Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * ACPI Time and Alarm (TAD) Device Driver
  4 *
  5 * Copyright (C) 2018 Intel Corporation
  6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
  7 *
  8 * This driver is based on Section 9.18 of the ACPI 6.2 specification revision.
  9 *
 10 * It only supports the system wakeup capabilities of the TAD.
 11 *
 12 * Provided are sysfs attributes, available under the TAD platform device,
 13 * allowing user space to manage the AC and DC wakeup timers of the TAD:
 14 * set and read their values, set and check their expire timer wake policies,
 15 * check and clear their status and check the capabilities of the TAD reported
 16 * by AML.  The DC timer attributes are only present if the TAD supports a
 17 * separate DC alarm timer.
 18 *
 19 * The wakeup events handling and power management of the TAD is expected to
 20 * be taken care of by the ACPI PM domain attached to its platform device.
 21 */
 22
 23#include <linux/acpi.h>
 24#include <linux/kernel.h>
 25#include <linux/module.h>
 26#include <linux/platform_device.h>
 27#include <linux/pm_runtime.h>
 28#include <linux/suspend.h>
 29
 30MODULE_DESCRIPTION("ACPI Time and Alarm (TAD) Device Driver");
 31MODULE_LICENSE("GPL v2");
 32MODULE_AUTHOR("Rafael J. Wysocki");
 33
 34/* ACPI TAD capability flags (ACPI 6.2, Section 9.18.2) */
 35#define ACPI_TAD_AC_WAKE	BIT(0)
 36#define ACPI_TAD_DC_WAKE	BIT(1)
 37#define ACPI_TAD_RT		BIT(2)
 38#define ACPI_TAD_RT_IN_MS	BIT(3)
 39#define ACPI_TAD_S4_S5__GWS	BIT(4)
 40#define ACPI_TAD_AC_S4_WAKE	BIT(5)
 41#define ACPI_TAD_AC_S5_WAKE	BIT(6)
 42#define ACPI_TAD_DC_S4_WAKE	BIT(7)
 43#define ACPI_TAD_DC_S5_WAKE	BIT(8)
 44
 45/* ACPI TAD alarm timer selection */
 46#define ACPI_TAD_AC_TIMER	(u32)0
 47#define ACPI_TAD_DC_TIMER	(u32)1
 48
 49/* Special value for disabled timer or expired timer wake policy. */
 50#define ACPI_TAD_WAKE_DISABLED	(~(u32)0)
 51
 52struct acpi_tad_driver_data {
 53	u32 capabilities;
 54};
 55
 56struct acpi_tad_rt {
 57	u16 year;  /* 1900 - 9999 */
 58	u8 month;  /* 1 - 12 */
 59	u8 day;    /* 1 - 31 */
 60	u8 hour;   /* 0 - 23 */
 61	u8 minute; /* 0 - 59 */
 62	u8 second; /* 0 - 59 */
 63	u8 valid;  /* 0 (failed) or 1 (success) for reads, 0 for writes */
 64	u16 msec;  /* 1 - 1000 */
 65	s16 tz;    /* -1440 to 1440 or 2047 (unspecified) */
 66	u8 daylight;
 67	u8 padding[3]; /* must be 0 */
 68} __packed;
 69
 70static int acpi_tad_set_real_time(struct device *dev, struct acpi_tad_rt *rt)
 71{
 72	acpi_handle handle = ACPI_HANDLE(dev);
 73	union acpi_object args[] = {
 74		{ .type = ACPI_TYPE_BUFFER, },
 75	};
 76	struct acpi_object_list arg_list = {
 77		.pointer = args,
 78		.count = ARRAY_SIZE(args),
 79	};
 80	unsigned long long retval;
 81	acpi_status status;
 82
 83	if (rt->year < 1900 || rt->year > 9999 ||
 84	    rt->month < 1 || rt->month > 12 ||
 85	    rt->hour > 23 || rt->minute > 59 || rt->second > 59 ||
 86	    rt->tz < -1440 || (rt->tz > 1440 && rt->tz != 2047) ||
 87	    rt->daylight > 3)
 88		return -ERANGE;
 89
 90	args[0].buffer.pointer = (u8 *)rt;
 91	args[0].buffer.length = sizeof(*rt);
 92
 93	pm_runtime_get_sync(dev);
 94
 95	status = acpi_evaluate_integer(handle, "_SRT", &arg_list, &retval);
 96
 97	pm_runtime_put_sync(dev);
 98
 99	if (ACPI_FAILURE(status) || retval)
100		return -EIO;
101
102	return 0;
103}
104
105static int acpi_tad_get_real_time(struct device *dev, struct acpi_tad_rt *rt)
106{
107	acpi_handle handle = ACPI_HANDLE(dev);
108	struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER };
109	union acpi_object *out_obj;
110	struct acpi_tad_rt *data;
111	acpi_status status;
112	int ret = -EIO;
113
114	pm_runtime_get_sync(dev);
115
116	status = acpi_evaluate_object(handle, "_GRT", NULL, &output);
117
118	pm_runtime_put_sync(dev);
119
120	if (ACPI_FAILURE(status))
121		goto out_free;
122
123	out_obj = output.pointer;
124	if (out_obj->type != ACPI_TYPE_BUFFER)
125		goto out_free;
126
127	if (out_obj->buffer.length != sizeof(*rt))
128		goto out_free;
129
130	data = (struct acpi_tad_rt *)(out_obj->buffer.pointer);
131	if (!data->valid)
132		goto out_free;
133
134	memcpy(rt, data, sizeof(*rt));
135	ret = 0;
136
137out_free:
138	ACPI_FREE(output.pointer);
139	return ret;
140}
141
142static char *acpi_tad_rt_next_field(char *s, int *val)
143{
144	char *p;
145
146	p = strchr(s, ':');
147	if (!p)
148		return NULL;
149
150	*p = '\0';
151	if (kstrtoint(s, 10, val))
152		return NULL;
153
154	return p + 1;
155}
156
157static ssize_t time_store(struct device *dev, struct device_attribute *attr,
158			  const char *buf, size_t count)
159{
160	struct acpi_tad_rt rt;
161	char *str, *s;
162	int val, ret = -ENODATA;
163
164	str = kmemdup_nul(buf, count, GFP_KERNEL);
165	if (!str)
166		return -ENOMEM;
167
168	s = acpi_tad_rt_next_field(str, &val);
169	if (!s)
170		goto out_free;
171
172	rt.year = val;
173
174	s = acpi_tad_rt_next_field(s, &val);
175	if (!s)
176		goto out_free;
177
178	rt.month = val;
179
180	s = acpi_tad_rt_next_field(s, &val);
181	if (!s)
182		goto out_free;
183
184	rt.day = val;
185
186	s = acpi_tad_rt_next_field(s, &val);
187	if (!s)
188		goto out_free;
189
190	rt.hour = val;
191
192	s = acpi_tad_rt_next_field(s, &val);
193	if (!s)
194		goto out_free;
195
196	rt.minute = val;
197
198	s = acpi_tad_rt_next_field(s, &val);
199	if (!s)
200		goto out_free;
201
202	rt.second = val;
203
204	s = acpi_tad_rt_next_field(s, &val);
205	if (!s)
206		goto out_free;
207
208	rt.tz = val;
209
210	if (kstrtoint(s, 10, &val))
211		goto out_free;
212
213	rt.daylight = val;
214
215	rt.valid = 0;
216	rt.msec = 0;
217	memset(rt.padding, 0, 3);
218
219	ret = acpi_tad_set_real_time(dev, &rt);
220
221out_free:
222	kfree(str);
223	return ret ? ret : count;
224}
225
226static ssize_t time_show(struct device *dev, struct device_attribute *attr,
227			 char *buf)
228{
229	struct acpi_tad_rt rt;
230	int ret;
231
232	ret = acpi_tad_get_real_time(dev, &rt);
233	if (ret)
234		return ret;
235
236	return sprintf(buf, "%u:%u:%u:%u:%u:%u:%d:%u\n",
237		       rt.year, rt.month, rt.day, rt.hour, rt.minute, rt.second,
238		       rt.tz, rt.daylight);
239}
240
241static DEVICE_ATTR_RW(time);
242
243static struct attribute *acpi_tad_time_attrs[] = {
244	&dev_attr_time.attr,
245	NULL,
246};
247static const struct attribute_group acpi_tad_time_attr_group = {
248	.attrs	= acpi_tad_time_attrs,
249};
250
251static int acpi_tad_wake_set(struct device *dev, char *method, u32 timer_id,
252			     u32 value)
253{
254	acpi_handle handle = ACPI_HANDLE(dev);
255	union acpi_object args[] = {
256		{ .type = ACPI_TYPE_INTEGER, },
257		{ .type = ACPI_TYPE_INTEGER, },
258	};
259	struct acpi_object_list arg_list = {
260		.pointer = args,
261		.count = ARRAY_SIZE(args),
262	};
263	unsigned long long retval;
264	acpi_status status;
265
266	args[0].integer.value = timer_id;
267	args[1].integer.value = value;
268
269	pm_runtime_get_sync(dev);
270
271	status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
272
273	pm_runtime_put_sync(dev);
274
275	if (ACPI_FAILURE(status) || retval)
276		return -EIO;
277
278	return 0;
279}
280
281static int acpi_tad_wake_write(struct device *dev, const char *buf, char *method,
282			       u32 timer_id, const char *specval)
283{
284	u32 value;
285
286	if (sysfs_streq(buf, specval)) {
287		value = ACPI_TAD_WAKE_DISABLED;
288	} else {
289		int ret = kstrtou32(buf, 0, &value);
290
291		if (ret)
292			return ret;
293
294		if (value == ACPI_TAD_WAKE_DISABLED)
295			return -EINVAL;
296	}
297
298	return acpi_tad_wake_set(dev, method, timer_id, value);
299}
300
301static ssize_t acpi_tad_wake_read(struct device *dev, char *buf, char *method,
302				  u32 timer_id, const char *specval)
303{
304	acpi_handle handle = ACPI_HANDLE(dev);
305	union acpi_object args[] = {
306		{ .type = ACPI_TYPE_INTEGER, },
307	};
308	struct acpi_object_list arg_list = {
309		.pointer = args,
310		.count = ARRAY_SIZE(args),
311	};
312	unsigned long long retval;
313	acpi_status status;
314
315	args[0].integer.value = timer_id;
316
317	pm_runtime_get_sync(dev);
318
319	status = acpi_evaluate_integer(handle, method, &arg_list, &retval);
320
321	pm_runtime_put_sync(dev);
322
323	if (ACPI_FAILURE(status))
324		return -EIO;
325
326	if ((u32)retval == ACPI_TAD_WAKE_DISABLED)
327		return sprintf(buf, "%s\n", specval);
328
329	return sprintf(buf, "%u\n", (u32)retval);
330}
331
332static const char *alarm_specval = "disabled";
333
334static int acpi_tad_alarm_write(struct device *dev, const char *buf,
335				u32 timer_id)
336{
337	return acpi_tad_wake_write(dev, buf, "_STV", timer_id, alarm_specval);
338}
339
340static ssize_t acpi_tad_alarm_read(struct device *dev, char *buf, u32 timer_id)
341{
342	return acpi_tad_wake_read(dev, buf, "_TIV", timer_id, alarm_specval);
343}
344
345static const char *policy_specval = "never";
346
347static int acpi_tad_policy_write(struct device *dev, const char *buf,
348				 u32 timer_id)
349{
350	return acpi_tad_wake_write(dev, buf, "_STP", timer_id, policy_specval);
351}
352
353static ssize_t acpi_tad_policy_read(struct device *dev, char *buf, u32 timer_id)
354{
355	return acpi_tad_wake_read(dev, buf, "_TIP", timer_id, policy_specval);
356}
357
358static int acpi_tad_clear_status(struct device *dev, u32 timer_id)
359{
360	acpi_handle handle = ACPI_HANDLE(dev);
361	union acpi_object args[] = {
362		{ .type = ACPI_TYPE_INTEGER, },
363	};
364	struct acpi_object_list arg_list = {
365		.pointer = args,
366		.count = ARRAY_SIZE(args),
367	};
368	unsigned long long retval;
369	acpi_status status;
370
371	args[0].integer.value = timer_id;
372
373	pm_runtime_get_sync(dev);
374
375	status = acpi_evaluate_integer(handle, "_CWS", &arg_list, &retval);
376
377	pm_runtime_put_sync(dev);
378
379	if (ACPI_FAILURE(status) || retval)
380		return -EIO;
381
382	return 0;
383}
384
385static int acpi_tad_status_write(struct device *dev, const char *buf, u32 timer_id)
386{
387	int ret, value;
388
389	ret = kstrtoint(buf, 0, &value);
390	if (ret)
391		return ret;
392
393	if (value)
394		return -EINVAL;
395
396	return acpi_tad_clear_status(dev, timer_id);
397}
398
399static ssize_t acpi_tad_status_read(struct device *dev, char *buf, u32 timer_id)
400{
401	acpi_handle handle = ACPI_HANDLE(dev);
402	union acpi_object args[] = {
403		{ .type = ACPI_TYPE_INTEGER, },
404	};
405	struct acpi_object_list arg_list = {
406		.pointer = args,
407		.count = ARRAY_SIZE(args),
408	};
409	unsigned long long retval;
410	acpi_status status;
411
412	args[0].integer.value = timer_id;
413
414	pm_runtime_get_sync(dev);
415
416	status = acpi_evaluate_integer(handle, "_GWS", &arg_list, &retval);
417
418	pm_runtime_put_sync(dev);
419
420	if (ACPI_FAILURE(status))
421		return -EIO;
422
423	return sprintf(buf, "0x%02X\n", (u32)retval);
424}
425
426static ssize_t caps_show(struct device *dev, struct device_attribute *attr,
427			 char *buf)
428{
429	struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
430
431	return sprintf(buf, "0x%02X\n", dd->capabilities);
432}
433
434static DEVICE_ATTR_RO(caps);
435
436static ssize_t ac_alarm_store(struct device *dev, struct device_attribute *attr,
437			      const char *buf, size_t count)
438{
439	int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_AC_TIMER);
440
441	return ret ? ret : count;
442}
443
444static ssize_t ac_alarm_show(struct device *dev, struct device_attribute *attr,
445			     char *buf)
446{
447	return acpi_tad_alarm_read(dev, buf, ACPI_TAD_AC_TIMER);
448}
449
450static DEVICE_ATTR_RW(ac_alarm);
451
452static ssize_t ac_policy_store(struct device *dev, struct device_attribute *attr,
453			       const char *buf, size_t count)
454{
455	int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_AC_TIMER);
456
457	return ret ? ret : count;
458}
459
460static ssize_t ac_policy_show(struct device *dev, struct device_attribute *attr,
461			      char *buf)
462{
463	return acpi_tad_policy_read(dev, buf, ACPI_TAD_AC_TIMER);
464}
465
466static DEVICE_ATTR_RW(ac_policy);
467
468static ssize_t ac_status_store(struct device *dev, struct device_attribute *attr,
469			       const char *buf, size_t count)
470{
471	int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_AC_TIMER);
472
473	return ret ? ret : count;
474}
475
476static ssize_t ac_status_show(struct device *dev, struct device_attribute *attr,
477			      char *buf)
478{
479	return acpi_tad_status_read(dev, buf, ACPI_TAD_AC_TIMER);
480}
481
482static DEVICE_ATTR_RW(ac_status);
483
484static struct attribute *acpi_tad_attrs[] = {
485	&dev_attr_caps.attr,
486	&dev_attr_ac_alarm.attr,
487	&dev_attr_ac_policy.attr,
488	&dev_attr_ac_status.attr,
489	NULL,
490};
491static const struct attribute_group acpi_tad_attr_group = {
492	.attrs	= acpi_tad_attrs,
493};
494
495static ssize_t dc_alarm_store(struct device *dev, struct device_attribute *attr,
496			      const char *buf, size_t count)
497{
498	int ret = acpi_tad_alarm_write(dev, buf, ACPI_TAD_DC_TIMER);
499
500	return ret ? ret : count;
501}
502
503static ssize_t dc_alarm_show(struct device *dev, struct device_attribute *attr,
504			     char *buf)
505{
506	return acpi_tad_alarm_read(dev, buf, ACPI_TAD_DC_TIMER);
507}
508
509static DEVICE_ATTR_RW(dc_alarm);
510
511static ssize_t dc_policy_store(struct device *dev, struct device_attribute *attr,
512			       const char *buf, size_t count)
513{
514	int ret = acpi_tad_policy_write(dev, buf, ACPI_TAD_DC_TIMER);
515
516	return ret ? ret : count;
517}
518
519static ssize_t dc_policy_show(struct device *dev, struct device_attribute *attr,
520			      char *buf)
521{
522	return acpi_tad_policy_read(dev, buf, ACPI_TAD_DC_TIMER);
523}
524
525static DEVICE_ATTR_RW(dc_policy);
526
527static ssize_t dc_status_store(struct device *dev, struct device_attribute *attr,
528			       const char *buf, size_t count)
529{
530	int ret = acpi_tad_status_write(dev, buf, ACPI_TAD_DC_TIMER);
531
532	return ret ? ret : count;
533}
534
535static ssize_t dc_status_show(struct device *dev, struct device_attribute *attr,
536			      char *buf)
537{
538	return acpi_tad_status_read(dev, buf, ACPI_TAD_DC_TIMER);
539}
540
541static DEVICE_ATTR_RW(dc_status);
542
543static struct attribute *acpi_tad_dc_attrs[] = {
544	&dev_attr_dc_alarm.attr,
545	&dev_attr_dc_policy.attr,
546	&dev_attr_dc_status.attr,
547	NULL,
548};
549static const struct attribute_group acpi_tad_dc_attr_group = {
550	.attrs	= acpi_tad_dc_attrs,
551};
552
553static int acpi_tad_disable_timer(struct device *dev, u32 timer_id)
554{
555	return acpi_tad_wake_set(dev, "_STV", timer_id, ACPI_TAD_WAKE_DISABLED);
556}
557
558static void acpi_tad_remove(struct platform_device *pdev)
559{
560	struct device *dev = &pdev->dev;
561	acpi_handle handle = ACPI_HANDLE(dev);
562	struct acpi_tad_driver_data *dd = dev_get_drvdata(dev);
563
564	device_init_wakeup(dev, false);
565
566	pm_runtime_get_sync(dev);
567
568	if (dd->capabilities & ACPI_TAD_DC_WAKE)
569		sysfs_remove_group(&dev->kobj, &acpi_tad_dc_attr_group);
570
571	sysfs_remove_group(&dev->kobj, &acpi_tad_attr_group);
572
573	acpi_tad_disable_timer(dev, ACPI_TAD_AC_TIMER);
574	acpi_tad_clear_status(dev, ACPI_TAD_AC_TIMER);
575	if (dd->capabilities & ACPI_TAD_DC_WAKE) {
576		acpi_tad_disable_timer(dev, ACPI_TAD_DC_TIMER);
577		acpi_tad_clear_status(dev, ACPI_TAD_DC_TIMER);
578	}
579
580	pm_runtime_put_sync(dev);
581	pm_runtime_disable(dev);
582	acpi_remove_cmos_rtc_space_handler(handle);
583}
584
585static int acpi_tad_probe(struct platform_device *pdev)
586{
587	struct device *dev = &pdev->dev;
588	acpi_handle handle = ACPI_HANDLE(dev);
589	struct acpi_tad_driver_data *dd;
590	acpi_status status;
591	unsigned long long caps;
592	int ret;
593
594	ret = acpi_install_cmos_rtc_space_handler(handle);
595	if (ret < 0) {
596		dev_info(dev, "Unable to install space handler\n");
597		return -ENODEV;
598	}
599	/*
600	 * Initialization failure messages are mostly about firmware issues, so
601	 * print them at the "info" level.
602	 */
603	status = acpi_evaluate_integer(handle, "_GCP", NULL, &caps);
604	if (ACPI_FAILURE(status)) {
605		dev_info(dev, "Unable to get capabilities\n");
606		ret = -ENODEV;
607		goto remove_handler;
608	}
609
610	if (!(caps & ACPI_TAD_AC_WAKE)) {
611		dev_info(dev, "Unsupported capabilities\n");
612		ret = -ENODEV;
613		goto remove_handler;
614	}
615
616	if (!acpi_has_method(handle, "_PRW")) {
617		dev_info(dev, "Missing _PRW\n");
618		ret = -ENODEV;
619		goto remove_handler;
620	}
621
622	dd = devm_kzalloc(dev, sizeof(*dd), GFP_KERNEL);
623	if (!dd) {
624		ret = -ENOMEM;
625		goto remove_handler;
626	}
627
628	dd->capabilities = caps;
629	dev_set_drvdata(dev, dd);
630
631	/*
632	 * Assume that the ACPI PM domain has been attached to the device and
633	 * simply enable system wakeup and runtime PM and put the device into
634	 * runtime suspend.  Everything else should be taken care of by the ACPI
635	 * PM domain callbacks.
636	 */
637	device_init_wakeup(dev, true);
638	dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
639				     DPM_FLAG_MAY_SKIP_RESUME);
640	/*
641	 * The platform bus type layer tells the ACPI PM domain powers up the
642	 * device, so set the runtime PM status of it to "active".
643	 */
644	pm_runtime_set_active(dev);
645	pm_runtime_enable(dev);
646	pm_runtime_suspend(dev);
647
648	ret = sysfs_create_group(&dev->kobj, &acpi_tad_attr_group);
649	if (ret)
650		goto fail;
651
652	if (caps & ACPI_TAD_DC_WAKE) {
653		ret = sysfs_create_group(&dev->kobj, &acpi_tad_dc_attr_group);
654		if (ret)
655			goto fail;
656	}
657
658	if (caps & ACPI_TAD_RT) {
659		ret = sysfs_create_group(&dev->kobj, &acpi_tad_time_attr_group);
660		if (ret)
661			goto fail;
662	}
663
664	return 0;
665
666fail:
667	acpi_tad_remove(pdev);
668	/* Don't fallthrough because cmos rtc space handler is removed in acpi_tad_remove() */
669	return ret;
670
671remove_handler:
672	acpi_remove_cmos_rtc_space_handler(handle);
673	return ret;
674}
675
676static const struct acpi_device_id acpi_tad_ids[] = {
677	{"ACPI000E", 0},
678	{}
679};
680
681static struct platform_driver acpi_tad_driver = {
682	.driver = {
683		.name = "acpi-tad",
684		.acpi_match_table = acpi_tad_ids,
685	},
686	.probe = acpi_tad_probe,
687	.remove = acpi_tad_remove,
688};
689MODULE_DEVICE_TABLE(acpi, acpi_tad_ids);
690
691module_platform_driver(acpi_tad_driver);