Loading...
1/*
2 * Re-map IO memory to kernel address space so that we can access it.
3 * This is needed for high PCI addresses that aren't mapped in the
4 * 640k-1MB IO memory area on PC's
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 */
8
9#include <linux/bootmem.h>
10#include <linux/init.h>
11#include <linux/io.h>
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/mmiotrace.h>
16
17#include <asm/cacheflush.h>
18#include <asm/e820.h>
19#include <asm/fixmap.h>
20#include <asm/pgtable.h>
21#include <asm/tlbflush.h>
22#include <asm/pgalloc.h>
23#include <asm/pat.h>
24
25#include "physaddr.h"
26
27/*
28 * Fix up the linear direct mapping of the kernel to avoid cache attribute
29 * conflicts.
30 */
31int ioremap_change_attr(unsigned long vaddr, unsigned long size,
32 unsigned long prot_val)
33{
34 unsigned long nrpages = size >> PAGE_SHIFT;
35 int err;
36
37 switch (prot_val) {
38 case _PAGE_CACHE_UC:
39 default:
40 err = _set_memory_uc(vaddr, nrpages);
41 break;
42 case _PAGE_CACHE_WC:
43 err = _set_memory_wc(vaddr, nrpages);
44 break;
45 case _PAGE_CACHE_WB:
46 err = _set_memory_wb(vaddr, nrpages);
47 break;
48 }
49
50 return err;
51}
52
53/*
54 * Remap an arbitrary physical address space into the kernel virtual
55 * address space. Needed when the kernel wants to access high addresses
56 * directly.
57 *
58 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
59 * have to convert them into an offset in a page-aligned mapping, but the
60 * caller shouldn't need to know that small detail.
61 */
62static void __iomem *__ioremap_caller(resource_size_t phys_addr,
63 unsigned long size, unsigned long prot_val, void *caller)
64{
65 unsigned long offset, vaddr;
66 resource_size_t pfn, last_pfn, last_addr;
67 const resource_size_t unaligned_phys_addr = phys_addr;
68 const unsigned long unaligned_size = size;
69 struct vm_struct *area;
70 unsigned long new_prot_val;
71 pgprot_t prot;
72 int retval;
73 void __iomem *ret_addr;
74
75 /* Don't allow wraparound or zero size */
76 last_addr = phys_addr + size - 1;
77 if (!size || last_addr < phys_addr)
78 return NULL;
79
80 if (!phys_addr_valid(phys_addr)) {
81 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
82 (unsigned long long)phys_addr);
83 WARN_ON_ONCE(1);
84 return NULL;
85 }
86
87 /*
88 * Don't remap the low PCI/ISA area, it's always mapped..
89 */
90 if (is_ISA_range(phys_addr, last_addr))
91 return (__force void __iomem *)phys_to_virt(phys_addr);
92
93 /*
94 * Don't allow anybody to remap normal RAM that we're using..
95 */
96 last_pfn = last_addr >> PAGE_SHIFT;
97 for (pfn = phys_addr >> PAGE_SHIFT; pfn <= last_pfn; pfn++) {
98 int is_ram = page_is_ram(pfn);
99
100 if (is_ram && pfn_valid(pfn) && !PageReserved(pfn_to_page(pfn)))
101 return NULL;
102 WARN_ON_ONCE(is_ram);
103 }
104
105 /*
106 * Mappings have to be page-aligned
107 */
108 offset = phys_addr & ~PAGE_MASK;
109 phys_addr &= PHYSICAL_PAGE_MASK;
110 size = PAGE_ALIGN(last_addr+1) - phys_addr;
111
112 retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
113 prot_val, &new_prot_val);
114 if (retval) {
115 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
116 return NULL;
117 }
118
119 if (prot_val != new_prot_val) {
120 if (!is_new_memtype_allowed(phys_addr, size,
121 prot_val, new_prot_val)) {
122 printk(KERN_ERR
123 "ioremap error for 0x%llx-0x%llx, requested 0x%lx, got 0x%lx\n",
124 (unsigned long long)phys_addr,
125 (unsigned long long)(phys_addr + size),
126 prot_val, new_prot_val);
127 goto err_free_memtype;
128 }
129 prot_val = new_prot_val;
130 }
131
132 switch (prot_val) {
133 case _PAGE_CACHE_UC:
134 default:
135 prot = PAGE_KERNEL_IO_NOCACHE;
136 break;
137 case _PAGE_CACHE_UC_MINUS:
138 prot = PAGE_KERNEL_IO_UC_MINUS;
139 break;
140 case _PAGE_CACHE_WC:
141 prot = PAGE_KERNEL_IO_WC;
142 break;
143 case _PAGE_CACHE_WB:
144 prot = PAGE_KERNEL_IO;
145 break;
146 }
147
148 /*
149 * Ok, go for it..
150 */
151 area = get_vm_area_caller(size, VM_IOREMAP, caller);
152 if (!area)
153 goto err_free_memtype;
154 area->phys_addr = phys_addr;
155 vaddr = (unsigned long) area->addr;
156
157 if (kernel_map_sync_memtype(phys_addr, size, prot_val))
158 goto err_free_area;
159
160 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
161 goto err_free_area;
162
163 ret_addr = (void __iomem *) (vaddr + offset);
164 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
165
166 /*
167 * Check if the request spans more than any BAR in the iomem resource
168 * tree.
169 */
170 WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size),
171 KERN_INFO "Info: mapping multiple BARs. Your kernel is fine.");
172
173 return ret_addr;
174err_free_area:
175 free_vm_area(area);
176err_free_memtype:
177 free_memtype(phys_addr, phys_addr + size);
178 return NULL;
179}
180
181/**
182 * ioremap_nocache - map bus memory into CPU space
183 * @offset: bus address of the memory
184 * @size: size of the resource to map
185 *
186 * ioremap_nocache performs a platform specific sequence of operations to
187 * make bus memory CPU accessible via the readb/readw/readl/writeb/
188 * writew/writel functions and the other mmio helpers. The returned
189 * address is not guaranteed to be usable directly as a virtual
190 * address.
191 *
192 * This version of ioremap ensures that the memory is marked uncachable
193 * on the CPU as well as honouring existing caching rules from things like
194 * the PCI bus. Note that there are other caches and buffers on many
195 * busses. In particular driver authors should read up on PCI writes
196 *
197 * It's useful if some control registers are in such an area and
198 * write combining or read caching is not desirable:
199 *
200 * Must be freed with iounmap.
201 */
202void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
203{
204 /*
205 * Ideally, this should be:
206 * pat_enabled ? _PAGE_CACHE_UC : _PAGE_CACHE_UC_MINUS;
207 *
208 * Till we fix all X drivers to use ioremap_wc(), we will use
209 * UC MINUS.
210 */
211 unsigned long val = _PAGE_CACHE_UC_MINUS;
212
213 return __ioremap_caller(phys_addr, size, val,
214 __builtin_return_address(0));
215}
216EXPORT_SYMBOL(ioremap_nocache);
217
218/**
219 * ioremap_wc - map memory into CPU space write combined
220 * @offset: bus address of the memory
221 * @size: size of the resource to map
222 *
223 * This version of ioremap ensures that the memory is marked write combining.
224 * Write combining allows faster writes to some hardware devices.
225 *
226 * Must be freed with iounmap.
227 */
228void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
229{
230 if (pat_enabled)
231 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC,
232 __builtin_return_address(0));
233 else
234 return ioremap_nocache(phys_addr, size);
235}
236EXPORT_SYMBOL(ioremap_wc);
237
238void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
239{
240 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WB,
241 __builtin_return_address(0));
242}
243EXPORT_SYMBOL(ioremap_cache);
244
245void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
246 unsigned long prot_val)
247{
248 return __ioremap_caller(phys_addr, size, (prot_val & _PAGE_CACHE_MASK),
249 __builtin_return_address(0));
250}
251EXPORT_SYMBOL(ioremap_prot);
252
253/**
254 * iounmap - Free a IO remapping
255 * @addr: virtual address from ioremap_*
256 *
257 * Caller must ensure there is only one unmapping for the same pointer.
258 */
259void iounmap(volatile void __iomem *addr)
260{
261 struct vm_struct *p, *o;
262
263 if ((void __force *)addr <= high_memory)
264 return;
265
266 /*
267 * __ioremap special-cases the PCI/ISA range by not instantiating a
268 * vm_area and by simply returning an address into the kernel mapping
269 * of ISA space. So handle that here.
270 */
271 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
272 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
273 return;
274
275 addr = (volatile void __iomem *)
276 (PAGE_MASK & (unsigned long __force)addr);
277
278 mmiotrace_iounmap(addr);
279
280 /* Use the vm area unlocked, assuming the caller
281 ensures there isn't another iounmap for the same address
282 in parallel. Reuse of the virtual address is prevented by
283 leaving it in the global lists until we're done with it.
284 cpa takes care of the direct mappings. */
285 read_lock(&vmlist_lock);
286 for (p = vmlist; p; p = p->next) {
287 if (p->addr == (void __force *)addr)
288 break;
289 }
290 read_unlock(&vmlist_lock);
291
292 if (!p) {
293 printk(KERN_ERR "iounmap: bad address %p\n", addr);
294 dump_stack();
295 return;
296 }
297
298 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
299
300 /* Finally remove it */
301 o = remove_vm_area((void __force *)addr);
302 BUG_ON(p != o || o == NULL);
303 kfree(p);
304}
305EXPORT_SYMBOL(iounmap);
306
307/*
308 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
309 * access
310 */
311void *xlate_dev_mem_ptr(unsigned long phys)
312{
313 void *addr;
314 unsigned long start = phys & PAGE_MASK;
315
316 /* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
317 if (page_is_ram(start >> PAGE_SHIFT))
318 return __va(phys);
319
320 addr = (void __force *)ioremap_cache(start, PAGE_SIZE);
321 if (addr)
322 addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK));
323
324 return addr;
325}
326
327void unxlate_dev_mem_ptr(unsigned long phys, void *addr)
328{
329 if (page_is_ram(phys >> PAGE_SHIFT))
330 return;
331
332 iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
333 return;
334}
335
336static int __initdata early_ioremap_debug;
337
338static int __init early_ioremap_debug_setup(char *str)
339{
340 early_ioremap_debug = 1;
341
342 return 0;
343}
344early_param("early_ioremap_debug", early_ioremap_debug_setup);
345
346static __initdata int after_paging_init;
347static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
348
349static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
350{
351 /* Don't assume we're using swapper_pg_dir at this point */
352 pgd_t *base = __va(read_cr3());
353 pgd_t *pgd = &base[pgd_index(addr)];
354 pud_t *pud = pud_offset(pgd, addr);
355 pmd_t *pmd = pmd_offset(pud, addr);
356
357 return pmd;
358}
359
360static inline pte_t * __init early_ioremap_pte(unsigned long addr)
361{
362 return &bm_pte[pte_index(addr)];
363}
364
365bool __init is_early_ioremap_ptep(pte_t *ptep)
366{
367 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
368}
369
370static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata;
371
372void __init early_ioremap_init(void)
373{
374 pmd_t *pmd;
375 int i;
376
377 if (early_ioremap_debug)
378 printk(KERN_INFO "early_ioremap_init()\n");
379
380 for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
381 slot_virt[i] = __fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
382
383 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
384 memset(bm_pte, 0, sizeof(bm_pte));
385 pmd_populate_kernel(&init_mm, pmd, bm_pte);
386
387 /*
388 * The boot-ioremap range spans multiple pmds, for which
389 * we are not prepared:
390 */
391#define __FIXADDR_TOP (-PAGE_SIZE)
392 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
393 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
394#undef __FIXADDR_TOP
395 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
396 WARN_ON(1);
397 printk(KERN_WARNING "pmd %p != %p\n",
398 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
399 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
400 fix_to_virt(FIX_BTMAP_BEGIN));
401 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
402 fix_to_virt(FIX_BTMAP_END));
403
404 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
405 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
406 FIX_BTMAP_BEGIN);
407 }
408}
409
410void __init early_ioremap_reset(void)
411{
412 after_paging_init = 1;
413}
414
415static void __init __early_set_fixmap(enum fixed_addresses idx,
416 phys_addr_t phys, pgprot_t flags)
417{
418 unsigned long addr = __fix_to_virt(idx);
419 pte_t *pte;
420
421 if (idx >= __end_of_fixed_addresses) {
422 BUG();
423 return;
424 }
425 pte = early_ioremap_pte(addr);
426
427 if (pgprot_val(flags))
428 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
429 else
430 pte_clear(&init_mm, addr, pte);
431 __flush_tlb_one(addr);
432}
433
434static inline void __init early_set_fixmap(enum fixed_addresses idx,
435 phys_addr_t phys, pgprot_t prot)
436{
437 if (after_paging_init)
438 __set_fixmap(idx, phys, prot);
439 else
440 __early_set_fixmap(idx, phys, prot);
441}
442
443static inline void __init early_clear_fixmap(enum fixed_addresses idx)
444{
445 if (after_paging_init)
446 clear_fixmap(idx);
447 else
448 __early_set_fixmap(idx, 0, __pgprot(0));
449}
450
451static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata;
452static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata;
453
454void __init fixup_early_ioremap(void)
455{
456 int i;
457
458 for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
459 if (prev_map[i]) {
460 WARN_ON(1);
461 break;
462 }
463 }
464
465 early_ioremap_init();
466}
467
468static int __init check_early_ioremap_leak(void)
469{
470 int count = 0;
471 int i;
472
473 for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
474 if (prev_map[i])
475 count++;
476
477 if (!count)
478 return 0;
479 WARN(1, KERN_WARNING
480 "Debug warning: early ioremap leak of %d areas detected.\n",
481 count);
482 printk(KERN_WARNING
483 "please boot with early_ioremap_debug and report the dmesg.\n");
484
485 return 1;
486}
487late_initcall(check_early_ioremap_leak);
488
489static void __init __iomem *
490__early_ioremap(resource_size_t phys_addr, unsigned long size, pgprot_t prot)
491{
492 unsigned long offset;
493 resource_size_t last_addr;
494 unsigned int nrpages;
495 enum fixed_addresses idx0, idx;
496 int i, slot;
497
498 WARN_ON(system_state != SYSTEM_BOOTING);
499
500 slot = -1;
501 for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
502 if (!prev_map[i]) {
503 slot = i;
504 break;
505 }
506 }
507
508 if (slot < 0) {
509 printk(KERN_INFO "early_iomap(%08llx, %08lx) not found slot\n",
510 (u64)phys_addr, size);
511 WARN_ON(1);
512 return NULL;
513 }
514
515 if (early_ioremap_debug) {
516 printk(KERN_INFO "early_ioremap(%08llx, %08lx) [%d] => ",
517 (u64)phys_addr, size, slot);
518 dump_stack();
519 }
520
521 /* Don't allow wraparound or zero size */
522 last_addr = phys_addr + size - 1;
523 if (!size || last_addr < phys_addr) {
524 WARN_ON(1);
525 return NULL;
526 }
527
528 prev_size[slot] = size;
529 /*
530 * Mappings have to be page-aligned
531 */
532 offset = phys_addr & ~PAGE_MASK;
533 phys_addr &= PAGE_MASK;
534 size = PAGE_ALIGN(last_addr + 1) - phys_addr;
535
536 /*
537 * Mappings have to fit in the FIX_BTMAP area.
538 */
539 nrpages = size >> PAGE_SHIFT;
540 if (nrpages > NR_FIX_BTMAPS) {
541 WARN_ON(1);
542 return NULL;
543 }
544
545 /*
546 * Ok, go for it..
547 */
548 idx0 = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
549 idx = idx0;
550 while (nrpages > 0) {
551 early_set_fixmap(idx, phys_addr, prot);
552 phys_addr += PAGE_SIZE;
553 --idx;
554 --nrpages;
555 }
556 if (early_ioremap_debug)
557 printk(KERN_CONT "%08lx + %08lx\n", offset, slot_virt[slot]);
558
559 prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]);
560 return prev_map[slot];
561}
562
563/* Remap an IO device */
564void __init __iomem *
565early_ioremap(resource_size_t phys_addr, unsigned long size)
566{
567 return __early_ioremap(phys_addr, size, PAGE_KERNEL_IO);
568}
569
570/* Remap memory */
571void __init __iomem *
572early_memremap(resource_size_t phys_addr, unsigned long size)
573{
574 return __early_ioremap(phys_addr, size, PAGE_KERNEL);
575}
576
577void __init early_iounmap(void __iomem *addr, unsigned long size)
578{
579 unsigned long virt_addr;
580 unsigned long offset;
581 unsigned int nrpages;
582 enum fixed_addresses idx;
583 int i, slot;
584
585 slot = -1;
586 for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
587 if (prev_map[i] == addr) {
588 slot = i;
589 break;
590 }
591 }
592
593 if (slot < 0) {
594 printk(KERN_INFO "early_iounmap(%p, %08lx) not found slot\n",
595 addr, size);
596 WARN_ON(1);
597 return;
598 }
599
600 if (prev_size[slot] != size) {
601 printk(KERN_INFO "early_iounmap(%p, %08lx) [%d] size not consistent %08lx\n",
602 addr, size, slot, prev_size[slot]);
603 WARN_ON(1);
604 return;
605 }
606
607 if (early_ioremap_debug) {
608 printk(KERN_INFO "early_iounmap(%p, %08lx) [%d]\n", addr,
609 size, slot);
610 dump_stack();
611 }
612
613 virt_addr = (unsigned long)addr;
614 if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) {
615 WARN_ON(1);
616 return;
617 }
618 offset = virt_addr & ~PAGE_MASK;
619 nrpages = PAGE_ALIGN(offset + size) >> PAGE_SHIFT;
620
621 idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
622 while (nrpages > 0) {
623 early_clear_fixmap(idx);
624 --idx;
625 --nrpages;
626 }
627 prev_map[slot] = NULL;
628}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/io.h>
13#include <linux/ioport.h>
14#include <linux/ioremap.h>
15#include <linux/slab.h>
16#include <linux/vmalloc.h>
17#include <linux/mmiotrace.h>
18#include <linux/cc_platform.h>
19#include <linux/efi.h>
20#include <linux/pgtable.h>
21#include <linux/kmsan.h>
22
23#include <asm/set_memory.h>
24#include <asm/e820/api.h>
25#include <asm/efi.h>
26#include <asm/fixmap.h>
27#include <asm/tlbflush.h>
28#include <asm/pgalloc.h>
29#include <asm/memtype.h>
30#include <asm/setup.h>
31
32#include "physaddr.h"
33
34/*
35 * Descriptor controlling ioremap() behavior.
36 */
37struct ioremap_desc {
38 unsigned int flags;
39};
40
41/*
42 * Fix up the linear direct mapping of the kernel to avoid cache attribute
43 * conflicts.
44 */
45int ioremap_change_attr(unsigned long vaddr, unsigned long size,
46 enum page_cache_mode pcm)
47{
48 unsigned long nrpages = size >> PAGE_SHIFT;
49 int err;
50
51 switch (pcm) {
52 case _PAGE_CACHE_MODE_UC:
53 default:
54 err = _set_memory_uc(vaddr, nrpages);
55 break;
56 case _PAGE_CACHE_MODE_WC:
57 err = _set_memory_wc(vaddr, nrpages);
58 break;
59 case _PAGE_CACHE_MODE_WT:
60 err = _set_memory_wt(vaddr, nrpages);
61 break;
62 case _PAGE_CACHE_MODE_WB:
63 err = _set_memory_wb(vaddr, nrpages);
64 break;
65 }
66
67 return err;
68}
69
70/* Does the range (or a subset of) contain normal RAM? */
71static unsigned int __ioremap_check_ram(struct resource *res)
72{
73 unsigned long start_pfn, stop_pfn;
74 unsigned long i;
75
76 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
77 return 0;
78
79 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
80 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
81 if (stop_pfn > start_pfn) {
82 for (i = 0; i < (stop_pfn - start_pfn); ++i)
83 if (pfn_valid(start_pfn + i) &&
84 !PageReserved(pfn_to_page(start_pfn + i)))
85 return IORES_MAP_SYSTEM_RAM;
86 }
87
88 return 0;
89}
90
91/*
92 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
93 * there the whole memory is already encrypted.
94 */
95static unsigned int __ioremap_check_encrypted(struct resource *res)
96{
97 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
98 return 0;
99
100 switch (res->desc) {
101 case IORES_DESC_NONE:
102 case IORES_DESC_RESERVED:
103 break;
104 default:
105 return IORES_MAP_ENCRYPTED;
106 }
107
108 return 0;
109}
110
111/*
112 * The EFI runtime services data area is not covered by walk_mem_res(), but must
113 * be mapped encrypted when SEV is active.
114 */
115static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
116{
117 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
118 return;
119
120 if (x86_platform.hyper.is_private_mmio(addr)) {
121 desc->flags |= IORES_MAP_ENCRYPTED;
122 return;
123 }
124
125 if (!IS_ENABLED(CONFIG_EFI))
126 return;
127
128 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
129 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
130 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
131 desc->flags |= IORES_MAP_ENCRYPTED;
132}
133
134static int __ioremap_collect_map_flags(struct resource *res, void *arg)
135{
136 struct ioremap_desc *desc = arg;
137
138 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
139 desc->flags |= __ioremap_check_ram(res);
140
141 if (!(desc->flags & IORES_MAP_ENCRYPTED))
142 desc->flags |= __ioremap_check_encrypted(res);
143
144 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
145 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
146}
147
148/*
149 * To avoid multiple resource walks, this function walks resources marked as
150 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
151 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
152 *
153 * After that, deal with misc other ranges in __ioremap_check_other() which do
154 * not fall into the above category.
155 */
156static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
157 struct ioremap_desc *desc)
158{
159 u64 start, end;
160
161 start = (u64)addr;
162 end = start + size - 1;
163 memset(desc, 0, sizeof(struct ioremap_desc));
164
165 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
166
167 __ioremap_check_other(addr, desc);
168}
169
170/*
171 * Remap an arbitrary physical address space into the kernel virtual
172 * address space. It transparently creates kernel huge I/O mapping when
173 * the physical address is aligned by a huge page size (1GB or 2MB) and
174 * the requested size is at least the huge page size.
175 *
176 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
177 * Therefore, the mapping code falls back to use a smaller page toward 4KB
178 * when a mapping range is covered by non-WB type of MTRRs.
179 *
180 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
181 * have to convert them into an offset in a page-aligned mapping, but the
182 * caller shouldn't need to know that small detail.
183 */
184static void __iomem *
185__ioremap_caller(resource_size_t phys_addr, unsigned long size,
186 enum page_cache_mode pcm, void *caller, bool encrypted)
187{
188 unsigned long offset, vaddr;
189 resource_size_t last_addr;
190 const resource_size_t unaligned_phys_addr = phys_addr;
191 const unsigned long unaligned_size = size;
192 struct ioremap_desc io_desc;
193 struct vm_struct *area;
194 enum page_cache_mode new_pcm;
195 pgprot_t prot;
196 int retval;
197 void __iomem *ret_addr;
198
199 /* Don't allow wraparound or zero size */
200 last_addr = phys_addr + size - 1;
201 if (!size || last_addr < phys_addr)
202 return NULL;
203
204 if (!phys_addr_valid(phys_addr)) {
205 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
206 (unsigned long long)phys_addr);
207 WARN_ON_ONCE(1);
208 return NULL;
209 }
210
211 __ioremap_check_mem(phys_addr, size, &io_desc);
212
213 /*
214 * Don't allow anybody to remap normal RAM that we're using..
215 */
216 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
217 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
218 &phys_addr, &last_addr);
219 return NULL;
220 }
221
222 /*
223 * Mappings have to be page-aligned
224 */
225 offset = phys_addr & ~PAGE_MASK;
226 phys_addr &= PAGE_MASK;
227 size = PAGE_ALIGN(last_addr+1) - phys_addr;
228
229 /*
230 * Mask out any bits not part of the actual physical
231 * address, like memory encryption bits.
232 */
233 phys_addr &= PHYSICAL_PAGE_MASK;
234
235 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
236 pcm, &new_pcm);
237 if (retval) {
238 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
239 return NULL;
240 }
241
242 if (pcm != new_pcm) {
243 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
244 printk(KERN_ERR
245 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
246 (unsigned long long)phys_addr,
247 (unsigned long long)(phys_addr + size),
248 pcm, new_pcm);
249 goto err_free_memtype;
250 }
251 pcm = new_pcm;
252 }
253
254 /*
255 * If the page being mapped is in memory and SEV is active then
256 * make sure the memory encryption attribute is enabled in the
257 * resulting mapping.
258 * In TDX guests, memory is marked private by default. If encryption
259 * is not requested (using encrypted), explicitly set decrypt
260 * attribute in all IOREMAPPED memory.
261 */
262 prot = PAGE_KERNEL_IO;
263 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
264 prot = pgprot_encrypted(prot);
265 else
266 prot = pgprot_decrypted(prot);
267
268 switch (pcm) {
269 case _PAGE_CACHE_MODE_UC:
270 default:
271 prot = __pgprot(pgprot_val(prot) |
272 cachemode2protval(_PAGE_CACHE_MODE_UC));
273 break;
274 case _PAGE_CACHE_MODE_UC_MINUS:
275 prot = __pgprot(pgprot_val(prot) |
276 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
277 break;
278 case _PAGE_CACHE_MODE_WC:
279 prot = __pgprot(pgprot_val(prot) |
280 cachemode2protval(_PAGE_CACHE_MODE_WC));
281 break;
282 case _PAGE_CACHE_MODE_WT:
283 prot = __pgprot(pgprot_val(prot) |
284 cachemode2protval(_PAGE_CACHE_MODE_WT));
285 break;
286 case _PAGE_CACHE_MODE_WB:
287 break;
288 }
289
290 /*
291 * Ok, go for it..
292 */
293 area = get_vm_area_caller(size, VM_IOREMAP, caller);
294 if (!area)
295 goto err_free_memtype;
296 area->phys_addr = phys_addr;
297 vaddr = (unsigned long) area->addr;
298
299 if (memtype_kernel_map_sync(phys_addr, size, pcm))
300 goto err_free_area;
301
302 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
303 goto err_free_area;
304
305 ret_addr = (void __iomem *) (vaddr + offset);
306 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
307
308 /*
309 * Check if the request spans more than any BAR in the iomem resource
310 * tree.
311 */
312 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
313 pr_warn("caller %pS mapping multiple BARs\n", caller);
314
315 return ret_addr;
316err_free_area:
317 free_vm_area(area);
318err_free_memtype:
319 memtype_free(phys_addr, phys_addr + size);
320 return NULL;
321}
322
323/**
324 * ioremap - map bus memory into CPU space
325 * @phys_addr: bus address of the memory
326 * @size: size of the resource to map
327 *
328 * ioremap performs a platform specific sequence of operations to
329 * make bus memory CPU accessible via the readb/readw/readl/writeb/
330 * writew/writel functions and the other mmio helpers. The returned
331 * address is not guaranteed to be usable directly as a virtual
332 * address.
333 *
334 * This version of ioremap ensures that the memory is marked uncachable
335 * on the CPU as well as honouring existing caching rules from things like
336 * the PCI bus. Note that there are other caches and buffers on many
337 * busses. In particular driver authors should read up on PCI writes
338 *
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
341 *
342 * Must be freed with iounmap.
343 */
344void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
345{
346 /*
347 * Ideally, this should be:
348 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
349 *
350 * Till we fix all X drivers to use ioremap_wc(), we will use
351 * UC MINUS. Drivers that are certain they need or can already
352 * be converted over to strong UC can use ioremap_uc().
353 */
354 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
355
356 return __ioremap_caller(phys_addr, size, pcm,
357 __builtin_return_address(0), false);
358}
359EXPORT_SYMBOL(ioremap);
360
361/**
362 * ioremap_uc - map bus memory into CPU space as strongly uncachable
363 * @phys_addr: bus address of the memory
364 * @size: size of the resource to map
365 *
366 * ioremap_uc performs a platform specific sequence of operations to
367 * make bus memory CPU accessible via the readb/readw/readl/writeb/
368 * writew/writel functions and the other mmio helpers. The returned
369 * address is not guaranteed to be usable directly as a virtual
370 * address.
371 *
372 * This version of ioremap ensures that the memory is marked with a strong
373 * preference as completely uncachable on the CPU when possible. For non-PAT
374 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
375 * systems this will set the PAT entry for the pages as strong UC. This call
376 * will honor existing caching rules from things like the PCI bus. Note that
377 * there are other caches and buffers on many busses. In particular driver
378 * authors should read up on PCI writes.
379 *
380 * It's useful if some control registers are in such an area and
381 * write combining or read caching is not desirable:
382 *
383 * Must be freed with iounmap.
384 */
385void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
386{
387 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
388
389 return __ioremap_caller(phys_addr, size, pcm,
390 __builtin_return_address(0), false);
391}
392EXPORT_SYMBOL_GPL(ioremap_uc);
393
394/**
395 * ioremap_wc - map memory into CPU space write combined
396 * @phys_addr: bus address of the memory
397 * @size: size of the resource to map
398 *
399 * This version of ioremap ensures that the memory is marked write combining.
400 * Write combining allows faster writes to some hardware devices.
401 *
402 * Must be freed with iounmap.
403 */
404void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
405{
406 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
407 __builtin_return_address(0), false);
408}
409EXPORT_SYMBOL(ioremap_wc);
410
411/**
412 * ioremap_wt - map memory into CPU space write through
413 * @phys_addr: bus address of the memory
414 * @size: size of the resource to map
415 *
416 * This version of ioremap ensures that the memory is marked write through.
417 * Write through stores data into memory while keeping the cache up-to-date.
418 *
419 * Must be freed with iounmap.
420 */
421void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
422{
423 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
424 __builtin_return_address(0), false);
425}
426EXPORT_SYMBOL(ioremap_wt);
427
428void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
429{
430 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
431 __builtin_return_address(0), true);
432}
433EXPORT_SYMBOL(ioremap_encrypted);
434
435void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
436{
437 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
438 __builtin_return_address(0), false);
439}
440EXPORT_SYMBOL(ioremap_cache);
441
442void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
443 unsigned long prot_val)
444{
445 return __ioremap_caller(phys_addr, size,
446 pgprot2cachemode(__pgprot(prot_val)),
447 __builtin_return_address(0), false);
448}
449EXPORT_SYMBOL(ioremap_prot);
450
451/**
452 * iounmap - Free a IO remapping
453 * @addr: virtual address from ioremap_*
454 *
455 * Caller must ensure there is only one unmapping for the same pointer.
456 */
457void iounmap(volatile void __iomem *addr)
458{
459 struct vm_struct *p, *o;
460
461 if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr)))
462 return;
463
464 /*
465 * The PCI/ISA range special-casing was removed from __ioremap()
466 * so this check, in theory, can be removed. However, there are
467 * cases where iounmap() is called for addresses not obtained via
468 * ioremap() (vga16fb for example). Add a warning so that these
469 * cases can be caught and fixed.
470 */
471 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
472 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
473 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
474 return;
475 }
476
477 mmiotrace_iounmap(addr);
478
479 addr = (volatile void __iomem *)
480 (PAGE_MASK & (unsigned long __force)addr);
481
482 /* Use the vm area unlocked, assuming the caller
483 ensures there isn't another iounmap for the same address
484 in parallel. Reuse of the virtual address is prevented by
485 leaving it in the global lists until we're done with it.
486 cpa takes care of the direct mappings. */
487 p = find_vm_area((void __force *)addr);
488
489 if (!p) {
490 printk(KERN_ERR "iounmap: bad address %p\n", addr);
491 dump_stack();
492 return;
493 }
494
495 kmsan_iounmap_page_range((unsigned long)addr,
496 (unsigned long)addr + get_vm_area_size(p));
497 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
498
499 /* Finally remove it */
500 o = remove_vm_area((void __force *)addr);
501 BUG_ON(p != o || o == NULL);
502 kfree(p);
503}
504EXPORT_SYMBOL(iounmap);
505
506/*
507 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
508 * access
509 */
510void *xlate_dev_mem_ptr(phys_addr_t phys)
511{
512 unsigned long start = phys & PAGE_MASK;
513 unsigned long offset = phys & ~PAGE_MASK;
514 void *vaddr;
515
516 /* memremap() maps if RAM, otherwise falls back to ioremap() */
517 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
518
519 /* Only add the offset on success and return NULL if memremap() failed */
520 if (vaddr)
521 vaddr += offset;
522
523 return vaddr;
524}
525
526void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
527{
528 memunmap((void *)((unsigned long)addr & PAGE_MASK));
529}
530
531#ifdef CONFIG_AMD_MEM_ENCRYPT
532/*
533 * Examine the physical address to determine if it is an area of memory
534 * that should be mapped decrypted. If the memory is not part of the
535 * kernel usable area it was accessed and created decrypted, so these
536 * areas should be mapped decrypted. And since the encryption key can
537 * change across reboots, persistent memory should also be mapped
538 * decrypted.
539 *
540 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
541 * only persistent memory should be mapped decrypted.
542 */
543static bool memremap_should_map_decrypted(resource_size_t phys_addr,
544 unsigned long size)
545{
546 int is_pmem;
547
548 /*
549 * Check if the address is part of a persistent memory region.
550 * This check covers areas added by E820, EFI and ACPI.
551 */
552 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
553 IORES_DESC_PERSISTENT_MEMORY);
554 if (is_pmem != REGION_DISJOINT)
555 return true;
556
557 /*
558 * Check if the non-volatile attribute is set for an EFI
559 * reserved area.
560 */
561 if (efi_enabled(EFI_BOOT)) {
562 switch (efi_mem_type(phys_addr)) {
563 case EFI_RESERVED_TYPE:
564 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
565 return true;
566 break;
567 default:
568 break;
569 }
570 }
571
572 /* Check if the address is outside kernel usable area */
573 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
574 case E820_TYPE_RESERVED:
575 case E820_TYPE_ACPI:
576 case E820_TYPE_NVS:
577 case E820_TYPE_UNUSABLE:
578 /* For SEV, these areas are encrypted */
579 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
580 break;
581 fallthrough;
582
583 case E820_TYPE_PRAM:
584 return true;
585 default:
586 break;
587 }
588
589 return false;
590}
591
592/*
593 * Examine the physical address to determine if it is EFI data. Check
594 * it against the boot params structure and EFI tables and memory types.
595 */
596static bool memremap_is_efi_data(resource_size_t phys_addr,
597 unsigned long size)
598{
599 u64 paddr;
600
601 /* Check if the address is part of EFI boot/runtime data */
602 if (!efi_enabled(EFI_BOOT))
603 return false;
604
605 paddr = boot_params.efi_info.efi_memmap_hi;
606 paddr <<= 32;
607 paddr |= boot_params.efi_info.efi_memmap;
608 if (phys_addr == paddr)
609 return true;
610
611 paddr = boot_params.efi_info.efi_systab_hi;
612 paddr <<= 32;
613 paddr |= boot_params.efi_info.efi_systab;
614 if (phys_addr == paddr)
615 return true;
616
617 if (efi_is_table_address(phys_addr))
618 return true;
619
620 switch (efi_mem_type(phys_addr)) {
621 case EFI_BOOT_SERVICES_DATA:
622 case EFI_RUNTIME_SERVICES_DATA:
623 return true;
624 default:
625 break;
626 }
627
628 return false;
629}
630
631/*
632 * Examine the physical address to determine if it is boot data by checking
633 * it against the boot params setup_data chain.
634 */
635static bool memremap_is_setup_data(resource_size_t phys_addr,
636 unsigned long size)
637{
638 struct setup_indirect *indirect;
639 struct setup_data *data;
640 u64 paddr, paddr_next;
641
642 paddr = boot_params.hdr.setup_data;
643 while (paddr) {
644 unsigned int len;
645
646 if (phys_addr == paddr)
647 return true;
648
649 data = memremap(paddr, sizeof(*data),
650 MEMREMAP_WB | MEMREMAP_DEC);
651 if (!data) {
652 pr_warn("failed to memremap setup_data entry\n");
653 return false;
654 }
655
656 paddr_next = data->next;
657 len = data->len;
658
659 if ((phys_addr > paddr) &&
660 (phys_addr < (paddr + sizeof(struct setup_data) + len))) {
661 memunmap(data);
662 return true;
663 }
664
665 if (data->type == SETUP_INDIRECT) {
666 memunmap(data);
667 data = memremap(paddr, sizeof(*data) + len,
668 MEMREMAP_WB | MEMREMAP_DEC);
669 if (!data) {
670 pr_warn("failed to memremap indirect setup_data\n");
671 return false;
672 }
673
674 indirect = (struct setup_indirect *)data->data;
675
676 if (indirect->type != SETUP_INDIRECT) {
677 paddr = indirect->addr;
678 len = indirect->len;
679 }
680 }
681
682 memunmap(data);
683
684 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
685 return true;
686
687 paddr = paddr_next;
688 }
689
690 return false;
691}
692
693/*
694 * Examine the physical address to determine if it is boot data by checking
695 * it against the boot params setup_data chain (early boot version).
696 */
697static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
698 unsigned long size)
699{
700 struct setup_indirect *indirect;
701 struct setup_data *data;
702 u64 paddr, paddr_next;
703
704 paddr = boot_params.hdr.setup_data;
705 while (paddr) {
706 unsigned int len, size;
707
708 if (phys_addr == paddr)
709 return true;
710
711 data = early_memremap_decrypted(paddr, sizeof(*data));
712 if (!data) {
713 pr_warn("failed to early memremap setup_data entry\n");
714 return false;
715 }
716
717 size = sizeof(*data);
718
719 paddr_next = data->next;
720 len = data->len;
721
722 if ((phys_addr > paddr) &&
723 (phys_addr < (paddr + sizeof(struct setup_data) + len))) {
724 early_memunmap(data, sizeof(*data));
725 return true;
726 }
727
728 if (data->type == SETUP_INDIRECT) {
729 size += len;
730 early_memunmap(data, sizeof(*data));
731 data = early_memremap_decrypted(paddr, size);
732 if (!data) {
733 pr_warn("failed to early memremap indirect setup_data\n");
734 return false;
735 }
736
737 indirect = (struct setup_indirect *)data->data;
738
739 if (indirect->type != SETUP_INDIRECT) {
740 paddr = indirect->addr;
741 len = indirect->len;
742 }
743 }
744
745 early_memunmap(data, size);
746
747 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
748 return true;
749
750 paddr = paddr_next;
751 }
752
753 return false;
754}
755
756/*
757 * Architecture function to determine if RAM remap is allowed. By default, a
758 * RAM remap will map the data as encrypted. Determine if a RAM remap should
759 * not be done so that the data will be mapped decrypted.
760 */
761bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
762 unsigned long flags)
763{
764 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
765 return true;
766
767 if (flags & MEMREMAP_ENC)
768 return true;
769
770 if (flags & MEMREMAP_DEC)
771 return false;
772
773 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
774 if (memremap_is_setup_data(phys_addr, size) ||
775 memremap_is_efi_data(phys_addr, size))
776 return false;
777 }
778
779 return !memremap_should_map_decrypted(phys_addr, size);
780}
781
782/*
783 * Architecture override of __weak function to adjust the protection attributes
784 * used when remapping memory. By default, early_memremap() will map the data
785 * as encrypted. Determine if an encrypted mapping should not be done and set
786 * the appropriate protection attributes.
787 */
788pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
789 unsigned long size,
790 pgprot_t prot)
791{
792 bool encrypted_prot;
793
794 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
795 return prot;
796
797 encrypted_prot = true;
798
799 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
800 if (early_memremap_is_setup_data(phys_addr, size) ||
801 memremap_is_efi_data(phys_addr, size))
802 encrypted_prot = false;
803 }
804
805 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
806 encrypted_prot = false;
807
808 return encrypted_prot ? pgprot_encrypted(prot)
809 : pgprot_decrypted(prot);
810}
811
812bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
813{
814 return arch_memremap_can_ram_remap(phys_addr, size, 0);
815}
816
817/* Remap memory with encryption */
818void __init *early_memremap_encrypted(resource_size_t phys_addr,
819 unsigned long size)
820{
821 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
822}
823
824/*
825 * Remap memory with encryption and write-protected - cannot be called
826 * before pat_init() is called
827 */
828void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
829 unsigned long size)
830{
831 if (!x86_has_pat_wp())
832 return NULL;
833 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
834}
835
836/* Remap memory without encryption */
837void __init *early_memremap_decrypted(resource_size_t phys_addr,
838 unsigned long size)
839{
840 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
841}
842
843/*
844 * Remap memory without encryption and write-protected - cannot be called
845 * before pat_init() is called
846 */
847void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
848 unsigned long size)
849{
850 if (!x86_has_pat_wp())
851 return NULL;
852 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
853}
854#endif /* CONFIG_AMD_MEM_ENCRYPT */
855
856static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
857
858static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
859{
860 /* Don't assume we're using swapper_pg_dir at this point */
861 pgd_t *base = __va(read_cr3_pa());
862 pgd_t *pgd = &base[pgd_index(addr)];
863 p4d_t *p4d = p4d_offset(pgd, addr);
864 pud_t *pud = pud_offset(p4d, addr);
865 pmd_t *pmd = pmd_offset(pud, addr);
866
867 return pmd;
868}
869
870static inline pte_t * __init early_ioremap_pte(unsigned long addr)
871{
872 return &bm_pte[pte_index(addr)];
873}
874
875bool __init is_early_ioremap_ptep(pte_t *ptep)
876{
877 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
878}
879
880void __init early_ioremap_init(void)
881{
882 pmd_t *pmd;
883
884#ifdef CONFIG_X86_64
885 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
886#else
887 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
888#endif
889
890 early_ioremap_setup();
891
892 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
893 memset(bm_pte, 0, sizeof(bm_pte));
894 pmd_populate_kernel(&init_mm, pmd, bm_pte);
895
896 /*
897 * The boot-ioremap range spans multiple pmds, for which
898 * we are not prepared:
899 */
900#define __FIXADDR_TOP (-PAGE_SIZE)
901 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
902 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
903#undef __FIXADDR_TOP
904 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
905 WARN_ON(1);
906 printk(KERN_WARNING "pmd %p != %p\n",
907 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
908 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
909 fix_to_virt(FIX_BTMAP_BEGIN));
910 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
911 fix_to_virt(FIX_BTMAP_END));
912
913 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
914 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
915 FIX_BTMAP_BEGIN);
916 }
917}
918
919void __init __early_set_fixmap(enum fixed_addresses idx,
920 phys_addr_t phys, pgprot_t flags)
921{
922 unsigned long addr = __fix_to_virt(idx);
923 pte_t *pte;
924
925 if (idx >= __end_of_fixed_addresses) {
926 BUG();
927 return;
928 }
929 pte = early_ioremap_pte(addr);
930
931 /* Sanitize 'prot' against any unsupported bits: */
932 pgprot_val(flags) &= __supported_pte_mask;
933
934 if (pgprot_val(flags))
935 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
936 else
937 pte_clear(&init_mm, addr, pte);
938 flush_tlb_one_kernel(addr);
939}