap->flags & ATA_FLAG_SATA) {
3658 rc = sata_link_resume(link, timing, deadline);
3659 /* whine about phy resume failure but proceed */
3660 if (rc && rc != -EOPNOTSUPP)
3661 ata_link_warn(link,
3662 "failed to resume link for reset (errno=%d)\n",
3663 rc);
3664 }
3665
3666 /* no point in trying softreset on offline link */
3667 if (ata_phys_link_offline(link))
3668 ehc->i.action &= ~ATA_EH_SOFTRESET;
3669
3670 return 0;
3671}
3672
3673/**
3674 * sata_link_hardreset - reset link via SATA phy reset
3675 * @link: link to reset
3676 * @timing: timing parameters { interval, duratinon, timeout } in msec
3677 * @deadline: deadline jiffies for the operation
3678 * @online: optional out parameter indicating link onlineness
3679 * @check_ready: optional callback to check link readiness
3680 *
3681 * SATA phy-reset @link using DET bits of SControl register.
3682 * After hardreset, link readiness is waited upon using
3683 * ata_wait_ready() if @check_ready is specified. LLDs are
3684 * allowed to not specify @check_ready and wait itself after this
3685 * function returns. Device classification is LLD's
3686 * responsibility.
3687 *
3688 * *@online is set to one iff reset succeeded and @link is online
3689 * after reset.
3690 *
3691 * LOCKING:
3692 * Kernel thread context (may sleep)
3693 *
3694 * RETURNS:
3695 * 0 on success, -errno otherwise.
3696 */
3697int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3698 unsigned long deadline,
3699 bool *online, int (*check_ready)(struct ata_link *))
3700{
3701 u32 scontrol;
3702 int rc;
3703
3704 DPRINTK("ENTER\n");
3705
3706 if (online)
3707 *online = false;
3708
3709 if (sata_set_spd_needed(link)) {
3710 /* SATA spec says nothing about how to reconfigure
3711 * spd. To be on the safe side, turn off phy during
3712 * reconfiguration. This works for at least ICH7 AHCI
3713 * and Sil3124.
3714 */
3715 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3716 goto out;
3717
3718 scontrol = (scontrol & 0x0f0) | 0x304;
3719
3720 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3721 goto out;
3722
3723 sata_set_spd(link);
3724 }
3725
3726 /* issue phy wake/reset */
3727 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3728 goto out;
3729
3730 scontrol = (scontrol & 0x0f0) | 0x301;
3731
3732 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3733 goto out;
3734
3735 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3736 * 10.4.2 says at least 1 ms.
3737 */
3738 ata_msleep(link->ap, 1);
3739
3740 /* bring link back */
3741 rc = sata_link_resume(link, timing, deadline);
3742 if (rc)
3743 goto out;
3744 /* if link is offline nothing more to do */
3745 if (ata_phys_link_offline(link))
3746 goto out;
3747
3748 /* Link is online. From this point, -ENODEV too is an error. */
3749 if (online)
3750 *online = true;
3751
3752 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3753 /* If PMP is supported, we have to do follow-up SRST.
3754 * Some PMPs don't send D2H Reg FIS after hardreset if
3755 * the first port is empty. Wait only for
3756 * ATA_TMOUT_PMP_SRST_WAIT.
3757 */
3758 if (check_ready) {
3759 unsigned long pmp_deadline;
3760
3761 pmp_deadline = ata_deadline(jiffies,
3762 ATA_TMOUT_PMP_SRST_WAIT);
3763 if (time_after(pmp_deadline, deadline))
3764 pmp_deadline = deadline;
3765 ata_wait_ready(link, pmp_deadline, check_ready);
3766 }
3767 rc = -EAGAIN;
3768 goto out;
3769 }
3770
3771 rc = 0;
3772 if (check_ready)
3773 rc = ata_wait_ready(link, deadline, check_ready);
3774 out:
3775 if (rc && rc != -EAGAIN) {
3776 /* online is set iff link is online && reset succeeded */
3777 if (online)
3778 *online = false;
3779 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3780 }
3781 DPRINTK("EXIT, rc=%d\n", rc);
3782 return rc;
3783}
3784
3785/**
3786 * sata_std_hardreset - COMRESET w/o waiting or classification
3787 * @link: link to reset
3788 * @class: resulting class of attached device
3789 * @deadline: deadline jiffies for the operation
3790 *
3791 * Standard SATA COMRESET w/o waiting or classification.
3792 *
3793 * LOCKING:
3794 * Kernel thread context (may sleep)
3795 *
3796 * RETURNS:
3797 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3798 */
3799int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3800 unsigned long deadline)
3801{
3802 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3803 bool online;
3804 int rc;
3805
3806 /* do hardreset */
3807 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3808 return online ? -EAGAIN : rc;
3809}
3810
3811/**
3812 * ata_std_postreset - standard postreset callback
3813 * @link: the target ata_link
3814 * @classes: classes of attached devices
3815 *
3816 * This function is invoked after a successful reset. Note that
3817 * the device might have been reset more than once using
3818 * different reset methods before postreset is invoked.
3819 *
3820 * LOCKING:
3821 * Kernel thread context (may sleep)
3822 */
3823void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3824{
3825 u32 serror;
3826
3827 DPRINTK("ENTER\n");
3828
3829 /* reset complete, clear SError */
3830 if (!sata_scr_read(link, SCR_ERROR, &serror))
3831 sata_scr_write(link, SCR_ERROR, serror);
3832
3833 /* print link status */
3834 sata_print_link_status(link);
3835
3836 DPRINTK("EXIT\n");
3837}
3838
3839/**
3840 * ata_dev_same_device - Determine whether new ID matches configured device
3841 * @dev: device to compare against
3842 * @new_class: class of the new device
3843 * @new_id: IDENTIFY page of the new device
3844 *
3845 * Compare @new_class and @new_id against @dev and determine
3846 * whether @dev is the device indicated by @new_class and
3847 * @new_id.
3848 *
3849 * LOCKING:
3850 * None.
3851 *
3852 * RETURNS:
3853 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3854 */
3855static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3856 const u16 *new_id)
3857{
3858 const u16 *old_id = dev->id;
3859 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3860 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3861
3862 if (dev->class != new_class) {
3863 ata_dev_info(dev, "class mismatch %d != %d\n",
3864 dev->class, new_class);
3865 return 0;
3866 }
3867
3868 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3869 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3870 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3871 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3872
3873 if (strcmp(model[0], model[1])) {
3874 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3875 model[0], model[1]);
3876 return 0;
3877 }
3878
3879 if (strcmp(serial[0], serial[1])) {
3880 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3881 serial[0], serial[1]);
3882 return 0;
3883 }
3884
3885 return 1;
3886}
3887
3888/**
3889 * ata_dev_reread_id - Re-read IDENTIFY data
3890 * @dev: target ATA device
3891 * @readid_flags: read ID flags
3892 *
3893 * Re-read IDENTIFY page and make sure @dev is still attached to
3894 * the port.
3895 *
3896 * LOCKING:
3897 * Kernel thread context (may sleep)
3898 *
3899 * RETURNS:
3900 * 0 on success, negative errno otherwise
3901 */
3902int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3903{
3904 unsigned int class = dev->class;
3905 u16 *id = (void *)dev->link->ap->sector_buf;
3906 int rc;
3907
3908 /* read ID data */
3909 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3910 if (rc)
3911 return rc;
3912
3913 /* is the device still there? */
3914 if (!ata_dev_same_device(dev, class, id))
3915 return -ENODEV;
3916
3917 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3918 return 0;
3919}
3920
3921/**
3922 * ata_dev_revalidate - Revalidate ATA device
3923 * @dev: device to revalidate
3924 * @new_class: new class code
3925 * @readid_flags: read ID flags
3926 *
3927 * Re-read IDENTIFY page, make sure @dev is still attached to the
3928 * port and reconfigure it according to the new IDENTIFY page.
3929 *
3930 * LOCKING:
3931 * Kernel thread context (may sleep)
3932 *
3933 * RETURNS:
3934 * 0 on success, negative errno otherwise
3935 */
3936int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3937 unsigned int readid_flags)
3938{
3939 u64 n_sectors = dev->n_sectors;
3940 u64 n_native_sectors = dev->n_native_sectors;
3941 int rc;
3942
3943 if (!ata_dev_enabled(dev))
3944 return -ENODEV;
3945
3946 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3947 if (ata_class_enabled(new_class) &&
3948 new_class != ATA_DEV_ATA &&
3949 new_class != ATA_DEV_ATAPI &&
3950 new_class != ATA_DEV_SEMB) {
3951 ata_dev_info(dev, "class mismatch %u != %u\n",
3952 dev->class, new_class);
3953 rc = -ENODEV;
3954 goto fail;
3955 }
3956
3957 /* re-read ID */
3958 rc = ata_dev_reread_id(dev, readid_flags);
3959 if (rc)
3960 goto fail;
3961
3962 /* configure device according to the new ID */
3963 rc = ata_dev_configure(dev);
3964 if (rc)
3965 goto fail;
3966
3967 /* verify n_sectors hasn't changed */
3968 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3969 dev->n_sectors == n_sectors)
3970 return 0;
3971
3972 /* n_sectors has changed */
3973 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3974 (unsigned long long)n_sectors,
3975 (unsigned long long)dev->n_sectors);
3976
3977 /*
3978 * Something could have caused HPA to be unlocked
3979 * involuntarily. If n_native_sectors hasn't changed and the
3980 * new size matches it, keep the device.
3981 */
3982 if (dev->n_native_sectors == n_native_sectors &&
3983 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3984 ata_dev_warn(dev,
3985 "new n_sectors matches native, probably "
3986 "late HPA unlock, n_sectors updated\n");
3987 /* use the larger n_sectors */
3988 return 0;
3989 }
3990
3991 /*
3992 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3993 * unlocking HPA in those cases.
3994 *
3995 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3996 */
3997 if (dev->n_native_sectors == n_native_sectors &&
3998 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3999 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4000 ata_dev_warn(dev,
4001 "old n_sectors matches native, probably "
4002 "late HPA lock, will try to unlock HPA\n");
4003 /* try unlocking HPA */
4004 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4005 rc = -EIO;
4006 } else
4007 rc = -ENODEV;
4008
4009 /* restore original n_[native_]sectors and fail */
4010 dev->n_native_sectors = n_native_sectors;
4011 dev->n_sectors = n_sectors;
4012 fail:
4013 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4014 return rc;
4015}
4016
4017struct ata_blacklist_entry {
4018 const char *model_num;
4019 const char *model_rev;
4020 unsigned long horkage;
4021};
4022
4023static const struct ata_blacklist_entry ata_device_blacklist [] = {
4024 /* Devices with DMA related problems under Linux */
4025 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4026 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4027 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4028 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4029 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4030 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4031 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4032 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4033 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4034 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4035 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4036 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4037 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4038 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4039 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4040 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4041 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4042 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4043 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4044 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4045 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4046 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4047 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4048 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4049 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4050 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4051 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4052 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4053 /* Odd clown on sil3726/4726 PMPs */
4054 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4055
4056 /* Weird ATAPI devices */
4057 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4058 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4059
4060 /* Devices we expect to fail diagnostics */
4061
4062 /* Devices where NCQ should be avoided */
4063 /* NCQ is slow */
4064 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4065 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4066 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4067 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4068 /* NCQ is broken */
4069 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4070 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4071 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4072 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4073 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4074
4075 /* Seagate NCQ + FLUSH CACHE firmware bug */
4076 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4077 ATA_HORKAGE_FIRMWARE_WARN },
4078
4079 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4080 ATA_HORKAGE_FIRMWARE_WARN },
4081
4082 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4083 ATA_HORKAGE_FIRMWARE_WARN },
4084
4085 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4086 ATA_HORKAGE_FIRMWARE_WARN },
4087
4088 /* Blacklist entries taken from Silicon Image 3124/3132
4089 Windows driver .inf file - also several Linux problem reports */
4090 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4091 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4092 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4093
4094 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4095 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4096
4097 /* devices which puke on READ_NATIVE_MAX */
4098 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4099 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4100 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4101 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4102
4103 /* this one allows HPA unlocking but fails IOs on the area */
4104 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4105
4106 /* Devices which report 1 sector over size HPA */
4107 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4108 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4109 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4110
4111 /* Devices which get the IVB wrong */
4112 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4113 /* Maybe we should just blacklist TSSTcorp... */
4114 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4115
4116 /* Devices that do not need bridging limits applied */
4117 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4118
4119 /* Devices which aren't very happy with higher link speeds */
4120 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4121
4122 /*
4123 * Devices which choke on SETXFER. Applies only if both the
4124 * device and controller are SATA.
4125 */
4126 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4127 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4128 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4129
4130 /* End Marker */
4131 { }
4132};
4133
4134/**
4135 * glob_match - match a text string against a glob-style pattern
4136 * @text: the string to be examined
4137 * @pattern: the glob-style pattern to be matched against
4138 *
4139 * Either/both of text and pattern can be empty strings.
4140 *
4141 * Match text against a glob-style pattern, with wildcards and simple sets:
4142 *
4143 * ? matches any single character.
4144 * * matches any run of characters.
4145 * [xyz] matches a single character from the set: x, y, or z.
4146 * [a-d] matches a single character from the range: a, b, c, or d.
4147 * [a-d0-9] matches a single character from either range.
4148 *
4149 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4150 * Behaviour with malformed patterns is undefined, though generally reasonable.
4151 *
4152 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4153 *
4154 * This function uses one level of recursion per '*' in pattern.
4155 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4156 * this will not cause stack problems for any reasonable use here.
4157 *
4158 * RETURNS:
4159 * 0 on match, 1 otherwise.
4160 */
4161static int glob_match (const char *text, const char *pattern)
4162{
4163 do {
4164 /* Match single character or a '?' wildcard */
4165 if (*text == *pattern || *pattern == '?') {
4166 if (!*pattern++)
4167 return 0; /* End of both strings: match */
4168 } else {
4169 /* Match single char against a '[' bracketed ']' pattern set */
4170 if (!*text || *pattern != '[')
4171 break; /* Not a pattern set */
4172 while (*++pattern && *pattern != ']' && *text != *pattern) {
4173 if (*pattern == '-' && *(pattern - 1) != '[')
4174 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4175 ++pattern;
4176 break;
4177 }
4178 }
4179 if (!*pattern || *pattern == ']')
4180 return 1; /* No match */
4181 while (*pattern && *pattern++ != ']');
4182 }
4183 } while (*++text && *pattern);
4184
4185 /* Match any run of chars against a '*' wildcard */
4186 if (*pattern == '*') {
4187 if (!*++pattern)
4188 return 0; /* Match: avoid recursion at end of pattern */
4189 /* Loop to handle additional pattern chars after the wildcard */
4190 while (*text) {
4191 if (glob_match(text, pattern) == 0)
4192 return 0; /* Remainder matched */
4193 ++text; /* Absorb (match) this char and try again */
4194 }
4195 }
4196 if (!*text && !*pattern)
4197 return 0; /* End of both strings: match */
4198 return 1; /* No match */
4199}
4200
4201static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4202{
4203 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4204 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4205 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4206
4207 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4208 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4209
4210 while (ad->model_num) {
4211 if (!glob_match(model_num, ad->model_num)) {
4212 if (ad->model_rev == NULL)
4213 return ad->horkage;
4214 if (!glob_match(model_rev, ad->model_rev))
4215 return ad->horkage;
4216 }
4217 ad++;
4218 }
4219 return 0;
4220}
4221
4222static int ata_dma_blacklisted(const struct ata_device *dev)
4223{
4224 /* We don't support polling DMA.
4225 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4226 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4227 */
4228 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4229 (dev->flags & ATA_DFLAG_CDB_INTR))
4230 return 1;
4231 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4232}
4233
4234/**
4235 * ata_is_40wire - check drive side detection
4236 * @dev: device
4237 *
4238 * Perform drive side detection decoding, allowing for device vendors
4239 * who can't follow the documentation.
4240 */
4241
4242static int ata_is_40wire(struct ata_device *dev)
4243{
4244 if (dev->horkage & ATA_HORKAGE_IVB)
4245 return ata_drive_40wire_relaxed(dev->id);
4246 return ata_drive_40wire(dev->id);
4247}
4248
4249/**
4250 * cable_is_40wire - 40/80/SATA decider
4251 * @ap: port to consider
4252 *
4253 * This function encapsulates the policy for speed management
4254 * in one place. At the moment we don't cache the result but
4255 * there is a good case for setting ap->cbl to the result when
4256 * we are called with unknown cables (and figuring out if it
4257 * impacts hotplug at all).
4258 *
4259 * Return 1 if the cable appears to be 40 wire.
4260 */
4261
4262static int cable_is_40wire(struct ata_port *ap)
4263{
4264 struct ata_link *link;
4265 struct ata_device *dev;
4266
4267 /* If the controller thinks we are 40 wire, we are. */
4268 if (ap->cbl == ATA_CBL_PATA40)
4269 return 1;
4270
4271 /* If the controller thinks we are 80 wire, we are. */
4272 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4273 return 0;
4274
4275 /* If the system is known to be 40 wire short cable (eg
4276 * laptop), then we allow 80 wire modes even if the drive
4277 * isn't sure.
4278 */
4279 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4280 return 0;
4281
4282 /* If the controller doesn't know, we scan.
4283 *
4284 * Note: We look for all 40 wire detects at this point. Any
4285 * 80 wire detect is taken to be 80 wire cable because
4286 * - in many setups only the one drive (slave if present) will
4287 * give a valid detect
4288 * - if you have a non detect capable drive you don't want it
4289 * to colour the choice
4290 */
4291 ata_for_each_link(link, ap, EDGE) {
4292 ata_for_each_dev(dev, link, ENABLED) {
4293 if (!ata_is_40wire(dev))
4294 return 0;
4295 }
4296 }
4297 return 1;
4298}
4299
4300/**
4301 * ata_dev_xfermask - Compute supported xfermask of the given device
4302 * @dev: Device to compute xfermask for
4303 *
4304 * Compute supported xfermask of @dev and store it in
4305 * dev->*_mask. This function is responsible for applying all
4306 * known limits including host controller limits, device
4307 * blacklist, etc...
4308 *
4309 * LOCKING:
4310 * None.
4311 */
4312static void ata_dev_xfermask(struct ata_device *dev)
4313{
4314 struct ata_link *link = dev->link;
4315 struct ata_port *ap = link->ap;
4316 struct ata_host *host = ap->host;
4317 unsigned long xfer_mask;
4318
4319 /* controller modes available */
4320 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4321 ap->mwdma_mask, ap->udma_mask);
4322
4323 /* drive modes available */
4324 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4325 dev->mwdma_mask, dev->udma_mask);
4326 xfer_mask &= ata_id_xfermask(dev->id);
4327
4328 /*
4329 * CFA Advanced TrueIDE timings are not allowed on a shared
4330 * cable
4331 */
4332 if (ata_dev_pair(dev)) {
4333 /* No PIO5 or PIO6 */
4334 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4335 /* No MWDMA3 or MWDMA 4 */
4336 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4337 }
4338
4339 if (ata_dma_blacklisted(dev)) {
4340 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4341 ata_dev_warn(dev,
4342 "device is on DMA blacklist, disabling DMA\n");
4343 }
4344
4345 if ((host->flags & ATA_HOST_SIMPLEX) &&
4346 host->simplex_claimed && host->simplex_claimed != ap) {
4347 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4348 ata_dev_warn(dev,
4349 "simplex DMA is claimed by other device, disabling DMA\n");
4350 }
4351
4352 if (ap->flags & ATA_FLAG_NO_IORDY)
4353 xfer_mask &= ata_pio_mask_no_iordy(dev);
4354
4355 if (ap->ops->mode_filter)
4356 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4357
4358 /* Apply cable rule here. Don't apply it early because when
4359 * we handle hot plug the cable type can itself change.
4360 * Check this last so that we know if the transfer rate was
4361 * solely limited by the cable.
4362 * Unknown or 80 wire cables reported host side are checked
4363 * drive side as well. Cases where we know a 40wire cable
4364 * is used safely for 80 are not checked here.
4365 */
4366 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4367 /* UDMA/44 or higher would be available */
4368 if (cable_is_40wire(ap)) {
4369 ata_dev_warn(dev,
4370 "limited to UDMA/33 due to 40-wire cable\n");
4371 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4372 }
4373
4374 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4375 &dev->mwdma_mask, &dev->udma_mask);
4376}
4377
4378/**
4379 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4380 * @dev: Device to which command will be sent
4381 *
4382 * Issue SET FEATURES - XFER MODE command to device @dev
4383 * on port @ap.
4384 *
4385 * LOCKING:
4386 * PCI/etc. bus probe sem.
4387 *
4388 * RETURNS:
4389 * 0 on success, AC_ERR_* mask otherwise.
4390 */
4391
4392static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4393{
4394 struct ata_taskfile tf;
4395 unsigned int err_mask;
4396
4397 /* set up set-features taskfile */
4398 DPRINTK("set features - xfer mode\n");
4399
4400 /* Some controllers and ATAPI devices show flaky interrupt
4401 * behavior after setting xfer mode. Use polling instead.
4402 */
4403 ata_tf_init(dev, &tf);
4404 tf.command = ATA_CMD_SET_FEATURES;
4405 tf.feature = SETFEATURES_XFER;
4406 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4407 tf.protocol = ATA_PROT_NODATA;
4408 /* If we are using IORDY we must send the mode setting command */
4409 if (ata_pio_need_iordy(dev))
4410 tf.nsect = dev->xfer_mode;
4411 /* If the device has IORDY and the controller does not - turn it off */
4412 else if (ata_id_has_iordy(dev->id))
4413 tf.nsect = 0x01;
4414 else /* In the ancient relic department - skip all of this */
4415 return 0;
4416
4417 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4418
4419 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4420 return err_mask;
4421}
4422
4423/**
4424 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4425 * @dev: Device to which command will be sent
4426 * @enable: Whether to enable or disable the feature
4427 * @feature: The sector count represents the feature to set
4428 *
4429 * Issue SET FEATURES - SATA FEATURES command to device @dev
4430 * on port @ap with sector count
4431 *
4432 * LOCKING:
4433 * PCI/etc. bus probe sem.
4434 *
4435 * RETURNS:
4436 * 0 on success, AC_ERR_* mask otherwise.
4437 */
4438unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4439{
4440 struct ata_taskfile tf;
4441 unsigned int err_mask;
4442
4443 /* set up set-features taskfile */
4444 DPRINTK("set features - SATA features\n");
4445
4446 ata_tf_init(dev, &tf);
4447 tf.command = ATA_CMD_SET_FEATURES;
4448 tf.feature = enable;
4449 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4450 tf.protocol = ATA_PROT_NODATA;
4451 tf.nsect = feature;
4452
4453 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4454
4455 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4456 return err_mask;
4457}
4458
4459/**
4460 * ata_dev_init_params - Issue INIT DEV PARAMS command
4461 * @dev: Device to which command will be sent
4462 * @heads: Number of heads (taskfile parameter)
4463 * @sectors: Number of sectors (taskfile parameter)
4464 *
4465 * LOCKING:
4466 * Kernel thread context (may sleep)
4467 *
4468 * RETURNS:
4469 * 0 on success, AC_ERR_* mask otherwise.
4470 */
4471static unsigned int ata_dev_init_params(struct ata_device *dev,
4472 u16 heads, u16 sectors)
4473{
4474 struct ata_taskfile tf;
4475 unsigned int err_mask;
4476
4477 /* Number of sectors per track 1-255. Number of heads 1-16 */
4478 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4479 return AC_ERR_INVALID;
4480
4481 /* set up init dev params taskfile */
4482 DPRINTK("init dev params \n");
4483
4484 ata_tf_init(dev, &tf);
4485 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4486 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4487 tf.protocol = ATA_PROT_NODATA;
4488 tf.nsect = sectors;
4489 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4490
4491 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4492 /* A clean abort indicates an original or just out of spec drive
4493 and we should continue as we issue the setup based on the
4494 drive reported working geometry */
4495 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4496 err_mask = 0;
4497
4498 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4499 return err_mask;
4500}
4501
4502/**
4503 * ata_sg_clean - Unmap DMA memory associated with command
4504 * @qc: Command containing DMA memory to be released
4505 *
4506 * Unmap all mapped DMA memory associated with this command.
4507 *
4508 * LOCKING:
4509 * spin_lock_irqsave(host lock)
4510 */
4511void ata_sg_clean(struct ata_queued_cmd *qc)
4512{
4513 struct ata_port *ap = qc->ap;
4514 struct scatterlist *sg = qc->sg;
4515 int dir = qc->dma_dir;
4516
4517 WARN_ON_ONCE(sg == NULL);
4518
4519 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4520
4521 if (qc->n_elem)
4522 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4523
4524 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4525 qc->sg = NULL;
4526}
4527
4528/**
4529 * atapi_check_dma - Check whether ATAPI DMA can be supported
4530 * @qc: Metadata associated with taskfile to check
4531 *
4532 * Allow low-level driver to filter ATA PACKET commands, returning
4533 * a status indicating whether or not it is OK to use DMA for the
4534 * supplied PACKET command.
4535 *
4536 * LOCKING:
4537 * spin_lock_irqsave(host lock)
4538 *
4539 * RETURNS: 0 when ATAPI DMA can be used
4540 * nonzero otherwise
4541 */
4542int atapi_check_dma(struct ata_queued_cmd *qc)
4543{
4544 struct ata_port *ap = qc->ap;
4545
4546 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4547 * few ATAPI devices choke on such DMA requests.
4548 */
4549 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4550 unlikely(qc->nbytes & 15))
4551 return 1;
4552
4553 if (ap->ops->check_atapi_dma)
4554 return ap->ops->check_atapi_dma(qc);
4555
4556 return 0;
4557}
4558
4559/**
4560 * ata_std_qc_defer - Check whether a qc needs to be deferred
4561 * @qc: ATA command in question
4562 *
4563 * Non-NCQ commands cannot run with any other command, NCQ or
4564 * not. As upper layer only knows the queue depth, we are
4565 * responsible for maintaining exclusion. This function checks
4566 * whether a new command @qc can be issued.
4567 *
4568 * LOCKING:
4569 * spin_lock_irqsave(host lock)
4570 *
4571 * RETURNS:
4572 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4573 */
4574int ata_std_qc_defer(struct ata_queued_cmd *qc)
4575{
4576 struct ata_link *link = qc->dev->link;
4577
4578 if (qc->tf.protocol == ATA_PROT_NCQ) {
4579 if (!ata_tag_valid(link->active_tag))
4580 return 0;
4581 } else {
4582 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4583 return 0;
4584 }
4585
4586 return ATA_DEFER_LINK;
4587}
4588
4589void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4590
4591/**
4592 * ata_sg_init - Associate command with scatter-gather table.
4593 * @qc: Command to be associated
4594 * @sg: Scatter-gather table.
4595 * @n_elem: Number of elements in s/g table.
4596 *
4597 * Initialize the data-related elements of queued_cmd @qc
4598 * to point to a scatter-gather table @sg, containing @n_elem
4599 * elements.
4600 *
4601 * LOCKING:
4602 * spin_lock_irqsave(host lock)
4603 */
4604void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4605 unsigned int n_elem)
4606{
4607 qc->sg = sg;
4608 qc->n_elem = n_elem;
4609 qc->cursg = qc->sg;
4610}
4611
4612/**
4613 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4614 * @qc: Command with scatter-gather table to be mapped.
4615 *
4616 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4617 *
4618 * LOCKING:
4619 * spin_lock_irqsave(host lock)
4620 *
4621 * RETURNS:
4622 * Zero on success, negative on error.
4623 *
4624 */
4625static int ata_sg_setup(struct ata_queued_cmd *qc)
4626{
4627 struct ata_port *ap = qc->ap;
4628 unsigned int n_elem;
4629
4630 VPRINTK("ENTER, ata%u\n", ap->print_id);
4631
4632 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4633 if (n_elem < 1)
4634 return -1;
4635
4636 DPRINTK("%d sg elements mapped\n", n_elem);
4637 qc->orig_n_elem = qc->n_elem;
4638 qc->n_elem = n_elem;
4639 qc->flags |= ATA_QCFLAG_DMAMAP;
4640
4641 return 0;
4642}
4643
4644/**
4645 * swap_buf_le16 - swap halves of 16-bit words in place
4646 * @buf: Buffer to swap
4647 * @buf_words: Number of 16-bit words in buffer.
4648 *
4649 * Swap halves of 16-bit words if needed to convert from
4650 * little-endian byte order to native cpu byte order, or
4651 * vice-versa.
4652 *
4653 * LOCKING:
4654 * Inherited from caller.
4655 */
4656void swap_buf_le16(u16 *buf, unsigned int buf_words)
4657{
4658#ifdef __BIG_ENDIAN
4659 unsigned int i;
4660
4661 for (i = 0; i < buf_words; i++)
4662 buf[i] = le16_to_cpu(buf[i]);
4663#endif /* __BIG_ENDIAN */
4664}
4665
4666/**
4667 * ata_qc_new - Request an available ATA command, for queueing
4668 * @ap: target port
4669 *
4670 * LOCKING:
4671 * None.
4672 */
4673
4674static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4675{
4676 struct ata_queued_cmd *qc = NULL;
4677 unsigned int i;
4678
4679 /* no command while frozen */
4680 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4681 return NULL;
4682
4683 /* the last tag is reserved for internal command. */
4684 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4685 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4686 qc = __ata_qc_from_tag(ap, i);
4687 break;
4688 }
4689
4690 if (qc)
4691 qc->tag = i;
4692
4693 return qc;
4694}
4695
4696/**
4697 * ata_qc_new_init - Request an available ATA command, and initialize it
4698 * @dev: Device from whom we request an available command structure
4699 *
4700 * LOCKING:
4701 * None.
4702 */
4703
4704struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4705{
4706 struct ata_port *ap = dev->link->ap;
4707 struct ata_queued_cmd *qc;
4708
4709 qc = ata_qc_new(ap);
4710 if (qc) {
4711 qc->scsicmd = NULL;
4712 qc->ap = ap;
4713 qc->dev = dev;
4714
4715 ata_qc_reinit(qc);
4716 }
4717
4718 return qc;
4719}
4720
4721/**
4722 * ata_qc_free - free unused ata_queued_cmd
4723 * @qc: Command to complete
4724 *
4725 * Designed to free unused ata_queued_cmd object
4726 * in case something prevents using it.
4727 *
4728 * LOCKING:
4729 * spin_lock_irqsave(host lock)
4730 */
4731void ata_qc_free(struct ata_queued_cmd *qc)
4732{
4733 struct ata_port *ap;
4734 unsigned int tag;
4735
4736 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4737 ap = qc->ap;
4738
4739 qc->flags = 0;
4740 tag = qc->tag;
4741 if (likely(ata_tag_valid(tag))) {
4742 qc->tag = ATA_TAG_POISON;
4743 clear_bit(tag, &ap->qc_allocated);
4744 }
4745}
4746
4747void __ata_qc_complete(struct ata_queued_cmd *qc)
4748{
4749 struct ata_port *ap;
4750 struct ata_link *link;
4751
4752 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4753 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4754 ap = qc->ap;
4755 link = qc->dev->link;
4756
4757 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4758 ata_sg_clean(qc);
4759
4760 /* command should be marked inactive atomically with qc completion */
4761 if (qc->tf.protocol == ATA_PROT_NCQ) {
4762 link->sactive &= ~(1 << qc->tag);
4763 if (!link->sactive)
4764 ap->nr_active_links--;
4765 } else {
4766 link->active_tag = ATA_TAG_POISON;
4767 ap->nr_active_links--;
4768 }
4769
4770 /* clear exclusive status */
4771 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4772 ap->excl_link == link))
4773 ap->excl_link = NULL;
4774
4775 /* atapi: mark qc as inactive to prevent the interrupt handler
4776 * from completing the command twice later, before the error handler
4777 * is called. (when rc != 0 and atapi request sense is needed)
4778 */
4779 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4780 ap->qc_active &= ~(1 << qc->tag);
4781
4782 /* call completion callback */
4783 qc->complete_fn(qc);
4784}
4785
4786static void fill_result_tf(struct ata_queued_cmd *qc)
4787{
4788 struct ata_port *ap = qc->ap;
4789
4790 qc->result_tf.flags = qc->tf.flags;
4791 ap->ops->qc_fill_rtf(qc);
4792}
4793
4794static void ata_verify_xfer(struct ata_queued_cmd *qc)
4795{
4796 struct ata_device *dev = qc->dev;
4797
4798 if (ata_is_nodata(qc->tf.protocol))
4799 return;
4800
4801 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4802 return;
4803
4804 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4805}
4806
4807/**
4808 * ata_qc_complete - Complete an active ATA command
4809 * @qc: Command to complete
4810 *
4811 * Indicate to the mid and upper layers that an ATA command has
4812 * completed, with either an ok or not-ok status.
4813 *
4814 * Refrain from calling this function multiple times when
4815 * successfully completing multiple NCQ commands.
4816 * ata_qc_complete_multiple() should be used instead, which will
4817 * properly update IRQ expect state.
4818 *
4819 * LOCKING:
4820 * spin_lock_irqsave(host lock)
4821 */
4822void ata_qc_complete(struct ata_queued_cmd *qc)
4823{
4824 struct ata_port *ap = qc->ap;
4825
4826 /* XXX: New EH and old EH use different mechanisms to
4827 * synchronize EH with regular execution path.
4828 *
4829 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4830 * Normal execution path is responsible for not accessing a
4831 * failed qc. libata core enforces the rule by returning NULL
4832 * from ata_qc_from_tag() for failed qcs.
4833 *
4834 * Old EH depends on ata_qc_complete() nullifying completion
4835 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4836 * not synchronize with interrupt handler. Only PIO task is
4837 * taken care of.
4838 */
4839 if (ap->ops->error_handler) {
4840 struct ata_device *dev = qc->dev;
4841 struct ata_eh_info *ehi = &dev->link->eh_info;
4842
4843 if (unlikely(qc->err_mask))
4844 qc->flags |= ATA_QCFLAG_FAILED;
4845
4846 /*
4847 * Finish internal commands without any further processing
4848 * and always with the result TF filled.
4849 */
4850 if (unlikely(ata_tag_internal(qc->tag))) {
4851 fill_result_tf(qc);
4852 __ata_qc_complete(qc);
4853 return;
4854 }
4855
4856 /*
4857 * Non-internal qc has failed. Fill the result TF and
4858 * summon EH.
4859 */
4860 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4861 fill_result_tf(qc);
4862 ata_qc_schedule_eh(qc);
4863 return;
4864 }
4865
4866 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4867
4868 /* read result TF if requested */
4869 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4870 fill_result_tf(qc);
4871
4872 /* Some commands need post-processing after successful
4873 * completion.
4874 */
4875 switch (qc->tf.command) {
4876 case ATA_CMD_SET_FEATURES:
4877 if (qc->tf.feature != SETFEATURES_WC_ON &&
4878 qc->tf.feature != SETFEATURES_WC_OFF)
4879 break;
4880 /* fall through */
4881 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4882 case ATA_CMD_SET_MULTI: /* multi_count changed */
4883 /* revalidate device */
4884 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4885 ata_port_schedule_eh(ap);
4886 break;
4887
4888 case ATA_CMD_SLEEP:
4889 dev->flags |= ATA_DFLAG_SLEEPING;
4890 break;
4891 }
4892
4893 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4894 ata_verify_xfer(qc);
4895
4896 __ata_qc_complete(qc);
4897 } else {
4898 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4899 return;
4900
4901 /* read result TF if failed or requested */
4902 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4903 fill_result_tf(qc);
4904
4905 __ata_qc_complete(qc);
4906 }
4907}
4908
4909/**
4910 * ata_qc_complete_multiple - Complete multiple qcs successfully
4911 * @ap: port in question
4912 * @qc_active: new qc_active mask
4913 *
4914 * Complete in-flight commands. This functions is meant to be
4915 * called from low-level driver's interrupt routine to complete
4916 * requests normally. ap->qc_active and @qc_active is compared
4917 * and commands are completed accordingly.
4918 *
4919 * Always use this function when completing multiple NCQ commands
4920 * from IRQ handlers instead of calling ata_qc_complete()
4921 * multiple times to keep IRQ expect status properly in sync.
4922 *
4923 * LOCKING:
4924 * spin_lock_irqsave(host lock)
4925 *
4926 * RETURNS:
4927 * Number of completed commands on success, -errno otherwise.
4928 */
4929int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
4930{
4931 int nr_done = 0;
4932 u32 done_mask;
4933
4934 done_mask = ap->qc_active ^ qc_active;
4935
4936 if (unlikely(done_mask & qc_active)) {
4937 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
4938 ap->qc_active, qc_active);
4939 return -EINVAL;
4940 }
4941
4942 while (done_mask) {
4943 struct ata_queued_cmd *qc;
4944 unsigned int tag = __ffs(done_mask);
4945
4946 qc = ata_qc_from_tag(ap, tag);
4947 if (qc) {
4948 ata_qc_complete(qc);
4949 nr_done++;
4950 }
4951 done_mask &= ~(1 << tag);
4952 }
4953
4954 return nr_done;
4955}
4956
4957/**
4958 * ata_qc_issue - issue taskfile to device
4959 * @qc: command to issue to device
4960 *
4961 * Prepare an ATA command to submission to device.
4962 * This includes mapping the data into a DMA-able
4963 * area, filling in the S/G table, and finally
4964 * writing the taskfile to hardware, starting the command.
4965 *
4966 * LOCKING:
4967 * spin_lock_irqsave(host lock)
4968 */
4969void ata_qc_issue(struct ata_queued_cmd *qc)
4970{
4971 struct ata_port *ap = qc->ap;
4972 struct ata_link *link = qc->dev->link;
4973 u8 prot = qc->tf.protocol;
4974
4975 /* Make sure only one non-NCQ command is outstanding. The
4976 * check is skipped for old EH because it reuses active qc to
4977 * request ATAPI sense.
4978 */
4979 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4980
4981 if (ata_is_ncq(prot)) {
4982 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
4983
4984 if (!link->sactive)
4985 ap->nr_active_links++;
4986 link->sactive |= 1 << qc->tag;
4987 } else {
4988 WARN_ON_ONCE(link->sactive);
4989
4990 ap->nr_active_links++;
4991 link->active_tag = qc->tag;
4992 }
4993
4994 qc->flags |= ATA_QCFLAG_ACTIVE;
4995 ap->qc_active |= 1 << qc->tag;
4996
4997 /*
4998 * We guarantee to LLDs that they will have at least one
4999 * non-zero sg if the command is a data command.
5000 */
5001 if (WARN_ON_ONCE(ata_is_data(prot) &&
5002 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5003 goto sys_err;
5004
5005 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5006 (ap->flags & ATA_FLAG_PIO_DMA)))
5007 if (ata_sg_setup(qc))
5008 goto sys_err;
5009
5010 /* if device is sleeping, schedule reset and abort the link */
5011 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5012 link->eh_info.action |= ATA_EH_RESET;
5013 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5014 ata_link_abort(link);
5015 return;
5016 }
5017
5018 ap->ops->qc_prep(qc);
5019
5020 qc->err_mask |= ap->ops->qc_issue(qc);
5021 if (unlikely(qc->err_mask))
5022 goto err;
5023 return;
5024
5025sys_err:
5026 qc->err_mask |= AC_ERR_SYSTEM;
5027err:
5028 ata_qc_complete(qc);
5029}
5030
5031/**
5032 * sata_scr_valid - test whether SCRs are accessible
5033 * @link: ATA link to test SCR accessibility for
5034 *
5035 * Test whether SCRs are accessible for @link.
5036 *
5037 * LOCKING:
5038 * None.
5039 *
5040 * RETURNS:
5041 * 1 if SCRs are accessible, 0 otherwise.
5042 */
5043int sata_scr_valid(struct ata_link *link)
5044{
5045 struct ata_port *ap = link->ap;
5046
5047 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5048}
5049
5050/**
5051 * sata_scr_read - read SCR register of the specified port
5052 * @link: ATA link to read SCR for
5053 * @reg: SCR to read
5054 * @val: Place to store read value
5055 *
5056 * Read SCR register @reg of @link into *@val. This function is
5057 * guaranteed to succeed if @link is ap->link, the cable type of
5058 * the port is SATA and the port implements ->scr_read.
5059 *
5060 * LOCKING:
5061 * None if @link is ap->link. Kernel thread context otherwise.
5062 *
5063 * RETURNS:
5064 * 0 on success, negative errno on failure.
5065 */
5066int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5067{
5068 if (ata_is_host_link(link)) {
5069 if (sata_scr_valid(link))
5070 return link->ap->ops->scr_read(link, reg, val);
5071 return -EOPNOTSUPP;
5072 }
5073
5074 return sata_pmp_scr_read(link, reg, val);
5075}
5076
5077/**
5078 * sata_scr_write - write SCR register of the specified port
5079 * @link: ATA link to write SCR for
5080 * @reg: SCR to write
5081 * @val: value to write
5082 *
5083 * Write @val to SCR register @reg of @link. This function is
5084 * guaranteed to succeed if @link is ap->link, the cable type of
5085 * the port is SATA and the port implements ->scr_read.
5086 *
5087 * LOCKING:
5088 * None if @link is ap->link. Kernel thread context otherwise.
5089 *
5090 * RETURNS:
5091 * 0 on success, negative errno on failure.
5092 */
5093int sata_scr_write(struct ata_link *link, int reg, u32 val)
5094{
5095 if (ata_is_host_link(link)) {
5096 if (sata_scr_valid(link))
5097 return link->ap->ops->scr_write(link, reg, val);
5098 return -EOPNOTSUPP;
5099 }
5100
5101 return sata_pmp_scr_write(link, reg, val);
5102}
5103
5104/**
5105 * sata_scr_write_flush - write SCR register of the specified port and flush
5106 * @link: ATA link to write SCR for
5107 * @reg: SCR to write
5108 * @val: value to write
5109 *
5110 * This function is identical to sata_scr_write() except that this
5111 * function performs flush after writing to the register.
5112 *
5113 * LOCKING:
5114 * None if @link is ap->link. Kernel thread context otherwise.
5115 *
5116 * RETURNS:
5117 * 0 on success, negative errno on failure.
5118 */
5119int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5120{
5121 if (ata_is_host_link(link)) {
5122 int rc;
5123
5124 if (sata_scr_valid(link)) {
5125 rc = link->ap->ops->scr_write(link, reg, val);
5126 if (rc == 0)
5127 rc = link->ap->ops->scr_read(link, reg, &val);
5128 return rc;
5129 }
5130 return -EOPNOTSUPP;
5131 }
5132
5133 return sata_pmp_scr_write(link, reg, val);
5134}
5135
5136/**
5137 * ata_phys_link_online - test whether the given link is online
5138 * @link: ATA link to test
5139 *
5140 * Test whether @link is online. Note that this function returns
5141 * 0 if online status of @link cannot be obtained, so
5142 * ata_link_online(link) != !ata_link_offline(link).
5143 *
5144 * LOCKING:
5145 * None.
5146 *
5147 * RETURNS:
5148 * True if the port online status is available and online.
5149 */
5150bool ata_phys_link_online(struct ata_link *link)
5151{
5152 u32 sstatus;
5153
5154 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5155 ata_sstatus_online(sstatus))
5156 return true;
5157 return false;
5158}
5159
5160/**
5161 * ata_phys_link_offline - test whether the given link is offline
5162 * @link: ATA link to test
5163 *
5164 * Test whether @link is offline. Note that this function
5165 * returns 0 if offline status of @link cannot be obtained, so
5166 * ata_link_online(link) != !ata_link_offline(link).
5167 *
5168 * LOCKING:
5169 * None.
5170 *
5171 * RETURNS:
5172 * True if the port offline status is available and offline.
5173 */
5174bool ata_phys_link_offline(struct ata_link *link)
5175{
5176 u32 sstatus;
5177
5178 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5179 !ata_sstatus_online(sstatus))
5180 return true;
5181 return false;
5182}
5183
5184/**
5185 * ata_link_online - test whether the given link is online
5186 * @link: ATA link to test
5187 *
5188 * Test whether @link is online. This is identical to
5189 * ata_phys_link_online() when there's no slave link. When
5190 * there's a slave link, this function should only be called on
5191 * the master link and will return true if any of M/S links is
5192 * online.
5193 *
5194 * LOCKING:
5195 * None.
5196 *
5197 * RETURNS:
5198 * True if the port online status is available and online.
5199 */
5200bool ata_link_online(struct ata_link *link)
5201{
5202 struct ata_link *slave = link->ap->slave_link;
5203
5204 WARN_ON(link == slave); /* shouldn't be called on slave link */
5205
5206 return ata_phys_link_online(link) ||
5207 (slave && ata_phys_link_online(slave));
5208}
5209
5210/**
5211 * ata_link_offline - test whether the given link is offline
5212 * @link: ATA link to test
5213 *
5214 * Test whether @link is offline. This is identical to
5215 * ata_phys_link_offline() when there's no slave link. When
5216 * there's a slave link, this function should only be called on
5217 * the master link and will return true if both M/S links are
5218 * offline.
5219 *
5220 * LOCKING:
5221 * None.
5222 *
5223 * RETURNS:
5224 * True if the port offline status is available and offline.
5225 */
5226bool ata_link_offline(struct ata_link *link)
5227{
5228 struct ata_link *slave = link->ap->slave_link;
5229
5230 WARN_ON(link == slave); /* shouldn't be called on slave link */
5231
5232 return ata_phys_link_offline(link) &&
5233 (!slave || ata_phys_link_offline(slave));
5234}
5235
5236#ifdef CONFIG_PM
5237static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5238 unsigned int action, unsigned int ehi_flags,
5239 int wait)
5240{
5241 unsigned long flags;
5242 int i, rc;
5243
5244 for (i = 0; i < host->n_ports; i++) {
5245 struct ata_port *ap = host->ports[i];
5246 struct ata_link *link;
5247
5248 /* Previous resume operation might still be in
5249 * progress. Wait for PM_PENDING to clear.
5250 */
5251 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5252 ata_port_wait_eh(ap);
5253 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5254 }
5255
5256 /* request PM ops to EH */
5257 spin_lock_irqsave(ap->lock, flags);
5258
5259 ap->pm_mesg = mesg;
5260 if (wait) {
5261 rc = 0;
5262 ap->pm_result = &rc;
5263 }
5264
5265 ap->pflags |= ATA_PFLAG_PM_PENDING;
5266 ata_for_each_link(link, ap, HOST_FIRST) {
5267 link->eh_info.action |= action;
5268 link->eh_info.flags |= ehi_flags;
5269 }
5270
5271 ata_port_schedule_eh(ap);
5272
5273 spin_unlock_irqrestore(ap->lock, flags);
5274
5275 /* wait and check result */
5276 if (wait) {
5277 ata_port_wait_eh(ap);
5278 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5279 if (rc)
5280 return rc;
5281 }
5282 }
5283
5284 return 0;
5285}
5286
5287/**
5288 * ata_host_suspend - suspend host
5289 * @host: host to suspend
5290 * @mesg: PM message
5291 *
5292 * Suspend @host. Actual operation is performed by EH. This
5293 * function requests EH to perform PM operations and waits for EH
5294 * to finish.
5295 *
5296 * LOCKING:
5297 * Kernel thread context (may sleep).
5298 *
5299 * RETURNS:
5300 * 0 on success, -errno on failure.
5301 */
5302int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5303{
5304 unsigned int ehi_flags = ATA_EHI_QUIET;
5305 int rc;
5306
5307 /*
5308 * On some hardware, device fails to respond after spun down
5309 * for suspend. As the device won't be used before being
5310 * resumed, we don't need to touch the device. Ask EH to skip
5311 * the usual stuff and proceed directly to suspend.
5312 *
5313 * http://thread.gmane.org/gmane.linux.ide/46764
5314 */
5315 if (mesg.event == PM_EVENT_SUSPEND)
5316 ehi_flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_NO_RECOVERY;
5317
5318 rc = ata_host_request_pm(host, mesg, 0, ehi_flags, 1);
5319 if (rc == 0)
5320 host->dev->power.power_state = mesg;
5321 return rc;
5322}
5323
5324/**
5325 * ata_host_resume - resume host
5326 * @host: host to resume
5327 *
5328 * Resume @host. Actual operation is performed by EH. This
5329 * function requests EH to perform PM operations and returns.
5330 * Note that all resume operations are performed parallelly.
5331 *
5332 * LOCKING:
5333 * Kernel thread context (may sleep).
5334 */
5335void ata_host_resume(struct ata_host *host)
5336{
5337 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5338 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5339 host->dev->power.power_state = PMSG_ON;
5340}
5341#endif
5342
5343/**
5344 * ata_dev_init - Initialize an ata_device structure
5345 * @dev: Device structure to initialize
5346 *
5347 * Initialize @dev in preparation for probing.
5348 *
5349 * LOCKING:
5350 * Inherited from caller.
5351 */
5352void ata_dev_init(struct ata_device *dev)
5353{
5354 struct ata_link *link = ata_dev_phys_link(dev);
5355 struct ata_port *ap = link->ap;
5356 unsigned long flags;
5357
5358 /* SATA spd limit is bound to the attached device, reset together */
5359 link->sata_spd_limit = link->hw_sata_spd_limit;
5360 link->sata_spd = 0;
5361
5362 /* High bits of dev->flags are used to record warm plug
5363 * requests which occur asynchronously. Synchronize using
5364 * host lock.
5365 */
5366 spin_lock_irqsave(ap->lock, flags);
5367 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5368 dev->horkage = 0;
5369 spin_unlock_irqrestore(ap->lock, flags);
5370
5371 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5372 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5373 dev->pio_mask = UINT_MAX;
5374 dev->mwdma_mask = UINT_MAX;
5375 dev->udma_mask = UINT_MAX;
5376}
5377
5378/**
5379 * ata_link_init - Initialize an ata_link structure
5380 * @ap: ATA port link is attached to
5381 * @link: Link structure to initialize
5382 * @pmp: Port multiplier port number
5383 *
5384 * Initialize @link.
5385 *
5386 * LOCKING:
5387 * Kernel thread context (may sleep)
5388 */
5389void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5390{
5391 int i;
5392
5393 /* clear everything except for devices */
5394 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5395 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5396
5397 link->ap = ap;
5398 link->pmp = pmp;
5399 link->active_tag = ATA_TAG_POISON;
5400 link->hw_sata_spd_limit = UINT_MAX;
5401
5402 /* can't use iterator, ap isn't initialized yet */
5403 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5404 struct ata_device *dev = &link->device[i];
5405
5406 dev->link = link;
5407 dev->devno = dev - link->device;
5408#ifdef CONFIG_ATA_ACPI
5409 dev->gtf_filter = ata_acpi_gtf_filter;
5410#endif
5411 ata_dev_init(dev);
5412 }
5413}
5414
5415/**
5416 * sata_link_init_spd - Initialize link->sata_spd_limit
5417 * @link: Link to configure sata_spd_limit for
5418 *
5419 * Initialize @link->[hw_]sata_spd_limit to the currently
5420 * configured value.
5421 *
5422 * LOCKING:
5423 * Kernel thread context (may sleep).
5424 *
5425 * RETURNS:
5426 * 0 on success, -errno on failure.
5427 */
5428int sata_link_init_spd(struct ata_link *link)
5429{
5430 u8 spd;
5431 int rc;
5432
5433 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5434 if (rc)
5435 return rc;
5436
5437 spd = (link->saved_scontrol >> 4) & 0xf;
5438 if (spd)
5439 link->hw_sata_spd_limit &= (1 << spd) - 1;
5440
5441 ata_force_link_limits(link);
5442
5443 link->sata_spd_limit = link->hw_sata_spd_limit;
5444
5445 return 0;
5446}
5447
5448/**
5449 * ata_port_alloc - allocate and initialize basic ATA port resources
5450 * @host: ATA host this allocated port belongs to
5451 *
5452 * Allocate and initialize basic ATA port resources.
5453 *
5454 * RETURNS:
5455 * Allocate ATA port on success, NULL on failure.
5456 *
5457 * LOCKING:
5458 * Inherited from calling layer (may sleep).
5459 */
5460struct ata_port *ata_port_alloc(struct ata_host *host)
5461{
5462 struct ata_port *ap;
5463
5464 DPRINTK("ENTER\n");
5465
5466 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5467 if (!ap)
5468 return NULL;
5469
5470 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5471 ap->lock = &host->lock;
5472 ap->print_id = -1;
5473 ap->host = host;
5474 ap->dev = host->dev;
5475
5476#if defined(ATA_VERBOSE_DEBUG)
5477 /* turn on all debugging levels */
5478 ap->msg_enable = 0x00FF;
5479#elif defined(ATA_DEBUG)
5480 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5481#else
5482 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5483#endif
5484
5485 mutex_init(&ap->scsi_scan_mutex);
5486 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5487 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5488 INIT_LIST_HEAD(&ap->eh_done_q);
5489 init_waitqueue_head(&ap->eh_wait_q);
5490 init_completion(&ap->park_req_pending);
5491 init_timer_deferrable(&ap->fastdrain_timer);
5492 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5493 ap->fastdrain_timer.data = (unsigned long)ap;
5494
5495 ap->cbl = ATA_CBL_NONE;
5496
5497 ata_link_init(ap, &ap->link, 0);
5498
5499#ifdef ATA_IRQ_TRAP
5500 ap->stats.unhandled_irq = 1;
5501 ap->stats.idle_irq = 1;
5502#endif
5503 ata_sff_port_init(ap);
5504
5505 return ap;
5506}
5507
5508static void ata_host_release(struct device *gendev, void *res)
5509{
5510 struct ata_host *host = dev_get_drvdata(gendev);
5511 int i;
5512
5513 for (i = 0; i < host->n_ports; i++) {
5514 struct ata_port *ap = host->ports[i];
5515
5516 if (!ap)
5517 continue;
5518
5519 if (ap->scsi_host)
5520 scsi_host_put(ap->scsi_host);
5521
5522 kfree(ap->pmp_link);
5523 kfree(ap->slave_link);
5524 kfree(ap);
5525 host->ports[i] = NULL;
5526 }
5527
5528 dev_set_drvdata(gendev, NULL);
5529}
5530
5531/**
5532 * ata_host_alloc - allocate and init basic ATA host resources
5533 * @dev: generic device this host is associated with
5534 * @max_ports: maximum number of ATA ports associated with this host
5535 *
5536 * Allocate and initialize basic ATA host resources. LLD calls
5537 * this function to allocate a host, initializes it fully and
5538 * attaches it using ata_host_register().
5539 *
5540 * @max_ports ports are allocated and host->n_ports is
5541 * initialized to @max_ports. The caller is allowed to decrease
5542 * host->n_ports before calling ata_host_register(). The unused
5543 * ports will be automatically freed on registration.
5544 *
5545 * RETURNS:
5546 * Allocate ATA host on success, NULL on failure.
5547 *
5548 * LOCKING:
5549 * Inherited from calling layer (may sleep).
5550 */
5551struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5552{
5553 struct ata_host *host;
5554 size_t sz;
5555 int i;
5556
5557 DPRINTK("ENTER\n");
5558
5559 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5560 return NULL;
5561
5562 /* alloc a container for our list of ATA ports (buses) */
5563 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5564 /* alloc a container for our list of ATA ports (buses) */
5565 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5566 if (!host)
5567 goto err_out;
5568
5569 devres_add(dev, host);
5570 dev_set_drvdata(dev, host);
5571
5572 spin_lock_init(&host->lock);
5573 mutex_init(&host->eh_mutex);
5574 host->dev = dev;
5575 host->n_ports = max_ports;
5576
5577 /* allocate ports bound to this host */
5578 for (i = 0; i < max_ports; i++) {
5579 struct ata_port *ap;
5580
5581 ap = ata_port_alloc(host);
5582 if (!ap)
5583 goto err_out;
5584
5585 ap->port_no = i;
5586 host->ports[i] = ap;
5587 }
5588
5589 devres_remove_group(dev, NULL);
5590 return host;
5591
5592 err_out:
5593 devres_release_group(dev, NULL);
5594 return NULL;
5595}
5596
5597/**
5598 * ata_host_alloc_pinfo - alloc host and init with port_info array
5599 * @dev: generic device this host is associated with
5600 * @ppi: array of ATA port_info to initialize host with
5601 * @n_ports: number of ATA ports attached to this host
5602 *
5603 * Allocate ATA host and initialize with info from @ppi. If NULL
5604 * terminated, @ppi may contain fewer entries than @n_ports. The
5605 * last entry will be used for the remaining ports.
5606 *
5607 * RETURNS:
5608 * Allocate ATA host on success, NULL on failure.
5609 *
5610 * LOCKING:
5611 * Inherited from calling layer (may sleep).
5612 */
5613struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5614 const struct ata_port_info * const * ppi,
5615 int n_ports)
5616{
5617 const struct ata_port_info *pi;
5618 struct ata_host *host;
5619 int i, j;
5620
5621 host = ata_host_alloc(dev, n_ports);
5622 if (!host)
5623 return NULL;
5624
5625 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5626 struct ata_port *ap = host->ports[i];
5627
5628 if (ppi[j])
5629 pi = ppi[j++];
5630
5631 ap->pio_mask = pi->pio_mask;
5632 ap->mwdma_mask = pi->mwdma_mask;
5633 ap->udma_mask = pi->udma_mask;
5634 ap->flags |= pi->flags;
5635 ap->link.flags |= pi->link_flags;
5636 ap->ops = pi->port_ops;
5637
5638 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5639 host->ops = pi->port_ops;
5640 }
5641
5642 return host;
5643}
5644
5645/**
5646 * ata_slave_link_init - initialize slave link
5647 * @ap: port to initialize slave link for
5648 *
5649 * Create and initialize slave link for @ap. This enables slave
5650 * link handling on the port.
5651 *
5652 * In libata, a port contains links and a link contains devices.
5653 * There is single host link but if a PMP is attached to it,
5654 * there can be multiple fan-out links. On SATA, there's usually
5655 * a single device connected to a link but PATA and SATA
5656 * controllers emulating TF based interface can have two - master
5657 * and slave.
5658 *
5659 * However, there are a few controllers which don't fit into this
5660 * abstraction too well - SATA controllers which emulate TF
5661 * interface with both master and slave devices but also have
5662 * separate SCR register sets for each device. These controllers
5663 * need separate links for physical link handling
5664 * (e.g. onlineness, link speed) but should be treated like a
5665 * traditional M/S controller for everything else (e.g. command
5666 * issue, softreset).
5667 *
5668 * slave_link is libata's way of handling this class of
5669 * controllers without impacting core layer too much. For
5670 * anything other than physical link handling, the default host
5671 * link is used for both master and slave. For physical link
5672 * handling, separate @ap->slave_link is used. All dirty details
5673 * are implemented inside libata core layer. From LLD's POV, the
5674 * only difference is that prereset, hardreset and postreset are
5675 * called once more for the slave link, so the reset sequence
5676 * looks like the following.
5677 *
5678 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5679 * softreset(M) -> postreset(M) -> postreset(S)
5680 *
5681 * Note that softreset is called only for the master. Softreset
5682 * resets both M/S by definition, so SRST on master should handle
5683 * both (the standard method will work just fine).
5684 *
5685 * LOCKING:
5686 * Should be called before host is registered.
5687 *
5688 * RETURNS:
5689 * 0 on success, -errno on failure.
5690 */
5691int ata_slave_link_init(struct ata_port *ap)
5692{
5693 struct ata_link *link;
5694
5695 WARN_ON(ap->slave_link);
5696 WARN_ON(ap->flags & ATA_FLAG_PMP);
5697
5698 link = kzalloc(sizeof(*link), GFP_KERNEL);
5699 if (!link)
5700 return -ENOMEM;
5701
5702 ata_link_init(ap, link, 1);
5703 ap->slave_link = link;
5704 return 0;
5705}
5706
5707static void ata_host_stop(struct device *gendev, void *res)
5708{
5709 struct ata_host *host = dev_get_drvdata(gendev);
5710 int i;
5711
5712 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5713
5714 for (i = 0; i < host->n_ports; i++) {
5715 struct ata_port *ap = host->ports[i];
5716
5717 if (ap->ops->port_stop)
5718 ap->ops->port_stop(ap);
5719 }
5720
5721 if (host->ops->host_stop)
5722 host->ops->host_stop(host);
5723}
5724
5725/**
5726 * ata_finalize_port_ops - finalize ata_port_operations
5727 * @ops: ata_port_operations to finalize
5728 *
5729 * An ata_port_operations can inherit from another ops and that
5730 * ops can again inherit from another. This can go on as many
5731 * times as necessary as long as there is no loop in the
5732 * inheritance chain.
5733 *
5734 * Ops tables are finalized when the host is started. NULL or
5735 * unspecified entries are inherited from the closet ancestor
5736 * which has the method and the entry is populated with it.
5737 * After finalization, the ops table directly points to all the
5738 * methods and ->inherits is no longer necessary and cleared.
5739 *
5740 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5741 *
5742 * LOCKING:
5743 * None.
5744 */
5745static void ata_finalize_port_ops(struct ata_port_operations *ops)
5746{
5747 static DEFINE_SPINLOCK(lock);
5748 const struct ata_port_operations *cur;
5749 void **begin = (void **)ops;
5750 void **end = (void **)&ops->inherits;
5751 void **pp;
5752
5753 if (!ops || !ops->inherits)
5754 return;
5755
5756 spin_lock(&lock);
5757
5758 for (cur = ops->inherits; cur; cur = cur->inherits) {
5759 void **inherit = (void **)cur;
5760
5761 for (pp = begin; pp < end; pp++, inherit++)
5762 if (!*pp)
5763 *pp = *inherit;
5764 }
5765
5766 for (pp = begin; pp < end; pp++)
5767 if (IS_ERR(*pp))
5768 *pp = NULL;
5769
5770 ops->inherits = NULL;
5771
5772 spin_unlock(&lock);
5773}
5774
5775/**
5776 * ata_host_start - start and freeze ports of an ATA host
5777 * @host: ATA host to start ports for
5778 *
5779 * Start and then freeze ports of @host. Started status is
5780 * recorded in host->flags, so this function can be called
5781 * multiple times. Ports are guaranteed to get started only
5782 * once. If host->ops isn't initialized yet, its set to the
5783 * first non-dummy port ops.
5784 *
5785 * LOCKING:
5786 * Inherited from calling layer (may sleep).
5787 *
5788 * RETURNS:
5789 * 0 if all ports are started successfully, -errno otherwise.
5790 */
5791int ata_host_start(struct ata_host *host)
5792{
5793 int have_stop = 0;
5794 void *start_dr = NULL;
5795 int i, rc;
5796
5797 if (host->flags & ATA_HOST_STARTED)
5798 return 0;
5799
5800 ata_finalize_port_ops(host->ops);
5801
5802 for (i = 0; i < host->n_ports; i++) {
5803 struct ata_port *ap = host->ports[i];
5804
5805 ata_finalize_port_ops(ap->ops);
5806
5807 if (!host->ops && !ata_port_is_dummy(ap))
5808 host->ops = ap->ops;
5809
5810 if (ap->ops->port_stop)
5811 have_stop = 1;
5812 }
5813
5814 if (host->ops->host_stop)
5815 have_stop = 1;
5816
5817 if (have_stop) {
5818 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5819 if (!start_dr)
5820 return -ENOMEM;
5821 }
5822
5823 for (i = 0; i < host->n_ports; i++) {
5824 struct ata_port *ap = host->ports[i];
5825
5826 if (ap->ops->port_start) {
5827 rc = ap->ops->port_start(ap);
5828 if (rc) {
5829 if (rc != -ENODEV)
5830 dev_err(host->dev,
5831 "failed to start port %d (errno=%d)\n",
5832 i, rc);
5833 goto err_out;
5834 }
5835 }
5836 ata_eh_freeze_port(ap);
5837 }
5838
5839 if (start_dr)
5840 devres_add(host->dev, start_dr);
5841 host->flags |= ATA_HOST_STARTED;
5842 return 0;
5843
5844 err_out:
5845 while (--i >= 0) {
5846 struct ata_port *ap = host->ports[i];
5847
5848 if (ap->ops->port_stop)
5849 ap->ops->port_stop(ap);
5850 }
5851 devres_free(start_dr);
5852 return rc;
5853}
5854
5855/**
5856 * ata_sas_host_init - Initialize a host struct
5857 * @host: host to initialize
5858 * @dev: device host is attached to
5859 * @flags: host flags
5860 * @ops: port_ops
5861 *
5862 * LOCKING:
5863 * PCI/etc. bus probe sem.
5864 *
5865 */
5866/* KILLME - the only user left is ipr */
5867void ata_host_init(struct ata_host *host, struct device *dev,
5868 unsigned long flags, struct ata_port_operations *ops)
5869{
5870 spin_lock_init(&host->lock);
5871 mutex_init(&host->eh_mutex);
5872 host->dev = dev;
5873 host->flags = flags;
5874 host->ops = ops;
5875}
5876
5877int ata_port_probe(struct ata_port *ap)
5878{
5879 int rc = 0;
5880
5881 /* probe */
5882 if (ap->ops->error_handler) {
5883 struct ata_eh_info *ehi = &ap->link.eh_info;
5884 unsigned long flags;
5885
5886 /* kick EH for boot probing */
5887 spin_lock_irqsave(ap->lock, flags);
5888
5889 ehi->probe_mask |= ATA_ALL_DEVICES;
5890 ehi->action |= ATA_EH_RESET;
5891 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5892
5893 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5894 ap->pflags |= ATA_PFLAG_LOADING;
5895 ata_port_schedule_eh(ap);
5896
5897 spin_unlock_irqrestore(ap->lock, flags);
5898
5899 /* wait for EH to finish */
5900 ata_port_wait_eh(ap);
5901 } else {
5902 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5903 rc = ata_bus_probe(ap);
5904 DPRINTK("ata%u: bus probe end\n", ap->print_id);
5905 }
5906 return rc;
5907}
5908
5909
5910static void async_port_probe(void *data, async_cookie_t cookie)
5911{
5912 struct ata_port *ap = data;
5913
5914 /*
5915 * If we're not allowed to scan this host in parallel,
5916 * we need to wait until all previous scans have completed
5917 * before going further.
5918 * Jeff Garzik says this is only within a controller, so we
5919 * don't need to wait for port 0, only for later ports.
5920 */
5921 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5922 async_synchronize_cookie(cookie);
5923
5924 (void)ata_port_probe(ap);
5925
5926 /* in order to keep device order, we need to synchronize at this point */
5927 async_synchronize_cookie(cookie);
5928
5929 ata_scsi_scan_host(ap, 1);
5930}
5931
5932/**
5933 * ata_host_register - register initialized ATA host
5934 * @host: ATA host to register
5935 * @sht: template for SCSI host
5936 *
5937 * Register initialized ATA host. @host is allocated using
5938 * ata_host_alloc() and fully initialized by LLD. This function
5939 * starts ports, registers @host with ATA and SCSI layers and
5940 * probe registered devices.
5941 *
5942 * LOCKING:
5943 * Inherited from calling layer (may sleep).
5944 *
5945 * RETURNS:
5946 * 0 on success, -errno otherwise.
5947 */
5948int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5949{
5950 int i, rc;
5951
5952 /* host must have been started */
5953 if (!(host->flags & ATA_HOST_STARTED)) {
5954 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5955 WARN_ON(1);
5956 return -EINVAL;
5957 }
5958
5959 /* Blow away unused ports. This happens when LLD can't
5960 * determine the exact number of ports to allocate at
5961 * allocation time.
5962 */
5963 for (i = host->n_ports; host->ports[i]; i++)
5964 kfree(host->ports[i]);
5965
5966 /* give ports names and add SCSI hosts */
5967 for (i = 0; i < host->n_ports; i++)
5968 host->ports[i]->print_id = ata_print_id++;
5969
5970
5971 /* Create associated sysfs transport objects */
5972 for (i = 0; i < host->n_ports; i++) {
5973 rc = ata_tport_add(host->dev,host->ports[i]);
5974 if (rc) {
5975 goto err_tadd;
5976 }
5977 }
5978
5979 rc = ata_scsi_add_hosts(host, sht);
5980 if (rc)
5981 goto err_tadd;
5982
5983 /* associate with ACPI nodes */
5984 ata_acpi_associate(host);
5985
5986 /* set cable, sata_spd_limit and report */
5987 for (i = 0; i < host->n_ports; i++) {
5988 struct ata_port *ap = host->ports[i];
5989 unsigned long xfer_mask;
5990
5991 /* set SATA cable type if still unset */
5992 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5993 ap->cbl = ATA_CBL_SATA;
5994
5995 /* init sata_spd_limit to the current value */
5996 sata_link_init_spd(&ap->link);
5997 if (ap->slave_link)
5998 sata_link_init_spd(ap->slave_link);
5999
6000 /* print per-port info to dmesg */
6001 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6002 ap->udma_mask);
6003
6004 if (!ata_port_is_dummy(ap)) {
6005 ata_port_info(ap, "%cATA max %s %s\n",
6006 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6007 ata_mode_string(xfer_mask),
6008 ap->link.eh_info.desc);
6009 ata_ehi_clear_desc(&ap->link.eh_info);
6010 } else
6011 ata_port_info(ap, "DUMMY\n");
6012 }
6013
6014 /* perform each probe asynchronously */
6015 for (i = 0; i < host->n_ports; i++) {
6016 struct ata_port *ap = host->ports[i];
6017 async_schedule(async_port_probe, ap);
6018 }
6019
6020 return 0;
6021
6022 err_tadd:
6023 while (--i >= 0) {
6024 ata_tport_delete(host->ports[i]);
6025 }
6026 return rc;
6027
6028}
6029
6030/**
6031 * ata_host_activate - start host, request IRQ and register it
6032 * @host: target ATA host
6033 * @irq: IRQ to request
6034 * @irq_handler: irq_handler used when requesting IRQ
6035 * @irq_flags: irq_flags used when requesting IRQ
6036 * @sht: scsi_host_template to use when registering the host
6037 *
6038 * After allocating an ATA host and initializing it, most libata
6039 * LLDs perform three steps to activate the host - start host,
6040 * request IRQ and register it. This helper takes necessasry
6041 * arguments and performs the three steps in one go.
6042 *
6043 * An invalid IRQ skips the IRQ registration and expects the host to
6044 * have set polling mode on the port. In this case, @irq_handler
6045 * should be NULL.
6046 *
6047 * LOCKING:
6048 * Inherited from calling layer (may sleep).
6049 *
6050 * RETURNS:
6051 * 0 on success, -errno otherwise.
6052 */
6053int ata_host_activate(struct ata_host *host, int irq,
6054 irq_handler_t irq_handler, unsigned long irq_flags,
6055 struct scsi_host_template *sht)
6056{
6057 int i, rc;
6058
6059 rc = ata_host_start(host);
6060 if (rc)
6061 return rc;
6062
6063 /* Special case for polling mode */
6064 if (!irq) {
6065 WARN_ON(irq_handler);
6066 return ata_host_register(host, sht);
6067 }
6068
6069 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6070 dev_driver_string(host->dev), host);
6071 if (rc)
6072 return rc;
6073
6074 for (i = 0; i < host->n_ports; i++)
6075 ata_port_desc(host->ports[i], "irq %d", irq);
6076
6077 rc = ata_host_register(host, sht);
6078 /* if failed, just free the IRQ and leave ports alone */
6079 if (rc)
6080 devm_free_irq(host->dev, irq, host);
6081
6082 return rc;
6083}
6084
6085/**
6086 * ata_port_detach - Detach ATA port in prepration of device removal
6087 * @ap: ATA port to be detached
6088 *
6089 * Detach all ATA devices and the associated SCSI devices of @ap;
6090 * then, remove the associated SCSI host. @ap is guaranteed to
6091 * be quiescent on return from this function.
6092 *
6093 * LOCKING:
6094 * Kernel thread context (may sleep).
6095 */
6096static void ata_port_detach(struct ata_port *ap)
6097{
6098 unsigned long flags;
6099
6100 if (!ap->ops->error_handler)
6101 goto skip_eh;
6102
6103 /* tell EH we're leaving & flush EH */
6104 spin_lock_irqsave(ap->lock, flags);
6105 ap->pflags |= ATA_PFLAG_UNLOADING;
6106 ata_port_schedule_eh(ap);
6107 spin_unlock_irqrestore(ap->lock, flags);
6108
6109 /* wait till EH commits suicide */
6110 ata_port_wait_eh(ap);
6111
6112 /* it better be dead now */
6113 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6114
6115 cancel_delayed_work_sync(&ap->hotplug_task);
6116
6117 skip_eh:
6118 if (ap->pmp_link) {
6119 int i;
6120 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6121 ata_tlink_delete(&ap->pmp_link[i]);
6122 }
6123 ata_tport_delete(ap);
6124
6125 /* remove the associated SCSI host */
6126 scsi_remove_host(ap->scsi_host);
6127}
6128
6129/**
6130 * ata_host_detach - Detach all ports of an ATA host
6131 * @host: Host to detach
6132 *
6133 * Detach all ports of @host.
6134 *
6135 * LOCKING:
6136 * Kernel thread context (may sleep).
6137 */
6138void ata_host_detach(struct ata_host *host)
6139{
6140 int i;
6141
6142 for (i = 0; i < host->n_ports; i++)
6143 ata_port_detach(host->ports[i]);
6144
6145 /* the host is dead now, dissociate ACPI */
6146 ata_acpi_dissociate(host);
6147}
6148
6149#ifdef CONFIG_PCI
6150
6151/**
6152 * ata_pci_remove_one - PCI layer callback for device removal
6153 * @pdev: PCI device that was removed
6154 *
6155 * PCI layer indicates to libata via this hook that hot-unplug or
6156 * module unload event has occurred. Detach all ports. Resource
6157 * release is handled via devres.
6158 *
6159 * LOCKING:
6160 * Inherited from PCI layer (may sleep).
6161 */
6162void ata_pci_remove_one(struct pci_dev *pdev)
6163{
6164 struct device *dev = &pdev->dev;
6165 struct ata_host *host = dev_get_drvdata(dev);
6166
6167 ata_host_detach(host);
6168}
6169
6170/* move to PCI subsystem */
6171int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6172{
6173 unsigned long tmp = 0;
6174
6175 switch (bits->width) {
6176 case 1: {
6177 u8 tmp8 = 0;
6178 pci_read_config_byte(pdev, bits->reg, &tmp8);
6179 tmp = tmp8;
6180 break;
6181 }
6182 case 2: {
6183 u16 tmp16 = 0;
6184 pci_read_config_word(pdev, bits->reg, &tmp16);
6185 tmp = tmp16;
6186 break;
6187 }
6188 case 4: {
6189 u32 tmp32 = 0;
6190 pci_read_config_dword(pdev, bits->reg, &tmp32);
6191 tmp = tmp32;
6192 break;
6193 }
6194
6195 default:
6196 return -EINVAL;
6197 }
6198
6199 tmp &= bits->mask;
6200
6201 return (tmp == bits->val) ? 1 : 0;
6202}
6203
6204#ifdef CONFIG_PM
6205void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6206{
6207 pci_save_state(pdev);
6208 pci_disable_device(pdev);
6209
6210 if (mesg.event & PM_EVENT_SLEEP)
6211 pci_set_power_state(pdev, PCI_D3hot);
6212}
6213
6214int ata_pci_device_do_resume(struct pci_dev *pdev)
6215{
6216 int rc;
6217
6218 pci_set_power_state(pdev, PCI_D0);
6219 pci_restore_state(pdev);
6220
6221 rc = pcim_enable_device(pdev);
6222 if (rc) {
6223 dev_err(&pdev->dev,
6224 "failed to enable device after resume (%d)\n", rc);
6225 return rc;
6226 }
6227
6228 pci_set_master(pdev);
6229 return 0;
6230}
6231
6232int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6233{
6234 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6235 int rc = 0;
6236
6237 rc = ata_host_suspend(host, mesg);
6238 if (rc)
6239 return rc;
6240
6241 ata_pci_device_do_suspend(pdev, mesg);
6242
6243 return 0;
6244}
6245
6246int ata_pci_device_resume(struct pci_dev *pdev)
6247{
6248 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6249 int rc;
6250
6251 rc = ata_pci_device_do_resume(pdev);
6252 if (rc == 0)
6253 ata_host_resume(host);
6254 return rc;
6255}
6256#endif /* CONFIG_PM */
6257
6258#endif /* CONFIG_PCI */
6259
6260static int __init ata_parse_force_one(char **cur,
6261 struct ata_force_ent *force_ent,
6262 const char **reason)
6263{
6264 /* FIXME: Currently, there's no way to tag init const data and
6265 * using __initdata causes build failure on some versions of
6266 * gcc. Once __initdataconst is implemented, add const to the
6267 * following structure.
6268 */
6269 static struct ata_force_param force_tbl[] __initdata = {
6270 { "40c", .cbl = ATA_CBL_PATA40 },
6271 { "80c", .cbl = ATA_CBL_PATA80 },
6272 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6273 { "unk", .cbl = ATA_CBL_PATA_UNK },
6274 { "ign", .cbl = ATA_CBL_PATA_IGN },
6275 { "sata", .cbl = ATA_CBL_SATA },
6276 { "1.5Gbps", .spd_limit = 1 },
6277 { "3.0Gbps", .spd_limit = 2 },
6278 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6279 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6280 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6281 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6282 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6283 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6284 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6285 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6286 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6287 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6288 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6289 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6290 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6291 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6292 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6293 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6294 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6295 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6296 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6297 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6298 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6299 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6300 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6301 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6302 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6303 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6304 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6305 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6306 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6307 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6308 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6309 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6310 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6311 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6312 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6313 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6314 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6315 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6316 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6317 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6318 };
6319 char *start = *cur, *p = *cur;
6320 char *id, *val, *endp;
6321 const struct ata_force_param *match_fp = NULL;
6322 int nr_matches = 0, i;
6323
6324 /* find where this param ends and update *cur */
6325 while (*p != '\0' && *p != ',')
6326 p++;
6327
6328 if (*p == '\0')
6329 *cur = p;
6330 else
6331 *cur = p + 1;
6332
6333 *p = '\0';
6334
6335 /* parse */
6336 p = strchr(start, ':');
6337 if (!p) {
6338 val = strstrip(start);
6339 goto parse_val;
6340 }
6341 *p = '\0';
6342
6343 id = strstrip(start);
6344 val = strstrip(p + 1);
6345
6346 /* parse id */
6347 p = strchr(id, '.');
6348 if (p) {
6349 *p++ = '\0';
6350 force_ent->device = simple_strtoul(p, &endp, 10);
6351 if (p == endp || *endp != '\0') {
6352 *reason = "invalid device";
6353 return -EINVAL;
6354 }
6355 }
6356
6357 force_ent->port = simple_strtoul(id, &endp, 10);
6358 if (p == endp || *endp != '\0') {
6359 *reason = "invalid port/link";
6360 return -EINVAL;
6361 }
6362
6363 parse_val:
6364 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6365 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6366 const struct ata_force_param *fp = &force_tbl[i];
6367
6368 if (strncasecmp(val, fp->name, strlen(val)))
6369 continue;
6370
6371 nr_matches++;
6372 match_fp = fp;
6373
6374 if (strcasecmp(val, fp->name) == 0) {
6375 nr_matches = 1;
6376 break;
6377 }
6378 }
6379
6380 if (!nr_matches) {
6381 *reason = "unknown value";
6382 return -EINVAL;
6383 }
6384 if (nr_matches > 1) {
6385 *reason = "ambigious value";
6386 return -EINVAL;
6387 }
6388
6389 force_ent->param = *match_fp;
6390
6391 return 0;
6392}
6393
6394static void __init ata_parse_force_param(void)
6395{
6396 int idx = 0, size = 1;
6397 int last_port = -1, last_device = -1;
6398 char *p, *cur, *next;
6399
6400 /* calculate maximum number of params and allocate force_tbl */
6401 for (p = ata_force_param_buf; *p; p++)
6402 if (*p == ',')
6403 size++;
6404
6405 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6406 if (!ata_force_tbl) {
6407 printk(KERN_WARNING "ata: failed to extend force table, "
6408 "libata.force ignored\n");
6409 return;
6410 }
6411
6412 /* parse and populate the table */
6413 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6414 const char *reason = "";
6415 struct ata_force_ent te = { .port = -1, .device = -1 };
6416
6417 next = cur;
6418 if (ata_parse_force_one(&next, &te, &reason)) {
6419 printk(KERN_WARNING "ata: failed to parse force "
6420 "parameter \"%s\" (%s)\n",
6421 cur, reason);
6422 continue;
6423 }
6424
6425 if (te.port == -1) {
6426 te.port = last_port;
6427 te.device = last_device;
6428 }
6429
6430 ata_force_tbl[idx++] = te;
6431
6432 last_port = te.port;
6433 last_device = te.device;
6434 }
6435
6436 ata_force_tbl_size = idx;
6437}
6438
6439static int __init ata_init(void)
6440{
6441 int rc;
6442
6443 ata_parse_force_param();
6444
6445 rc = ata_sff_init();
6446 if (rc) {
6447 kfree(ata_force_tbl);
6448 return rc;
6449 }
6450
6451 libata_transport_init();
6452 ata_scsi_transport_template = ata_attach_transport();
6453 if (!ata_scsi_transport_template) {
6454 ata_sff_exit();
6455 rc = -ENOMEM;
6456 goto err_out;
6457 }
6458
6459 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6460 return 0;
6461
6462err_out:
6463 return rc;
6464}
6465
6466static void __exit ata_exit(void)
6467{
6468 ata_release_transport(ata_scsi_transport_template);
6469 libata_transport_exit();
6470 ata_sff_exit();
6471 kfree(ata_force_tbl);
6472}
6473
6474subsys_initcall(ata_init);
6475module_exit(ata_exit);
6476
6477static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6478
6479int ata_ratelimit(void)
6480{
6481 return __ratelimit(&ratelimit);
6482}
6483
6484/**
6485 * ata_msleep - ATA EH owner aware msleep
6486 * @ap: ATA port to attribute the sleep to
6487 * @msecs: duration to sleep in milliseconds
6488 *
6489 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6490 * ownership is released before going to sleep and reacquired
6491 * after the sleep is complete. IOW, other ports sharing the
6492 * @ap->host will be allowed to own the EH while this task is
6493 * sleeping.
6494 *
6495 * LOCKING:
6496 * Might sleep.
6497 */
6498void ata_msleep(struct ata_port *ap, unsigned int msecs)
6499{
6500 bool owns_eh = ap && ap->host->eh_owner == current;
6501
6502 if (owns_eh)
6503 ata_eh_release(ap);
6504
6505 msleep(msecs);
6506
6507 if (owns_eh)
6508 ata_eh_acquire(ap);
6509}
6510
6511/**
6512 * ata_wait_register - wait until register value changes
6513 * @ap: ATA port to wait register for, can be NULL
6514 * @reg: IO-mapped register
6515 * @mask: Mask to apply to read register value
6516 * @val: Wait condition
6517 * @interval: polling interval in milliseconds
6518 * @timeout: timeout in milliseconds
6519 *
6520 * Waiting for some bits of register to change is a common
6521 * operation for ATA controllers. This function reads 32bit LE
6522 * IO-mapped register @reg and tests for the following condition.
6523 *
6524 * (*@reg & mask) != val
6525 *
6526 * If the condition is met, it returns; otherwise, the process is
6527 * repeated after @interval_msec until timeout.
6528 *
6529 * LOCKING:
6530 * Kernel thread context (may sleep)
6531 *
6532 * RETURNS:
6533 * The final register value.
6534 */
6535u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6536 unsigned long interval, unsigned long timeout)
6537{
6538 unsigned long deadline;
6539 u32 tmp;
6540
6541 tmp = ioread32(reg);
6542
6543 /* Calculate timeout _after_ the first read to make sure
6544 * preceding writes reach the controller before starting to
6545 * eat away the timeout.
6546 */
6547 deadline = ata_deadline(jiffies, timeout);
6548
6549 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6550 ata_msleep(ap, interval);
6551 tmp = ioread32(reg);
6552 }
6553
6554 return tmp;
6555}
6556
6557/*
6558 * Dummy port_ops
6559 */
6560static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6561{
6562 return AC_ERR_SYSTEM;
6563}
6564
6565static void ata_dummy_error_handler(struct ata_port *ap)
6566{
6567 /* truly dummy */
6568}
6569
6570struct ata_port_operations ata_dummy_port_ops = {
6571 .qc_prep = ata_noop_qc_prep,
6572 .qc_issue = ata_dummy_qc_issue,
6573 .error_handler = ata_dummy_error_handler,
6574};
6575
6576const struct ata_port_info ata_dummy_port_info = {
6577 .port_ops = &ata_dummy_port_ops,
6578};
6579
6580/*
6581 * Utility print functions
6582 */
6583int ata_port_printk(const struct ata_port *ap, const char *level,
6584 const char *fmt, ...)
6585{
6586 struct va_format vaf;
6587 va_list args;
6588 int r;
6589
6590 va_start(args, fmt);
6591
6592 vaf.fmt = fmt;
6593 vaf.va = &args;
6594
6595 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6596
6597 va_end(args);
6598
6599 return r;
6600}
6601EXPORT_SYMBOL(ata_port_printk);
6602
6603int ata_link_printk(const struct ata_link *link, const char *level,
6604 const char *fmt, ...)
6605{
6606 struct va_format vaf;
6607 va_list args;
6608 int r;
6609
6610 va_start(args, fmt);
6611
6612 vaf.fmt = fmt;
6613 vaf.va = &args;
6614
6615 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6616 r = printk("%sata%u.%02u: %pV",
6617 level, link->ap->print_id, link->pmp, &vaf);
6618 else
6619 r = printk("%sata%u: %pV",
6620 level, link->ap->print_id, &vaf);
6621
6622 va_end(args);
6623
6624 return r;
6625}
6626EXPORT_SYMBOL(ata_link_printk);
6627
6628int ata_dev_printk(const struct ata_device *dev, const char *level,
6629 const char *fmt, ...)
6630{
6631 struct va_format vaf;
6632 va_list args;
6633 int r;
6634
6635 va_start(args, fmt);
6636
6637 vaf.fmt = fmt;
6638 vaf.va = &args;
6639
6640 r = printk("%sata%u.%02u: %pV",
6641 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6642 &vaf);
6643
6644 va_end(args);
6645
6646 return r;
6647}
6648EXPORT_SYMBOL(ata_dev_printk);
6649
6650void ata_print_version(const struct device *dev, const char *version)
6651{
6652 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6653}
6654EXPORT_SYMBOL(ata_print_version);
6655
6656/*
6657 * libata is essentially a library of internal helper functions for
6658 * low-level ATA host controller drivers. As such, the API/ABI is
6659 * likely to change as new drivers are added and updated.
6660 * Do not depend on ABI/API stability.
6661 */
6662EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6663EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6664EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6665EXPORT_SYMBOL_GPL(ata_base_port_ops);
6666EXPORT_SYMBOL_GPL(sata_port_ops);
6667EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6668EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6669EXPORT_SYMBOL_GPL(ata_link_next);
6670EXPORT_SYMBOL_GPL(ata_dev_next);
6671EXPORT_SYMBOL_GPL(ata_std_bios_param);
6672EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6673EXPORT_SYMBOL_GPL(ata_host_init);
6674EXPORT_SYMBOL_GPL(ata_host_alloc);
6675EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6676EXPORT_SYMBOL_GPL(ata_slave_link_init);
6677EXPORT_SYMBOL_GPL(ata_host_start);
6678EXPORT_SYMBOL_GPL(ata_host_register);
6679EXPORT_SYMBOL_GPL(ata_host_activate);
6680EXPORT_SYMBOL_GPL(ata_host_detach);
6681EXPORT_SYMBOL_GPL(ata_sg_init);
6682EXPORT_SYMBOL_GPL(ata_qc_complete);
6683EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6684EXPORT_SYMBOL_GPL(atapi_cmd_type);
6685EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6686EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6687EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6688EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6689EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6690EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6691EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6692EXPORT_SYMBOL_GPL(ata_mode_string);
6693EXPORT_SYMBOL_GPL(ata_id_xfermask);
6694EXPORT_SYMBOL_GPL(ata_do_set_mode);
6695EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6696EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6697EXPORT_SYMBOL_GPL(ata_dev_disable);
6698EXPORT_SYMBOL_GPL(sata_set_spd);
6699EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6700EXPORT_SYMBOL_GPL(sata_link_debounce);
6701EXPORT_SYMBOL_GPL(sata_link_resume);
6702EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6703EXPORT_SYMBOL_GPL(ata_std_prereset);
6704EXPORT_SYMBOL_GPL(sata_link_hardreset);
6705EXPORT_SYMBOL_GPL(sata_std_hardreset);
6706EXPORT_SYMBOL_GPL(ata_std_postreset);
6707EXPORT_SYMBOL_GPL(ata_dev_classify);
6708EXPORT_SYMBOL_GPL(ata_dev_pair);
6709EXPORT_SYMBOL_GPL(ata_ratelimit);
6710EXPORT_SYMBOL_GPL(ata_msleep);
6711EXPORT_SYMBOL_GPL(ata_wait_register);
6712EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6713EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6714EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6715EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6716EXPORT_SYMBOL_GPL(sata_scr_valid);
6717EXPORT_SYMBOL_GPL(sata_scr_read);
6718EXPORT_SYMBOL_GPL(sata_scr_write);
6719EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6720EXPORT_SYMBOL_GPL(ata_link_online);
6721EXPORT_SYMBOL_GPL(ata_link_offline);
6722#ifdef CONFIG_PM
6723EXPORT_SYMBOL_GPL(ata_host_suspend);
6724EXPORT_SYMBOL_GPL(ata_host_resume);
6725#endif /* CONFIG_PM */
6726EXPORT_SYMBOL_GPL(ata_id_string);
6727EXPORT_SYMBOL_GPL(ata_id_c_string);
6728EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6729EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6730
6731EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6732EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6733EXPORT_SYMBOL_GPL(ata_timing_compute);
6734EXPORT_SYMBOL_GPL(ata_timing_merge);
6735EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6736
6737#ifdef CONFIG_PCI
6738EXPORT_SYMBOL_GPL(pci_test_config_bits);
6739EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6740#ifdef CONFIG_PM
6741EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6742EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6743EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6744EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6745#endif /* CONFIG_PM */
6746#endif /* CONFIG_PCI */
6747
6748EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6749EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6750EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6751EXPORT_SYMBOL_GPL(ata_port_desc);
6752#ifdef CONFIG_PCI
6753EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6754#endif /* CONFIG_PCI */
6755EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6756EXPORT_SYMBOL_GPL(ata_link_abort);
6757EXPORT_SYMBOL_GPL(ata_port_abort);
6758EXPORT_SYMBOL_GPL(ata_port_freeze);
6759EXPORT_SYMBOL_GPL(sata_async_notification);
6760EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6761EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6762EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6763EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6764EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6765EXPORT_SYMBOL_GPL(ata_do_eh);
6766EXPORT_SYMBOL_GPL(ata_std_error_handler);
6767
6768EXPORT_SYMBOL_GPL(ata_cable_40wire);
6769EXPORT_SYMBOL_GPL(ata_cable_80wire);
6770EXPORT_SYMBOL_GPL(ata_cable_unknown);
6771EXPORT_SYMBOL_GPL(ata_cable_ignore);
6772EXPORT_SYMBOL_GPL(ata_cable_sata);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * libata-core.c - helper library for ATA
4 *
5 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
6 * Copyright 2003-2004 Jeff Garzik
7 *
8 * libata documentation is available via 'make {ps|pdf}docs',
9 * as Documentation/driver-api/libata.rst
10 *
11 * Hardware documentation available from http://www.t13.org/ and
12 * http://www.sata-io.org/
13 *
14 * Standards documents from:
15 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
16 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
17 * http://www.sata-io.org (SATA)
18 * http://www.compactflash.org (CF)
19 * http://www.qic.org (QIC157 - Tape and DSC)
20 * http://www.ce-ata.org (CE-ATA: not supported)
21 *
22 * libata is essentially a library of internal helper functions for
23 * low-level ATA host controller drivers. As such, the API/ABI is
24 * likely to change as new drivers are added and updated.
25 * Do not depend on ABI/API stability.
26 */
27
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/pci.h>
31#include <linux/init.h>
32#include <linux/list.h>
33#include <linux/mm.h>
34#include <linux/spinlock.h>
35#include <linux/blkdev.h>
36#include <linux/delay.h>
37#include <linux/timer.h>
38#include <linux/time.h>
39#include <linux/interrupt.h>
40#include <linux/completion.h>
41#include <linux/suspend.h>
42#include <linux/workqueue.h>
43#include <linux/scatterlist.h>
44#include <linux/io.h>
45#include <linux/log2.h>
46#include <linux/slab.h>
47#include <linux/glob.h>
48#include <scsi/scsi.h>
49#include <scsi/scsi_cmnd.h>
50#include <scsi/scsi_host.h>
51#include <linux/libata.h>
52#include <asm/byteorder.h>
53#include <linux/unaligned.h>
54#include <linux/cdrom.h>
55#include <linux/ratelimit.h>
56#include <linux/leds.h>
57#include <linux/pm_runtime.h>
58#include <linux/platform_device.h>
59#include <asm/setup.h>
60
61#define CREATE_TRACE_POINTS
62#include <trace/events/libata.h>
63
64#include "libata.h"
65#include "libata-transport.h"
66
67const struct ata_port_operations ata_base_port_ops = {
68 .prereset = ata_std_prereset,
69 .postreset = ata_std_postreset,
70 .error_handler = ata_std_error_handler,
71 .sched_eh = ata_std_sched_eh,
72 .end_eh = ata_std_end_eh,
73};
74
75static unsigned int ata_dev_init_params(struct ata_device *dev,
76 u16 heads, u16 sectors);
77static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
78static void ata_dev_xfermask(struct ata_device *dev);
79static unsigned int ata_dev_quirks(const struct ata_device *dev);
80
81static DEFINE_IDA(ata_ida);
82
83#ifdef CONFIG_ATA_FORCE
84struct ata_force_param {
85 const char *name;
86 u8 cbl;
87 u8 spd_limit;
88 unsigned int xfer_mask;
89 unsigned int quirk_on;
90 unsigned int quirk_off;
91 u16 lflags_on;
92 u16 lflags_off;
93};
94
95struct ata_force_ent {
96 int port;
97 int device;
98 struct ata_force_param param;
99};
100
101static struct ata_force_ent *ata_force_tbl;
102static int ata_force_tbl_size;
103
104static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
105/* param_buf is thrown away after initialization, disallow read */
106module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
107MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
108#endif
109
110static int atapi_enabled = 1;
111module_param(atapi_enabled, int, 0444);
112MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
113
114static int atapi_dmadir = 0;
115module_param(atapi_dmadir, int, 0444);
116MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
117
118int atapi_passthru16 = 1;
119module_param(atapi_passthru16, int, 0444);
120MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
121
122int libata_fua = 0;
123module_param_named(fua, libata_fua, int, 0444);
124MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
125
126static int ata_ignore_hpa;
127module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
128MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
129
130static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
131module_param_named(dma, libata_dma_mask, int, 0444);
132MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
133
134static int ata_probe_timeout;
135module_param(ata_probe_timeout, int, 0444);
136MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
137
138int libata_noacpi = 0;
139module_param_named(noacpi, libata_noacpi, int, 0444);
140MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
141
142int libata_allow_tpm = 0;
143module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
144MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
145
146static int atapi_an;
147module_param(atapi_an, int, 0444);
148MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
149
150MODULE_AUTHOR("Jeff Garzik");
151MODULE_DESCRIPTION("Library module for ATA devices");
152MODULE_LICENSE("GPL");
153MODULE_VERSION(DRV_VERSION);
154
155static inline bool ata_dev_print_info(const struct ata_device *dev)
156{
157 struct ata_eh_context *ehc = &dev->link->eh_context;
158
159 return ehc->i.flags & ATA_EHI_PRINTINFO;
160}
161
162/**
163 * ata_link_next - link iteration helper
164 * @link: the previous link, NULL to start
165 * @ap: ATA port containing links to iterate
166 * @mode: iteration mode, one of ATA_LITER_*
167 *
168 * LOCKING:
169 * Host lock or EH context.
170 *
171 * RETURNS:
172 * Pointer to the next link.
173 */
174struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
175 enum ata_link_iter_mode mode)
176{
177 BUG_ON(mode != ATA_LITER_EDGE &&
178 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
179
180 /* NULL link indicates start of iteration */
181 if (!link)
182 switch (mode) {
183 case ATA_LITER_EDGE:
184 case ATA_LITER_PMP_FIRST:
185 if (sata_pmp_attached(ap))
186 return ap->pmp_link;
187 fallthrough;
188 case ATA_LITER_HOST_FIRST:
189 return &ap->link;
190 }
191
192 /* we just iterated over the host link, what's next? */
193 if (link == &ap->link)
194 switch (mode) {
195 case ATA_LITER_HOST_FIRST:
196 if (sata_pmp_attached(ap))
197 return ap->pmp_link;
198 fallthrough;
199 case ATA_LITER_PMP_FIRST:
200 if (unlikely(ap->slave_link))
201 return ap->slave_link;
202 fallthrough;
203 case ATA_LITER_EDGE:
204 return NULL;
205 }
206
207 /* slave_link excludes PMP */
208 if (unlikely(link == ap->slave_link))
209 return NULL;
210
211 /* we were over a PMP link */
212 if (++link < ap->pmp_link + ap->nr_pmp_links)
213 return link;
214
215 if (mode == ATA_LITER_PMP_FIRST)
216 return &ap->link;
217
218 return NULL;
219}
220EXPORT_SYMBOL_GPL(ata_link_next);
221
222/**
223 * ata_dev_next - device iteration helper
224 * @dev: the previous device, NULL to start
225 * @link: ATA link containing devices to iterate
226 * @mode: iteration mode, one of ATA_DITER_*
227 *
228 * LOCKING:
229 * Host lock or EH context.
230 *
231 * RETURNS:
232 * Pointer to the next device.
233 */
234struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
235 enum ata_dev_iter_mode mode)
236{
237 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
238 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
239
240 /* NULL dev indicates start of iteration */
241 if (!dev)
242 switch (mode) {
243 case ATA_DITER_ENABLED:
244 case ATA_DITER_ALL:
245 dev = link->device;
246 goto check;
247 case ATA_DITER_ENABLED_REVERSE:
248 case ATA_DITER_ALL_REVERSE:
249 dev = link->device + ata_link_max_devices(link) - 1;
250 goto check;
251 }
252
253 next:
254 /* move to the next one */
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 if (++dev < link->device + ata_link_max_devices(link))
259 goto check;
260 return NULL;
261 case ATA_DITER_ENABLED_REVERSE:
262 case ATA_DITER_ALL_REVERSE:
263 if (--dev >= link->device)
264 goto check;
265 return NULL;
266 }
267
268 check:
269 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
270 !ata_dev_enabled(dev))
271 goto next;
272 return dev;
273}
274EXPORT_SYMBOL_GPL(ata_dev_next);
275
276/**
277 * ata_dev_phys_link - find physical link for a device
278 * @dev: ATA device to look up physical link for
279 *
280 * Look up physical link which @dev is attached to. Note that
281 * this is different from @dev->link only when @dev is on slave
282 * link. For all other cases, it's the same as @dev->link.
283 *
284 * LOCKING:
285 * Don't care.
286 *
287 * RETURNS:
288 * Pointer to the found physical link.
289 */
290struct ata_link *ata_dev_phys_link(struct ata_device *dev)
291{
292 struct ata_port *ap = dev->link->ap;
293
294 if (!ap->slave_link)
295 return dev->link;
296 if (!dev->devno)
297 return &ap->link;
298 return ap->slave_link;
299}
300
301#ifdef CONFIG_ATA_FORCE
302/**
303 * ata_force_cbl - force cable type according to libata.force
304 * @ap: ATA port of interest
305 *
306 * Force cable type according to libata.force and whine about it.
307 * The last entry which has matching port number is used, so it
308 * can be specified as part of device force parameters. For
309 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
310 * same effect.
311 *
312 * LOCKING:
313 * EH context.
314 */
315void ata_force_cbl(struct ata_port *ap)
316{
317 int i;
318
319 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
320 const struct ata_force_ent *fe = &ata_force_tbl[i];
321
322 if (fe->port != -1 && fe->port != ap->print_id)
323 continue;
324
325 if (fe->param.cbl == ATA_CBL_NONE)
326 continue;
327
328 ap->cbl = fe->param.cbl;
329 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
330 return;
331 }
332}
333
334/**
335 * ata_force_link_limits - force link limits according to libata.force
336 * @link: ATA link of interest
337 *
338 * Force link flags and SATA spd limit according to libata.force
339 * and whine about it. When only the port part is specified
340 * (e.g. 1:), the limit applies to all links connected to both
341 * the host link and all fan-out ports connected via PMP. If the
342 * device part is specified as 0 (e.g. 1.00:), it specifies the
343 * first fan-out link not the host link. Device number 15 always
344 * points to the host link whether PMP is attached or not. If the
345 * controller has slave link, device number 16 points to it.
346 *
347 * LOCKING:
348 * EH context.
349 */
350static void ata_force_link_limits(struct ata_link *link)
351{
352 bool did_spd = false;
353 int linkno = link->pmp;
354 int i;
355
356 if (ata_is_host_link(link))
357 linkno += 15;
358
359 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
360 const struct ata_force_ent *fe = &ata_force_tbl[i];
361
362 if (fe->port != -1 && fe->port != link->ap->print_id)
363 continue;
364
365 if (fe->device != -1 && fe->device != linkno)
366 continue;
367
368 /* only honor the first spd limit */
369 if (!did_spd && fe->param.spd_limit) {
370 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
371 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
372 fe->param.name);
373 did_spd = true;
374 }
375
376 /* let lflags stack */
377 if (fe->param.lflags_on) {
378 link->flags |= fe->param.lflags_on;
379 ata_link_notice(link,
380 "FORCE: link flag 0x%x forced -> 0x%x\n",
381 fe->param.lflags_on, link->flags);
382 }
383 if (fe->param.lflags_off) {
384 link->flags &= ~fe->param.lflags_off;
385 ata_link_notice(link,
386 "FORCE: link flag 0x%x cleared -> 0x%x\n",
387 fe->param.lflags_off, link->flags);
388 }
389 }
390}
391
392/**
393 * ata_force_xfermask - force xfermask according to libata.force
394 * @dev: ATA device of interest
395 *
396 * Force xfer_mask according to libata.force and whine about it.
397 * For consistency with link selection, device number 15 selects
398 * the first device connected to the host link.
399 *
400 * LOCKING:
401 * EH context.
402 */
403static void ata_force_xfermask(struct ata_device *dev)
404{
405 int devno = dev->link->pmp + dev->devno;
406 int alt_devno = devno;
407 int i;
408
409 /* allow n.15/16 for devices attached to host port */
410 if (ata_is_host_link(dev->link))
411 alt_devno += 15;
412
413 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
414 const struct ata_force_ent *fe = &ata_force_tbl[i];
415 unsigned int pio_mask, mwdma_mask, udma_mask;
416
417 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
418 continue;
419
420 if (fe->device != -1 && fe->device != devno &&
421 fe->device != alt_devno)
422 continue;
423
424 if (!fe->param.xfer_mask)
425 continue;
426
427 ata_unpack_xfermask(fe->param.xfer_mask,
428 &pio_mask, &mwdma_mask, &udma_mask);
429 if (udma_mask)
430 dev->udma_mask = udma_mask;
431 else if (mwdma_mask) {
432 dev->udma_mask = 0;
433 dev->mwdma_mask = mwdma_mask;
434 } else {
435 dev->udma_mask = 0;
436 dev->mwdma_mask = 0;
437 dev->pio_mask = pio_mask;
438 }
439
440 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
441 fe->param.name);
442 return;
443 }
444}
445
446/**
447 * ata_force_quirks - force quirks according to libata.force
448 * @dev: ATA device of interest
449 *
450 * Force quirks according to libata.force and whine about it.
451 * For consistency with link selection, device number 15 selects
452 * the first device connected to the host link.
453 *
454 * LOCKING:
455 * EH context.
456 */
457static void ata_force_quirks(struct ata_device *dev)
458{
459 int devno = dev->link->pmp + dev->devno;
460 int alt_devno = devno;
461 int i;
462
463 /* allow n.15/16 for devices attached to host port */
464 if (ata_is_host_link(dev->link))
465 alt_devno += 15;
466
467 for (i = 0; i < ata_force_tbl_size; i++) {
468 const struct ata_force_ent *fe = &ata_force_tbl[i];
469
470 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
471 continue;
472
473 if (fe->device != -1 && fe->device != devno &&
474 fe->device != alt_devno)
475 continue;
476
477 if (!(~dev->quirks & fe->param.quirk_on) &&
478 !(dev->quirks & fe->param.quirk_off))
479 continue;
480
481 dev->quirks |= fe->param.quirk_on;
482 dev->quirks &= ~fe->param.quirk_off;
483
484 ata_dev_notice(dev, "FORCE: modified (%s)\n",
485 fe->param.name);
486 }
487}
488#else
489static inline void ata_force_link_limits(struct ata_link *link) { }
490static inline void ata_force_xfermask(struct ata_device *dev) { }
491static inline void ata_force_quirks(struct ata_device *dev) { }
492#endif
493
494/**
495 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
496 * @opcode: SCSI opcode
497 *
498 * Determine ATAPI command type from @opcode.
499 *
500 * LOCKING:
501 * None.
502 *
503 * RETURNS:
504 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 */
506int atapi_cmd_type(u8 opcode)
507{
508 switch (opcode) {
509 case GPCMD_READ_10:
510 case GPCMD_READ_12:
511 return ATAPI_READ;
512
513 case GPCMD_WRITE_10:
514 case GPCMD_WRITE_12:
515 case GPCMD_WRITE_AND_VERIFY_10:
516 return ATAPI_WRITE;
517
518 case GPCMD_READ_CD:
519 case GPCMD_READ_CD_MSF:
520 return ATAPI_READ_CD;
521
522 case ATA_16:
523 case ATA_12:
524 if (atapi_passthru16)
525 return ATAPI_PASS_THRU;
526 fallthrough;
527 default:
528 return ATAPI_MISC;
529 }
530}
531EXPORT_SYMBOL_GPL(atapi_cmd_type);
532
533static const u8 ata_rw_cmds[] = {
534 /* pio multi */
535 ATA_CMD_READ_MULTI,
536 ATA_CMD_WRITE_MULTI,
537 ATA_CMD_READ_MULTI_EXT,
538 ATA_CMD_WRITE_MULTI_EXT,
539 0,
540 0,
541 0,
542 0,
543 /* pio */
544 ATA_CMD_PIO_READ,
545 ATA_CMD_PIO_WRITE,
546 ATA_CMD_PIO_READ_EXT,
547 ATA_CMD_PIO_WRITE_EXT,
548 0,
549 0,
550 0,
551 0,
552 /* dma */
553 ATA_CMD_READ,
554 ATA_CMD_WRITE,
555 ATA_CMD_READ_EXT,
556 ATA_CMD_WRITE_EXT,
557 0,
558 0,
559 0,
560 ATA_CMD_WRITE_FUA_EXT
561};
562
563/**
564 * ata_set_rwcmd_protocol - set taskfile r/w command and protocol
565 * @dev: target device for the taskfile
566 * @tf: taskfile to examine and configure
567 *
568 * Examine the device configuration and tf->flags to determine
569 * the proper read/write command and protocol to use for @tf.
570 *
571 * LOCKING:
572 * caller.
573 */
574static bool ata_set_rwcmd_protocol(struct ata_device *dev,
575 struct ata_taskfile *tf)
576{
577 u8 cmd;
578
579 int index, fua, lba48, write;
580
581 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
582 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
583 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
584
585 if (dev->flags & ATA_DFLAG_PIO) {
586 tf->protocol = ATA_PROT_PIO;
587 index = dev->multi_count ? 0 : 8;
588 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
589 /* Unable to use DMA due to host limitation */
590 tf->protocol = ATA_PROT_PIO;
591 index = dev->multi_count ? 0 : 8;
592 } else {
593 tf->protocol = ATA_PROT_DMA;
594 index = 16;
595 }
596
597 cmd = ata_rw_cmds[index + fua + lba48 + write];
598 if (!cmd)
599 return false;
600
601 tf->command = cmd;
602
603 return true;
604}
605
606/**
607 * ata_tf_read_block - Read block address from ATA taskfile
608 * @tf: ATA taskfile of interest
609 * @dev: ATA device @tf belongs to
610 *
611 * LOCKING:
612 * None.
613 *
614 * Read block address from @tf. This function can handle all
615 * three address formats - LBA, LBA48 and CHS. tf->protocol and
616 * flags select the address format to use.
617 *
618 * RETURNS:
619 * Block address read from @tf.
620 */
621u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
622{
623 u64 block = 0;
624
625 if (tf->flags & ATA_TFLAG_LBA) {
626 if (tf->flags & ATA_TFLAG_LBA48) {
627 block |= (u64)tf->hob_lbah << 40;
628 block |= (u64)tf->hob_lbam << 32;
629 block |= (u64)tf->hob_lbal << 24;
630 } else
631 block |= (tf->device & 0xf) << 24;
632
633 block |= tf->lbah << 16;
634 block |= tf->lbam << 8;
635 block |= tf->lbal;
636 } else {
637 u32 cyl, head, sect;
638
639 cyl = tf->lbam | (tf->lbah << 8);
640 head = tf->device & 0xf;
641 sect = tf->lbal;
642
643 if (!sect) {
644 ata_dev_warn(dev,
645 "device reported invalid CHS sector 0\n");
646 return U64_MAX;
647 }
648
649 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
650 }
651
652 return block;
653}
654
655/*
656 * Set a taskfile command duration limit index.
657 */
658static inline void ata_set_tf_cdl(struct ata_queued_cmd *qc, int cdl)
659{
660 struct ata_taskfile *tf = &qc->tf;
661
662 if (tf->protocol == ATA_PROT_NCQ)
663 tf->auxiliary |= cdl;
664 else
665 tf->feature |= cdl;
666
667 /*
668 * Mark this command as having a CDL and request the result
669 * task file so that we can inspect the sense data available
670 * bit on completion.
671 */
672 qc->flags |= ATA_QCFLAG_HAS_CDL | ATA_QCFLAG_RESULT_TF;
673}
674
675/**
676 * ata_build_rw_tf - Build ATA taskfile for given read/write request
677 * @qc: Metadata associated with the taskfile to build
678 * @block: Block address
679 * @n_block: Number of blocks
680 * @tf_flags: RW/FUA etc...
681 * @cdl: Command duration limit index
682 * @class: IO priority class
683 *
684 * LOCKING:
685 * None.
686 *
687 * Build ATA taskfile for the command @qc for read/write request described
688 * by @block, @n_block, @tf_flags and @class.
689 *
690 * RETURNS:
691 *
692 * 0 on success, -ERANGE if the request is too large for @dev,
693 * -EINVAL if the request is invalid.
694 */
695int ata_build_rw_tf(struct ata_queued_cmd *qc, u64 block, u32 n_block,
696 unsigned int tf_flags, int cdl, int class)
697{
698 struct ata_taskfile *tf = &qc->tf;
699 struct ata_device *dev = qc->dev;
700
701 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
702 tf->flags |= tf_flags;
703
704 if (ata_ncq_enabled(dev)) {
705 /* yay, NCQ */
706 if (!lba_48_ok(block, n_block))
707 return -ERANGE;
708
709 tf->protocol = ATA_PROT_NCQ;
710 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
711
712 if (tf->flags & ATA_TFLAG_WRITE)
713 tf->command = ATA_CMD_FPDMA_WRITE;
714 else
715 tf->command = ATA_CMD_FPDMA_READ;
716
717 tf->nsect = qc->hw_tag << 3;
718 tf->hob_feature = (n_block >> 8) & 0xff;
719 tf->feature = n_block & 0xff;
720
721 tf->hob_lbah = (block >> 40) & 0xff;
722 tf->hob_lbam = (block >> 32) & 0xff;
723 tf->hob_lbal = (block >> 24) & 0xff;
724 tf->lbah = (block >> 16) & 0xff;
725 tf->lbam = (block >> 8) & 0xff;
726 tf->lbal = block & 0xff;
727
728 tf->device = ATA_LBA;
729 if (tf->flags & ATA_TFLAG_FUA)
730 tf->device |= 1 << 7;
731
732 if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLED &&
733 class == IOPRIO_CLASS_RT)
734 tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
735
736 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
737 ata_set_tf_cdl(qc, cdl);
738
739 } else if (dev->flags & ATA_DFLAG_LBA) {
740 tf->flags |= ATA_TFLAG_LBA;
741
742 if ((dev->flags & ATA_DFLAG_CDL_ENABLED) && cdl)
743 ata_set_tf_cdl(qc, cdl);
744
745 /* Both FUA writes and a CDL index require 48-bit commands */
746 if (!(tf->flags & ATA_TFLAG_FUA) &&
747 !(qc->flags & ATA_QCFLAG_HAS_CDL) &&
748 lba_28_ok(block, n_block)) {
749 /* use LBA28 */
750 tf->device |= (block >> 24) & 0xf;
751 } else if (lba_48_ok(block, n_block)) {
752 if (!(dev->flags & ATA_DFLAG_LBA48))
753 return -ERANGE;
754
755 /* use LBA48 */
756 tf->flags |= ATA_TFLAG_LBA48;
757
758 tf->hob_nsect = (n_block >> 8) & 0xff;
759
760 tf->hob_lbah = (block >> 40) & 0xff;
761 tf->hob_lbam = (block >> 32) & 0xff;
762 tf->hob_lbal = (block >> 24) & 0xff;
763 } else {
764 /* request too large even for LBA48 */
765 return -ERANGE;
766 }
767
768 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
769 return -EINVAL;
770
771 tf->nsect = n_block & 0xff;
772
773 tf->lbah = (block >> 16) & 0xff;
774 tf->lbam = (block >> 8) & 0xff;
775 tf->lbal = block & 0xff;
776
777 tf->device |= ATA_LBA;
778 } else {
779 /* CHS */
780 u32 sect, head, cyl, track;
781
782 /* The request -may- be too large for CHS addressing. */
783 if (!lba_28_ok(block, n_block))
784 return -ERANGE;
785
786 if (unlikely(!ata_set_rwcmd_protocol(dev, tf)))
787 return -EINVAL;
788
789 /* Convert LBA to CHS */
790 track = (u32)block / dev->sectors;
791 cyl = track / dev->heads;
792 head = track % dev->heads;
793 sect = (u32)block % dev->sectors + 1;
794
795 /* Check whether the converted CHS can fit.
796 Cylinder: 0-65535
797 Head: 0-15
798 Sector: 1-255*/
799 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
800 return -ERANGE;
801
802 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
803 tf->lbal = sect;
804 tf->lbam = cyl;
805 tf->lbah = cyl >> 8;
806 tf->device |= head;
807 }
808
809 return 0;
810}
811
812/**
813 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
814 * @pio_mask: pio_mask
815 * @mwdma_mask: mwdma_mask
816 * @udma_mask: udma_mask
817 *
818 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
819 * unsigned int xfer_mask.
820 *
821 * LOCKING:
822 * None.
823 *
824 * RETURNS:
825 * Packed xfer_mask.
826 */
827unsigned int ata_pack_xfermask(unsigned int pio_mask,
828 unsigned int mwdma_mask,
829 unsigned int udma_mask)
830{
831 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
832 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
833 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
834}
835EXPORT_SYMBOL_GPL(ata_pack_xfermask);
836
837/**
838 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
839 * @xfer_mask: xfer_mask to unpack
840 * @pio_mask: resulting pio_mask
841 * @mwdma_mask: resulting mwdma_mask
842 * @udma_mask: resulting udma_mask
843 *
844 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
845 * Any NULL destination masks will be ignored.
846 */
847void ata_unpack_xfermask(unsigned int xfer_mask, unsigned int *pio_mask,
848 unsigned int *mwdma_mask, unsigned int *udma_mask)
849{
850 if (pio_mask)
851 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
852 if (mwdma_mask)
853 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
854 if (udma_mask)
855 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
856}
857
858static const struct ata_xfer_ent {
859 int shift, bits;
860 u8 base;
861} ata_xfer_tbl[] = {
862 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
863 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
864 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
865 { -1, },
866};
867
868/**
869 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
870 * @xfer_mask: xfer_mask of interest
871 *
872 * Return matching XFER_* value for @xfer_mask. Only the highest
873 * bit of @xfer_mask is considered.
874 *
875 * LOCKING:
876 * None.
877 *
878 * RETURNS:
879 * Matching XFER_* value, 0xff if no match found.
880 */
881u8 ata_xfer_mask2mode(unsigned int xfer_mask)
882{
883 int highbit = fls(xfer_mask) - 1;
884 const struct ata_xfer_ent *ent;
885
886 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
887 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
888 return ent->base + highbit - ent->shift;
889 return 0xff;
890}
891EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
892
893/**
894 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
895 * @xfer_mode: XFER_* of interest
896 *
897 * Return matching xfer_mask for @xfer_mode.
898 *
899 * LOCKING:
900 * None.
901 *
902 * RETURNS:
903 * Matching xfer_mask, 0 if no match found.
904 */
905unsigned int ata_xfer_mode2mask(u8 xfer_mode)
906{
907 const struct ata_xfer_ent *ent;
908
909 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
910 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
911 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
912 & ~((1 << ent->shift) - 1);
913 return 0;
914}
915EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
916
917/**
918 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
919 * @xfer_mode: XFER_* of interest
920 *
921 * Return matching xfer_shift for @xfer_mode.
922 *
923 * LOCKING:
924 * None.
925 *
926 * RETURNS:
927 * Matching xfer_shift, -1 if no match found.
928 */
929int ata_xfer_mode2shift(u8 xfer_mode)
930{
931 const struct ata_xfer_ent *ent;
932
933 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
934 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
935 return ent->shift;
936 return -1;
937}
938EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
939
940/**
941 * ata_mode_string - convert xfer_mask to string
942 * @xfer_mask: mask of bits supported; only highest bit counts.
943 *
944 * Determine string which represents the highest speed
945 * (highest bit in @modemask).
946 *
947 * LOCKING:
948 * None.
949 *
950 * RETURNS:
951 * Constant C string representing highest speed listed in
952 * @mode_mask, or the constant C string "<n/a>".
953 */
954const char *ata_mode_string(unsigned int xfer_mask)
955{
956 static const char * const xfer_mode_str[] = {
957 "PIO0",
958 "PIO1",
959 "PIO2",
960 "PIO3",
961 "PIO4",
962 "PIO5",
963 "PIO6",
964 "MWDMA0",
965 "MWDMA1",
966 "MWDMA2",
967 "MWDMA3",
968 "MWDMA4",
969 "UDMA/16",
970 "UDMA/25",
971 "UDMA/33",
972 "UDMA/44",
973 "UDMA/66",
974 "UDMA/100",
975 "UDMA/133",
976 "UDMA7",
977 };
978 int highbit;
979
980 highbit = fls(xfer_mask) - 1;
981 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
982 return xfer_mode_str[highbit];
983 return "<n/a>";
984}
985EXPORT_SYMBOL_GPL(ata_mode_string);
986
987const char *sata_spd_string(unsigned int spd)
988{
989 static const char * const spd_str[] = {
990 "1.5 Gbps",
991 "3.0 Gbps",
992 "6.0 Gbps",
993 };
994
995 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
996 return "<unknown>";
997 return spd_str[spd - 1];
998}
999
1000/**
1001 * ata_dev_classify - determine device type based on ATA-spec signature
1002 * @tf: ATA taskfile register set for device to be identified
1003 *
1004 * Determine from taskfile register contents whether a device is
1005 * ATA or ATAPI, as per "Signature and persistence" section
1006 * of ATA/PI spec (volume 1, sect 5.14).
1007 *
1008 * LOCKING:
1009 * None.
1010 *
1011 * RETURNS:
1012 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1013 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1014 */
1015unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1016{
1017 /* Apple's open source Darwin code hints that some devices only
1018 * put a proper signature into the LBA mid/high registers,
1019 * So, we only check those. It's sufficient for uniqueness.
1020 *
1021 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1022 * signatures for ATA and ATAPI devices attached on SerialATA,
1023 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1024 * spec has never mentioned about using different signatures
1025 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1026 * Multiplier specification began to use 0x69/0x96 to identify
1027 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1028 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1029 * 0x69/0x96 shortly and described them as reserved for
1030 * SerialATA.
1031 *
1032 * We follow the current spec and consider that 0x69/0x96
1033 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1034 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1035 * SEMB signature. This is worked around in
1036 * ata_dev_read_id().
1037 */
1038 if (tf->lbam == 0 && tf->lbah == 0)
1039 return ATA_DEV_ATA;
1040
1041 if (tf->lbam == 0x14 && tf->lbah == 0xeb)
1042 return ATA_DEV_ATAPI;
1043
1044 if (tf->lbam == 0x69 && tf->lbah == 0x96)
1045 return ATA_DEV_PMP;
1046
1047 if (tf->lbam == 0x3c && tf->lbah == 0xc3)
1048 return ATA_DEV_SEMB;
1049
1050 if (tf->lbam == 0xcd && tf->lbah == 0xab)
1051 return ATA_DEV_ZAC;
1052
1053 return ATA_DEV_UNKNOWN;
1054}
1055EXPORT_SYMBOL_GPL(ata_dev_classify);
1056
1057/**
1058 * ata_id_string - Convert IDENTIFY DEVICE page into string
1059 * @id: IDENTIFY DEVICE results we will examine
1060 * @s: string into which data is output
1061 * @ofs: offset into identify device page
1062 * @len: length of string to return. must be an even number.
1063 *
1064 * The strings in the IDENTIFY DEVICE page are broken up into
1065 * 16-bit chunks. Run through the string, and output each
1066 * 8-bit chunk linearly, regardless of platform.
1067 *
1068 * LOCKING:
1069 * caller.
1070 */
1071
1072void ata_id_string(const u16 *id, unsigned char *s,
1073 unsigned int ofs, unsigned int len)
1074{
1075 unsigned int c;
1076
1077 BUG_ON(len & 1);
1078
1079 while (len > 0) {
1080 c = id[ofs] >> 8;
1081 *s = c;
1082 s++;
1083
1084 c = id[ofs] & 0xff;
1085 *s = c;
1086 s++;
1087
1088 ofs++;
1089 len -= 2;
1090 }
1091}
1092EXPORT_SYMBOL_GPL(ata_id_string);
1093
1094/**
1095 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1096 * @id: IDENTIFY DEVICE results we will examine
1097 * @s: string into which data is output
1098 * @ofs: offset into identify device page
1099 * @len: length of string to return. must be an odd number.
1100 *
1101 * This function is identical to ata_id_string except that it
1102 * trims trailing spaces and terminates the resulting string with
1103 * null. @len must be actual maximum length (even number) + 1.
1104 *
1105 * LOCKING:
1106 * caller.
1107 */
1108void ata_id_c_string(const u16 *id, unsigned char *s,
1109 unsigned int ofs, unsigned int len)
1110{
1111 unsigned char *p;
1112
1113 ata_id_string(id, s, ofs, len - 1);
1114
1115 p = s + strnlen(s, len - 1);
1116 while (p > s && p[-1] == ' ')
1117 p--;
1118 *p = '\0';
1119}
1120EXPORT_SYMBOL_GPL(ata_id_c_string);
1121
1122static u64 ata_id_n_sectors(const u16 *id)
1123{
1124 if (ata_id_has_lba(id)) {
1125 if (ata_id_has_lba48(id))
1126 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1127
1128 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1129 }
1130
1131 if (ata_id_current_chs_valid(id))
1132 return (u32)id[ATA_ID_CUR_CYLS] * (u32)id[ATA_ID_CUR_HEADS] *
1133 (u32)id[ATA_ID_CUR_SECTORS];
1134
1135 return (u32)id[ATA_ID_CYLS] * (u32)id[ATA_ID_HEADS] *
1136 (u32)id[ATA_ID_SECTORS];
1137}
1138
1139u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1140{
1141 u64 sectors = 0;
1142
1143 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1144 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1145 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1146 sectors |= (tf->lbah & 0xff) << 16;
1147 sectors |= (tf->lbam & 0xff) << 8;
1148 sectors |= (tf->lbal & 0xff);
1149
1150 return sectors;
1151}
1152
1153u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1154{
1155 u64 sectors = 0;
1156
1157 sectors |= (tf->device & 0x0f) << 24;
1158 sectors |= (tf->lbah & 0xff) << 16;
1159 sectors |= (tf->lbam & 0xff) << 8;
1160 sectors |= (tf->lbal & 0xff);
1161
1162 return sectors;
1163}
1164
1165/**
1166 * ata_read_native_max_address - Read native max address
1167 * @dev: target device
1168 * @max_sectors: out parameter for the result native max address
1169 *
1170 * Perform an LBA48 or LBA28 native size query upon the device in
1171 * question.
1172 *
1173 * RETURNS:
1174 * 0 on success, -EACCES if command is aborted by the drive.
1175 * -EIO on other errors.
1176 */
1177static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1178{
1179 unsigned int err_mask;
1180 struct ata_taskfile tf;
1181 int lba48 = ata_id_has_lba48(dev->id);
1182
1183 ata_tf_init(dev, &tf);
1184
1185 /* always clear all address registers */
1186 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1187
1188 if (lba48) {
1189 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1190 tf.flags |= ATA_TFLAG_LBA48;
1191 } else
1192 tf.command = ATA_CMD_READ_NATIVE_MAX;
1193
1194 tf.protocol = ATA_PROT_NODATA;
1195 tf.device |= ATA_LBA;
1196
1197 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1198 if (err_mask) {
1199 ata_dev_warn(dev,
1200 "failed to read native max address (err_mask=0x%x)\n",
1201 err_mask);
1202 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
1203 return -EACCES;
1204 return -EIO;
1205 }
1206
1207 if (lba48)
1208 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1209 else
1210 *max_sectors = ata_tf_to_lba(&tf) + 1;
1211 if (dev->quirks & ATA_QUIRK_HPA_SIZE)
1212 (*max_sectors)--;
1213 return 0;
1214}
1215
1216/**
1217 * ata_set_max_sectors - Set max sectors
1218 * @dev: target device
1219 * @new_sectors: new max sectors value to set for the device
1220 *
1221 * Set max sectors of @dev to @new_sectors.
1222 *
1223 * RETURNS:
1224 * 0 on success, -EACCES if command is aborted or denied (due to
1225 * previous non-volatile SET_MAX) by the drive. -EIO on other
1226 * errors.
1227 */
1228static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1229{
1230 unsigned int err_mask;
1231 struct ata_taskfile tf;
1232 int lba48 = ata_id_has_lba48(dev->id);
1233
1234 new_sectors--;
1235
1236 ata_tf_init(dev, &tf);
1237
1238 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1239
1240 if (lba48) {
1241 tf.command = ATA_CMD_SET_MAX_EXT;
1242 tf.flags |= ATA_TFLAG_LBA48;
1243
1244 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1245 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1246 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1247 } else {
1248 tf.command = ATA_CMD_SET_MAX;
1249
1250 tf.device |= (new_sectors >> 24) & 0xf;
1251 }
1252
1253 tf.protocol = ATA_PROT_NODATA;
1254 tf.device |= ATA_LBA;
1255
1256 tf.lbal = (new_sectors >> 0) & 0xff;
1257 tf.lbam = (new_sectors >> 8) & 0xff;
1258 tf.lbah = (new_sectors >> 16) & 0xff;
1259
1260 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1261 if (err_mask) {
1262 ata_dev_warn(dev,
1263 "failed to set max address (err_mask=0x%x)\n",
1264 err_mask);
1265 if (err_mask == AC_ERR_DEV &&
1266 (tf.error & (ATA_ABORTED | ATA_IDNF)))
1267 return -EACCES;
1268 return -EIO;
1269 }
1270
1271 return 0;
1272}
1273
1274/**
1275 * ata_hpa_resize - Resize a device with an HPA set
1276 * @dev: Device to resize
1277 *
1278 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1279 * it if required to the full size of the media. The caller must check
1280 * the drive has the HPA feature set enabled.
1281 *
1282 * RETURNS:
1283 * 0 on success, -errno on failure.
1284 */
1285static int ata_hpa_resize(struct ata_device *dev)
1286{
1287 bool print_info = ata_dev_print_info(dev);
1288 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1289 u64 sectors = ata_id_n_sectors(dev->id);
1290 u64 native_sectors;
1291 int rc;
1292
1293 /* do we need to do it? */
1294 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1295 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1296 (dev->quirks & ATA_QUIRK_BROKEN_HPA))
1297 return 0;
1298
1299 /* read native max address */
1300 rc = ata_read_native_max_address(dev, &native_sectors);
1301 if (rc) {
1302 /* If device aborted the command or HPA isn't going to
1303 * be unlocked, skip HPA resizing.
1304 */
1305 if (rc == -EACCES || !unlock_hpa) {
1306 ata_dev_warn(dev,
1307 "HPA support seems broken, skipping HPA handling\n");
1308 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1309
1310 /* we can continue if device aborted the command */
1311 if (rc == -EACCES)
1312 rc = 0;
1313 }
1314
1315 return rc;
1316 }
1317 dev->n_native_sectors = native_sectors;
1318
1319 /* nothing to do? */
1320 if (native_sectors <= sectors || !unlock_hpa) {
1321 if (!print_info || native_sectors == sectors)
1322 return 0;
1323
1324 if (native_sectors > sectors)
1325 ata_dev_info(dev,
1326 "HPA detected: current %llu, native %llu\n",
1327 (unsigned long long)sectors,
1328 (unsigned long long)native_sectors);
1329 else if (native_sectors < sectors)
1330 ata_dev_warn(dev,
1331 "native sectors (%llu) is smaller than sectors (%llu)\n",
1332 (unsigned long long)native_sectors,
1333 (unsigned long long)sectors);
1334 return 0;
1335 }
1336
1337 /* let's unlock HPA */
1338 rc = ata_set_max_sectors(dev, native_sectors);
1339 if (rc == -EACCES) {
1340 /* if device aborted the command, skip HPA resizing */
1341 ata_dev_warn(dev,
1342 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1343 (unsigned long long)sectors,
1344 (unsigned long long)native_sectors);
1345 dev->quirks |= ATA_QUIRK_BROKEN_HPA;
1346 return 0;
1347 } else if (rc)
1348 return rc;
1349
1350 /* re-read IDENTIFY data */
1351 rc = ata_dev_reread_id(dev, 0);
1352 if (rc) {
1353 ata_dev_err(dev,
1354 "failed to re-read IDENTIFY data after HPA resizing\n");
1355 return rc;
1356 }
1357
1358 if (print_info) {
1359 u64 new_sectors = ata_id_n_sectors(dev->id);
1360 ata_dev_info(dev,
1361 "HPA unlocked: %llu -> %llu, native %llu\n",
1362 (unsigned long long)sectors,
1363 (unsigned long long)new_sectors,
1364 (unsigned long long)native_sectors);
1365 }
1366
1367 return 0;
1368}
1369
1370/**
1371 * ata_dump_id - IDENTIFY DEVICE info debugging output
1372 * @dev: device from which the information is fetched
1373 * @id: IDENTIFY DEVICE page to dump
1374 *
1375 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1376 * page.
1377 *
1378 * LOCKING:
1379 * caller.
1380 */
1381
1382static inline void ata_dump_id(struct ata_device *dev, const u16 *id)
1383{
1384 ata_dev_dbg(dev,
1385 "49==0x%04x 53==0x%04x 63==0x%04x 64==0x%04x 75==0x%04x\n"
1386 "80==0x%04x 81==0x%04x 82==0x%04x 83==0x%04x 84==0x%04x\n"
1387 "88==0x%04x 93==0x%04x\n",
1388 id[49], id[53], id[63], id[64], id[75], id[80],
1389 id[81], id[82], id[83], id[84], id[88], id[93]);
1390}
1391
1392/**
1393 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394 * @id: IDENTIFY data to compute xfer mask from
1395 *
1396 * Compute the xfermask for this device. This is not as trivial
1397 * as it seems if we must consider early devices correctly.
1398 *
1399 * FIXME: pre IDE drive timing (do we care ?).
1400 *
1401 * LOCKING:
1402 * None.
1403 *
1404 * RETURNS:
1405 * Computed xfermask
1406 */
1407unsigned int ata_id_xfermask(const u16 *id)
1408{
1409 unsigned int pio_mask, mwdma_mask, udma_mask;
1410
1411 /* Usual case. Word 53 indicates word 64 is valid */
1412 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414 pio_mask <<= 3;
1415 pio_mask |= 0x7;
1416 } else {
1417 /* If word 64 isn't valid then Word 51 high byte holds
1418 * the PIO timing number for the maximum. Turn it into
1419 * a mask.
1420 */
1421 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422 if (mode < 5) /* Valid PIO range */
1423 pio_mask = (2 << mode) - 1;
1424 else
1425 pio_mask = 1;
1426
1427 /* But wait.. there's more. Design your standards by
1428 * committee and you too can get a free iordy field to
1429 * process. However it is the speeds not the modes that
1430 * are supported... Note drivers using the timing API
1431 * will get this right anyway
1432 */
1433 }
1434
1435 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436
1437 if (ata_id_is_cfa(id)) {
1438 /*
1439 * Process compact flash extended modes
1440 */
1441 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443
1444 if (pio)
1445 pio_mask |= (1 << 5);
1446 if (pio > 1)
1447 pio_mask |= (1 << 6);
1448 if (dma)
1449 mwdma_mask |= (1 << 3);
1450 if (dma > 1)
1451 mwdma_mask |= (1 << 4);
1452 }
1453
1454 udma_mask = 0;
1455 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457
1458 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459}
1460EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461
1462static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463{
1464 struct completion *waiting = qc->private_data;
1465
1466 complete(waiting);
1467}
1468
1469/**
1470 * ata_exec_internal - execute libata internal command
1471 * @dev: Device to which the command is sent
1472 * @tf: Taskfile registers for the command and the result
1473 * @cdb: CDB for packet command
1474 * @dma_dir: Data transfer direction of the command
1475 * @buf: Data buffer of the command
1476 * @buflen: Length of data buffer
1477 * @timeout: Timeout in msecs (0 for default)
1478 *
1479 * Executes libata internal command with timeout. @tf contains
1480 * the command on entry and the result on return. Timeout and error
1481 * conditions are reported via the return value. No recovery action
1482 * is taken after a command times out. It is the caller's duty to
1483 * clean up after timeout.
1484 *
1485 * LOCKING:
1486 * None. Should be called with kernel context, might sleep.
1487 *
1488 * RETURNS:
1489 * Zero on success, AC_ERR_* mask on failure
1490 */
1491unsigned int ata_exec_internal(struct ata_device *dev, struct ata_taskfile *tf,
1492 const u8 *cdb, enum dma_data_direction dma_dir,
1493 void *buf, unsigned int buflen,
1494 unsigned int timeout)
1495{
1496 struct ata_link *link = dev->link;
1497 struct ata_port *ap = link->ap;
1498 u8 command = tf->command;
1499 struct ata_queued_cmd *qc;
1500 struct scatterlist sgl;
1501 unsigned int preempted_tag;
1502 u32 preempted_sactive;
1503 u64 preempted_qc_active;
1504 int preempted_nr_active_links;
1505 bool auto_timeout = false;
1506 DECLARE_COMPLETION_ONSTACK(wait);
1507 unsigned long flags;
1508 unsigned int err_mask;
1509 int rc;
1510
1511 if (WARN_ON(dma_dir != DMA_NONE && !buf))
1512 return AC_ERR_INVALID;
1513
1514 spin_lock_irqsave(ap->lock, flags);
1515
1516 /* No internal command while frozen */
1517 if (ata_port_is_frozen(ap)) {
1518 spin_unlock_irqrestore(ap->lock, flags);
1519 return AC_ERR_SYSTEM;
1520 }
1521
1522 /* Initialize internal qc */
1523 qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1524
1525 qc->tag = ATA_TAG_INTERNAL;
1526 qc->hw_tag = 0;
1527 qc->scsicmd = NULL;
1528 qc->ap = ap;
1529 qc->dev = dev;
1530 ata_qc_reinit(qc);
1531
1532 preempted_tag = link->active_tag;
1533 preempted_sactive = link->sactive;
1534 preempted_qc_active = ap->qc_active;
1535 preempted_nr_active_links = ap->nr_active_links;
1536 link->active_tag = ATA_TAG_POISON;
1537 link->sactive = 0;
1538 ap->qc_active = 0;
1539 ap->nr_active_links = 0;
1540
1541 /* Prepare and issue qc */
1542 qc->tf = *tf;
1543 if (cdb)
1544 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1545
1546 /* Some SATA bridges need us to indicate data xfer direction */
1547 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1548 dma_dir == DMA_FROM_DEVICE)
1549 qc->tf.feature |= ATAPI_DMADIR;
1550
1551 qc->flags |= ATA_QCFLAG_RESULT_TF;
1552 qc->dma_dir = dma_dir;
1553 if (dma_dir != DMA_NONE) {
1554 sg_init_one(&sgl, buf, buflen);
1555 ata_sg_init(qc, &sgl, 1);
1556 qc->nbytes = buflen;
1557 }
1558
1559 qc->private_data = &wait;
1560 qc->complete_fn = ata_qc_complete_internal;
1561
1562 ata_qc_issue(qc);
1563
1564 spin_unlock_irqrestore(ap->lock, flags);
1565
1566 if (!timeout) {
1567 if (ata_probe_timeout) {
1568 timeout = ata_probe_timeout * 1000;
1569 } else {
1570 timeout = ata_internal_cmd_timeout(dev, command);
1571 auto_timeout = true;
1572 }
1573 }
1574
1575 ata_eh_release(ap);
1576
1577 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1578
1579 ata_eh_acquire(ap);
1580
1581 ata_sff_flush_pio_task(ap);
1582
1583 if (!rc) {
1584 /*
1585 * We are racing with irq here. If we lose, the following test
1586 * prevents us from completing the qc twice. If we win, the port
1587 * is frozen and will be cleaned up by ->post_internal_cmd().
1588 */
1589 spin_lock_irqsave(ap->lock, flags);
1590 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1591 qc->err_mask |= AC_ERR_TIMEOUT;
1592 ata_port_freeze(ap);
1593 ata_dev_warn(dev, "qc timeout after %u msecs (cmd 0x%x)\n",
1594 timeout, command);
1595 }
1596 spin_unlock_irqrestore(ap->lock, flags);
1597 }
1598
1599 if (ap->ops->post_internal_cmd)
1600 ap->ops->post_internal_cmd(qc);
1601
1602 /* Perform minimal error analysis */
1603 if (qc->flags & ATA_QCFLAG_EH) {
1604 if (qc->result_tf.status & (ATA_ERR | ATA_DF))
1605 qc->err_mask |= AC_ERR_DEV;
1606
1607 if (!qc->err_mask)
1608 qc->err_mask |= AC_ERR_OTHER;
1609
1610 if (qc->err_mask & ~AC_ERR_OTHER)
1611 qc->err_mask &= ~AC_ERR_OTHER;
1612 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1613 qc->result_tf.status |= ATA_SENSE;
1614 }
1615
1616 /* Finish up */
1617 spin_lock_irqsave(ap->lock, flags);
1618
1619 *tf = qc->result_tf;
1620 err_mask = qc->err_mask;
1621
1622 ata_qc_free(qc);
1623 link->active_tag = preempted_tag;
1624 link->sactive = preempted_sactive;
1625 ap->qc_active = preempted_qc_active;
1626 ap->nr_active_links = preempted_nr_active_links;
1627
1628 spin_unlock_irqrestore(ap->lock, flags);
1629
1630 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1631 ata_internal_cmd_timed_out(dev, command);
1632
1633 return err_mask;
1634}
1635
1636/**
1637 * ata_pio_need_iordy - check if iordy needed
1638 * @adev: ATA device
1639 *
1640 * Check if the current speed of the device requires IORDY. Used
1641 * by various controllers for chip configuration.
1642 */
1643unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1644{
1645 /* Don't set IORDY if we're preparing for reset. IORDY may
1646 * lead to controller lock up on certain controllers if the
1647 * port is not occupied. See bko#11703 for details.
1648 */
1649 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1650 return 0;
1651 /* Controller doesn't support IORDY. Probably a pointless
1652 * check as the caller should know this.
1653 */
1654 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1655 return 0;
1656 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1657 if (ata_id_is_cfa(adev->id)
1658 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1659 return 0;
1660 /* PIO3 and higher it is mandatory */
1661 if (adev->pio_mode > XFER_PIO_2)
1662 return 1;
1663 /* We turn it on when possible */
1664 if (ata_id_has_iordy(adev->id))
1665 return 1;
1666 return 0;
1667}
1668EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1669
1670/**
1671 * ata_pio_mask_no_iordy - Return the non IORDY mask
1672 * @adev: ATA device
1673 *
1674 * Compute the highest mode possible if we are not using iordy. Return
1675 * -1 if no iordy mode is available.
1676 */
1677static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1678{
1679 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1680 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1681 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1682 /* Is the speed faster than the drive allows non IORDY ? */
1683 if (pio) {
1684 /* This is cycle times not frequency - watch the logic! */
1685 if (pio > 240) /* PIO2 is 240nS per cycle */
1686 return 3 << ATA_SHIFT_PIO;
1687 return 7 << ATA_SHIFT_PIO;
1688 }
1689 }
1690 return 3 << ATA_SHIFT_PIO;
1691}
1692
1693/**
1694 * ata_do_dev_read_id - default ID read method
1695 * @dev: device
1696 * @tf: proposed taskfile
1697 * @id: data buffer
1698 *
1699 * Issue the identify taskfile and hand back the buffer containing
1700 * identify data. For some RAID controllers and for pre ATA devices
1701 * this function is wrapped or replaced by the driver
1702 */
1703unsigned int ata_do_dev_read_id(struct ata_device *dev,
1704 struct ata_taskfile *tf, __le16 *id)
1705{
1706 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1707 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1708}
1709EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1710
1711/**
1712 * ata_dev_read_id - Read ID data from the specified device
1713 * @dev: target device
1714 * @p_class: pointer to class of the target device (may be changed)
1715 * @flags: ATA_READID_* flags
1716 * @id: buffer to read IDENTIFY data into
1717 *
1718 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1719 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1720 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1721 * for pre-ATA4 drives.
1722 *
1723 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1724 * now we abort if we hit that case.
1725 *
1726 * LOCKING:
1727 * Kernel thread context (may sleep)
1728 *
1729 * RETURNS:
1730 * 0 on success, -errno otherwise.
1731 */
1732int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1733 unsigned int flags, u16 *id)
1734{
1735 struct ata_port *ap = dev->link->ap;
1736 unsigned int class = *p_class;
1737 struct ata_taskfile tf;
1738 unsigned int err_mask = 0;
1739 const char *reason;
1740 bool is_semb = class == ATA_DEV_SEMB;
1741 int may_fallback = 1, tried_spinup = 0;
1742 int rc;
1743
1744retry:
1745 ata_tf_init(dev, &tf);
1746
1747 switch (class) {
1748 case ATA_DEV_SEMB:
1749 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1750 fallthrough;
1751 case ATA_DEV_ATA:
1752 case ATA_DEV_ZAC:
1753 tf.command = ATA_CMD_ID_ATA;
1754 break;
1755 case ATA_DEV_ATAPI:
1756 tf.command = ATA_CMD_ID_ATAPI;
1757 break;
1758 default:
1759 rc = -ENODEV;
1760 reason = "unsupported class";
1761 goto err_out;
1762 }
1763
1764 tf.protocol = ATA_PROT_PIO;
1765
1766 /* Some devices choke if TF registers contain garbage. Make
1767 * sure those are properly initialized.
1768 */
1769 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1770
1771 /* Device presence detection is unreliable on some
1772 * controllers. Always poll IDENTIFY if available.
1773 */
1774 tf.flags |= ATA_TFLAG_POLLING;
1775
1776 if (ap->ops->read_id)
1777 err_mask = ap->ops->read_id(dev, &tf, (__le16 *)id);
1778 else
1779 err_mask = ata_do_dev_read_id(dev, &tf, (__le16 *)id);
1780
1781 if (err_mask) {
1782 if (err_mask & AC_ERR_NODEV_HINT) {
1783 ata_dev_dbg(dev, "NODEV after polling detection\n");
1784 return -ENOENT;
1785 }
1786
1787 if (is_semb) {
1788 ata_dev_info(dev,
1789 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1790 /* SEMB is not supported yet */
1791 *p_class = ATA_DEV_SEMB_UNSUP;
1792 return 0;
1793 }
1794
1795 if ((err_mask == AC_ERR_DEV) && (tf.error & ATA_ABORTED)) {
1796 /* Device or controller might have reported
1797 * the wrong device class. Give a shot at the
1798 * other IDENTIFY if the current one is
1799 * aborted by the device.
1800 */
1801 if (may_fallback) {
1802 may_fallback = 0;
1803
1804 if (class == ATA_DEV_ATA)
1805 class = ATA_DEV_ATAPI;
1806 else
1807 class = ATA_DEV_ATA;
1808 goto retry;
1809 }
1810
1811 /* Control reaches here iff the device aborted
1812 * both flavors of IDENTIFYs which happens
1813 * sometimes with phantom devices.
1814 */
1815 ata_dev_dbg(dev,
1816 "both IDENTIFYs aborted, assuming NODEV\n");
1817 return -ENOENT;
1818 }
1819
1820 rc = -EIO;
1821 reason = "I/O error";
1822 goto err_out;
1823 }
1824
1825 if (dev->quirks & ATA_QUIRK_DUMP_ID) {
1826 ata_dev_info(dev, "dumping IDENTIFY data, "
1827 "class=%d may_fallback=%d tried_spinup=%d\n",
1828 class, may_fallback, tried_spinup);
1829 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET,
1830 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1831 }
1832
1833 /* Falling back doesn't make sense if ID data was read
1834 * successfully at least once.
1835 */
1836 may_fallback = 0;
1837
1838 swap_buf_le16(id, ATA_ID_WORDS);
1839
1840 /* sanity check */
1841 rc = -EINVAL;
1842 reason = "device reports invalid type";
1843
1844 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1845 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1846 goto err_out;
1847 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1848 ata_id_is_ata(id)) {
1849 ata_dev_dbg(dev,
1850 "host indicates ignore ATA devices, ignored\n");
1851 return -ENOENT;
1852 }
1853 } else {
1854 if (ata_id_is_ata(id))
1855 goto err_out;
1856 }
1857
1858 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1859 tried_spinup = 1;
1860 /*
1861 * Drive powered-up in standby mode, and requires a specific
1862 * SET_FEATURES spin-up subcommand before it will accept
1863 * anything other than the original IDENTIFY command.
1864 */
1865 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1866 if (err_mask && id[2] != 0x738c) {
1867 rc = -EIO;
1868 reason = "SPINUP failed";
1869 goto err_out;
1870 }
1871 /*
1872 * If the drive initially returned incomplete IDENTIFY info,
1873 * we now must reissue the IDENTIFY command.
1874 */
1875 if (id[2] == 0x37c8)
1876 goto retry;
1877 }
1878
1879 if ((flags & ATA_READID_POSTRESET) &&
1880 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1881 /*
1882 * The exact sequence expected by certain pre-ATA4 drives is:
1883 * SRST RESET
1884 * IDENTIFY (optional in early ATA)
1885 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1886 * anything else..
1887 * Some drives were very specific about that exact sequence.
1888 *
1889 * Note that ATA4 says lba is mandatory so the second check
1890 * should never trigger.
1891 */
1892 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1893 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1894 if (err_mask) {
1895 rc = -EIO;
1896 reason = "INIT_DEV_PARAMS failed";
1897 goto err_out;
1898 }
1899
1900 /* current CHS translation info (id[53-58]) might be
1901 * changed. reread the identify device info.
1902 */
1903 flags &= ~ATA_READID_POSTRESET;
1904 goto retry;
1905 }
1906 }
1907
1908 *p_class = class;
1909
1910 return 0;
1911
1912 err_out:
1913 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1914 reason, err_mask);
1915 return rc;
1916}
1917
1918bool ata_dev_power_init_tf(struct ata_device *dev, struct ata_taskfile *tf,
1919 bool set_active)
1920{
1921 /* Only applies to ATA and ZAC devices */
1922 if (dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC)
1923 return false;
1924
1925 ata_tf_init(dev, tf);
1926 tf->flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1927 tf->protocol = ATA_PROT_NODATA;
1928
1929 if (set_active) {
1930 /* VERIFY for 1 sector at lba=0 */
1931 tf->command = ATA_CMD_VERIFY;
1932 tf->nsect = 1;
1933 if (dev->flags & ATA_DFLAG_LBA) {
1934 tf->flags |= ATA_TFLAG_LBA;
1935 tf->device |= ATA_LBA;
1936 } else {
1937 /* CHS */
1938 tf->lbal = 0x1; /* sect */
1939 }
1940 } else {
1941 tf->command = ATA_CMD_STANDBYNOW1;
1942 }
1943
1944 return true;
1945}
1946
1947static bool ata_dev_power_is_active(struct ata_device *dev)
1948{
1949 struct ata_taskfile tf;
1950 unsigned int err_mask;
1951
1952 ata_tf_init(dev, &tf);
1953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1954 tf.protocol = ATA_PROT_NODATA;
1955 tf.command = ATA_CMD_CHK_POWER;
1956
1957 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1958 if (err_mask) {
1959 ata_dev_err(dev, "Check power mode failed (err_mask=0x%x)\n",
1960 err_mask);
1961 /*
1962 * Assume we are in standby mode so that we always force a
1963 * spinup in ata_dev_power_set_active().
1964 */
1965 return false;
1966 }
1967
1968 ata_dev_dbg(dev, "Power mode: 0x%02x\n", tf.nsect);
1969
1970 /* Active or idle */
1971 return tf.nsect == 0xff;
1972}
1973
1974/**
1975 * ata_dev_power_set_standby - Set a device power mode to standby
1976 * @dev: target device
1977 *
1978 * Issue a STANDBY IMMEDIATE command to set a device power mode to standby.
1979 * For an HDD device, this spins down the disks.
1980 *
1981 * LOCKING:
1982 * Kernel thread context (may sleep).
1983 */
1984void ata_dev_power_set_standby(struct ata_device *dev)
1985{
1986 unsigned long ap_flags = dev->link->ap->flags;
1987 struct ata_taskfile tf;
1988 unsigned int err_mask;
1989
1990 /* If the device is already sleeping or in standby, do nothing. */
1991 if ((dev->flags & ATA_DFLAG_SLEEPING) ||
1992 !ata_dev_power_is_active(dev))
1993 return;
1994
1995 /*
1996 * Some odd clown BIOSes issue spindown on power off (ACPI S4 or S5)
1997 * causing some drives to spin up and down again. For these, do nothing
1998 * if we are being called on shutdown.
1999 */
2000 if ((ap_flags & ATA_FLAG_NO_POWEROFF_SPINDOWN) &&
2001 system_state == SYSTEM_POWER_OFF)
2002 return;
2003
2004 if ((ap_flags & ATA_FLAG_NO_HIBERNATE_SPINDOWN) &&
2005 system_entering_hibernation())
2006 return;
2007
2008 /* Issue STANDBY IMMEDIATE command only if supported by the device */
2009 if (!ata_dev_power_init_tf(dev, &tf, false))
2010 return;
2011
2012 ata_dev_notice(dev, "Entering standby power mode\n");
2013
2014 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2015 if (err_mask)
2016 ata_dev_err(dev, "STANDBY IMMEDIATE failed (err_mask=0x%x)\n",
2017 err_mask);
2018}
2019
2020/**
2021 * ata_dev_power_set_active - Set a device power mode to active
2022 * @dev: target device
2023 *
2024 * Issue a VERIFY command to enter to ensure that the device is in the
2025 * active power mode. For a spun-down HDD (standby or idle power mode),
2026 * the VERIFY command will complete after the disk spins up.
2027 *
2028 * LOCKING:
2029 * Kernel thread context (may sleep).
2030 */
2031void ata_dev_power_set_active(struct ata_device *dev)
2032{
2033 struct ata_taskfile tf;
2034 unsigned int err_mask;
2035
2036 /*
2037 * Issue READ VERIFY SECTORS command for 1 sector at lba=0 only
2038 * if supported by the device.
2039 */
2040 if (!ata_dev_power_init_tf(dev, &tf, true))
2041 return;
2042
2043 /*
2044 * Check the device power state & condition and force a spinup with
2045 * VERIFY command only if the drive is not already ACTIVE or IDLE.
2046 */
2047 if (ata_dev_power_is_active(dev))
2048 return;
2049
2050 ata_dev_notice(dev, "Entering active power mode\n");
2051
2052 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
2053 if (err_mask)
2054 ata_dev_err(dev, "VERIFY failed (err_mask=0x%x)\n",
2055 err_mask);
2056}
2057
2058/**
2059 * ata_read_log_page - read a specific log page
2060 * @dev: target device
2061 * @log: log to read
2062 * @page: page to read
2063 * @buf: buffer to store read page
2064 * @sectors: number of sectors to read
2065 *
2066 * Read log page using READ_LOG_EXT command.
2067 *
2068 * LOCKING:
2069 * Kernel thread context (may sleep).
2070 *
2071 * RETURNS:
2072 * 0 on success, AC_ERR_* mask otherwise.
2073 */
2074unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2075 u8 page, void *buf, unsigned int sectors)
2076{
2077 unsigned long ap_flags = dev->link->ap->flags;
2078 struct ata_taskfile tf;
2079 unsigned int err_mask;
2080 bool dma = false;
2081
2082 ata_dev_dbg(dev, "read log page - log 0x%x, page 0x%x\n", log, page);
2083
2084 /*
2085 * Return error without actually issuing the command on controllers
2086 * which e.g. lockup on a read log page.
2087 */
2088 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2089 return AC_ERR_DEV;
2090
2091retry:
2092 ata_tf_init(dev, &tf);
2093 if (ata_dma_enabled(dev) && ata_id_has_read_log_dma_ext(dev->id) &&
2094 !(dev->quirks & ATA_QUIRK_NO_DMA_LOG)) {
2095 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2096 tf.protocol = ATA_PROT_DMA;
2097 dma = true;
2098 } else {
2099 tf.command = ATA_CMD_READ_LOG_EXT;
2100 tf.protocol = ATA_PROT_PIO;
2101 dma = false;
2102 }
2103 tf.lbal = log;
2104 tf.lbam = page;
2105 tf.nsect = sectors;
2106 tf.hob_nsect = sectors >> 8;
2107 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2108
2109 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2110 buf, sectors * ATA_SECT_SIZE, 0);
2111
2112 if (err_mask) {
2113 if (dma) {
2114 dev->quirks |= ATA_QUIRK_NO_DMA_LOG;
2115 if (!ata_port_is_frozen(dev->link->ap))
2116 goto retry;
2117 }
2118 ata_dev_err(dev,
2119 "Read log 0x%02x page 0x%02x failed, Emask 0x%x\n",
2120 (unsigned int)log, (unsigned int)page, err_mask);
2121 }
2122
2123 return err_mask;
2124}
2125
2126static int ata_log_supported(struct ata_device *dev, u8 log)
2127{
2128 if (dev->quirks & ATA_QUIRK_NO_LOG_DIR)
2129 return 0;
2130
2131 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, dev->sector_buf, 1))
2132 return 0;
2133 return get_unaligned_le16(&dev->sector_buf[log * 2]);
2134}
2135
2136static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2137{
2138 unsigned int err, i;
2139
2140 if (dev->quirks & ATA_QUIRK_NO_ID_DEV_LOG)
2141 return false;
2142
2143 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2144 /*
2145 * IDENTIFY DEVICE data log is defined as mandatory starting
2146 * with ACS-3 (ATA version 10). Warn about the missing log
2147 * for drives which implement this ATA level or above.
2148 */
2149 if (ata_id_major_version(dev->id) >= 10)
2150 ata_dev_warn(dev,
2151 "ATA Identify Device Log not supported\n");
2152 dev->quirks |= ATA_QUIRK_NO_ID_DEV_LOG;
2153 return false;
2154 }
2155
2156 /*
2157 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2158 * supported.
2159 */
2160 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0,
2161 dev->sector_buf, 1);
2162 if (err)
2163 return false;
2164
2165 for (i = 0; i < dev->sector_buf[8]; i++) {
2166 if (dev->sector_buf[9 + i] == page)
2167 return true;
2168 }
2169
2170 return false;
2171}
2172
2173static int ata_do_link_spd_quirk(struct ata_device *dev)
2174{
2175 struct ata_link *plink = ata_dev_phys_link(dev);
2176 u32 target, target_limit;
2177
2178 if (!sata_scr_valid(plink))
2179 return 0;
2180
2181 if (dev->quirks & ATA_QUIRK_1_5_GBPS)
2182 target = 1;
2183 else
2184 return 0;
2185
2186 target_limit = (1 << target) - 1;
2187
2188 /* if already on stricter limit, no need to push further */
2189 if (plink->sata_spd_limit <= target_limit)
2190 return 0;
2191
2192 plink->sata_spd_limit = target_limit;
2193
2194 /* Request another EH round by returning -EAGAIN if link is
2195 * going faster than the target speed. Forward progress is
2196 * guaranteed by setting sata_spd_limit to target_limit above.
2197 */
2198 if (plink->sata_spd > target) {
2199 ata_dev_info(dev, "applying link speed limit quirk to %s\n",
2200 sata_spd_string(target));
2201 return -EAGAIN;
2202 }
2203 return 0;
2204}
2205
2206static inline bool ata_dev_knobble(struct ata_device *dev)
2207{
2208 struct ata_port *ap = dev->link->ap;
2209
2210 if (ata_dev_quirks(dev) & ATA_QUIRK_BRIDGE_OK)
2211 return false;
2212
2213 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2214}
2215
2216static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2217{
2218 unsigned int err_mask;
2219
2220 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2221 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2222 return;
2223 }
2224 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2225 0, dev->sector_buf, 1);
2226 if (!err_mask) {
2227 u8 *cmds = dev->ncq_send_recv_cmds;
2228
2229 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2230 memcpy(cmds, dev->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2231
2232 if (dev->quirks & ATA_QUIRK_NO_NCQ_TRIM) {
2233 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2234 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2235 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2236 }
2237 }
2238}
2239
2240static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2241{
2242 unsigned int err_mask;
2243
2244 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2245 ata_dev_warn(dev,
2246 "NCQ Send/Recv Log not supported\n");
2247 return;
2248 }
2249 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2250 0, dev->sector_buf, 1);
2251 if (!err_mask)
2252 memcpy(dev->ncq_non_data_cmds, dev->sector_buf,
2253 ATA_LOG_NCQ_NON_DATA_SIZE);
2254}
2255
2256static void ata_dev_config_ncq_prio(struct ata_device *dev)
2257{
2258 unsigned int err_mask;
2259
2260 if (!ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2261 return;
2262
2263 err_mask = ata_read_log_page(dev,
2264 ATA_LOG_IDENTIFY_DEVICE,
2265 ATA_LOG_SATA_SETTINGS,
2266 dev->sector_buf, 1);
2267 if (err_mask)
2268 goto not_supported;
2269
2270 if (!(dev->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2271 goto not_supported;
2272
2273 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274
2275 return;
2276
2277not_supported:
2278 dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLED;
2279 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2280}
2281
2282static bool ata_dev_check_adapter(struct ata_device *dev,
2283 unsigned short vendor_id)
2284{
2285 struct pci_dev *pcidev = NULL;
2286 struct device *parent_dev = NULL;
2287
2288 for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2289 parent_dev = parent_dev->parent) {
2290 if (dev_is_pci(parent_dev)) {
2291 pcidev = to_pci_dev(parent_dev);
2292 if (pcidev->vendor == vendor_id)
2293 return true;
2294 break;
2295 }
2296 }
2297
2298 return false;
2299}
2300
2301static int ata_dev_config_ncq(struct ata_device *dev,
2302 char *desc, size_t desc_sz)
2303{
2304 struct ata_port *ap = dev->link->ap;
2305 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2306 unsigned int err_mask;
2307 char *aa_desc = "";
2308
2309 if (!ata_id_has_ncq(dev->id)) {
2310 desc[0] = '\0';
2311 return 0;
2312 }
2313 if (!IS_ENABLED(CONFIG_SATA_HOST))
2314 return 0;
2315 if (dev->quirks & ATA_QUIRK_NONCQ) {
2316 snprintf(desc, desc_sz, "NCQ (not used)");
2317 return 0;
2318 }
2319
2320 if (dev->quirks & ATA_QUIRK_NO_NCQ_ON_ATI &&
2321 ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2322 snprintf(desc, desc_sz, "NCQ (not used)");
2323 return 0;
2324 }
2325
2326 if (ap->flags & ATA_FLAG_NCQ) {
2327 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2328 dev->flags |= ATA_DFLAG_NCQ;
2329 }
2330
2331 if (!(dev->quirks & ATA_QUIRK_BROKEN_FPDMA_AA) &&
2332 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2333 ata_id_has_fpdma_aa(dev->id)) {
2334 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2335 SATA_FPDMA_AA);
2336 if (err_mask) {
2337 ata_dev_err(dev,
2338 "failed to enable AA (error_mask=0x%x)\n",
2339 err_mask);
2340 if (err_mask != AC_ERR_DEV) {
2341 dev->quirks |= ATA_QUIRK_BROKEN_FPDMA_AA;
2342 return -EIO;
2343 }
2344 } else
2345 aa_desc = ", AA";
2346 }
2347
2348 if (hdepth >= ddepth)
2349 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2350 else
2351 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2352 ddepth, aa_desc);
2353
2354 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2355 if (ata_id_has_ncq_send_and_recv(dev->id))
2356 ata_dev_config_ncq_send_recv(dev);
2357 if (ata_id_has_ncq_non_data(dev->id))
2358 ata_dev_config_ncq_non_data(dev);
2359 if (ata_id_has_ncq_prio(dev->id))
2360 ata_dev_config_ncq_prio(dev);
2361 }
2362
2363 return 0;
2364}
2365
2366static void ata_dev_config_sense_reporting(struct ata_device *dev)
2367{
2368 unsigned int err_mask;
2369
2370 if (!ata_id_has_sense_reporting(dev->id))
2371 return;
2372
2373 if (ata_id_sense_reporting_enabled(dev->id))
2374 return;
2375
2376 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2377 if (err_mask) {
2378 ata_dev_dbg(dev,
2379 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2380 err_mask);
2381 }
2382}
2383
2384static void ata_dev_config_zac(struct ata_device *dev)
2385{
2386 unsigned int err_mask;
2387 u8 *identify_buf = dev->sector_buf;
2388
2389 dev->zac_zones_optimal_open = U32_MAX;
2390 dev->zac_zones_optimal_nonseq = U32_MAX;
2391 dev->zac_zones_max_open = U32_MAX;
2392
2393 /*
2394 * Always set the 'ZAC' flag for Host-managed devices.
2395 */
2396 if (dev->class == ATA_DEV_ZAC)
2397 dev->flags |= ATA_DFLAG_ZAC;
2398 else if (ata_id_zoned_cap(dev->id) == 0x01)
2399 /*
2400 * Check for host-aware devices.
2401 */
2402 dev->flags |= ATA_DFLAG_ZAC;
2403
2404 if (!(dev->flags & ATA_DFLAG_ZAC))
2405 return;
2406
2407 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2408 ata_dev_warn(dev,
2409 "ATA Zoned Information Log not supported\n");
2410 return;
2411 }
2412
2413 /*
2414 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2415 */
2416 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2417 ATA_LOG_ZONED_INFORMATION,
2418 identify_buf, 1);
2419 if (!err_mask) {
2420 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2421
2422 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2423 if ((zoned_cap >> 63))
2424 dev->zac_zoned_cap = (zoned_cap & 1);
2425 opt_open = get_unaligned_le64(&identify_buf[24]);
2426 if ((opt_open >> 63))
2427 dev->zac_zones_optimal_open = (u32)opt_open;
2428 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2429 if ((opt_nonseq >> 63))
2430 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2431 max_open = get_unaligned_le64(&identify_buf[40]);
2432 if ((max_open >> 63))
2433 dev->zac_zones_max_open = (u32)max_open;
2434 }
2435}
2436
2437static void ata_dev_config_trusted(struct ata_device *dev)
2438{
2439 u64 trusted_cap;
2440 unsigned int err;
2441
2442 if (!ata_id_has_trusted(dev->id))
2443 return;
2444
2445 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2446 ata_dev_warn(dev,
2447 "Security Log not supported\n");
2448 return;
2449 }
2450
2451 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2452 dev->sector_buf, 1);
2453 if (err)
2454 return;
2455
2456 trusted_cap = get_unaligned_le64(&dev->sector_buf[40]);
2457 if (!(trusted_cap & (1ULL << 63))) {
2458 ata_dev_dbg(dev,
2459 "Trusted Computing capability qword not valid!\n");
2460 return;
2461 }
2462
2463 if (trusted_cap & (1 << 0))
2464 dev->flags |= ATA_DFLAG_TRUSTED;
2465}
2466
2467void ata_dev_cleanup_cdl_resources(struct ata_device *dev)
2468{
2469 kfree(dev->cdl);
2470 dev->cdl = NULL;
2471}
2472
2473static int ata_dev_init_cdl_resources(struct ata_device *dev)
2474{
2475 struct ata_cdl *cdl = dev->cdl;
2476 unsigned int err_mask;
2477
2478 if (!cdl) {
2479 cdl = kzalloc(sizeof(*cdl), GFP_KERNEL);
2480 if (!cdl)
2481 return -ENOMEM;
2482 dev->cdl = cdl;
2483 }
2484
2485 err_mask = ata_read_log_page(dev, ATA_LOG_CDL, 0, cdl->desc_log_buf,
2486 ATA_LOG_CDL_SIZE / ATA_SECT_SIZE);
2487 if (err_mask) {
2488 ata_dev_warn(dev, "Read Command Duration Limits log failed\n");
2489 ata_dev_cleanup_cdl_resources(dev);
2490 return -EIO;
2491 }
2492
2493 return 0;
2494}
2495
2496static void ata_dev_config_cdl(struct ata_device *dev)
2497{
2498 unsigned int err_mask;
2499 bool cdl_enabled;
2500 u64 val;
2501 int ret;
2502
2503 if (ata_id_major_version(dev->id) < 11)
2504 goto not_supported;
2505
2506 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE) ||
2507 !ata_identify_page_supported(dev, ATA_LOG_SUPPORTED_CAPABILITIES) ||
2508 !ata_identify_page_supported(dev, ATA_LOG_CURRENT_SETTINGS))
2509 goto not_supported;
2510
2511 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2512 ATA_LOG_SUPPORTED_CAPABILITIES,
2513 dev->sector_buf, 1);
2514 if (err_mask)
2515 goto not_supported;
2516
2517 /* Check Command Duration Limit Supported bits */
2518 val = get_unaligned_le64(&dev->sector_buf[168]);
2519 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(0)))
2520 goto not_supported;
2521
2522 /* Warn the user if command duration guideline is not supported */
2523 if (!(val & BIT_ULL(1)))
2524 ata_dev_warn(dev,
2525 "Command duration guideline is not supported\n");
2526
2527 /*
2528 * We must have support for the sense data for successful NCQ commands
2529 * log indicated by the successful NCQ command sense data supported bit.
2530 */
2531 val = get_unaligned_le64(&dev->sector_buf[8]);
2532 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(47))) {
2533 ata_dev_warn(dev,
2534 "CDL supported but Successful NCQ Command Sense Data is not supported\n");
2535 goto not_supported;
2536 }
2537
2538 /* Without NCQ autosense, the successful NCQ commands log is useless. */
2539 if (!ata_id_has_ncq_autosense(dev->id)) {
2540 ata_dev_warn(dev,
2541 "CDL supported but NCQ autosense is not supported\n");
2542 goto not_supported;
2543 }
2544
2545 /*
2546 * If CDL is marked as enabled, make sure the feature is enabled too.
2547 * Conversely, if CDL is disabled, make sure the feature is turned off.
2548 */
2549 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2550 ATA_LOG_CURRENT_SETTINGS,
2551 dev->sector_buf, 1);
2552 if (err_mask)
2553 goto not_supported;
2554
2555 val = get_unaligned_le64(&dev->sector_buf[8]);
2556 cdl_enabled = val & BIT_ULL(63) && val & BIT_ULL(21);
2557 if (dev->flags & ATA_DFLAG_CDL_ENABLED) {
2558 if (!cdl_enabled) {
2559 /* Enable CDL on the device */
2560 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 1);
2561 if (err_mask) {
2562 ata_dev_err(dev,
2563 "Enable CDL feature failed\n");
2564 goto not_supported;
2565 }
2566 }
2567 } else {
2568 if (cdl_enabled) {
2569 /* Disable CDL on the device */
2570 err_mask = ata_dev_set_feature(dev, SETFEATURES_CDL, 0);
2571 if (err_mask) {
2572 ata_dev_err(dev,
2573 "Disable CDL feature failed\n");
2574 goto not_supported;
2575 }
2576 }
2577 }
2578
2579 /*
2580 * While CDL itself has to be enabled using sysfs, CDL requires that
2581 * sense data for successful NCQ commands is enabled to work properly.
2582 * Just like ata_dev_config_sense_reporting(), enable it unconditionally
2583 * if supported.
2584 */
2585 if (!(val & BIT_ULL(63)) || !(val & BIT_ULL(18))) {
2586 err_mask = ata_dev_set_feature(dev,
2587 SETFEATURE_SENSE_DATA_SUCC_NCQ, 0x1);
2588 if (err_mask) {
2589 ata_dev_warn(dev,
2590 "failed to enable Sense Data for successful NCQ commands, Emask 0x%x\n",
2591 err_mask);
2592 goto not_supported;
2593 }
2594 }
2595
2596 /* CDL is supported: allocate and initialize needed resources. */
2597 ret = ata_dev_init_cdl_resources(dev);
2598 if (ret) {
2599 ata_dev_warn(dev, "Initialize CDL resources failed\n");
2600 goto not_supported;
2601 }
2602
2603 dev->flags |= ATA_DFLAG_CDL;
2604
2605 return;
2606
2607not_supported:
2608 dev->flags &= ~(ATA_DFLAG_CDL | ATA_DFLAG_CDL_ENABLED);
2609 ata_dev_cleanup_cdl_resources(dev);
2610}
2611
2612static int ata_dev_config_lba(struct ata_device *dev)
2613{
2614 const u16 *id = dev->id;
2615 const char *lba_desc;
2616 char ncq_desc[32];
2617 int ret;
2618
2619 dev->flags |= ATA_DFLAG_LBA;
2620
2621 if (ata_id_has_lba48(id)) {
2622 lba_desc = "LBA48";
2623 dev->flags |= ATA_DFLAG_LBA48;
2624 if (dev->n_sectors >= (1UL << 28) &&
2625 ata_id_has_flush_ext(id))
2626 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2627 } else {
2628 lba_desc = "LBA";
2629 }
2630
2631 /* config NCQ */
2632 ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2633
2634 /* print device info to dmesg */
2635 if (ata_dev_print_info(dev))
2636 ata_dev_info(dev,
2637 "%llu sectors, multi %u: %s %s\n",
2638 (unsigned long long)dev->n_sectors,
2639 dev->multi_count, lba_desc, ncq_desc);
2640
2641 return ret;
2642}
2643
2644static void ata_dev_config_chs(struct ata_device *dev)
2645{
2646 const u16 *id = dev->id;
2647
2648 if (ata_id_current_chs_valid(id)) {
2649 /* Current CHS translation is valid. */
2650 dev->cylinders = id[54];
2651 dev->heads = id[55];
2652 dev->sectors = id[56];
2653 } else {
2654 /* Default translation */
2655 dev->cylinders = id[1];
2656 dev->heads = id[3];
2657 dev->sectors = id[6];
2658 }
2659
2660 /* print device info to dmesg */
2661 if (ata_dev_print_info(dev))
2662 ata_dev_info(dev,
2663 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2664 (unsigned long long)dev->n_sectors,
2665 dev->multi_count, dev->cylinders,
2666 dev->heads, dev->sectors);
2667}
2668
2669static void ata_dev_config_fua(struct ata_device *dev)
2670{
2671 /* Ignore FUA support if its use is disabled globally */
2672 if (!libata_fua)
2673 goto nofua;
2674
2675 /* Ignore devices without support for WRITE DMA FUA EXT */
2676 if (!(dev->flags & ATA_DFLAG_LBA48) || !ata_id_has_fua(dev->id))
2677 goto nofua;
2678
2679 /* Ignore known bad devices and devices that lack NCQ support */
2680 if (!ata_ncq_supported(dev) || (dev->quirks & ATA_QUIRK_NO_FUA))
2681 goto nofua;
2682
2683 dev->flags |= ATA_DFLAG_FUA;
2684
2685 return;
2686
2687nofua:
2688 dev->flags &= ~ATA_DFLAG_FUA;
2689}
2690
2691static void ata_dev_config_devslp(struct ata_device *dev)
2692{
2693 u8 *sata_setting = dev->sector_buf;
2694 unsigned int err_mask;
2695 int i, j;
2696
2697 /*
2698 * Check device sleep capability. Get DevSlp timing variables
2699 * from SATA Settings page of Identify Device Data Log.
2700 */
2701 if (!ata_id_has_devslp(dev->id) ||
2702 !ata_identify_page_supported(dev, ATA_LOG_SATA_SETTINGS))
2703 return;
2704
2705 err_mask = ata_read_log_page(dev,
2706 ATA_LOG_IDENTIFY_DEVICE,
2707 ATA_LOG_SATA_SETTINGS,
2708 sata_setting, 1);
2709 if (err_mask)
2710 return;
2711
2712 dev->flags |= ATA_DFLAG_DEVSLP;
2713 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2714 j = ATA_LOG_DEVSLP_OFFSET + i;
2715 dev->devslp_timing[i] = sata_setting[j];
2716 }
2717}
2718
2719static void ata_dev_config_cpr(struct ata_device *dev)
2720{
2721 unsigned int err_mask;
2722 size_t buf_len;
2723 int i, nr_cpr = 0;
2724 struct ata_cpr_log *cpr_log = NULL;
2725 u8 *desc, *buf = NULL;
2726
2727 if (ata_id_major_version(dev->id) < 11)
2728 goto out;
2729
2730 buf_len = ata_log_supported(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES);
2731 if (buf_len == 0)
2732 goto out;
2733
2734 /*
2735 * Read the concurrent positioning ranges log (0x47). We can have at
2736 * most 255 32B range descriptors plus a 64B header. This log varies in
2737 * size, so use the size reported in the GPL directory. Reading beyond
2738 * the supported length will result in an error.
2739 */
2740 buf_len <<= 9;
2741 buf = kzalloc(buf_len, GFP_KERNEL);
2742 if (!buf)
2743 goto out;
2744
2745 err_mask = ata_read_log_page(dev, ATA_LOG_CONCURRENT_POSITIONING_RANGES,
2746 0, buf, buf_len >> 9);
2747 if (err_mask)
2748 goto out;
2749
2750 nr_cpr = buf[0];
2751 if (!nr_cpr)
2752 goto out;
2753
2754 cpr_log = kzalloc(struct_size(cpr_log, cpr, nr_cpr), GFP_KERNEL);
2755 if (!cpr_log)
2756 goto out;
2757
2758 cpr_log->nr_cpr = nr_cpr;
2759 desc = &buf[64];
2760 for (i = 0; i < nr_cpr; i++, desc += 32) {
2761 cpr_log->cpr[i].num = desc[0];
2762 cpr_log->cpr[i].num_storage_elements = desc[1];
2763 cpr_log->cpr[i].start_lba = get_unaligned_le64(&desc[8]);
2764 cpr_log->cpr[i].num_lbas = get_unaligned_le64(&desc[16]);
2765 }
2766
2767out:
2768 swap(dev->cpr_log, cpr_log);
2769 kfree(cpr_log);
2770 kfree(buf);
2771}
2772
2773static void ata_dev_print_features(struct ata_device *dev)
2774{
2775 if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2776 return;
2777
2778 ata_dev_info(dev,
2779 "Features:%s%s%s%s%s%s%s%s\n",
2780 dev->flags & ATA_DFLAG_FUA ? " FUA" : "",
2781 dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2782 dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2783 dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2784 dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2785 dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "",
2786 dev->flags & ATA_DFLAG_CDL ? " CDL" : "",
2787 dev->cpr_log ? " CPR" : "");
2788}
2789
2790/**
2791 * ata_dev_configure - Configure the specified ATA/ATAPI device
2792 * @dev: Target device to configure
2793 *
2794 * Configure @dev according to @dev->id. Generic and low-level
2795 * driver specific fixups are also applied.
2796 *
2797 * LOCKING:
2798 * Kernel thread context (may sleep)
2799 *
2800 * RETURNS:
2801 * 0 on success, -errno otherwise
2802 */
2803int ata_dev_configure(struct ata_device *dev)
2804{
2805 struct ata_port *ap = dev->link->ap;
2806 bool print_info = ata_dev_print_info(dev);
2807 const u16 *id = dev->id;
2808 unsigned int xfer_mask;
2809 unsigned int err_mask;
2810 char revbuf[7]; /* XYZ-99\0 */
2811 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2812 char modelbuf[ATA_ID_PROD_LEN+1];
2813 int rc;
2814
2815 if (!ata_dev_enabled(dev)) {
2816 ata_dev_dbg(dev, "no device\n");
2817 return 0;
2818 }
2819
2820 /* Set quirks */
2821 dev->quirks |= ata_dev_quirks(dev);
2822 ata_force_quirks(dev);
2823
2824 if (dev->quirks & ATA_QUIRK_DISABLE) {
2825 ata_dev_info(dev, "unsupported device, disabling\n");
2826 ata_dev_disable(dev);
2827 return 0;
2828 }
2829
2830 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2831 dev->class == ATA_DEV_ATAPI) {
2832 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2833 atapi_enabled ? "not supported with this driver"
2834 : "disabled");
2835 ata_dev_disable(dev);
2836 return 0;
2837 }
2838
2839 rc = ata_do_link_spd_quirk(dev);
2840 if (rc)
2841 return rc;
2842
2843 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2844 if ((dev->quirks & ATA_QUIRK_WD_BROKEN_LPM) &&
2845 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2846 dev->quirks |= ATA_QUIRK_NOLPM;
2847
2848 if (ap->flags & ATA_FLAG_NO_LPM)
2849 dev->quirks |= ATA_QUIRK_NOLPM;
2850
2851 if (dev->quirks & ATA_QUIRK_NOLPM) {
2852 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2853 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2854 }
2855
2856 /* let ACPI work its magic */
2857 rc = ata_acpi_on_devcfg(dev);
2858 if (rc)
2859 return rc;
2860
2861 /* massage HPA, do it early as it might change IDENTIFY data */
2862 rc = ata_hpa_resize(dev);
2863 if (rc)
2864 return rc;
2865
2866 /* print device capabilities */
2867 ata_dev_dbg(dev,
2868 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2869 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2870 __func__,
2871 id[49], id[82], id[83], id[84],
2872 id[85], id[86], id[87], id[88]);
2873
2874 /* initialize to-be-configured parameters */
2875 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2876 dev->max_sectors = 0;
2877 dev->cdb_len = 0;
2878 dev->n_sectors = 0;
2879 dev->cylinders = 0;
2880 dev->heads = 0;
2881 dev->sectors = 0;
2882 dev->multi_count = 0;
2883
2884 /*
2885 * common ATA, ATAPI feature tests
2886 */
2887
2888 /* find max transfer mode; for printk only */
2889 xfer_mask = ata_id_xfermask(id);
2890
2891 ata_dump_id(dev, id);
2892
2893 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2894 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2895 sizeof(fwrevbuf));
2896
2897 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2898 sizeof(modelbuf));
2899
2900 /* ATA-specific feature tests */
2901 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2902 if (ata_id_is_cfa(id)) {
2903 /* CPRM may make this media unusable */
2904 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2905 ata_dev_warn(dev,
2906 "supports DRM functions and may not be fully accessible\n");
2907 snprintf(revbuf, 7, "CFA");
2908 } else {
2909 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2910 /* Warn the user if the device has TPM extensions */
2911 if (ata_id_has_tpm(id))
2912 ata_dev_warn(dev,
2913 "supports DRM functions and may not be fully accessible\n");
2914 }
2915
2916 dev->n_sectors = ata_id_n_sectors(id);
2917
2918 /* get current R/W Multiple count setting */
2919 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2920 unsigned int max = dev->id[47] & 0xff;
2921 unsigned int cnt = dev->id[59] & 0xff;
2922 /* only recognize/allow powers of two here */
2923 if (is_power_of_2(max) && is_power_of_2(cnt))
2924 if (cnt <= max)
2925 dev->multi_count = cnt;
2926 }
2927
2928 /* print device info to dmesg */
2929 if (print_info)
2930 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2931 revbuf, modelbuf, fwrevbuf,
2932 ata_mode_string(xfer_mask));
2933
2934 if (ata_id_has_lba(id)) {
2935 rc = ata_dev_config_lba(dev);
2936 if (rc)
2937 return rc;
2938 } else {
2939 ata_dev_config_chs(dev);
2940 }
2941
2942 ata_dev_config_fua(dev);
2943 ata_dev_config_devslp(dev);
2944 ata_dev_config_sense_reporting(dev);
2945 ata_dev_config_zac(dev);
2946 ata_dev_config_trusted(dev);
2947 ata_dev_config_cpr(dev);
2948 ata_dev_config_cdl(dev);
2949 dev->cdb_len = 32;
2950
2951 if (print_info)
2952 ata_dev_print_features(dev);
2953 }
2954
2955 /* ATAPI-specific feature tests */
2956 else if (dev->class == ATA_DEV_ATAPI) {
2957 const char *cdb_intr_string = "";
2958 const char *atapi_an_string = "";
2959 const char *dma_dir_string = "";
2960 u32 sntf;
2961
2962 rc = atapi_cdb_len(id);
2963 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2964 ata_dev_warn(dev, "unsupported CDB len %d\n", rc);
2965 rc = -EINVAL;
2966 goto err_out_nosup;
2967 }
2968 dev->cdb_len = (unsigned int) rc;
2969
2970 /* Enable ATAPI AN if both the host and device have
2971 * the support. If PMP is attached, SNTF is required
2972 * to enable ATAPI AN to discern between PHY status
2973 * changed notifications and ATAPI ANs.
2974 */
2975 if (atapi_an &&
2976 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2977 (!sata_pmp_attached(ap) ||
2978 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2979 /* issue SET feature command to turn this on */
2980 err_mask = ata_dev_set_feature(dev,
2981 SETFEATURES_SATA_ENABLE, SATA_AN);
2982 if (err_mask)
2983 ata_dev_err(dev,
2984 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2985 err_mask);
2986 else {
2987 dev->flags |= ATA_DFLAG_AN;
2988 atapi_an_string = ", ATAPI AN";
2989 }
2990 }
2991
2992 if (ata_id_cdb_intr(dev->id)) {
2993 dev->flags |= ATA_DFLAG_CDB_INTR;
2994 cdb_intr_string = ", CDB intr";
2995 }
2996
2997 if (atapi_dmadir || (dev->quirks & ATA_QUIRK_ATAPI_DMADIR) ||
2998 atapi_id_dmadir(dev->id)) {
2999 dev->flags |= ATA_DFLAG_DMADIR;
3000 dma_dir_string = ", DMADIR";
3001 }
3002
3003 if (ata_id_has_da(dev->id)) {
3004 dev->flags |= ATA_DFLAG_DA;
3005 zpodd_init(dev);
3006 }
3007
3008 /* print device info to dmesg */
3009 if (print_info)
3010 ata_dev_info(dev,
3011 "ATAPI: %s, %s, max %s%s%s%s\n",
3012 modelbuf, fwrevbuf,
3013 ata_mode_string(xfer_mask),
3014 cdb_intr_string, atapi_an_string,
3015 dma_dir_string);
3016 }
3017
3018 /* determine max_sectors */
3019 dev->max_sectors = ATA_MAX_SECTORS;
3020 if (dev->flags & ATA_DFLAG_LBA48)
3021 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3022
3023 /* Limit PATA drive on SATA cable bridge transfers to udma5,
3024 200 sectors */
3025 if (ata_dev_knobble(dev)) {
3026 if (print_info)
3027 ata_dev_info(dev, "applying bridge limits\n");
3028 dev->udma_mask &= ATA_UDMA5;
3029 dev->max_sectors = ATA_MAX_SECTORS;
3030 }
3031
3032 if ((dev->class == ATA_DEV_ATAPI) &&
3033 (atapi_command_packet_set(id) == TYPE_TAPE)) {
3034 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
3035 dev->quirks |= ATA_QUIRK_STUCK_ERR;
3036 }
3037
3038 if (dev->quirks & ATA_QUIRK_MAX_SEC_128)
3039 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
3040 dev->max_sectors);
3041
3042 if (dev->quirks & ATA_QUIRK_MAX_SEC_1024)
3043 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
3044 dev->max_sectors);
3045
3046 if (dev->quirks & ATA_QUIRK_MAX_SEC_LBA48)
3047 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
3048
3049 if (ap->ops->dev_config)
3050 ap->ops->dev_config(dev);
3051
3052 if (dev->quirks & ATA_QUIRK_DIAGNOSTIC) {
3053 /* Let the user know. We don't want to disallow opens for
3054 rescue purposes, or in case the vendor is just a blithering
3055 idiot. Do this after the dev_config call as some controllers
3056 with buggy firmware may want to avoid reporting false device
3057 bugs */
3058
3059 if (print_info) {
3060 ata_dev_warn(dev,
3061"Drive reports diagnostics failure. This may indicate a drive\n");
3062 ata_dev_warn(dev,
3063"fault or invalid emulation. Contact drive vendor for information.\n");
3064 }
3065 }
3066
3067 if ((dev->quirks & ATA_QUIRK_FIRMWARE_WARN) && print_info) {
3068 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
3069 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
3070 }
3071
3072 return 0;
3073
3074err_out_nosup:
3075 return rc;
3076}
3077
3078/**
3079 * ata_cable_40wire - return 40 wire cable type
3080 * @ap: port
3081 *
3082 * Helper method for drivers which want to hardwire 40 wire cable
3083 * detection.
3084 */
3085
3086int ata_cable_40wire(struct ata_port *ap)
3087{
3088 return ATA_CBL_PATA40;
3089}
3090EXPORT_SYMBOL_GPL(ata_cable_40wire);
3091
3092/**
3093 * ata_cable_80wire - return 80 wire cable type
3094 * @ap: port
3095 *
3096 * Helper method for drivers which want to hardwire 80 wire cable
3097 * detection.
3098 */
3099
3100int ata_cable_80wire(struct ata_port *ap)
3101{
3102 return ATA_CBL_PATA80;
3103}
3104EXPORT_SYMBOL_GPL(ata_cable_80wire);
3105
3106/**
3107 * ata_cable_unknown - return unknown PATA cable.
3108 * @ap: port
3109 *
3110 * Helper method for drivers which have no PATA cable detection.
3111 */
3112
3113int ata_cable_unknown(struct ata_port *ap)
3114{
3115 return ATA_CBL_PATA_UNK;
3116}
3117EXPORT_SYMBOL_GPL(ata_cable_unknown);
3118
3119/**
3120 * ata_cable_ignore - return ignored PATA cable.
3121 * @ap: port
3122 *
3123 * Helper method for drivers which don't use cable type to limit
3124 * transfer mode.
3125 */
3126int ata_cable_ignore(struct ata_port *ap)
3127{
3128 return ATA_CBL_PATA_IGN;
3129}
3130EXPORT_SYMBOL_GPL(ata_cable_ignore);
3131
3132/**
3133 * ata_cable_sata - return SATA cable type
3134 * @ap: port
3135 *
3136 * Helper method for drivers which have SATA cables
3137 */
3138
3139int ata_cable_sata(struct ata_port *ap)
3140{
3141 return ATA_CBL_SATA;
3142}
3143EXPORT_SYMBOL_GPL(ata_cable_sata);
3144
3145/**
3146 * sata_print_link_status - Print SATA link status
3147 * @link: SATA link to printk link status about
3148 *
3149 * This function prints link speed and status of a SATA link.
3150 *
3151 * LOCKING:
3152 * None.
3153 */
3154static void sata_print_link_status(struct ata_link *link)
3155{
3156 u32 sstatus, scontrol, tmp;
3157
3158 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3159 return;
3160 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3161 return;
3162
3163 if (ata_phys_link_online(link)) {
3164 tmp = (sstatus >> 4) & 0xf;
3165 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3166 sata_spd_string(tmp), sstatus, scontrol);
3167 } else {
3168 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3169 sstatus, scontrol);
3170 }
3171}
3172
3173/**
3174 * ata_dev_pair - return other device on cable
3175 * @adev: device
3176 *
3177 * Obtain the other device on the same cable, or if none is
3178 * present NULL is returned
3179 */
3180
3181struct ata_device *ata_dev_pair(struct ata_device *adev)
3182{
3183 struct ata_link *link = adev->link;
3184 struct ata_device *pair = &link->device[1 - adev->devno];
3185 if (!ata_dev_enabled(pair))
3186 return NULL;
3187 return pair;
3188}
3189EXPORT_SYMBOL_GPL(ata_dev_pair);
3190
3191#ifdef CONFIG_ATA_ACPI
3192/**
3193 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3194 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3195 * @cycle: cycle duration in ns
3196 *
3197 * Return matching xfer mode for @cycle. The returned mode is of
3198 * the transfer type specified by @xfer_shift. If @cycle is too
3199 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3200 * than the fastest known mode, the fasted mode is returned.
3201 *
3202 * LOCKING:
3203 * None.
3204 *
3205 * RETURNS:
3206 * Matching xfer_mode, 0xff if no match found.
3207 */
3208u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3209{
3210 u8 base_mode = 0xff, last_mode = 0xff;
3211 const struct ata_xfer_ent *ent;
3212 const struct ata_timing *t;
3213
3214 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3215 if (ent->shift == xfer_shift)
3216 base_mode = ent->base;
3217
3218 for (t = ata_timing_find_mode(base_mode);
3219 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3220 unsigned short this_cycle;
3221
3222 switch (xfer_shift) {
3223 case ATA_SHIFT_PIO:
3224 case ATA_SHIFT_MWDMA:
3225 this_cycle = t->cycle;
3226 break;
3227 case ATA_SHIFT_UDMA:
3228 this_cycle = t->udma;
3229 break;
3230 default:
3231 return 0xff;
3232 }
3233
3234 if (cycle > this_cycle)
3235 break;
3236
3237 last_mode = t->mode;
3238 }
3239
3240 return last_mode;
3241}
3242#endif
3243
3244/**
3245 * ata_down_xfermask_limit - adjust dev xfer masks downward
3246 * @dev: Device to adjust xfer masks
3247 * @sel: ATA_DNXFER_* selector
3248 *
3249 * Adjust xfer masks of @dev downward. Note that this function
3250 * does not apply the change. Invoking ata_set_mode() afterwards
3251 * will apply the limit.
3252 *
3253 * LOCKING:
3254 * Inherited from caller.
3255 *
3256 * RETURNS:
3257 * 0 on success, negative errno on failure
3258 */
3259int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3260{
3261 char buf[32];
3262 unsigned int orig_mask, xfer_mask;
3263 unsigned int pio_mask, mwdma_mask, udma_mask;
3264 int quiet, highbit;
3265
3266 quiet = !!(sel & ATA_DNXFER_QUIET);
3267 sel &= ~ATA_DNXFER_QUIET;
3268
3269 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3270 dev->mwdma_mask,
3271 dev->udma_mask);
3272 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3273
3274 switch (sel) {
3275 case ATA_DNXFER_PIO:
3276 highbit = fls(pio_mask) - 1;
3277 pio_mask &= ~(1 << highbit);
3278 break;
3279
3280 case ATA_DNXFER_DMA:
3281 if (udma_mask) {
3282 highbit = fls(udma_mask) - 1;
3283 udma_mask &= ~(1 << highbit);
3284 if (!udma_mask)
3285 return -ENOENT;
3286 } else if (mwdma_mask) {
3287 highbit = fls(mwdma_mask) - 1;
3288 mwdma_mask &= ~(1 << highbit);
3289 if (!mwdma_mask)
3290 return -ENOENT;
3291 }
3292 break;
3293
3294 case ATA_DNXFER_40C:
3295 udma_mask &= ATA_UDMA_MASK_40C;
3296 break;
3297
3298 case ATA_DNXFER_FORCE_PIO0:
3299 pio_mask &= 1;
3300 fallthrough;
3301 case ATA_DNXFER_FORCE_PIO:
3302 mwdma_mask = 0;
3303 udma_mask = 0;
3304 break;
3305
3306 default:
3307 BUG();
3308 }
3309
3310 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3311
3312 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3313 return -ENOENT;
3314
3315 if (!quiet) {
3316 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3317 snprintf(buf, sizeof(buf), "%s:%s",
3318 ata_mode_string(xfer_mask),
3319 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3320 else
3321 snprintf(buf, sizeof(buf), "%s",
3322 ata_mode_string(xfer_mask));
3323
3324 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3325 }
3326
3327 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3328 &dev->udma_mask);
3329
3330 return 0;
3331}
3332
3333static int ata_dev_set_mode(struct ata_device *dev)
3334{
3335 struct ata_port *ap = dev->link->ap;
3336 struct ata_eh_context *ehc = &dev->link->eh_context;
3337 const bool nosetxfer = dev->quirks & ATA_QUIRK_NOSETXFER;
3338 const char *dev_err_whine = "";
3339 int ign_dev_err = 0;
3340 unsigned int err_mask = 0;
3341 int rc;
3342
3343 dev->flags &= ~ATA_DFLAG_PIO;
3344 if (dev->xfer_shift == ATA_SHIFT_PIO)
3345 dev->flags |= ATA_DFLAG_PIO;
3346
3347 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3348 dev_err_whine = " (SET_XFERMODE skipped)";
3349 else {
3350 if (nosetxfer)
3351 ata_dev_warn(dev,
3352 "NOSETXFER but PATA detected - can't "
3353 "skip SETXFER, might malfunction\n");
3354 err_mask = ata_dev_set_xfermode(dev);
3355 }
3356
3357 if (err_mask & ~AC_ERR_DEV)
3358 goto fail;
3359
3360 /* revalidate */
3361 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3362 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3363 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3364 if (rc)
3365 return rc;
3366
3367 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3368 /* Old CFA may refuse this command, which is just fine */
3369 if (ata_id_is_cfa(dev->id))
3370 ign_dev_err = 1;
3371 /* Catch several broken garbage emulations plus some pre
3372 ATA devices */
3373 if (ata_id_major_version(dev->id) == 0 &&
3374 dev->pio_mode <= XFER_PIO_2)
3375 ign_dev_err = 1;
3376 /* Some very old devices and some bad newer ones fail
3377 any kind of SET_XFERMODE request but support PIO0-2
3378 timings and no IORDY */
3379 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3380 ign_dev_err = 1;
3381 }
3382 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3383 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3384 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3385 dev->dma_mode == XFER_MW_DMA_0 &&
3386 (dev->id[63] >> 8) & 1)
3387 ign_dev_err = 1;
3388
3389 /* if the device is actually configured correctly, ignore dev err */
3390 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3391 ign_dev_err = 1;
3392
3393 if (err_mask & AC_ERR_DEV) {
3394 if (!ign_dev_err)
3395 goto fail;
3396 else
3397 dev_err_whine = " (device error ignored)";
3398 }
3399
3400 ata_dev_dbg(dev, "xfer_shift=%u, xfer_mode=0x%x\n",
3401 dev->xfer_shift, (int)dev->xfer_mode);
3402
3403 if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3404 ehc->i.flags & ATA_EHI_DID_HARDRESET)
3405 ata_dev_info(dev, "configured for %s%s\n",
3406 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3407 dev_err_whine);
3408
3409 return 0;
3410
3411 fail:
3412 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3413 return -EIO;
3414}
3415
3416/**
3417 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3418 * @link: link on which timings will be programmed
3419 * @r_failed_dev: out parameter for failed device
3420 *
3421 * Standard implementation of the function used to tune and set
3422 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3423 * ata_dev_set_mode() fails, pointer to the failing device is
3424 * returned in @r_failed_dev.
3425 *
3426 * LOCKING:
3427 * PCI/etc. bus probe sem.
3428 *
3429 * RETURNS:
3430 * 0 on success, negative errno otherwise
3431 */
3432
3433int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3434{
3435 struct ata_port *ap = link->ap;
3436 struct ata_device *dev;
3437 int rc = 0, used_dma = 0, found = 0;
3438
3439 /* step 1: calculate xfer_mask */
3440 ata_for_each_dev(dev, link, ENABLED) {
3441 unsigned int pio_mask, dma_mask;
3442 unsigned int mode_mask;
3443
3444 mode_mask = ATA_DMA_MASK_ATA;
3445 if (dev->class == ATA_DEV_ATAPI)
3446 mode_mask = ATA_DMA_MASK_ATAPI;
3447 else if (ata_id_is_cfa(dev->id))
3448 mode_mask = ATA_DMA_MASK_CFA;
3449
3450 ata_dev_xfermask(dev);
3451 ata_force_xfermask(dev);
3452
3453 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3454
3455 if (libata_dma_mask & mode_mask)
3456 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3457 dev->udma_mask);
3458 else
3459 dma_mask = 0;
3460
3461 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3462 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3463
3464 found = 1;
3465 if (ata_dma_enabled(dev))
3466 used_dma = 1;
3467 }
3468 if (!found)
3469 goto out;
3470
3471 /* step 2: always set host PIO timings */
3472 ata_for_each_dev(dev, link, ENABLED) {
3473 if (dev->pio_mode == 0xff) {
3474 ata_dev_warn(dev, "no PIO support\n");
3475 rc = -EINVAL;
3476 goto out;
3477 }
3478
3479 dev->xfer_mode = dev->pio_mode;
3480 dev->xfer_shift = ATA_SHIFT_PIO;
3481 if (ap->ops->set_piomode)
3482 ap->ops->set_piomode(ap, dev);
3483 }
3484
3485 /* step 3: set host DMA timings */
3486 ata_for_each_dev(dev, link, ENABLED) {
3487 if (!ata_dma_enabled(dev))
3488 continue;
3489
3490 dev->xfer_mode = dev->dma_mode;
3491 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3492 if (ap->ops->set_dmamode)
3493 ap->ops->set_dmamode(ap, dev);
3494 }
3495
3496 /* step 4: update devices' xfer mode */
3497 ata_for_each_dev(dev, link, ENABLED) {
3498 rc = ata_dev_set_mode(dev);
3499 if (rc)
3500 goto out;
3501 }
3502
3503 /* Record simplex status. If we selected DMA then the other
3504 * host channels are not permitted to do so.
3505 */
3506 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3507 ap->host->simplex_claimed = ap;
3508
3509 out:
3510 if (rc)
3511 *r_failed_dev = dev;
3512 return rc;
3513}
3514EXPORT_SYMBOL_GPL(ata_do_set_mode);
3515
3516/**
3517 * ata_wait_ready - wait for link to become ready
3518 * @link: link to be waited on
3519 * @deadline: deadline jiffies for the operation
3520 * @check_ready: callback to check link readiness
3521 *
3522 * Wait for @link to become ready. @check_ready should return
3523 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3524 * link doesn't seem to be occupied, other errno for other error
3525 * conditions.
3526 *
3527 * Transient -ENODEV conditions are allowed for
3528 * ATA_TMOUT_FF_WAIT.
3529 *
3530 * LOCKING:
3531 * EH context.
3532 *
3533 * RETURNS:
3534 * 0 if @link is ready before @deadline; otherwise, -errno.
3535 */
3536int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3537 int (*check_ready)(struct ata_link *link))
3538{
3539 unsigned long start = jiffies;
3540 unsigned long nodev_deadline;
3541 int warned = 0;
3542
3543 /* choose which 0xff timeout to use, read comment in libata.h */
3544 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3545 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3546 else
3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3548
3549 /* Slave readiness can't be tested separately from master. On
3550 * M/S emulation configuration, this function should be called
3551 * only on the master and it will handle both master and slave.
3552 */
3553 WARN_ON(link == link->ap->slave_link);
3554
3555 if (time_after(nodev_deadline, deadline))
3556 nodev_deadline = deadline;
3557
3558 while (1) {
3559 unsigned long now = jiffies;
3560 int ready, tmp;
3561
3562 ready = tmp = check_ready(link);
3563 if (ready > 0)
3564 return 0;
3565
3566 /*
3567 * -ENODEV could be transient. Ignore -ENODEV if link
3568 * is online. Also, some SATA devices take a long
3569 * time to clear 0xff after reset. Wait for
3570 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3571 * offline.
3572 *
3573 * Note that some PATA controllers (pata_ali) explode
3574 * if status register is read more than once when
3575 * there's no device attached.
3576 */
3577 if (ready == -ENODEV) {
3578 if (ata_link_online(link))
3579 ready = 0;
3580 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3581 !ata_link_offline(link) &&
3582 time_before(now, nodev_deadline))
3583 ready = 0;
3584 }
3585
3586 if (ready)
3587 return ready;
3588 if (time_after(now, deadline))
3589 return -EBUSY;
3590
3591 if (!warned && time_after(now, start + 5 * HZ) &&
3592 (deadline - now > 3 * HZ)) {
3593 ata_link_warn(link,
3594 "link is slow to respond, please be patient "
3595 "(ready=%d)\n", tmp);
3596 warned = 1;
3597 }
3598
3599 ata_msleep(link->ap, 50);
3600 }
3601}
3602
3603/**
3604 * ata_wait_after_reset - wait for link to become ready after reset
3605 * @link: link to be waited on
3606 * @deadline: deadline jiffies for the operation
3607 * @check_ready: callback to check link readiness
3608 *
3609 * Wait for @link to become ready after reset.
3610 *
3611 * LOCKING:
3612 * EH context.
3613 *
3614 * RETURNS:
3615 * 0 if @link is ready before @deadline; otherwise, -errno.
3616 */
3617int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3618 int (*check_ready)(struct ata_link *link))
3619{
3620 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3621
3622 return ata_wait_ready(link, deadline, check_ready);
3623}
3624EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3625
3626/**
3627 * ata_std_prereset - prepare for reset
3628 * @link: ATA link to be reset
3629 * @deadline: deadline jiffies for the operation
3630 *
3631 * @link is about to be reset. Initialize it. Failure from
3632 * prereset makes libata abort whole reset sequence and give up
3633 * that port, so prereset should be best-effort. It does its
3634 * best to prepare for reset sequence but if things go wrong, it
3635 * should just whine, not fail.
3636 *
3637 * LOCKING:
3638 * Kernel thread context (may sleep)
3639 *
3640 * RETURNS:
3641 * Always 0.
3642 */
3643int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3644{
3645 struct ata_port *ap = link->ap;
3646 struct ata_eh_context *ehc = &link->eh_context;
3647 const unsigned int *timing = sata_ehc_deb_timing(ehc);
3648 int rc;
3649
3650 /* if we're about to do hardreset, nothing more to do */
3651 if (ehc->i.action & ATA_EH_HARDRESET)
3652 return 0;
3653
3654 /* if SATA, resume link */
3655 if (ap->flags & ATA_FLAG_SATA) {
3656 rc = sata_link_resume(link, timing, deadline);
3657 /* whine about phy resume failure but proceed */
3658 if (rc && rc != -EOPNOTSUPP)
3659 ata_link_warn(link,
3660 "failed to resume link for reset (errno=%d)\n",
3661 rc);
3662 }
3663
3664 /* no point in trying softreset on offline link */
3665 if (ata_phys_link_offline(link))
3666 ehc->i.action &= ~ATA_EH_SOFTRESET;
3667
3668 return 0;
3669}
3670EXPORT_SYMBOL_GPL(ata_std_prereset);
3671
3672/**
3673 * ata_std_postreset - standard postreset callback
3674 * @link: the target ata_link
3675 * @classes: classes of attached devices
3676 *
3677 * This function is invoked after a successful reset. Note that
3678 * the device might have been reset more than once using
3679 * different reset methods before postreset is invoked.
3680 *
3681 * LOCKING:
3682 * Kernel thread context (may sleep)
3683 */
3684void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3685{
3686 u32 serror;
3687
3688 /* reset complete, clear SError */
3689 if (!sata_scr_read(link, SCR_ERROR, &serror))
3690 sata_scr_write(link, SCR_ERROR, serror);
3691
3692 /* print link status */
3693 sata_print_link_status(link);
3694}
3695EXPORT_SYMBOL_GPL(ata_std_postreset);
3696
3697/**
3698 * ata_dev_same_device - Determine whether new ID matches configured device
3699 * @dev: device to compare against
3700 * @new_class: class of the new device
3701 * @new_id: IDENTIFY page of the new device
3702 *
3703 * Compare @new_class and @new_id against @dev and determine
3704 * whether @dev is the device indicated by @new_class and
3705 * @new_id.
3706 *
3707 * LOCKING:
3708 * None.
3709 *
3710 * RETURNS:
3711 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3712 */
3713static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3714 const u16 *new_id)
3715{
3716 const u16 *old_id = dev->id;
3717 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3718 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3719
3720 if (dev->class != new_class) {
3721 ata_dev_info(dev, "class mismatch %d != %d\n",
3722 dev->class, new_class);
3723 return 0;
3724 }
3725
3726 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3727 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3728 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3729 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3730
3731 if (strcmp(model[0], model[1])) {
3732 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3733 model[0], model[1]);
3734 return 0;
3735 }
3736
3737 if (strcmp(serial[0], serial[1])) {
3738 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3739 serial[0], serial[1]);
3740 return 0;
3741 }
3742
3743 return 1;
3744}
3745
3746/**
3747 * ata_dev_reread_id - Re-read IDENTIFY data
3748 * @dev: target ATA device
3749 * @readid_flags: read ID flags
3750 *
3751 * Re-read IDENTIFY page and make sure @dev is still attached to
3752 * the port.
3753 *
3754 * LOCKING:
3755 * Kernel thread context (may sleep)
3756 *
3757 * RETURNS:
3758 * 0 on success, negative errno otherwise
3759 */
3760int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3761{
3762 unsigned int class = dev->class;
3763 u16 *id = (void *)dev->sector_buf;
3764 int rc;
3765
3766 /* read ID data */
3767 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3768 if (rc)
3769 return rc;
3770
3771 /* is the device still there? */
3772 if (!ata_dev_same_device(dev, class, id))
3773 return -ENODEV;
3774
3775 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3776 return 0;
3777}
3778
3779/**
3780 * ata_dev_revalidate - Revalidate ATA device
3781 * @dev: device to revalidate
3782 * @new_class: new class code
3783 * @readid_flags: read ID flags
3784 *
3785 * Re-read IDENTIFY page, make sure @dev is still attached to the
3786 * port and reconfigure it according to the new IDENTIFY page.
3787 *
3788 * LOCKING:
3789 * Kernel thread context (may sleep)
3790 *
3791 * RETURNS:
3792 * 0 on success, negative errno otherwise
3793 */
3794int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3795 unsigned int readid_flags)
3796{
3797 u64 n_sectors = dev->n_sectors;
3798 u64 n_native_sectors = dev->n_native_sectors;
3799 int rc;
3800
3801 if (!ata_dev_enabled(dev))
3802 return -ENODEV;
3803
3804 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3805 if (ata_class_enabled(new_class) && new_class == ATA_DEV_PMP) {
3806 ata_dev_info(dev, "class mismatch %u != %u\n",
3807 dev->class, new_class);
3808 rc = -ENODEV;
3809 goto fail;
3810 }
3811
3812 /* re-read ID */
3813 rc = ata_dev_reread_id(dev, readid_flags);
3814 if (rc)
3815 goto fail;
3816
3817 /* configure device according to the new ID */
3818 rc = ata_dev_configure(dev);
3819 if (rc)
3820 goto fail;
3821
3822 /* verify n_sectors hasn't changed */
3823 if (dev->class != ATA_DEV_ATA || !n_sectors ||
3824 dev->n_sectors == n_sectors)
3825 return 0;
3826
3827 /* n_sectors has changed */
3828 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3829 (unsigned long long)n_sectors,
3830 (unsigned long long)dev->n_sectors);
3831
3832 /*
3833 * Something could have caused HPA to be unlocked
3834 * involuntarily. If n_native_sectors hasn't changed and the
3835 * new size matches it, keep the device.
3836 */
3837 if (dev->n_native_sectors == n_native_sectors &&
3838 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3839 ata_dev_warn(dev,
3840 "new n_sectors matches native, probably "
3841 "late HPA unlock, n_sectors updated\n");
3842 /* use the larger n_sectors */
3843 return 0;
3844 }
3845
3846 /*
3847 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
3848 * unlocking HPA in those cases.
3849 *
3850 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3851 */
3852 if (dev->n_native_sectors == n_native_sectors &&
3853 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3854 !(dev->quirks & ATA_QUIRK_BROKEN_HPA)) {
3855 ata_dev_warn(dev,
3856 "old n_sectors matches native, probably "
3857 "late HPA lock, will try to unlock HPA\n");
3858 /* try unlocking HPA */
3859 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3860 rc = -EIO;
3861 } else
3862 rc = -ENODEV;
3863
3864 /* restore original n_[native_]sectors and fail */
3865 dev->n_native_sectors = n_native_sectors;
3866 dev->n_sectors = n_sectors;
3867 fail:
3868 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3869 return rc;
3870}
3871
3872static const char * const ata_quirk_names[] = {
3873 [__ATA_QUIRK_DIAGNOSTIC] = "diagnostic",
3874 [__ATA_QUIRK_NODMA] = "nodma",
3875 [__ATA_QUIRK_NONCQ] = "noncq",
3876 [__ATA_QUIRK_MAX_SEC_128] = "maxsec128",
3877 [__ATA_QUIRK_BROKEN_HPA] = "brokenhpa",
3878 [__ATA_QUIRK_DISABLE] = "disable",
3879 [__ATA_QUIRK_HPA_SIZE] = "hpasize",
3880 [__ATA_QUIRK_IVB] = "ivb",
3881 [__ATA_QUIRK_STUCK_ERR] = "stuckerr",
3882 [__ATA_QUIRK_BRIDGE_OK] = "bridgeok",
3883 [__ATA_QUIRK_ATAPI_MOD16_DMA] = "atapimod16dma",
3884 [__ATA_QUIRK_FIRMWARE_WARN] = "firmwarewarn",
3885 [__ATA_QUIRK_1_5_GBPS] = "1.5gbps",
3886 [__ATA_QUIRK_NOSETXFER] = "nosetxfer",
3887 [__ATA_QUIRK_BROKEN_FPDMA_AA] = "brokenfpdmaaa",
3888 [__ATA_QUIRK_DUMP_ID] = "dumpid",
3889 [__ATA_QUIRK_MAX_SEC_LBA48] = "maxseclba48",
3890 [__ATA_QUIRK_ATAPI_DMADIR] = "atapidmadir",
3891 [__ATA_QUIRK_NO_NCQ_TRIM] = "noncqtrim",
3892 [__ATA_QUIRK_NOLPM] = "nolpm",
3893 [__ATA_QUIRK_WD_BROKEN_LPM] = "wdbrokenlpm",
3894 [__ATA_QUIRK_ZERO_AFTER_TRIM] = "zeroaftertrim",
3895 [__ATA_QUIRK_NO_DMA_LOG] = "nodmalog",
3896 [__ATA_QUIRK_NOTRIM] = "notrim",
3897 [__ATA_QUIRK_MAX_SEC_1024] = "maxsec1024",
3898 [__ATA_QUIRK_MAX_TRIM_128M] = "maxtrim128m",
3899 [__ATA_QUIRK_NO_NCQ_ON_ATI] = "noncqonati",
3900 [__ATA_QUIRK_NO_ID_DEV_LOG] = "noiddevlog",
3901 [__ATA_QUIRK_NO_LOG_DIR] = "nologdir",
3902 [__ATA_QUIRK_NO_FUA] = "nofua",
3903};
3904
3905static void ata_dev_print_quirks(const struct ata_device *dev,
3906 const char *model, const char *rev,
3907 unsigned int quirks)
3908{
3909 struct ata_eh_context *ehc = &dev->link->eh_context;
3910 int n = 0, i;
3911 size_t sz;
3912 char *str;
3913
3914 if (!ata_dev_print_info(dev) || ehc->i.flags & ATA_EHI_DID_PRINT_QUIRKS)
3915 return;
3916
3917 ehc->i.flags |= ATA_EHI_DID_PRINT_QUIRKS;
3918
3919 if (!quirks)
3920 return;
3921
3922 sz = 64 + ARRAY_SIZE(ata_quirk_names) * 16;
3923 str = kmalloc(sz, GFP_KERNEL);
3924 if (!str)
3925 return;
3926
3927 n = snprintf(str, sz, "Model '%s', rev '%s', applying quirks:",
3928 model, rev);
3929
3930 for (i = 0; i < ARRAY_SIZE(ata_quirk_names); i++) {
3931 if (quirks & (1U << i))
3932 n += snprintf(str + n, sz - n,
3933 " %s", ata_quirk_names[i]);
3934 }
3935
3936 ata_dev_warn(dev, "%s\n", str);
3937
3938 kfree(str);
3939}
3940
3941struct ata_dev_quirks_entry {
3942 const char *model_num;
3943 const char *model_rev;
3944 unsigned int quirks;
3945};
3946
3947static const struct ata_dev_quirks_entry __ata_dev_quirks[] = {
3948 /* Devices with DMA related problems under Linux */
3949 { "WDC AC11000H", NULL, ATA_QUIRK_NODMA },
3950 { "WDC AC22100H", NULL, ATA_QUIRK_NODMA },
3951 { "WDC AC32500H", NULL, ATA_QUIRK_NODMA },
3952 { "WDC AC33100H", NULL, ATA_QUIRK_NODMA },
3953 { "WDC AC31600H", NULL, ATA_QUIRK_NODMA },
3954 { "WDC AC32100H", "24.09P07", ATA_QUIRK_NODMA },
3955 { "WDC AC23200L", "21.10N21", ATA_QUIRK_NODMA },
3956 { "Compaq CRD-8241B", NULL, ATA_QUIRK_NODMA },
3957 { "CRD-8400B", NULL, ATA_QUIRK_NODMA },
3958 { "CRD-848[02]B", NULL, ATA_QUIRK_NODMA },
3959 { "CRD-84", NULL, ATA_QUIRK_NODMA },
3960 { "SanDisk SDP3B", NULL, ATA_QUIRK_NODMA },
3961 { "SanDisk SDP3B-64", NULL, ATA_QUIRK_NODMA },
3962 { "SANYO CD-ROM CRD", NULL, ATA_QUIRK_NODMA },
3963 { "HITACHI CDR-8", NULL, ATA_QUIRK_NODMA },
3964 { "HITACHI CDR-8[34]35", NULL, ATA_QUIRK_NODMA },
3965 { "Toshiba CD-ROM XM-6202B", NULL, ATA_QUIRK_NODMA },
3966 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_QUIRK_NODMA },
3967 { "CD-532E-A", NULL, ATA_QUIRK_NODMA },
3968 { "E-IDE CD-ROM CR-840", NULL, ATA_QUIRK_NODMA },
3969 { "CD-ROM Drive/F5A", NULL, ATA_QUIRK_NODMA },
3970 { "WPI CDD-820", NULL, ATA_QUIRK_NODMA },
3971 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_QUIRK_NODMA },
3972 { "SAMSUNG CD-ROM SC", NULL, ATA_QUIRK_NODMA },
3973 { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL, ATA_QUIRK_NODMA },
3974 { "_NEC DV5800A", NULL, ATA_QUIRK_NODMA },
3975 { "SAMSUNG CD-ROM SN-124", "N001", ATA_QUIRK_NODMA },
3976 { "Seagate STT20000A", NULL, ATA_QUIRK_NODMA },
3977 { " 2GB ATA Flash Disk", "ADMA428M", ATA_QUIRK_NODMA },
3978 { "VRFDFC22048UCHC-TE*", NULL, ATA_QUIRK_NODMA },
3979 /* Odd clown on sil3726/4726 PMPs */
3980 { "Config Disk", NULL, ATA_QUIRK_DISABLE },
3981 /* Similar story with ASMedia 1092 */
3982 { "ASMT109x- Config", NULL, ATA_QUIRK_DISABLE },
3983
3984 /* Weird ATAPI devices */
3985 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_QUIRK_MAX_SEC_128 },
3986 { "QUANTUM DAT DAT72-000", NULL, ATA_QUIRK_ATAPI_MOD16_DMA },
3987 { "Slimtype DVD A DS8A8SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
3988 { "Slimtype DVD A DS8A9SH", NULL, ATA_QUIRK_MAX_SEC_LBA48 },
3989
3990 /*
3991 * Causes silent data corruption with higher max sects.
3992 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3993 */
3994 { "ST380013AS", "3.20", ATA_QUIRK_MAX_SEC_1024 },
3995
3996 /*
3997 * These devices time out with higher max sects.
3998 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3999 */
4000 { "LITEON CX1-JB*-HP", NULL, ATA_QUIRK_MAX_SEC_1024 },
4001 { "LITEON EP1-*", NULL, ATA_QUIRK_MAX_SEC_1024 },
4002
4003 /* Devices we expect to fail diagnostics */
4004
4005 /* Devices where NCQ should be avoided */
4006 /* NCQ is slow */
4007 { "WDC WD740ADFD-00", NULL, ATA_QUIRK_NONCQ },
4008 { "WDC WD740ADFD-00NLR1", NULL, ATA_QUIRK_NONCQ },
4009 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4010 { "FUJITSU MHT2060BH", NULL, ATA_QUIRK_NONCQ },
4011 /* NCQ is broken */
4012 { "Maxtor *", "BANC*", ATA_QUIRK_NONCQ },
4013 { "Maxtor 7V300F0", "VA111630", ATA_QUIRK_NONCQ },
4014 { "ST380817AS", "3.42", ATA_QUIRK_NONCQ },
4015 { "ST3160023AS", "3.42", ATA_QUIRK_NONCQ },
4016 { "OCZ CORE_SSD", "02.10104", ATA_QUIRK_NONCQ },
4017
4018 /* Seagate NCQ + FLUSH CACHE firmware bug */
4019 { "ST31500341AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4020 ATA_QUIRK_FIRMWARE_WARN },
4021
4022 { "ST31000333AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4023 ATA_QUIRK_FIRMWARE_WARN },
4024
4025 { "ST3640[36]23AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4026 ATA_QUIRK_FIRMWARE_WARN },
4027
4028 { "ST3320[68]13AS", "SD1[5-9]", ATA_QUIRK_NONCQ |
4029 ATA_QUIRK_FIRMWARE_WARN },
4030
4031 /* drives which fail FPDMA_AA activation (some may freeze afterwards)
4032 the ST disks also have LPM issues */
4033 { "ST1000LM024 HN-M101MBB", NULL, ATA_QUIRK_BROKEN_FPDMA_AA |
4034 ATA_QUIRK_NOLPM },
4035 { "VB0250EAVER", "HPG7", ATA_QUIRK_BROKEN_FPDMA_AA },
4036
4037 /* Blacklist entries taken from Silicon Image 3124/3132
4038 Windows driver .inf file - also several Linux problem reports */
4039 { "HTS541060G9SA00", "MB3OC60D", ATA_QUIRK_NONCQ },
4040 { "HTS541080G9SA00", "MB4OC60D", ATA_QUIRK_NONCQ },
4041 { "HTS541010G9SA00", "MBZOC60D", ATA_QUIRK_NONCQ },
4042
4043 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4044 { "C300-CTFDDAC128MAG", "0001", ATA_QUIRK_NONCQ },
4045
4046 /* Sandisk SD7/8/9s lock up hard on large trims */
4047 { "SanDisk SD[789]*", NULL, ATA_QUIRK_MAX_TRIM_128M },
4048
4049 /* devices which puke on READ_NATIVE_MAX */
4050 { "HDS724040KLSA80", "KFAOA20N", ATA_QUIRK_BROKEN_HPA },
4051 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_QUIRK_BROKEN_HPA },
4052 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_QUIRK_BROKEN_HPA },
4053 { "MAXTOR 6L080L4", "A93.0500", ATA_QUIRK_BROKEN_HPA },
4054
4055 /* this one allows HPA unlocking but fails IOs on the area */
4056 { "OCZ-VERTEX", "1.30", ATA_QUIRK_BROKEN_HPA },
4057
4058 /* Devices which report 1 sector over size HPA */
4059 { "ST340823A", NULL, ATA_QUIRK_HPA_SIZE },
4060 { "ST320413A", NULL, ATA_QUIRK_HPA_SIZE },
4061 { "ST310211A", NULL, ATA_QUIRK_HPA_SIZE },
4062
4063 /* Devices which get the IVB wrong */
4064 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_QUIRK_IVB },
4065 /* Maybe we should just add all TSSTcorp devices... */
4066 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_QUIRK_IVB },
4067
4068 /* Devices that do not need bridging limits applied */
4069 { "MTRON MSP-SATA*", NULL, ATA_QUIRK_BRIDGE_OK },
4070 { "BUFFALO HD-QSU2/R5", NULL, ATA_QUIRK_BRIDGE_OK },
4071
4072 /* Devices which aren't very happy with higher link speeds */
4073 { "WD My Book", NULL, ATA_QUIRK_1_5_GBPS },
4074 { "Seagate FreeAgent GoFlex", NULL, ATA_QUIRK_1_5_GBPS },
4075
4076 /*
4077 * Devices which choke on SETXFER. Applies only if both the
4078 * device and controller are SATA.
4079 */
4080 { "PIONEER DVD-RW DVRTD08", NULL, ATA_QUIRK_NOSETXFER },
4081 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_QUIRK_NOSETXFER },
4082 { "PIONEER DVD-RW DVR-215", NULL, ATA_QUIRK_NOSETXFER },
4083 { "PIONEER DVD-RW DVR-212D", NULL, ATA_QUIRK_NOSETXFER },
4084 { "PIONEER DVD-RW DVR-216D", NULL, ATA_QUIRK_NOSETXFER },
4085
4086 /* These specific Pioneer models have LPM issues */
4087 { "PIONEER BD-RW BDR-207M", NULL, ATA_QUIRK_NOLPM },
4088 { "PIONEER BD-RW BDR-205", NULL, ATA_QUIRK_NOLPM },
4089
4090 /* Crucial devices with broken LPM support */
4091 { "CT*0BX*00SSD1", NULL, ATA_QUIRK_NOLPM },
4092
4093 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4094 { "Crucial_CT512MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4095 ATA_QUIRK_ZERO_AFTER_TRIM |
4096 ATA_QUIRK_NOLPM },
4097 /* 512GB MX100 with newer firmware has only LPM issues */
4098 { "Crucial_CT512MX100*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM |
4099 ATA_QUIRK_NOLPM },
4100
4101 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4102 { "Crucial_CT480M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4103 ATA_QUIRK_ZERO_AFTER_TRIM |
4104 ATA_QUIRK_NOLPM },
4105 { "Crucial_CT960M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4106 ATA_QUIRK_ZERO_AFTER_TRIM |
4107 ATA_QUIRK_NOLPM },
4108
4109 /* AMD Radeon devices with broken LPM support */
4110 { "R3SL240G", NULL, ATA_QUIRK_NOLPM },
4111
4112 /* Apacer models with LPM issues */
4113 { "Apacer AS340*", NULL, ATA_QUIRK_NOLPM },
4114
4115 /* These specific Samsung models/firmware-revs do not handle LPM well */
4116 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_QUIRK_NOLPM },
4117 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_QUIRK_NOLPM },
4118 { "SAMSUNG MZ7TD256HAFV-000L9", NULL, ATA_QUIRK_NOLPM },
4119 { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_QUIRK_NOLPM },
4120
4121 /* devices that don't properly handle queued TRIM commands */
4122 { "Micron_M500IT_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4123 ATA_QUIRK_ZERO_AFTER_TRIM },
4124 { "Micron_M500_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4125 ATA_QUIRK_ZERO_AFTER_TRIM },
4126 { "Micron_M5[15]0_*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4127 ATA_QUIRK_ZERO_AFTER_TRIM },
4128 { "Micron_1100_*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4129 ATA_QUIRK_ZERO_AFTER_TRIM, },
4130 { "Crucial_CT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4131 ATA_QUIRK_ZERO_AFTER_TRIM },
4132 { "Crucial_CT*M550*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4133 ATA_QUIRK_ZERO_AFTER_TRIM },
4134 { "Crucial_CT*MX100*", "MU01", ATA_QUIRK_NO_NCQ_TRIM |
4135 ATA_QUIRK_ZERO_AFTER_TRIM },
4136 { "Samsung SSD 840 EVO*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4137 ATA_QUIRK_NO_DMA_LOG |
4138 ATA_QUIRK_ZERO_AFTER_TRIM },
4139 { "Samsung SSD 840*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4140 ATA_QUIRK_ZERO_AFTER_TRIM },
4141 { "Samsung SSD 850*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4142 ATA_QUIRK_ZERO_AFTER_TRIM },
4143 { "Samsung SSD 860*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4144 ATA_QUIRK_ZERO_AFTER_TRIM |
4145 ATA_QUIRK_NO_NCQ_ON_ATI },
4146 { "Samsung SSD 870*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4147 ATA_QUIRK_ZERO_AFTER_TRIM |
4148 ATA_QUIRK_NO_NCQ_ON_ATI },
4149 { "SAMSUNG*MZ7LH*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4150 ATA_QUIRK_ZERO_AFTER_TRIM |
4151 ATA_QUIRK_NO_NCQ_ON_ATI, },
4152 { "FCCT*M500*", NULL, ATA_QUIRK_NO_NCQ_TRIM |
4153 ATA_QUIRK_ZERO_AFTER_TRIM },
4154
4155 /* devices that don't properly handle TRIM commands */
4156 { "SuperSSpeed S238*", NULL, ATA_QUIRK_NOTRIM },
4157 { "M88V29*", NULL, ATA_QUIRK_NOTRIM },
4158
4159 /*
4160 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4161 * (Return Zero After Trim) flags in the ATA Command Set are
4162 * unreliable in the sense that they only define what happens if
4163 * the device successfully executed the DSM TRIM command. TRIM
4164 * is only advisory, however, and the device is free to silently
4165 * ignore all or parts of the request.
4166 *
4167 * Whitelist drives that are known to reliably return zeroes
4168 * after TRIM.
4169 */
4170
4171 /*
4172 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4173 * that model before whitelisting all other intel SSDs.
4174 */
4175 { "INTEL*SSDSC2MH*", NULL, 0 },
4176
4177 { "Micron*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4178 { "Crucial*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4179 { "INTEL*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4180 { "SSD*INTEL*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4181 { "Samsung*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4182 { "SAMSUNG*SSD*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4183 { "SAMSUNG*MZ7KM*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4184 { "ST[1248][0248]0[FH]*", NULL, ATA_QUIRK_ZERO_AFTER_TRIM },
4185
4186 /*
4187 * Some WD SATA-I drives spin up and down erratically when the link
4188 * is put into the slumber mode. We don't have full list of the
4189 * affected devices. Disable LPM if the device matches one of the
4190 * known prefixes and is SATA-1. As a side effect LPM partial is
4191 * lost too.
4192 *
4193 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4194 */
4195 { "WDC WD800JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4196 { "WDC WD1200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4197 { "WDC WD1600JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4198 { "WDC WD2000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4199 { "WDC WD2500JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4200 { "WDC WD3000JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4201 { "WDC WD3200JD-*", NULL, ATA_QUIRK_WD_BROKEN_LPM },
4202
4203 /*
4204 * This sata dom device goes on a walkabout when the ATA_LOG_DIRECTORY
4205 * log page is accessed. Ensure we never ask for this log page with
4206 * these devices.
4207 */
4208 { "SATADOM-ML 3ME", NULL, ATA_QUIRK_NO_LOG_DIR },
4209
4210 /* Buggy FUA */
4211 { "Maxtor", "BANC1G10", ATA_QUIRK_NO_FUA },
4212 { "WDC*WD2500J*", NULL, ATA_QUIRK_NO_FUA },
4213 { "OCZ-VERTEX*", NULL, ATA_QUIRK_NO_FUA },
4214 { "INTEL*SSDSC2CT*", NULL, ATA_QUIRK_NO_FUA },
4215
4216 /* End Marker */
4217 { }
4218};
4219
4220static unsigned int ata_dev_quirks(const struct ata_device *dev)
4221{
4222 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4223 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4224 const struct ata_dev_quirks_entry *ad = __ata_dev_quirks;
4225
4226 /* dev->quirks is an unsigned int. */
4227 BUILD_BUG_ON(__ATA_QUIRK_MAX > 32);
4228
4229 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4230 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4231
4232 while (ad->model_num) {
4233 if (glob_match(ad->model_num, model_num) &&
4234 (!ad->model_rev || glob_match(ad->model_rev, model_rev))) {
4235 ata_dev_print_quirks(dev, model_num, model_rev,
4236 ad->quirks);
4237 return ad->quirks;
4238 }
4239 ad++;
4240 }
4241 return 0;
4242}
4243
4244static bool ata_dev_nodma(const struct ata_device *dev)
4245{
4246 /*
4247 * We do not support polling DMA. Deny DMA for those ATAPI devices
4248 * with CDB-intr (and use PIO) if the LLDD handles only interrupts in
4249 * the HSM_ST_LAST state.
4250 */
4251 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4252 (dev->flags & ATA_DFLAG_CDB_INTR))
4253 return true;
4254 return dev->quirks & ATA_QUIRK_NODMA;
4255}
4256
4257/**
4258 * ata_is_40wire - check drive side detection
4259 * @dev: device
4260 *
4261 * Perform drive side detection decoding, allowing for device vendors
4262 * who can't follow the documentation.
4263 */
4264
4265static int ata_is_40wire(struct ata_device *dev)
4266{
4267 if (dev->quirks & ATA_QUIRK_IVB)
4268 return ata_drive_40wire_relaxed(dev->id);
4269 return ata_drive_40wire(dev->id);
4270}
4271
4272/**
4273 * cable_is_40wire - 40/80/SATA decider
4274 * @ap: port to consider
4275 *
4276 * This function encapsulates the policy for speed management
4277 * in one place. At the moment we don't cache the result but
4278 * there is a good case for setting ap->cbl to the result when
4279 * we are called with unknown cables (and figuring out if it
4280 * impacts hotplug at all).
4281 *
4282 * Return 1 if the cable appears to be 40 wire.
4283 */
4284
4285static int cable_is_40wire(struct ata_port *ap)
4286{
4287 struct ata_link *link;
4288 struct ata_device *dev;
4289
4290 /* If the controller thinks we are 40 wire, we are. */
4291 if (ap->cbl == ATA_CBL_PATA40)
4292 return 1;
4293
4294 /* If the controller thinks we are 80 wire, we are. */
4295 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4296 return 0;
4297
4298 /* If the system is known to be 40 wire short cable (eg
4299 * laptop), then we allow 80 wire modes even if the drive
4300 * isn't sure.
4301 */
4302 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4303 return 0;
4304
4305 /* If the controller doesn't know, we scan.
4306 *
4307 * Note: We look for all 40 wire detects at this point. Any
4308 * 80 wire detect is taken to be 80 wire cable because
4309 * - in many setups only the one drive (slave if present) will
4310 * give a valid detect
4311 * - if you have a non detect capable drive you don't want it
4312 * to colour the choice
4313 */
4314 ata_for_each_link(link, ap, EDGE) {
4315 ata_for_each_dev(dev, link, ENABLED) {
4316 if (!ata_is_40wire(dev))
4317 return 0;
4318 }
4319 }
4320 return 1;
4321}
4322
4323/**
4324 * ata_dev_xfermask - Compute supported xfermask of the given device
4325 * @dev: Device to compute xfermask for
4326 *
4327 * Compute supported xfermask of @dev and store it in
4328 * dev->*_mask. This function is responsible for applying all
4329 * known limits including host controller limits, device quirks, etc...
4330 *
4331 * LOCKING:
4332 * None.
4333 */
4334static void ata_dev_xfermask(struct ata_device *dev)
4335{
4336 struct ata_link *link = dev->link;
4337 struct ata_port *ap = link->ap;
4338 struct ata_host *host = ap->host;
4339 unsigned int xfer_mask;
4340
4341 /* controller modes available */
4342 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4343 ap->mwdma_mask, ap->udma_mask);
4344
4345 /* drive modes available */
4346 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4347 dev->mwdma_mask, dev->udma_mask);
4348 xfer_mask &= ata_id_xfermask(dev->id);
4349
4350 /*
4351 * CFA Advanced TrueIDE timings are not allowed on a shared
4352 * cable
4353 */
4354 if (ata_dev_pair(dev)) {
4355 /* No PIO5 or PIO6 */
4356 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4357 /* No MWDMA3 or MWDMA 4 */
4358 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4359 }
4360
4361 if (ata_dev_nodma(dev)) {
4362 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4363 ata_dev_warn(dev,
4364 "device does not support DMA, disabling DMA\n");
4365 }
4366
4367 if ((host->flags & ATA_HOST_SIMPLEX) &&
4368 host->simplex_claimed && host->simplex_claimed != ap) {
4369 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4370 ata_dev_warn(dev,
4371 "simplex DMA is claimed by other device, disabling DMA\n");
4372 }
4373
4374 if (ap->flags & ATA_FLAG_NO_IORDY)
4375 xfer_mask &= ata_pio_mask_no_iordy(dev);
4376
4377 if (ap->ops->mode_filter)
4378 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4379
4380 /* Apply cable rule here. Don't apply it early because when
4381 * we handle hot plug the cable type can itself change.
4382 * Check this last so that we know if the transfer rate was
4383 * solely limited by the cable.
4384 * Unknown or 80 wire cables reported host side are checked
4385 * drive side as well. Cases where we know a 40wire cable
4386 * is used safely for 80 are not checked here.
4387 */
4388 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4389 /* UDMA/44 or higher would be available */
4390 if (cable_is_40wire(ap)) {
4391 ata_dev_warn(dev,
4392 "limited to UDMA/33 due to 40-wire cable\n");
4393 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4394 }
4395
4396 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4397 &dev->mwdma_mask, &dev->udma_mask);
4398}
4399
4400/**
4401 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4402 * @dev: Device to which command will be sent
4403 *
4404 * Issue SET FEATURES - XFER MODE command to device @dev
4405 * on port @ap.
4406 *
4407 * LOCKING:
4408 * PCI/etc. bus probe sem.
4409 *
4410 * RETURNS:
4411 * 0 on success, AC_ERR_* mask otherwise.
4412 */
4413
4414static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4415{
4416 struct ata_taskfile tf;
4417
4418 /* set up set-features taskfile */
4419 ata_dev_dbg(dev, "set features - xfer mode\n");
4420
4421 /* Some controllers and ATAPI devices show flaky interrupt
4422 * behavior after setting xfer mode. Use polling instead.
4423 */
4424 ata_tf_init(dev, &tf);
4425 tf.command = ATA_CMD_SET_FEATURES;
4426 tf.feature = SETFEATURES_XFER;
4427 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4428 tf.protocol = ATA_PROT_NODATA;
4429 /* If we are using IORDY we must send the mode setting command */
4430 if (ata_pio_need_iordy(dev))
4431 tf.nsect = dev->xfer_mode;
4432 /* If the device has IORDY and the controller does not - turn it off */
4433 else if (ata_id_has_iordy(dev->id))
4434 tf.nsect = 0x01;
4435 else /* In the ancient relic department - skip all of this */
4436 return 0;
4437
4438 /*
4439 * On some disks, this command causes spin-up, so we need longer
4440 * timeout.
4441 */
4442 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4443}
4444
4445/**
4446 * ata_dev_set_feature - Issue SET FEATURES
4447 * @dev: Device to which command will be sent
4448 * @subcmd: The SET FEATURES subcommand to be sent
4449 * @action: The sector count represents a subcommand specific action
4450 *
4451 * Issue SET FEATURES command to device @dev on port @ap with sector count
4452 *
4453 * LOCKING:
4454 * PCI/etc. bus probe sem.
4455 *
4456 * RETURNS:
4457 * 0 on success, AC_ERR_* mask otherwise.
4458 */
4459unsigned int ata_dev_set_feature(struct ata_device *dev, u8 subcmd, u8 action)
4460{
4461 struct ata_taskfile tf;
4462 unsigned int timeout = 0;
4463
4464 /* set up set-features taskfile */
4465 ata_dev_dbg(dev, "set features\n");
4466
4467 ata_tf_init(dev, &tf);
4468 tf.command = ATA_CMD_SET_FEATURES;
4469 tf.feature = subcmd;
4470 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4471 tf.protocol = ATA_PROT_NODATA;
4472 tf.nsect = action;
4473
4474 if (subcmd == SETFEATURES_SPINUP)
4475 timeout = ata_probe_timeout ?
4476 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4477
4478 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4479}
4480EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4481
4482/**
4483 * ata_dev_init_params - Issue INIT DEV PARAMS command
4484 * @dev: Device to which command will be sent
4485 * @heads: Number of heads (taskfile parameter)
4486 * @sectors: Number of sectors (taskfile parameter)
4487 *
4488 * LOCKING:
4489 * Kernel thread context (may sleep)
4490 *
4491 * RETURNS:
4492 * 0 on success, AC_ERR_* mask otherwise.
4493 */
4494static unsigned int ata_dev_init_params(struct ata_device *dev,
4495 u16 heads, u16 sectors)
4496{
4497 struct ata_taskfile tf;
4498 unsigned int err_mask;
4499
4500 /* Number of sectors per track 1-255. Number of heads 1-16 */
4501 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4502 return AC_ERR_INVALID;
4503
4504 /* set up init dev params taskfile */
4505 ata_dev_dbg(dev, "init dev params \n");
4506
4507 ata_tf_init(dev, &tf);
4508 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4509 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4510 tf.protocol = ATA_PROT_NODATA;
4511 tf.nsect = sectors;
4512 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4513
4514 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4515 /* A clean abort indicates an original or just out of spec drive
4516 and we should continue as we issue the setup based on the
4517 drive reported working geometry */
4518 if (err_mask == AC_ERR_DEV && (tf.error & ATA_ABORTED))
4519 err_mask = 0;
4520
4521 return err_mask;
4522}
4523
4524/**
4525 * atapi_check_dma - Check whether ATAPI DMA can be supported
4526 * @qc: Metadata associated with taskfile to check
4527 *
4528 * Allow low-level driver to filter ATA PACKET commands, returning
4529 * a status indicating whether or not it is OK to use DMA for the
4530 * supplied PACKET command.
4531 *
4532 * LOCKING:
4533 * spin_lock_irqsave(host lock)
4534 *
4535 * RETURNS: 0 when ATAPI DMA can be used
4536 * nonzero otherwise
4537 */
4538int atapi_check_dma(struct ata_queued_cmd *qc)
4539{
4540 struct ata_port *ap = qc->ap;
4541
4542 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4543 * few ATAPI devices choke on such DMA requests.
4544 */
4545 if (!(qc->dev->quirks & ATA_QUIRK_ATAPI_MOD16_DMA) &&
4546 unlikely(qc->nbytes & 15))
4547 return 1;
4548
4549 if (ap->ops->check_atapi_dma)
4550 return ap->ops->check_atapi_dma(qc);
4551
4552 return 0;
4553}
4554
4555/**
4556 * ata_std_qc_defer - Check whether a qc needs to be deferred
4557 * @qc: ATA command in question
4558 *
4559 * Non-NCQ commands cannot run with any other command, NCQ or
4560 * not. As upper layer only knows the queue depth, we are
4561 * responsible for maintaining exclusion. This function checks
4562 * whether a new command @qc can be issued.
4563 *
4564 * LOCKING:
4565 * spin_lock_irqsave(host lock)
4566 *
4567 * RETURNS:
4568 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4569 */
4570int ata_std_qc_defer(struct ata_queued_cmd *qc)
4571{
4572 struct ata_link *link = qc->dev->link;
4573
4574 if (ata_is_ncq(qc->tf.protocol)) {
4575 if (!ata_tag_valid(link->active_tag))
4576 return 0;
4577 } else {
4578 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4579 return 0;
4580 }
4581
4582 return ATA_DEFER_LINK;
4583}
4584EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4585
4586/**
4587 * ata_sg_init - Associate command with scatter-gather table.
4588 * @qc: Command to be associated
4589 * @sg: Scatter-gather table.
4590 * @n_elem: Number of elements in s/g table.
4591 *
4592 * Initialize the data-related elements of queued_cmd @qc
4593 * to point to a scatter-gather table @sg, containing @n_elem
4594 * elements.
4595 *
4596 * LOCKING:
4597 * spin_lock_irqsave(host lock)
4598 */
4599void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4600 unsigned int n_elem)
4601{
4602 qc->sg = sg;
4603 qc->n_elem = n_elem;
4604 qc->cursg = qc->sg;
4605}
4606
4607#ifdef CONFIG_HAS_DMA
4608
4609/**
4610 * ata_sg_clean - Unmap DMA memory associated with command
4611 * @qc: Command containing DMA memory to be released
4612 *
4613 * Unmap all mapped DMA memory associated with this command.
4614 *
4615 * LOCKING:
4616 * spin_lock_irqsave(host lock)
4617 */
4618static void ata_sg_clean(struct ata_queued_cmd *qc)
4619{
4620 struct ata_port *ap = qc->ap;
4621 struct scatterlist *sg = qc->sg;
4622 int dir = qc->dma_dir;
4623
4624 WARN_ON_ONCE(sg == NULL);
4625
4626 if (qc->n_elem)
4627 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4628
4629 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4630 qc->sg = NULL;
4631}
4632
4633/**
4634 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4635 * @qc: Command with scatter-gather table to be mapped.
4636 *
4637 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4638 *
4639 * LOCKING:
4640 * spin_lock_irqsave(host lock)
4641 *
4642 * RETURNS:
4643 * Zero on success, negative on error.
4644 *
4645 */
4646static int ata_sg_setup(struct ata_queued_cmd *qc)
4647{
4648 struct ata_port *ap = qc->ap;
4649 unsigned int n_elem;
4650
4651 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4652 if (n_elem < 1)
4653 return -1;
4654
4655 qc->orig_n_elem = qc->n_elem;
4656 qc->n_elem = n_elem;
4657 qc->flags |= ATA_QCFLAG_DMAMAP;
4658
4659 return 0;
4660}
4661
4662#else /* !CONFIG_HAS_DMA */
4663
4664static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4665static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4666
4667#endif /* !CONFIG_HAS_DMA */
4668
4669/**
4670 * swap_buf_le16 - swap halves of 16-bit words in place
4671 * @buf: Buffer to swap
4672 * @buf_words: Number of 16-bit words in buffer.
4673 *
4674 * Swap halves of 16-bit words if needed to convert from
4675 * little-endian byte order to native cpu byte order, or
4676 * vice-versa.
4677 *
4678 * LOCKING:
4679 * Inherited from caller.
4680 */
4681void swap_buf_le16(u16 *buf, unsigned int buf_words)
4682{
4683#ifdef __BIG_ENDIAN
4684 unsigned int i;
4685
4686 for (i = 0; i < buf_words; i++)
4687 buf[i] = le16_to_cpu(buf[i]);
4688#endif /* __BIG_ENDIAN */
4689}
4690
4691/**
4692 * ata_qc_free - free unused ata_queued_cmd
4693 * @qc: Command to complete
4694 *
4695 * Designed to free unused ata_queued_cmd object
4696 * in case something prevents using it.
4697 *
4698 * LOCKING:
4699 * spin_lock_irqsave(host lock)
4700 */
4701void ata_qc_free(struct ata_queued_cmd *qc)
4702{
4703 qc->flags = 0;
4704 if (ata_tag_valid(qc->tag))
4705 qc->tag = ATA_TAG_POISON;
4706}
4707
4708void __ata_qc_complete(struct ata_queued_cmd *qc)
4709{
4710 struct ata_port *ap;
4711 struct ata_link *link;
4712
4713 if (WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE)))
4714 return;
4715
4716 ap = qc->ap;
4717 link = qc->dev->link;
4718
4719 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4720 ata_sg_clean(qc);
4721
4722 /* command should be marked inactive atomically with qc completion */
4723 if (ata_is_ncq(qc->tf.protocol)) {
4724 link->sactive &= ~(1 << qc->hw_tag);
4725 if (!link->sactive)
4726 ap->nr_active_links--;
4727 } else {
4728 link->active_tag = ATA_TAG_POISON;
4729 ap->nr_active_links--;
4730 }
4731
4732 /* clear exclusive status */
4733 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4734 ap->excl_link == link))
4735 ap->excl_link = NULL;
4736
4737 /*
4738 * Mark qc as inactive to prevent the port interrupt handler from
4739 * completing the command twice later, before the error handler is
4740 * called.
4741 */
4742 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4743 ap->qc_active &= ~(1ULL << qc->tag);
4744
4745 /* call completion callback */
4746 qc->complete_fn(qc);
4747}
4748
4749static void fill_result_tf(struct ata_queued_cmd *qc)
4750{
4751 struct ata_port *ap = qc->ap;
4752
4753 /*
4754 * rtf may already be filled (e.g. for successful NCQ commands).
4755 * If that is the case, we have nothing to do.
4756 */
4757 if (qc->flags & ATA_QCFLAG_RTF_FILLED)
4758 return;
4759
4760 qc->result_tf.flags = qc->tf.flags;
4761 ap->ops->qc_fill_rtf(qc);
4762 qc->flags |= ATA_QCFLAG_RTF_FILLED;
4763}
4764
4765static void ata_verify_xfer(struct ata_queued_cmd *qc)
4766{
4767 struct ata_device *dev = qc->dev;
4768
4769 if (!ata_is_data(qc->tf.protocol))
4770 return;
4771
4772 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4773 return;
4774
4775 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4776}
4777
4778/**
4779 * ata_qc_complete - Complete an active ATA command
4780 * @qc: Command to complete
4781 *
4782 * Indicate to the mid and upper layers that an ATA command has
4783 * completed, with either an ok or not-ok status.
4784 *
4785 * Refrain from calling this function multiple times when
4786 * successfully completing multiple NCQ commands.
4787 * ata_qc_complete_multiple() should be used instead, which will
4788 * properly update IRQ expect state.
4789 *
4790 * LOCKING:
4791 * spin_lock_irqsave(host lock)
4792 */
4793void ata_qc_complete(struct ata_queued_cmd *qc)
4794{
4795 struct ata_port *ap = qc->ap;
4796 struct ata_device *dev = qc->dev;
4797 struct ata_eh_info *ehi = &dev->link->eh_info;
4798
4799 /* Trigger the LED (if available) */
4800 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4801
4802 /*
4803 * In order to synchronize EH with the regular execution path, a qc that
4804 * is owned by EH is marked with ATA_QCFLAG_EH.
4805 *
4806 * The normal execution path is responsible for not accessing a qc owned
4807 * by EH. libata core enforces the rule by returning NULL from
4808 * ata_qc_from_tag() for qcs owned by EH.
4809 */
4810 if (unlikely(qc->err_mask))
4811 qc->flags |= ATA_QCFLAG_EH;
4812
4813 /*
4814 * Finish internal commands without any further processing and always
4815 * with the result TF filled.
4816 */
4817 if (unlikely(ata_tag_internal(qc->tag))) {
4818 fill_result_tf(qc);
4819 trace_ata_qc_complete_internal(qc);
4820 __ata_qc_complete(qc);
4821 return;
4822 }
4823
4824 /* Non-internal qc has failed. Fill the result TF and summon EH. */
4825 if (unlikely(qc->flags & ATA_QCFLAG_EH)) {
4826 fill_result_tf(qc);
4827 trace_ata_qc_complete_failed(qc);
4828 ata_qc_schedule_eh(qc);
4829 return;
4830 }
4831
4832 WARN_ON_ONCE(ata_port_is_frozen(ap));
4833
4834 /* read result TF if requested */
4835 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4836 fill_result_tf(qc);
4837
4838 trace_ata_qc_complete_done(qc);
4839
4840 /*
4841 * For CDL commands that completed without an error, check if we have
4842 * sense data (ATA_SENSE is set). If we do, then the command may have
4843 * been aborted by the device due to a limit timeout using the policy
4844 * 0xD. For these commands, invoke EH to get the command sense data.
4845 */
4846 if (qc->flags & ATA_QCFLAG_HAS_CDL &&
4847 qc->result_tf.status & ATA_SENSE) {
4848 /*
4849 * Tell SCSI EH to not overwrite scmd->result even if this
4850 * command is finished with result SAM_STAT_GOOD.
4851 */
4852 qc->scsicmd->flags |= SCMD_FORCE_EH_SUCCESS;
4853 qc->flags |= ATA_QCFLAG_EH_SUCCESS_CMD;
4854 ehi->dev_action[dev->devno] |= ATA_EH_GET_SUCCESS_SENSE;
4855
4856 /*
4857 * set pending so that ata_qc_schedule_eh() does not trigger
4858 * fast drain, and freeze the port.
4859 */
4860 ap->pflags |= ATA_PFLAG_EH_PENDING;
4861 ata_qc_schedule_eh(qc);
4862 return;
4863 }
4864
4865 /* Some commands need post-processing after successful completion. */
4866 switch (qc->tf.command) {
4867 case ATA_CMD_SET_FEATURES:
4868 if (qc->tf.feature != SETFEATURES_WC_ON &&
4869 qc->tf.feature != SETFEATURES_WC_OFF &&
4870 qc->tf.feature != SETFEATURES_RA_ON &&
4871 qc->tf.feature != SETFEATURES_RA_OFF)
4872 break;
4873 fallthrough;
4874 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4875 case ATA_CMD_SET_MULTI: /* multi_count changed */
4876 /* revalidate device */
4877 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4878 ata_port_schedule_eh(ap);
4879 break;
4880
4881 case ATA_CMD_SLEEP:
4882 dev->flags |= ATA_DFLAG_SLEEPING;
4883 break;
4884 }
4885
4886 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4887 ata_verify_xfer(qc);
4888
4889 __ata_qc_complete(qc);
4890}
4891EXPORT_SYMBOL_GPL(ata_qc_complete);
4892
4893/**
4894 * ata_qc_get_active - get bitmask of active qcs
4895 * @ap: port in question
4896 *
4897 * LOCKING:
4898 * spin_lock_irqsave(host lock)
4899 *
4900 * RETURNS:
4901 * Bitmask of active qcs
4902 */
4903u64 ata_qc_get_active(struct ata_port *ap)
4904{
4905 u64 qc_active = ap->qc_active;
4906
4907 /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4908 if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4909 qc_active |= (1 << 0);
4910 qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4911 }
4912
4913 return qc_active;
4914}
4915EXPORT_SYMBOL_GPL(ata_qc_get_active);
4916
4917/**
4918 * ata_qc_issue - issue taskfile to device
4919 * @qc: command to issue to device
4920 *
4921 * Prepare an ATA command to submission to device.
4922 * This includes mapping the data into a DMA-able
4923 * area, filling in the S/G table, and finally
4924 * writing the taskfile to hardware, starting the command.
4925 *
4926 * LOCKING:
4927 * spin_lock_irqsave(host lock)
4928 */
4929void ata_qc_issue(struct ata_queued_cmd *qc)
4930{
4931 struct ata_port *ap = qc->ap;
4932 struct ata_link *link = qc->dev->link;
4933 u8 prot = qc->tf.protocol;
4934
4935 /* Make sure only one non-NCQ command is outstanding. */
4936 WARN_ON_ONCE(ata_tag_valid(link->active_tag));
4937
4938 if (ata_is_ncq(prot)) {
4939 WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4940
4941 if (!link->sactive)
4942 ap->nr_active_links++;
4943 link->sactive |= 1 << qc->hw_tag;
4944 } else {
4945 WARN_ON_ONCE(link->sactive);
4946
4947 ap->nr_active_links++;
4948 link->active_tag = qc->tag;
4949 }
4950
4951 qc->flags |= ATA_QCFLAG_ACTIVE;
4952 ap->qc_active |= 1ULL << qc->tag;
4953
4954 /*
4955 * We guarantee to LLDs that they will have at least one
4956 * non-zero sg if the command is a data command.
4957 */
4958 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4959 goto sys_err;
4960
4961 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4962 (ap->flags & ATA_FLAG_PIO_DMA)))
4963 if (ata_sg_setup(qc))
4964 goto sys_err;
4965
4966 /* if device is sleeping, schedule reset and abort the link */
4967 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4968 link->eh_info.action |= ATA_EH_RESET;
4969 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4970 ata_link_abort(link);
4971 return;
4972 }
4973
4974 if (ap->ops->qc_prep) {
4975 trace_ata_qc_prep(qc);
4976 qc->err_mask |= ap->ops->qc_prep(qc);
4977 if (unlikely(qc->err_mask))
4978 goto err;
4979 }
4980
4981 trace_ata_qc_issue(qc);
4982 qc->err_mask |= ap->ops->qc_issue(qc);
4983 if (unlikely(qc->err_mask))
4984 goto err;
4985 return;
4986
4987sys_err:
4988 qc->err_mask |= AC_ERR_SYSTEM;
4989err:
4990 ata_qc_complete(qc);
4991}
4992
4993/**
4994 * ata_phys_link_online - test whether the given link is online
4995 * @link: ATA link to test
4996 *
4997 * Test whether @link is online. Note that this function returns
4998 * 0 if online status of @link cannot be obtained, so
4999 * ata_link_online(link) != !ata_link_offline(link).
5000 *
5001 * LOCKING:
5002 * None.
5003 *
5004 * RETURNS:
5005 * True if the port online status is available and online.
5006 */
5007bool ata_phys_link_online(struct ata_link *link)
5008{
5009 u32 sstatus;
5010
5011 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5012 ata_sstatus_online(sstatus))
5013 return true;
5014 return false;
5015}
5016
5017/**
5018 * ata_phys_link_offline - test whether the given link is offline
5019 * @link: ATA link to test
5020 *
5021 * Test whether @link is offline. Note that this function
5022 * returns 0 if offline status of @link cannot be obtained, so
5023 * ata_link_online(link) != !ata_link_offline(link).
5024 *
5025 * LOCKING:
5026 * None.
5027 *
5028 * RETURNS:
5029 * True if the port offline status is available and offline.
5030 */
5031bool ata_phys_link_offline(struct ata_link *link)
5032{
5033 u32 sstatus;
5034
5035 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5036 !ata_sstatus_online(sstatus))
5037 return true;
5038 return false;
5039}
5040
5041/**
5042 * ata_link_online - test whether the given link is online
5043 * @link: ATA link to test
5044 *
5045 * Test whether @link is online. This is identical to
5046 * ata_phys_link_online() when there's no slave link. When
5047 * there's a slave link, this function should only be called on
5048 * the master link and will return true if any of M/S links is
5049 * online.
5050 *
5051 * LOCKING:
5052 * None.
5053 *
5054 * RETURNS:
5055 * True if the port online status is available and online.
5056 */
5057bool ata_link_online(struct ata_link *link)
5058{
5059 struct ata_link *slave = link->ap->slave_link;
5060
5061 WARN_ON(link == slave); /* shouldn't be called on slave link */
5062
5063 return ata_phys_link_online(link) ||
5064 (slave && ata_phys_link_online(slave));
5065}
5066EXPORT_SYMBOL_GPL(ata_link_online);
5067
5068/**
5069 * ata_link_offline - test whether the given link is offline
5070 * @link: ATA link to test
5071 *
5072 * Test whether @link is offline. This is identical to
5073 * ata_phys_link_offline() when there's no slave link. When
5074 * there's a slave link, this function should only be called on
5075 * the master link and will return true if both M/S links are
5076 * offline.
5077 *
5078 * LOCKING:
5079 * None.
5080 *
5081 * RETURNS:
5082 * True if the port offline status is available and offline.
5083 */
5084bool ata_link_offline(struct ata_link *link)
5085{
5086 struct ata_link *slave = link->ap->slave_link;
5087
5088 WARN_ON(link == slave); /* shouldn't be called on slave link */
5089
5090 return ata_phys_link_offline(link) &&
5091 (!slave || ata_phys_link_offline(slave));
5092}
5093EXPORT_SYMBOL_GPL(ata_link_offline);
5094
5095#ifdef CONFIG_PM
5096static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5097 unsigned int action, unsigned int ehi_flags,
5098 bool async)
5099{
5100 struct ata_link *link;
5101 unsigned long flags;
5102
5103 spin_lock_irqsave(ap->lock, flags);
5104
5105 /*
5106 * A previous PM operation might still be in progress. Wait for
5107 * ATA_PFLAG_PM_PENDING to clear.
5108 */
5109 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5110 spin_unlock_irqrestore(ap->lock, flags);
5111 ata_port_wait_eh(ap);
5112 spin_lock_irqsave(ap->lock, flags);
5113 }
5114
5115 /* Request PM operation to EH */
5116 ap->pm_mesg = mesg;
5117 ap->pflags |= ATA_PFLAG_PM_PENDING;
5118 ata_for_each_link(link, ap, HOST_FIRST) {
5119 link->eh_info.action |= action;
5120 link->eh_info.flags |= ehi_flags;
5121 }
5122
5123 ata_port_schedule_eh(ap);
5124
5125 spin_unlock_irqrestore(ap->lock, flags);
5126
5127 if (!async)
5128 ata_port_wait_eh(ap);
5129}
5130
5131static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg,
5132 bool async)
5133{
5134 /*
5135 * We are about to suspend the port, so we do not care about
5136 * scsi_rescan_device() calls scheduled by previous resume operations.
5137 * The next resume will schedule the rescan again. So cancel any rescan
5138 * that is not done yet.
5139 */
5140 cancel_delayed_work_sync(&ap->scsi_rescan_task);
5141
5142 /*
5143 * On some hardware, device fails to respond after spun down for
5144 * suspend. As the device will not be used until being resumed, we
5145 * do not need to touch the device. Ask EH to skip the usual stuff
5146 * and proceed directly to suspend.
5147 *
5148 * http://thread.gmane.org/gmane.linux.ide/46764
5149 */
5150 ata_port_request_pm(ap, mesg, 0,
5151 ATA_EHI_QUIET | ATA_EHI_NO_AUTOPSY |
5152 ATA_EHI_NO_RECOVERY,
5153 async);
5154}
5155
5156static int ata_port_pm_suspend(struct device *dev)
5157{
5158 struct ata_port *ap = to_ata_port(dev);
5159
5160 if (pm_runtime_suspended(dev))
5161 return 0;
5162
5163 ata_port_suspend(ap, PMSG_SUSPEND, false);
5164 return 0;
5165}
5166
5167static int ata_port_pm_freeze(struct device *dev)
5168{
5169 struct ata_port *ap = to_ata_port(dev);
5170
5171 if (pm_runtime_suspended(dev))
5172 return 0;
5173
5174 ata_port_suspend(ap, PMSG_FREEZE, false);
5175 return 0;
5176}
5177
5178static int ata_port_pm_poweroff(struct device *dev)
5179{
5180 if (!pm_runtime_suspended(dev))
5181 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE, false);
5182 return 0;
5183}
5184
5185static void ata_port_resume(struct ata_port *ap, pm_message_t mesg,
5186 bool async)
5187{
5188 ata_port_request_pm(ap, mesg, ATA_EH_RESET,
5189 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET,
5190 async);
5191}
5192
5193static int ata_port_pm_resume(struct device *dev)
5194{
5195 if (!pm_runtime_suspended(dev))
5196 ata_port_resume(to_ata_port(dev), PMSG_RESUME, true);
5197 return 0;
5198}
5199
5200/*
5201 * For ODDs, the upper layer will poll for media change every few seconds,
5202 * which will make it enter and leave suspend state every few seconds. And
5203 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5204 * is very little and the ODD may malfunction after constantly being reset.
5205 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5206 * ODD is attached to the port.
5207 */
5208static int ata_port_runtime_idle(struct device *dev)
5209{
5210 struct ata_port *ap = to_ata_port(dev);
5211 struct ata_link *link;
5212 struct ata_device *adev;
5213
5214 ata_for_each_link(link, ap, HOST_FIRST) {
5215 ata_for_each_dev(adev, link, ENABLED)
5216 if (adev->class == ATA_DEV_ATAPI &&
5217 !zpodd_dev_enabled(adev))
5218 return -EBUSY;
5219 }
5220
5221 return 0;
5222}
5223
5224static int ata_port_runtime_suspend(struct device *dev)
5225{
5226 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND, false);
5227 return 0;
5228}
5229
5230static int ata_port_runtime_resume(struct device *dev)
5231{
5232 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME, false);
5233 return 0;
5234}
5235
5236static const struct dev_pm_ops ata_port_pm_ops = {
5237 .suspend = ata_port_pm_suspend,
5238 .resume = ata_port_pm_resume,
5239 .freeze = ata_port_pm_freeze,
5240 .thaw = ata_port_pm_resume,
5241 .poweroff = ata_port_pm_poweroff,
5242 .restore = ata_port_pm_resume,
5243
5244 .runtime_suspend = ata_port_runtime_suspend,
5245 .runtime_resume = ata_port_runtime_resume,
5246 .runtime_idle = ata_port_runtime_idle,
5247};
5248
5249/* sas ports don't participate in pm runtime management of ata_ports,
5250 * and need to resume ata devices at the domain level, not the per-port
5251 * level. sas suspend/resume is async to allow parallel port recovery
5252 * since sas has multiple ata_port instances per Scsi_Host.
5253 */
5254void ata_sas_port_suspend(struct ata_port *ap)
5255{
5256 ata_port_suspend(ap, PMSG_SUSPEND, true);
5257}
5258EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5259
5260void ata_sas_port_resume(struct ata_port *ap)
5261{
5262 ata_port_resume(ap, PMSG_RESUME, true);
5263}
5264EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5265
5266/**
5267 * ata_host_suspend - suspend host
5268 * @host: host to suspend
5269 * @mesg: PM message
5270 *
5271 * Suspend @host. Actual operation is performed by port suspend.
5272 */
5273void ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5274{
5275 host->dev->power.power_state = mesg;
5276}
5277EXPORT_SYMBOL_GPL(ata_host_suspend);
5278
5279/**
5280 * ata_host_resume - resume host
5281 * @host: host to resume
5282 *
5283 * Resume @host. Actual operation is performed by port resume.
5284 */
5285void ata_host_resume(struct ata_host *host)
5286{
5287 host->dev->power.power_state = PMSG_ON;
5288}
5289EXPORT_SYMBOL_GPL(ata_host_resume);
5290#endif
5291
5292const struct device_type ata_port_type = {
5293 .name = ATA_PORT_TYPE_NAME,
5294#ifdef CONFIG_PM
5295 .pm = &ata_port_pm_ops,
5296#endif
5297};
5298
5299/**
5300 * ata_dev_init - Initialize an ata_device structure
5301 * @dev: Device structure to initialize
5302 *
5303 * Initialize @dev in preparation for probing.
5304 *
5305 * LOCKING:
5306 * Inherited from caller.
5307 */
5308void ata_dev_init(struct ata_device *dev)
5309{
5310 struct ata_link *link = ata_dev_phys_link(dev);
5311 struct ata_port *ap = link->ap;
5312 unsigned long flags;
5313
5314 /* SATA spd limit is bound to the attached device, reset together */
5315 link->sata_spd_limit = link->hw_sata_spd_limit;
5316 link->sata_spd = 0;
5317
5318 /* High bits of dev->flags are used to record warm plug
5319 * requests which occur asynchronously. Synchronize using
5320 * host lock.
5321 */
5322 spin_lock_irqsave(ap->lock, flags);
5323 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5324 dev->quirks = 0;
5325 spin_unlock_irqrestore(ap->lock, flags);
5326
5327 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5328 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5329 dev->pio_mask = UINT_MAX;
5330 dev->mwdma_mask = UINT_MAX;
5331 dev->udma_mask = UINT_MAX;
5332}
5333
5334/**
5335 * ata_link_init - Initialize an ata_link structure
5336 * @ap: ATA port link is attached to
5337 * @link: Link structure to initialize
5338 * @pmp: Port multiplier port number
5339 *
5340 * Initialize @link.
5341 *
5342 * LOCKING:
5343 * Kernel thread context (may sleep)
5344 */
5345void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5346{
5347 int i;
5348
5349 /* clear everything except for devices */
5350 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5351 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5352
5353 link->ap = ap;
5354 link->pmp = pmp;
5355 link->active_tag = ATA_TAG_POISON;
5356 link->hw_sata_spd_limit = UINT_MAX;
5357
5358 /* can't use iterator, ap isn't initialized yet */
5359 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5360 struct ata_device *dev = &link->device[i];
5361
5362 dev->link = link;
5363 dev->devno = dev - link->device;
5364#ifdef CONFIG_ATA_ACPI
5365 dev->gtf_filter = ata_acpi_gtf_filter;
5366#endif
5367 ata_dev_init(dev);
5368 }
5369}
5370
5371/**
5372 * sata_link_init_spd - Initialize link->sata_spd_limit
5373 * @link: Link to configure sata_spd_limit for
5374 *
5375 * Initialize ``link->[hw_]sata_spd_limit`` to the currently
5376 * configured value.
5377 *
5378 * LOCKING:
5379 * Kernel thread context (may sleep).
5380 *
5381 * RETURNS:
5382 * 0 on success, -errno on failure.
5383 */
5384int sata_link_init_spd(struct ata_link *link)
5385{
5386 u8 spd;
5387 int rc;
5388
5389 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5390 if (rc)
5391 return rc;
5392
5393 spd = (link->saved_scontrol >> 4) & 0xf;
5394 if (spd)
5395 link->hw_sata_spd_limit &= (1 << spd) - 1;
5396
5397 ata_force_link_limits(link);
5398
5399 link->sata_spd_limit = link->hw_sata_spd_limit;
5400
5401 return 0;
5402}
5403
5404/**
5405 * ata_port_alloc - allocate and initialize basic ATA port resources
5406 * @host: ATA host this allocated port belongs to
5407 *
5408 * Allocate and initialize basic ATA port resources.
5409 *
5410 * RETURNS:
5411 * Allocate ATA port on success, NULL on failure.
5412 *
5413 * LOCKING:
5414 * Inherited from calling layer (may sleep).
5415 */
5416struct ata_port *ata_port_alloc(struct ata_host *host)
5417{
5418 struct ata_port *ap;
5419 int id;
5420
5421 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5422 if (!ap)
5423 return NULL;
5424
5425 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5426 ap->lock = &host->lock;
5427 id = ida_alloc_min(&ata_ida, 1, GFP_KERNEL);
5428 if (id < 0) {
5429 kfree(ap);
5430 return NULL;
5431 }
5432 ap->print_id = id;
5433 ap->host = host;
5434 ap->dev = host->dev;
5435
5436 mutex_init(&ap->scsi_scan_mutex);
5437 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5438 INIT_DELAYED_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5439 INIT_LIST_HEAD(&ap->eh_done_q);
5440 init_waitqueue_head(&ap->eh_wait_q);
5441 init_completion(&ap->park_req_pending);
5442 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5443 TIMER_DEFERRABLE);
5444
5445 ap->cbl = ATA_CBL_NONE;
5446
5447 ata_link_init(ap, &ap->link, 0);
5448
5449#ifdef ATA_IRQ_TRAP
5450 ap->stats.unhandled_irq = 1;
5451 ap->stats.idle_irq = 1;
5452#endif
5453 ata_sff_port_init(ap);
5454
5455 return ap;
5456}
5457EXPORT_SYMBOL_GPL(ata_port_alloc);
5458
5459void ata_port_free(struct ata_port *ap)
5460{
5461 if (!ap)
5462 return;
5463
5464 kfree(ap->pmp_link);
5465 kfree(ap->slave_link);
5466 ida_free(&ata_ida, ap->print_id);
5467 kfree(ap);
5468}
5469EXPORT_SYMBOL_GPL(ata_port_free);
5470
5471static void ata_devres_release(struct device *gendev, void *res)
5472{
5473 struct ata_host *host = dev_get_drvdata(gendev);
5474 int i;
5475
5476 for (i = 0; i < host->n_ports; i++) {
5477 struct ata_port *ap = host->ports[i];
5478
5479 if (!ap)
5480 continue;
5481
5482 if (ap->scsi_host)
5483 scsi_host_put(ap->scsi_host);
5484
5485 }
5486
5487 dev_set_drvdata(gendev, NULL);
5488 ata_host_put(host);
5489}
5490
5491static void ata_host_release(struct kref *kref)
5492{
5493 struct ata_host *host = container_of(kref, struct ata_host, kref);
5494 int i;
5495
5496 for (i = 0; i < host->n_ports; i++) {
5497 ata_port_free(host->ports[i]);
5498 host->ports[i] = NULL;
5499 }
5500 kfree(host);
5501}
5502
5503void ata_host_get(struct ata_host *host)
5504{
5505 kref_get(&host->kref);
5506}
5507
5508void ata_host_put(struct ata_host *host)
5509{
5510 kref_put(&host->kref, ata_host_release);
5511}
5512EXPORT_SYMBOL_GPL(ata_host_put);
5513
5514/**
5515 * ata_host_alloc - allocate and init basic ATA host resources
5516 * @dev: generic device this host is associated with
5517 * @n_ports: the number of ATA ports associated with this host
5518 *
5519 * Allocate and initialize basic ATA host resources. LLD calls
5520 * this function to allocate a host, initializes it fully and
5521 * attaches it using ata_host_register().
5522 *
5523 * RETURNS:
5524 * Allocate ATA host on success, NULL on failure.
5525 *
5526 * LOCKING:
5527 * Inherited from calling layer (may sleep).
5528 */
5529struct ata_host *ata_host_alloc(struct device *dev, int n_ports)
5530{
5531 struct ata_host *host;
5532 size_t sz;
5533 int i;
5534 void *dr;
5535
5536 /* alloc a container for our list of ATA ports (buses) */
5537 sz = sizeof(struct ata_host) + n_ports * sizeof(void *);
5538 host = kzalloc(sz, GFP_KERNEL);
5539 if (!host)
5540 return NULL;
5541
5542 if (!devres_open_group(dev, NULL, GFP_KERNEL)) {
5543 kfree(host);
5544 return NULL;
5545 }
5546
5547 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5548 if (!dr) {
5549 kfree(host);
5550 goto err_out;
5551 }
5552
5553 devres_add(dev, dr);
5554 dev_set_drvdata(dev, host);
5555
5556 spin_lock_init(&host->lock);
5557 mutex_init(&host->eh_mutex);
5558 host->dev = dev;
5559 host->n_ports = n_ports;
5560 kref_init(&host->kref);
5561
5562 /* allocate ports bound to this host */
5563 for (i = 0; i < n_ports; i++) {
5564 struct ata_port *ap;
5565
5566 ap = ata_port_alloc(host);
5567 if (!ap)
5568 goto err_out;
5569
5570 ap->port_no = i;
5571 host->ports[i] = ap;
5572 }
5573
5574 devres_remove_group(dev, NULL);
5575 return host;
5576
5577 err_out:
5578 devres_release_group(dev, NULL);
5579 return NULL;
5580}
5581EXPORT_SYMBOL_GPL(ata_host_alloc);
5582
5583/**
5584 * ata_host_alloc_pinfo - alloc host and init with port_info array
5585 * @dev: generic device this host is associated with
5586 * @ppi: array of ATA port_info to initialize host with
5587 * @n_ports: number of ATA ports attached to this host
5588 *
5589 * Allocate ATA host and initialize with info from @ppi. If NULL
5590 * terminated, @ppi may contain fewer entries than @n_ports. The
5591 * last entry will be used for the remaining ports.
5592 *
5593 * RETURNS:
5594 * Allocate ATA host on success, NULL on failure.
5595 *
5596 * LOCKING:
5597 * Inherited from calling layer (may sleep).
5598 */
5599struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5600 const struct ata_port_info * const * ppi,
5601 int n_ports)
5602{
5603 const struct ata_port_info *pi = &ata_dummy_port_info;
5604 struct ata_host *host;
5605 int i, j;
5606
5607 host = ata_host_alloc(dev, n_ports);
5608 if (!host)
5609 return NULL;
5610
5611 for (i = 0, j = 0; i < host->n_ports; i++) {
5612 struct ata_port *ap = host->ports[i];
5613
5614 if (ppi[j])
5615 pi = ppi[j++];
5616
5617 ap->pio_mask = pi->pio_mask;
5618 ap->mwdma_mask = pi->mwdma_mask;
5619 ap->udma_mask = pi->udma_mask;
5620 ap->flags |= pi->flags;
5621 ap->link.flags |= pi->link_flags;
5622 ap->ops = pi->port_ops;
5623
5624 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5625 host->ops = pi->port_ops;
5626 }
5627
5628 return host;
5629}
5630EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5631
5632static void ata_host_stop(struct device *gendev, void *res)
5633{
5634 struct ata_host *host = dev_get_drvdata(gendev);
5635 int i;
5636
5637 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5638
5639 for (i = 0; i < host->n_ports; i++) {
5640 struct ata_port *ap = host->ports[i];
5641
5642 if (ap->ops->port_stop)
5643 ap->ops->port_stop(ap);
5644 }
5645
5646 if (host->ops->host_stop)
5647 host->ops->host_stop(host);
5648}
5649
5650/**
5651 * ata_finalize_port_ops - finalize ata_port_operations
5652 * @ops: ata_port_operations to finalize
5653 *
5654 * An ata_port_operations can inherit from another ops and that
5655 * ops can again inherit from another. This can go on as many
5656 * times as necessary as long as there is no loop in the
5657 * inheritance chain.
5658 *
5659 * Ops tables are finalized when the host is started. NULL or
5660 * unspecified entries are inherited from the closet ancestor
5661 * which has the method and the entry is populated with it.
5662 * After finalization, the ops table directly points to all the
5663 * methods and ->inherits is no longer necessary and cleared.
5664 *
5665 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5666 *
5667 * LOCKING:
5668 * None.
5669 */
5670static void ata_finalize_port_ops(struct ata_port_operations *ops)
5671{
5672 static DEFINE_SPINLOCK(lock);
5673 const struct ata_port_operations *cur;
5674 void **begin = (void **)ops;
5675 void **end = (void **)&ops->inherits;
5676 void **pp;
5677
5678 if (!ops || !ops->inherits)
5679 return;
5680
5681 spin_lock(&lock);
5682
5683 for (cur = ops->inherits; cur; cur = cur->inherits) {
5684 void **inherit = (void **)cur;
5685
5686 for (pp = begin; pp < end; pp++, inherit++)
5687 if (!*pp)
5688 *pp = *inherit;
5689 }
5690
5691 for (pp = begin; pp < end; pp++)
5692 if (IS_ERR(*pp))
5693 *pp = NULL;
5694
5695 ops->inherits = NULL;
5696
5697 spin_unlock(&lock);
5698}
5699
5700/**
5701 * ata_host_start - start and freeze ports of an ATA host
5702 * @host: ATA host to start ports for
5703 *
5704 * Start and then freeze ports of @host. Started status is
5705 * recorded in host->flags, so this function can be called
5706 * multiple times. Ports are guaranteed to get started only
5707 * once. If host->ops is not initialized yet, it is set to the
5708 * first non-dummy port ops.
5709 *
5710 * LOCKING:
5711 * Inherited from calling layer (may sleep).
5712 *
5713 * RETURNS:
5714 * 0 if all ports are started successfully, -errno otherwise.
5715 */
5716int ata_host_start(struct ata_host *host)
5717{
5718 int have_stop = 0;
5719 void *start_dr = NULL;
5720 int i, rc;
5721
5722 if (host->flags & ATA_HOST_STARTED)
5723 return 0;
5724
5725 ata_finalize_port_ops(host->ops);
5726
5727 for (i = 0; i < host->n_ports; i++) {
5728 struct ata_port *ap = host->ports[i];
5729
5730 ata_finalize_port_ops(ap->ops);
5731
5732 if (!host->ops && !ata_port_is_dummy(ap))
5733 host->ops = ap->ops;
5734
5735 if (ap->ops->port_stop)
5736 have_stop = 1;
5737 }
5738
5739 if (host->ops && host->ops->host_stop)
5740 have_stop = 1;
5741
5742 if (have_stop) {
5743 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5744 if (!start_dr)
5745 return -ENOMEM;
5746 }
5747
5748 for (i = 0; i < host->n_ports; i++) {
5749 struct ata_port *ap = host->ports[i];
5750
5751 if (ap->ops->port_start) {
5752 rc = ap->ops->port_start(ap);
5753 if (rc) {
5754 if (rc != -ENODEV)
5755 dev_err(host->dev,
5756 "failed to start port %d (errno=%d)\n",
5757 i, rc);
5758 goto err_out;
5759 }
5760 }
5761 ata_eh_freeze_port(ap);
5762 }
5763
5764 if (start_dr)
5765 devres_add(host->dev, start_dr);
5766 host->flags |= ATA_HOST_STARTED;
5767 return 0;
5768
5769 err_out:
5770 while (--i >= 0) {
5771 struct ata_port *ap = host->ports[i];
5772
5773 if (ap->ops->port_stop)
5774 ap->ops->port_stop(ap);
5775 }
5776 devres_free(start_dr);
5777 return rc;
5778}
5779EXPORT_SYMBOL_GPL(ata_host_start);
5780
5781/**
5782 * ata_host_init - Initialize a host struct for sas (ipr, libsas)
5783 * @host: host to initialize
5784 * @dev: device host is attached to
5785 * @ops: port_ops
5786 *
5787 */
5788void ata_host_init(struct ata_host *host, struct device *dev,
5789 struct ata_port_operations *ops)
5790{
5791 spin_lock_init(&host->lock);
5792 mutex_init(&host->eh_mutex);
5793 host->n_tags = ATA_MAX_QUEUE;
5794 host->dev = dev;
5795 host->ops = ops;
5796 kref_init(&host->kref);
5797}
5798EXPORT_SYMBOL_GPL(ata_host_init);
5799
5800void ata_port_probe(struct ata_port *ap)
5801{
5802 struct ata_eh_info *ehi = &ap->link.eh_info;
5803 unsigned long flags;
5804
5805 /* kick EH for boot probing */
5806 spin_lock_irqsave(ap->lock, flags);
5807
5808 ehi->probe_mask |= ATA_ALL_DEVICES;
5809 ehi->action |= ATA_EH_RESET;
5810 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5811
5812 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5813 ap->pflags |= ATA_PFLAG_LOADING;
5814 ata_port_schedule_eh(ap);
5815
5816 spin_unlock_irqrestore(ap->lock, flags);
5817}
5818EXPORT_SYMBOL_GPL(ata_port_probe);
5819
5820static void async_port_probe(void *data, async_cookie_t cookie)
5821{
5822 struct ata_port *ap = data;
5823
5824 /*
5825 * If we're not allowed to scan this host in parallel,
5826 * we need to wait until all previous scans have completed
5827 * before going further.
5828 * Jeff Garzik says this is only within a controller, so we
5829 * don't need to wait for port 0, only for later ports.
5830 */
5831 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5832 async_synchronize_cookie(cookie);
5833
5834 ata_port_probe(ap);
5835 ata_port_wait_eh(ap);
5836
5837 /* in order to keep device order, we need to synchronize at this point */
5838 async_synchronize_cookie(cookie);
5839
5840 ata_scsi_scan_host(ap, 1);
5841}
5842
5843/**
5844 * ata_host_register - register initialized ATA host
5845 * @host: ATA host to register
5846 * @sht: template for SCSI host
5847 *
5848 * Register initialized ATA host. @host is allocated using
5849 * ata_host_alloc() and fully initialized by LLD. This function
5850 * starts ports, registers @host with ATA and SCSI layers and
5851 * probe registered devices.
5852 *
5853 * LOCKING:
5854 * Inherited from calling layer (may sleep).
5855 *
5856 * RETURNS:
5857 * 0 on success, -errno otherwise.
5858 */
5859int ata_host_register(struct ata_host *host, const struct scsi_host_template *sht)
5860{
5861 int i, rc;
5862
5863 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5864
5865 /* host must have been started */
5866 if (!(host->flags & ATA_HOST_STARTED)) {
5867 dev_err(host->dev, "BUG: trying to register unstarted host\n");
5868 WARN_ON(1);
5869 return -EINVAL;
5870 }
5871
5872 /* Create associated sysfs transport objects */
5873 for (i = 0; i < host->n_ports; i++) {
5874 rc = ata_tport_add(host->dev,host->ports[i]);
5875 if (rc) {
5876 goto err_tadd;
5877 }
5878 }
5879
5880 rc = ata_scsi_add_hosts(host, sht);
5881 if (rc)
5882 goto err_tadd;
5883
5884 /* set cable, sata_spd_limit and report */
5885 for (i = 0; i < host->n_ports; i++) {
5886 struct ata_port *ap = host->ports[i];
5887 unsigned int xfer_mask;
5888
5889 /* set SATA cable type if still unset */
5890 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5891 ap->cbl = ATA_CBL_SATA;
5892
5893 /* init sata_spd_limit to the current value */
5894 sata_link_init_spd(&ap->link);
5895 if (ap->slave_link)
5896 sata_link_init_spd(ap->slave_link);
5897
5898 /* print per-port info to dmesg */
5899 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5900 ap->udma_mask);
5901
5902 if (!ata_port_is_dummy(ap)) {
5903 ata_port_info(ap, "%cATA max %s %s\n",
5904 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5905 ata_mode_string(xfer_mask),
5906 ap->link.eh_info.desc);
5907 ata_ehi_clear_desc(&ap->link.eh_info);
5908 } else
5909 ata_port_info(ap, "DUMMY\n");
5910 }
5911
5912 /* perform each probe asynchronously */
5913 for (i = 0; i < host->n_ports; i++) {
5914 struct ata_port *ap = host->ports[i];
5915 ap->cookie = async_schedule(async_port_probe, ap);
5916 }
5917
5918 return 0;
5919
5920 err_tadd:
5921 while (--i >= 0) {
5922 ata_tport_delete(host->ports[i]);
5923 }
5924 return rc;
5925
5926}
5927EXPORT_SYMBOL_GPL(ata_host_register);
5928
5929/**
5930 * ata_host_activate - start host, request IRQ and register it
5931 * @host: target ATA host
5932 * @irq: IRQ to request
5933 * @irq_handler: irq_handler used when requesting IRQ
5934 * @irq_flags: irq_flags used when requesting IRQ
5935 * @sht: scsi_host_template to use when registering the host
5936 *
5937 * After allocating an ATA host and initializing it, most libata
5938 * LLDs perform three steps to activate the host - start host,
5939 * request IRQ and register it. This helper takes necessary
5940 * arguments and performs the three steps in one go.
5941 *
5942 * An invalid IRQ skips the IRQ registration and expects the host to
5943 * have set polling mode on the port. In this case, @irq_handler
5944 * should be NULL.
5945 *
5946 * LOCKING:
5947 * Inherited from calling layer (may sleep).
5948 *
5949 * RETURNS:
5950 * 0 on success, -errno otherwise.
5951 */
5952int ata_host_activate(struct ata_host *host, int irq,
5953 irq_handler_t irq_handler, unsigned long irq_flags,
5954 const struct scsi_host_template *sht)
5955{
5956 int i, rc;
5957 char *irq_desc;
5958
5959 rc = ata_host_start(host);
5960 if (rc)
5961 return rc;
5962
5963 /* Special case for polling mode */
5964 if (!irq) {
5965 WARN_ON(irq_handler);
5966 return ata_host_register(host, sht);
5967 }
5968
5969 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5970 dev_driver_string(host->dev),
5971 dev_name(host->dev));
5972 if (!irq_desc)
5973 return -ENOMEM;
5974
5975 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5976 irq_desc, host);
5977 if (rc)
5978 return rc;
5979
5980 for (i = 0; i < host->n_ports; i++)
5981 ata_port_desc_misc(host->ports[i], irq);
5982
5983 rc = ata_host_register(host, sht);
5984 /* if failed, just free the IRQ and leave ports alone */
5985 if (rc)
5986 devm_free_irq(host->dev, irq, host);
5987
5988 return rc;
5989}
5990EXPORT_SYMBOL_GPL(ata_host_activate);
5991
5992/**
5993 * ata_dev_free_resources - Free a device resources
5994 * @dev: Target ATA device
5995 *
5996 * Free resources allocated to support a device features.
5997 *
5998 * LOCKING:
5999 * Kernel thread context (may sleep).
6000 */
6001void ata_dev_free_resources(struct ata_device *dev)
6002{
6003 if (zpodd_dev_enabled(dev))
6004 zpodd_exit(dev);
6005
6006 ata_dev_cleanup_cdl_resources(dev);
6007}
6008
6009/**
6010 * ata_port_detach - Detach ATA port in preparation of device removal
6011 * @ap: ATA port to be detached
6012 *
6013 * Detach all ATA devices and the associated SCSI devices of @ap;
6014 * then, remove the associated SCSI host. @ap is guaranteed to
6015 * be quiescent on return from this function.
6016 *
6017 * LOCKING:
6018 * Kernel thread context (may sleep).
6019 */
6020static void ata_port_detach(struct ata_port *ap)
6021{
6022 unsigned long flags;
6023 struct ata_link *link;
6024 struct ata_device *dev;
6025
6026 /* Ensure ata_port probe has completed */
6027 async_synchronize_cookie(ap->cookie + 1);
6028
6029 /* Wait for any ongoing EH */
6030 ata_port_wait_eh(ap);
6031
6032 mutex_lock(&ap->scsi_scan_mutex);
6033 spin_lock_irqsave(ap->lock, flags);
6034
6035 /* Remove scsi devices */
6036 ata_for_each_link(link, ap, HOST_FIRST) {
6037 ata_for_each_dev(dev, link, ALL) {
6038 if (dev->sdev) {
6039 spin_unlock_irqrestore(ap->lock, flags);
6040 scsi_remove_device(dev->sdev);
6041 spin_lock_irqsave(ap->lock, flags);
6042 dev->sdev = NULL;
6043 }
6044 }
6045 }
6046
6047 /* Tell EH to disable all devices */
6048 ap->pflags |= ATA_PFLAG_UNLOADING;
6049 ata_port_schedule_eh(ap);
6050
6051 spin_unlock_irqrestore(ap->lock, flags);
6052 mutex_unlock(&ap->scsi_scan_mutex);
6053
6054 /* wait till EH commits suicide */
6055 ata_port_wait_eh(ap);
6056
6057 /* it better be dead now */
6058 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6059
6060 cancel_delayed_work_sync(&ap->hotplug_task);
6061 cancel_delayed_work_sync(&ap->scsi_rescan_task);
6062
6063 /* Delete port multiplier link transport devices */
6064 if (ap->pmp_link) {
6065 int i;
6066
6067 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6068 ata_tlink_delete(&ap->pmp_link[i]);
6069 }
6070
6071 /* Remove the associated SCSI host */
6072 scsi_remove_host(ap->scsi_host);
6073 ata_tport_delete(ap);
6074}
6075
6076/**
6077 * ata_host_detach - Detach all ports of an ATA host
6078 * @host: Host to detach
6079 *
6080 * Detach all ports of @host.
6081 *
6082 * LOCKING:
6083 * Kernel thread context (may sleep).
6084 */
6085void ata_host_detach(struct ata_host *host)
6086{
6087 int i;
6088
6089 for (i = 0; i < host->n_ports; i++)
6090 ata_port_detach(host->ports[i]);
6091
6092 /* the host is dead now, dissociate ACPI */
6093 ata_acpi_dissociate(host);
6094}
6095EXPORT_SYMBOL_GPL(ata_host_detach);
6096
6097#ifdef CONFIG_PCI
6098
6099/**
6100 * ata_pci_remove_one - PCI layer callback for device removal
6101 * @pdev: PCI device that was removed
6102 *
6103 * PCI layer indicates to libata via this hook that hot-unplug or
6104 * module unload event has occurred. Detach all ports. Resource
6105 * release is handled via devres.
6106 *
6107 * LOCKING:
6108 * Inherited from PCI layer (may sleep).
6109 */
6110void ata_pci_remove_one(struct pci_dev *pdev)
6111{
6112 struct ata_host *host = pci_get_drvdata(pdev);
6113
6114 ata_host_detach(host);
6115}
6116EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6117
6118void ata_pci_shutdown_one(struct pci_dev *pdev)
6119{
6120 struct ata_host *host = pci_get_drvdata(pdev);
6121 int i;
6122
6123 for (i = 0; i < host->n_ports; i++) {
6124 struct ata_port *ap = host->ports[i];
6125
6126 ap->pflags |= ATA_PFLAG_FROZEN;
6127
6128 /* Disable port interrupts */
6129 if (ap->ops->freeze)
6130 ap->ops->freeze(ap);
6131
6132 /* Stop the port DMA engines */
6133 if (ap->ops->port_stop)
6134 ap->ops->port_stop(ap);
6135 }
6136}
6137EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6138
6139/* move to PCI subsystem */
6140int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6141{
6142 unsigned long tmp = 0;
6143
6144 switch (bits->width) {
6145 case 1: {
6146 u8 tmp8 = 0;
6147 pci_read_config_byte(pdev, bits->reg, &tmp8);
6148 tmp = tmp8;
6149 break;
6150 }
6151 case 2: {
6152 u16 tmp16 = 0;
6153 pci_read_config_word(pdev, bits->reg, &tmp16);
6154 tmp = tmp16;
6155 break;
6156 }
6157 case 4: {
6158 u32 tmp32 = 0;
6159 pci_read_config_dword(pdev, bits->reg, &tmp32);
6160 tmp = tmp32;
6161 break;
6162 }
6163
6164 default:
6165 return -EINVAL;
6166 }
6167
6168 tmp &= bits->mask;
6169
6170 return (tmp == bits->val) ? 1 : 0;
6171}
6172EXPORT_SYMBOL_GPL(pci_test_config_bits);
6173
6174#ifdef CONFIG_PM
6175void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6176{
6177 pci_save_state(pdev);
6178 pci_disable_device(pdev);
6179
6180 if (mesg.event & PM_EVENT_SLEEP)
6181 pci_set_power_state(pdev, PCI_D3hot);
6182}
6183EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6184
6185int ata_pci_device_do_resume(struct pci_dev *pdev)
6186{
6187 int rc;
6188
6189 pci_set_power_state(pdev, PCI_D0);
6190 pci_restore_state(pdev);
6191
6192 rc = pcim_enable_device(pdev);
6193 if (rc) {
6194 dev_err(&pdev->dev,
6195 "failed to enable device after resume (%d)\n", rc);
6196 return rc;
6197 }
6198
6199 pci_set_master(pdev);
6200 return 0;
6201}
6202EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6203
6204int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6205{
6206 struct ata_host *host = pci_get_drvdata(pdev);
6207
6208 ata_host_suspend(host, mesg);
6209
6210 ata_pci_device_do_suspend(pdev, mesg);
6211
6212 return 0;
6213}
6214EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6215
6216int ata_pci_device_resume(struct pci_dev *pdev)
6217{
6218 struct ata_host *host = pci_get_drvdata(pdev);
6219 int rc;
6220
6221 rc = ata_pci_device_do_resume(pdev);
6222 if (rc == 0)
6223 ata_host_resume(host);
6224 return rc;
6225}
6226EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6227#endif /* CONFIG_PM */
6228#endif /* CONFIG_PCI */
6229
6230/**
6231 * ata_platform_remove_one - Platform layer callback for device removal
6232 * @pdev: Platform device that was removed
6233 *
6234 * Platform layer indicates to libata via this hook that hot-unplug or
6235 * module unload event has occurred. Detach all ports. Resource
6236 * release is handled via devres.
6237 *
6238 * LOCKING:
6239 * Inherited from platform layer (may sleep).
6240 */
6241void ata_platform_remove_one(struct platform_device *pdev)
6242{
6243 struct ata_host *host = platform_get_drvdata(pdev);
6244
6245 ata_host_detach(host);
6246}
6247EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6248
6249#ifdef CONFIG_ATA_FORCE
6250
6251#define force_cbl(name, flag) \
6252 { #name, .cbl = (flag) }
6253
6254#define force_spd_limit(spd, val) \
6255 { #spd, .spd_limit = (val) }
6256
6257#define force_xfer(mode, shift) \
6258 { #mode, .xfer_mask = (1UL << (shift)) }
6259
6260#define force_lflag_on(name, flags) \
6261 { #name, .lflags_on = (flags) }
6262
6263#define force_lflag_onoff(name, flags) \
6264 { "no" #name, .lflags_on = (flags) }, \
6265 { #name, .lflags_off = (flags) }
6266
6267#define force_quirk_on(name, flag) \
6268 { #name, .quirk_on = (flag) }
6269
6270#define force_quirk_onoff(name, flag) \
6271 { "no" #name, .quirk_on = (flag) }, \
6272 { #name, .quirk_off = (flag) }
6273
6274static const struct ata_force_param force_tbl[] __initconst = {
6275 force_cbl(40c, ATA_CBL_PATA40),
6276 force_cbl(80c, ATA_CBL_PATA80),
6277 force_cbl(short40c, ATA_CBL_PATA40_SHORT),
6278 force_cbl(unk, ATA_CBL_PATA_UNK),
6279 force_cbl(ign, ATA_CBL_PATA_IGN),
6280 force_cbl(sata, ATA_CBL_SATA),
6281
6282 force_spd_limit(1.5Gbps, 1),
6283 force_spd_limit(3.0Gbps, 2),
6284
6285 force_xfer(pio0, ATA_SHIFT_PIO + 0),
6286 force_xfer(pio1, ATA_SHIFT_PIO + 1),
6287 force_xfer(pio2, ATA_SHIFT_PIO + 2),
6288 force_xfer(pio3, ATA_SHIFT_PIO + 3),
6289 force_xfer(pio4, ATA_SHIFT_PIO + 4),
6290 force_xfer(pio5, ATA_SHIFT_PIO + 5),
6291 force_xfer(pio6, ATA_SHIFT_PIO + 6),
6292 force_xfer(mwdma0, ATA_SHIFT_MWDMA + 0),
6293 force_xfer(mwdma1, ATA_SHIFT_MWDMA + 1),
6294 force_xfer(mwdma2, ATA_SHIFT_MWDMA + 2),
6295 force_xfer(mwdma3, ATA_SHIFT_MWDMA + 3),
6296 force_xfer(mwdma4, ATA_SHIFT_MWDMA + 4),
6297 force_xfer(udma0, ATA_SHIFT_UDMA + 0),
6298 force_xfer(udma16, ATA_SHIFT_UDMA + 0),
6299 force_xfer(udma/16, ATA_SHIFT_UDMA + 0),
6300 force_xfer(udma1, ATA_SHIFT_UDMA + 1),
6301 force_xfer(udma25, ATA_SHIFT_UDMA + 1),
6302 force_xfer(udma/25, ATA_SHIFT_UDMA + 1),
6303 force_xfer(udma2, ATA_SHIFT_UDMA + 2),
6304 force_xfer(udma33, ATA_SHIFT_UDMA + 2),
6305 force_xfer(udma/33, ATA_SHIFT_UDMA + 2),
6306 force_xfer(udma3, ATA_SHIFT_UDMA + 3),
6307 force_xfer(udma44, ATA_SHIFT_UDMA + 3),
6308 force_xfer(udma/44, ATA_SHIFT_UDMA + 3),
6309 force_xfer(udma4, ATA_SHIFT_UDMA + 4),
6310 force_xfer(udma66, ATA_SHIFT_UDMA + 4),
6311 force_xfer(udma/66, ATA_SHIFT_UDMA + 4),
6312 force_xfer(udma5, ATA_SHIFT_UDMA + 5),
6313 force_xfer(udma100, ATA_SHIFT_UDMA + 5),
6314 force_xfer(udma/100, ATA_SHIFT_UDMA + 5),
6315 force_xfer(udma6, ATA_SHIFT_UDMA + 6),
6316 force_xfer(udma133, ATA_SHIFT_UDMA + 6),
6317 force_xfer(udma/133, ATA_SHIFT_UDMA + 6),
6318 force_xfer(udma7, ATA_SHIFT_UDMA + 7),
6319
6320 force_lflag_on(nohrst, ATA_LFLAG_NO_HRST),
6321 force_lflag_on(nosrst, ATA_LFLAG_NO_SRST),
6322 force_lflag_on(norst, ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST),
6323 force_lflag_on(rstonce, ATA_LFLAG_RST_ONCE),
6324 force_lflag_onoff(dbdelay, ATA_LFLAG_NO_DEBOUNCE_DELAY),
6325
6326 force_quirk_onoff(ncq, ATA_QUIRK_NONCQ),
6327 force_quirk_onoff(ncqtrim, ATA_QUIRK_NO_NCQ_TRIM),
6328 force_quirk_onoff(ncqati, ATA_QUIRK_NO_NCQ_ON_ATI),
6329
6330 force_quirk_onoff(trim, ATA_QUIRK_NOTRIM),
6331 force_quirk_on(trim_zero, ATA_QUIRK_ZERO_AFTER_TRIM),
6332 force_quirk_on(max_trim_128m, ATA_QUIRK_MAX_TRIM_128M),
6333
6334 force_quirk_onoff(dma, ATA_QUIRK_NODMA),
6335 force_quirk_on(atapi_dmadir, ATA_QUIRK_ATAPI_DMADIR),
6336 force_quirk_on(atapi_mod16_dma, ATA_QUIRK_ATAPI_MOD16_DMA),
6337
6338 force_quirk_onoff(dmalog, ATA_QUIRK_NO_DMA_LOG),
6339 force_quirk_onoff(iddevlog, ATA_QUIRK_NO_ID_DEV_LOG),
6340 force_quirk_onoff(logdir, ATA_QUIRK_NO_LOG_DIR),
6341
6342 force_quirk_on(max_sec_128, ATA_QUIRK_MAX_SEC_128),
6343 force_quirk_on(max_sec_1024, ATA_QUIRK_MAX_SEC_1024),
6344 force_quirk_on(max_sec_lba48, ATA_QUIRK_MAX_SEC_LBA48),
6345
6346 force_quirk_onoff(lpm, ATA_QUIRK_NOLPM),
6347 force_quirk_onoff(setxfer, ATA_QUIRK_NOSETXFER),
6348 force_quirk_on(dump_id, ATA_QUIRK_DUMP_ID),
6349 force_quirk_onoff(fua, ATA_QUIRK_NO_FUA),
6350
6351 force_quirk_on(disable, ATA_QUIRK_DISABLE),
6352};
6353
6354static int __init ata_parse_force_one(char **cur,
6355 struct ata_force_ent *force_ent,
6356 const char **reason)
6357{
6358 char *start = *cur, *p = *cur;
6359 char *id, *val, *endp;
6360 const struct ata_force_param *match_fp = NULL;
6361 int nr_matches = 0, i;
6362
6363 /* find where this param ends and update *cur */
6364 while (*p != '\0' && *p != ',')
6365 p++;
6366
6367 if (*p == '\0')
6368 *cur = p;
6369 else
6370 *cur = p + 1;
6371
6372 *p = '\0';
6373
6374 /* parse */
6375 p = strchr(start, ':');
6376 if (!p) {
6377 val = strstrip(start);
6378 goto parse_val;
6379 }
6380 *p = '\0';
6381
6382 id = strstrip(start);
6383 val = strstrip(p + 1);
6384
6385 /* parse id */
6386 p = strchr(id, '.');
6387 if (p) {
6388 *p++ = '\0';
6389 force_ent->device = simple_strtoul(p, &endp, 10);
6390 if (p == endp || *endp != '\0') {
6391 *reason = "invalid device";
6392 return -EINVAL;
6393 }
6394 }
6395
6396 force_ent->port = simple_strtoul(id, &endp, 10);
6397 if (id == endp || *endp != '\0') {
6398 *reason = "invalid port/link";
6399 return -EINVAL;
6400 }
6401
6402 parse_val:
6403 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6404 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6405 const struct ata_force_param *fp = &force_tbl[i];
6406
6407 if (strncasecmp(val, fp->name, strlen(val)))
6408 continue;
6409
6410 nr_matches++;
6411 match_fp = fp;
6412
6413 if (strcasecmp(val, fp->name) == 0) {
6414 nr_matches = 1;
6415 break;
6416 }
6417 }
6418
6419 if (!nr_matches) {
6420 *reason = "unknown value";
6421 return -EINVAL;
6422 }
6423 if (nr_matches > 1) {
6424 *reason = "ambiguous value";
6425 return -EINVAL;
6426 }
6427
6428 force_ent->param = *match_fp;
6429
6430 return 0;
6431}
6432
6433static void __init ata_parse_force_param(void)
6434{
6435 int idx = 0, size = 1;
6436 int last_port = -1, last_device = -1;
6437 char *p, *cur, *next;
6438
6439 /* Calculate maximum number of params and allocate ata_force_tbl */
6440 for (p = ata_force_param_buf; *p; p++)
6441 if (*p == ',')
6442 size++;
6443
6444 ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6445 if (!ata_force_tbl) {
6446 printk(KERN_WARNING "ata: failed to extend force table, "
6447 "libata.force ignored\n");
6448 return;
6449 }
6450
6451 /* parse and populate the table */
6452 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6453 const char *reason = "";
6454 struct ata_force_ent te = { .port = -1, .device = -1 };
6455
6456 next = cur;
6457 if (ata_parse_force_one(&next, &te, &reason)) {
6458 printk(KERN_WARNING "ata: failed to parse force "
6459 "parameter \"%s\" (%s)\n",
6460 cur, reason);
6461 continue;
6462 }
6463
6464 if (te.port == -1) {
6465 te.port = last_port;
6466 te.device = last_device;
6467 }
6468
6469 ata_force_tbl[idx++] = te;
6470
6471 last_port = te.port;
6472 last_device = te.device;
6473 }
6474
6475 ata_force_tbl_size = idx;
6476}
6477
6478static void ata_free_force_param(void)
6479{
6480 kfree(ata_force_tbl);
6481}
6482#else
6483static inline void ata_parse_force_param(void) { }
6484static inline void ata_free_force_param(void) { }
6485#endif
6486
6487static int __init ata_init(void)
6488{
6489 int rc;
6490
6491 ata_parse_force_param();
6492
6493 rc = ata_sff_init();
6494 if (rc) {
6495 ata_free_force_param();
6496 return rc;
6497 }
6498
6499 libata_transport_init();
6500 ata_scsi_transport_template = ata_attach_transport();
6501 if (!ata_scsi_transport_template) {
6502 ata_sff_exit();
6503 rc = -ENOMEM;
6504 goto err_out;
6505 }
6506
6507 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6508 return 0;
6509
6510err_out:
6511 return rc;
6512}
6513
6514static void __exit ata_exit(void)
6515{
6516 ata_release_transport(ata_scsi_transport_template);
6517 libata_transport_exit();
6518 ata_sff_exit();
6519 ata_free_force_param();
6520}
6521
6522subsys_initcall(ata_init);
6523module_exit(ata_exit);
6524
6525static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6526
6527int ata_ratelimit(void)
6528{
6529 return __ratelimit(&ratelimit);
6530}
6531EXPORT_SYMBOL_GPL(ata_ratelimit);
6532
6533/**
6534 * ata_msleep - ATA EH owner aware msleep
6535 * @ap: ATA port to attribute the sleep to
6536 * @msecs: duration to sleep in milliseconds
6537 *
6538 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6539 * ownership is released before going to sleep and reacquired
6540 * after the sleep is complete. IOW, other ports sharing the
6541 * @ap->host will be allowed to own the EH while this task is
6542 * sleeping.
6543 *
6544 * LOCKING:
6545 * Might sleep.
6546 */
6547void ata_msleep(struct ata_port *ap, unsigned int msecs)
6548{
6549 bool owns_eh = ap && ap->host->eh_owner == current;
6550
6551 if (owns_eh)
6552 ata_eh_release(ap);
6553
6554 if (msecs < 20) {
6555 unsigned long usecs = msecs * USEC_PER_MSEC;
6556 usleep_range(usecs, usecs + 50);
6557 } else {
6558 msleep(msecs);
6559 }
6560
6561 if (owns_eh)
6562 ata_eh_acquire(ap);
6563}
6564EXPORT_SYMBOL_GPL(ata_msleep);
6565
6566/**
6567 * ata_wait_register - wait until register value changes
6568 * @ap: ATA port to wait register for, can be NULL
6569 * @reg: IO-mapped register
6570 * @mask: Mask to apply to read register value
6571 * @val: Wait condition
6572 * @interval: polling interval in milliseconds
6573 * @timeout: timeout in milliseconds
6574 *
6575 * Waiting for some bits of register to change is a common
6576 * operation for ATA controllers. This function reads 32bit LE
6577 * IO-mapped register @reg and tests for the following condition.
6578 *
6579 * (*@reg & mask) != val
6580 *
6581 * If the condition is met, it returns; otherwise, the process is
6582 * repeated after @interval_msec until timeout.
6583 *
6584 * LOCKING:
6585 * Kernel thread context (may sleep)
6586 *
6587 * RETURNS:
6588 * The final register value.
6589 */
6590u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6591 unsigned int interval, unsigned int timeout)
6592{
6593 unsigned long deadline;
6594 u32 tmp;
6595
6596 tmp = ioread32(reg);
6597
6598 /* Calculate timeout _after_ the first read to make sure
6599 * preceding writes reach the controller before starting to
6600 * eat away the timeout.
6601 */
6602 deadline = ata_deadline(jiffies, timeout);
6603
6604 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6605 ata_msleep(ap, interval);
6606 tmp = ioread32(reg);
6607 }
6608
6609 return tmp;
6610}
6611EXPORT_SYMBOL_GPL(ata_wait_register);
6612
6613/*
6614 * Dummy port_ops
6615 */
6616static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6617{
6618 return AC_ERR_SYSTEM;
6619}
6620
6621static void ata_dummy_error_handler(struct ata_port *ap)
6622{
6623 /* truly dummy */
6624}
6625
6626struct ata_port_operations ata_dummy_port_ops = {
6627 .qc_issue = ata_dummy_qc_issue,
6628 .error_handler = ata_dummy_error_handler,
6629 .sched_eh = ata_std_sched_eh,
6630 .end_eh = ata_std_end_eh,
6631};
6632EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6633
6634const struct ata_port_info ata_dummy_port_info = {
6635 .port_ops = &ata_dummy_port_ops,
6636};
6637EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6638
6639void ata_print_version(const struct device *dev, const char *version)
6640{
6641 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6642}
6643EXPORT_SYMBOL(ata_print_version);
6644
6645EXPORT_TRACEPOINT_SYMBOL_GPL(ata_tf_load);
6646EXPORT_TRACEPOINT_SYMBOL_GPL(ata_exec_command);
6647EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_setup);
6648EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_start);
6649EXPORT_TRACEPOINT_SYMBOL_GPL(ata_bmdma_status);