Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v3.1
 
  1/*
  2 * Re-map IO memory to kernel address space so that we can access it.
  3 * This is needed for high PCI addresses that aren't mapped in the
  4 * 640k-1MB IO memory area on PC's
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 */
  8
  9#include <linux/bootmem.h>
 10#include <linux/init.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 
 13#include <linux/slab.h>
 14#include <linux/vmalloc.h>
 15#include <linux/mmiotrace.h>
 16
 17#include <asm/cacheflush.h>
 18#include <asm/e820.h>
 
 
 
 
 
 19#include <asm/fixmap.h>
 20#include <asm/pgtable.h>
 21#include <asm/tlbflush.h>
 22#include <asm/pgalloc.h>
 23#include <asm/pat.h>
 
 24
 25#include "physaddr.h"
 26
 27/*
 
 
 
 
 
 
 
 28 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 29 * conflicts.
 30 */
 31int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 32			       unsigned long prot_val)
 33{
 34	unsigned long nrpages = size >> PAGE_SHIFT;
 35	int err;
 36
 37	switch (prot_val) {
 38	case _PAGE_CACHE_UC:
 39	default:
 40		err = _set_memory_uc(vaddr, nrpages);
 41		break;
 42	case _PAGE_CACHE_WC:
 43		err = _set_memory_wc(vaddr, nrpages);
 44		break;
 45	case _PAGE_CACHE_WB:
 
 
 
 46		err = _set_memory_wb(vaddr, nrpages);
 47		break;
 48	}
 49
 50	return err;
 51}
 52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53/*
 54 * Remap an arbitrary physical address space into the kernel virtual
 55 * address space. Needed when the kernel wants to access high addresses
 56 * directly.
 
 
 
 
 
 57 *
 58 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
 59 * have to convert them into an offset in a page-aligned mapping, but the
 60 * caller shouldn't need to know that small detail.
 61 */
 62static void __iomem *__ioremap_caller(resource_size_t phys_addr,
 63		unsigned long size, unsigned long prot_val, void *caller)
 
 64{
 65	unsigned long offset, vaddr;
 66	resource_size_t pfn, last_pfn, last_addr;
 67	const resource_size_t unaligned_phys_addr = phys_addr;
 68	const unsigned long unaligned_size = size;
 
 69	struct vm_struct *area;
 70	unsigned long new_prot_val;
 71	pgprot_t prot;
 72	int retval;
 73	void __iomem *ret_addr;
 74
 75	/* Don't allow wraparound or zero size */
 76	last_addr = phys_addr + size - 1;
 77	if (!size || last_addr < phys_addr)
 78		return NULL;
 79
 80	if (!phys_addr_valid(phys_addr)) {
 81		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
 82		       (unsigned long long)phys_addr);
 83		WARN_ON_ONCE(1);
 84		return NULL;
 85	}
 86
 87	/*
 88	 * Don't remap the low PCI/ISA area, it's always mapped..
 89	 */
 90	if (is_ISA_range(phys_addr, last_addr))
 91		return (__force void __iomem *)phys_to_virt(phys_addr);
 92
 93	/*
 94	 * Don't allow anybody to remap normal RAM that we're using..
 95	 */
 96	last_pfn = last_addr >> PAGE_SHIFT;
 97	for (pfn = phys_addr >> PAGE_SHIFT; pfn <= last_pfn; pfn++) {
 98		int is_ram = page_is_ram(pfn);
 99
100		if (is_ram && pfn_valid(pfn) && !PageReserved(pfn_to_page(pfn)))
101			return NULL;
102		WARN_ON_ONCE(is_ram);
103	}
104
105	/*
106	 * Mappings have to be page-aligned
107	 */
108	offset = phys_addr & ~PAGE_MASK;
109	phys_addr &= PHYSICAL_PAGE_MASK;
110	size = PAGE_ALIGN(last_addr+1) - phys_addr;
111
112	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
113						prot_val, &new_prot_val);
 
 
 
 
 
 
114	if (retval) {
115		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
116		return NULL;
117	}
118
119	if (prot_val != new_prot_val) {
120		if (!is_new_memtype_allowed(phys_addr, size,
121					    prot_val, new_prot_val)) {
122			printk(KERN_ERR
123		"ioremap error for 0x%llx-0x%llx, requested 0x%lx, got 0x%lx\n",
124				(unsigned long long)phys_addr,
125				(unsigned long long)(phys_addr + size),
126				prot_val, new_prot_val);
127			goto err_free_memtype;
128		}
129		prot_val = new_prot_val;
130	}
131
132	switch (prot_val) {
133	case _PAGE_CACHE_UC:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134	default:
135		prot = PAGE_KERNEL_IO_NOCACHE;
 
136		break;
137	case _PAGE_CACHE_UC_MINUS:
138		prot = PAGE_KERNEL_IO_UC_MINUS;
 
139		break;
140	case _PAGE_CACHE_WC:
141		prot = PAGE_KERNEL_IO_WC;
 
142		break;
143	case _PAGE_CACHE_WB:
144		prot = PAGE_KERNEL_IO;
 
 
 
145		break;
146	}
147
148	/*
149	 * Ok, go for it..
150	 */
151	area = get_vm_area_caller(size, VM_IOREMAP, caller);
152	if (!area)
153		goto err_free_memtype;
154	area->phys_addr = phys_addr;
155	vaddr = (unsigned long) area->addr;
156
157	if (kernel_map_sync_memtype(phys_addr, size, prot_val))
158		goto err_free_area;
159
160	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
161		goto err_free_area;
162
163	ret_addr = (void __iomem *) (vaddr + offset);
164	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
165
166	/*
167	 * Check if the request spans more than any BAR in the iomem resource
168	 * tree.
169	 */
170	WARN_ONCE(iomem_map_sanity_check(unaligned_phys_addr, unaligned_size),
171		  KERN_INFO "Info: mapping multiple BARs. Your kernel is fine.");
172
173	return ret_addr;
174err_free_area:
175	free_vm_area(area);
176err_free_memtype:
177	free_memtype(phys_addr, phys_addr + size);
178	return NULL;
179}
180
181/**
182 * ioremap_nocache     -   map bus memory into CPU space
183 * @offset:    bus address of the memory
184 * @size:      size of the resource to map
185 *
186 * ioremap_nocache performs a platform specific sequence of operations to
187 * make bus memory CPU accessible via the readb/readw/readl/writeb/
188 * writew/writel functions and the other mmio helpers. The returned
189 * address is not guaranteed to be usable directly as a virtual
190 * address.
191 *
192 * This version of ioremap ensures that the memory is marked uncachable
193 * on the CPU as well as honouring existing caching rules from things like
194 * the PCI bus. Note that there are other caches and buffers on many
195 * busses. In particular driver authors should read up on PCI writes
196 *
197 * It's useful if some control registers are in such an area and
198 * write combining or read caching is not desirable:
199 *
200 * Must be freed with iounmap.
201 */
202void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
203{
204	/*
205	 * Ideally, this should be:
206	 *	pat_enabled ? _PAGE_CACHE_UC : _PAGE_CACHE_UC_MINUS;
207	 *
208	 * Till we fix all X drivers to use ioremap_wc(), we will use
209	 * UC MINUS.
 
210	 */
211	unsigned long val = _PAGE_CACHE_UC_MINUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212
213	return __ioremap_caller(phys_addr, size, val,
214				__builtin_return_address(0));
215}
216EXPORT_SYMBOL(ioremap_nocache);
217
218/**
219 * ioremap_wc	-	map memory into CPU space write combined
220 * @offset:	bus address of the memory
221 * @size:	size of the resource to map
222 *
223 * This version of ioremap ensures that the memory is marked write combining.
224 * Write combining allows faster writes to some hardware devices.
225 *
226 * Must be freed with iounmap.
227 */
228void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
229{
230	if (pat_enabled)
231		return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WC,
232					__builtin_return_address(0));
233	else
234		return ioremap_nocache(phys_addr, size);
235}
236EXPORT_SYMBOL(ioremap_wc);
237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
239{
240	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_WB,
241				__builtin_return_address(0));
242}
243EXPORT_SYMBOL(ioremap_cache);
244
245void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
246				unsigned long prot_val)
247{
248	return __ioremap_caller(phys_addr, size, (prot_val & _PAGE_CACHE_MASK),
249				__builtin_return_address(0));
 
250}
251EXPORT_SYMBOL(ioremap_prot);
252
253/**
254 * iounmap - Free a IO remapping
255 * @addr: virtual address from ioremap_*
256 *
257 * Caller must ensure there is only one unmapping for the same pointer.
258 */
259void iounmap(volatile void __iomem *addr)
260{
261	struct vm_struct *p, *o;
262
263	if ((void __force *)addr <= high_memory)
264		return;
265
266	/*
267	 * __ioremap special-cases the PCI/ISA range by not instantiating a
268	 * vm_area and by simply returning an address into the kernel mapping
269	 * of ISA space.   So handle that here.
 
 
270	 */
271	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
272	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
 
273		return;
 
 
 
274
275	addr = (volatile void __iomem *)
276		(PAGE_MASK & (unsigned long __force)addr);
277
278	mmiotrace_iounmap(addr);
279
280	/* Use the vm area unlocked, assuming the caller
281	   ensures there isn't another iounmap for the same address
282	   in parallel. Reuse of the virtual address is prevented by
283	   leaving it in the global lists until we're done with it.
284	   cpa takes care of the direct mappings. */
285	read_lock(&vmlist_lock);
286	for (p = vmlist; p; p = p->next) {
287		if (p->addr == (void __force *)addr)
288			break;
289	}
290	read_unlock(&vmlist_lock);
291
292	if (!p) {
293		printk(KERN_ERR "iounmap: bad address %p\n", addr);
294		dump_stack();
295		return;
296	}
297
298	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
 
 
299
300	/* Finally remove it */
301	o = remove_vm_area((void __force *)addr);
302	BUG_ON(p != o || o == NULL);
303	kfree(p);
304}
305EXPORT_SYMBOL(iounmap);
306
307/*
308 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
309 * access
310 */
311void *xlate_dev_mem_ptr(unsigned long phys)
312{
313	void *addr;
314	unsigned long start = phys & PAGE_MASK;
 
315
316	/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
317	if (page_is_ram(start >> PAGE_SHIFT))
318		return __va(phys);
319
320	addr = (void __force *)ioremap_cache(start, PAGE_SIZE);
321	if (addr)
322		addr = (void *)((unsigned long)addr | (phys & ~PAGE_MASK));
323
324	return addr;
325}
326
327void unxlate_dev_mem_ptr(unsigned long phys, void *addr)
328{
329	if (page_is_ram(phys >> PAGE_SHIFT))
330		return;
331
332	iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
333	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334}
335
336static int __initdata early_ioremap_debug;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337
338static int __init early_ioremap_debug_setup(char *str)
 
 
 
 
 
339{
340	early_ioremap_debug = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
341
342	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343}
344early_param("early_ioremap_debug", early_ioremap_debug_setup);
345
346static __initdata int after_paging_init;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
348
349static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
350{
351	/* Don't assume we're using swapper_pg_dir at this point */
352	pgd_t *base = __va(read_cr3());
353	pgd_t *pgd = &base[pgd_index(addr)];
354	pud_t *pud = pud_offset(pgd, addr);
 
355	pmd_t *pmd = pmd_offset(pud, addr);
356
357	return pmd;
358}
359
360static inline pte_t * __init early_ioremap_pte(unsigned long addr)
361{
362	return &bm_pte[pte_index(addr)];
363}
364
365bool __init is_early_ioremap_ptep(pte_t *ptep)
366{
367	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
368}
369
370static unsigned long slot_virt[FIX_BTMAPS_SLOTS] __initdata;
371
372void __init early_ioremap_init(void)
373{
374	pmd_t *pmd;
375	int i;
376
377	if (early_ioremap_debug)
378		printk(KERN_INFO "early_ioremap_init()\n");
 
 
 
379
380	for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
381		slot_virt[i] = __fix_to_virt(FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*i);
382
383	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
384	memset(bm_pte, 0, sizeof(bm_pte));
385	pmd_populate_kernel(&init_mm, pmd, bm_pte);
386
387	/*
388	 * The boot-ioremap range spans multiple pmds, for which
389	 * we are not prepared:
390	 */
391#define __FIXADDR_TOP (-PAGE_SIZE)
392	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
393		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
394#undef __FIXADDR_TOP
395	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
396		WARN_ON(1);
397		printk(KERN_WARNING "pmd %p != %p\n",
398		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
399		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
400			fix_to_virt(FIX_BTMAP_BEGIN));
401		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
402			fix_to_virt(FIX_BTMAP_END));
403
404		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
405		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
406		       FIX_BTMAP_BEGIN);
407	}
408}
409
410void __init early_ioremap_reset(void)
411{
412	after_paging_init = 1;
413}
414
415static void __init __early_set_fixmap(enum fixed_addresses idx,
416				      phys_addr_t phys, pgprot_t flags)
417{
418	unsigned long addr = __fix_to_virt(idx);
419	pte_t *pte;
420
421	if (idx >= __end_of_fixed_addresses) {
422		BUG();
423		return;
424	}
425	pte = early_ioremap_pte(addr);
426
 
 
 
427	if (pgprot_val(flags))
428		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
429	else
430		pte_clear(&init_mm, addr, pte);
431	__flush_tlb_one(addr);
432}
433
434static inline void __init early_set_fixmap(enum fixed_addresses idx,
435					   phys_addr_t phys, pgprot_t prot)
436{
437	if (after_paging_init)
438		__set_fixmap(idx, phys, prot);
439	else
440		__early_set_fixmap(idx, phys, prot);
441}
442
443static inline void __init early_clear_fixmap(enum fixed_addresses idx)
444{
445	if (after_paging_init)
446		clear_fixmap(idx);
447	else
448		__early_set_fixmap(idx, 0, __pgprot(0));
449}
450
451static void __iomem *prev_map[FIX_BTMAPS_SLOTS] __initdata;
452static unsigned long prev_size[FIX_BTMAPS_SLOTS] __initdata;
453
454void __init fixup_early_ioremap(void)
455{
456	int i;
457
458	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
459		if (prev_map[i]) {
460			WARN_ON(1);
461			break;
462		}
463	}
464
465	early_ioremap_init();
466}
467
468static int __init check_early_ioremap_leak(void)
469{
470	int count = 0;
471	int i;
472
473	for (i = 0; i < FIX_BTMAPS_SLOTS; i++)
474		if (prev_map[i])
475			count++;
476
477	if (!count)
478		return 0;
479	WARN(1, KERN_WARNING
480	       "Debug warning: early ioremap leak of %d areas detected.\n",
481		count);
482	printk(KERN_WARNING
483		"please boot with early_ioremap_debug and report the dmesg.\n");
484
485	return 1;
486}
487late_initcall(check_early_ioremap_leak);
488
489static void __init __iomem *
490__early_ioremap(resource_size_t phys_addr, unsigned long size, pgprot_t prot)
491{
492	unsigned long offset;
493	resource_size_t last_addr;
494	unsigned int nrpages;
495	enum fixed_addresses idx0, idx;
496	int i, slot;
497
498	WARN_ON(system_state != SYSTEM_BOOTING);
499
500	slot = -1;
501	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
502		if (!prev_map[i]) {
503			slot = i;
504			break;
505		}
506	}
507
508	if (slot < 0) {
509		printk(KERN_INFO "early_iomap(%08llx, %08lx) not found slot\n",
510			 (u64)phys_addr, size);
511		WARN_ON(1);
512		return NULL;
513	}
514
515	if (early_ioremap_debug) {
516		printk(KERN_INFO "early_ioremap(%08llx, %08lx) [%d] => ",
517		       (u64)phys_addr, size, slot);
518		dump_stack();
519	}
520
521	/* Don't allow wraparound or zero size */
522	last_addr = phys_addr + size - 1;
523	if (!size || last_addr < phys_addr) {
524		WARN_ON(1);
525		return NULL;
526	}
527
528	prev_size[slot] = size;
529	/*
530	 * Mappings have to be page-aligned
531	 */
532	offset = phys_addr & ~PAGE_MASK;
533	phys_addr &= PAGE_MASK;
534	size = PAGE_ALIGN(last_addr + 1) - phys_addr;
535
536	/*
537	 * Mappings have to fit in the FIX_BTMAP area.
538	 */
539	nrpages = size >> PAGE_SHIFT;
540	if (nrpages > NR_FIX_BTMAPS) {
541		WARN_ON(1);
542		return NULL;
543	}
544
545	/*
546	 * Ok, go for it..
547	 */
548	idx0 = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
549	idx = idx0;
550	while (nrpages > 0) {
551		early_set_fixmap(idx, phys_addr, prot);
552		phys_addr += PAGE_SIZE;
553		--idx;
554		--nrpages;
555	}
556	if (early_ioremap_debug)
557		printk(KERN_CONT "%08lx + %08lx\n", offset, slot_virt[slot]);
558
559	prev_map[slot] = (void __iomem *)(offset + slot_virt[slot]);
560	return prev_map[slot];
561}
562
563/* Remap an IO device */
564void __init __iomem *
565early_ioremap(resource_size_t phys_addr, unsigned long size)
566{
567	return __early_ioremap(phys_addr, size, PAGE_KERNEL_IO);
568}
569
570/* Remap memory */
571void __init __iomem *
572early_memremap(resource_size_t phys_addr, unsigned long size)
573{
574	return __early_ioremap(phys_addr, size, PAGE_KERNEL);
575}
576
577void __init early_iounmap(void __iomem *addr, unsigned long size)
578{
579	unsigned long virt_addr;
580	unsigned long offset;
581	unsigned int nrpages;
582	enum fixed_addresses idx;
583	int i, slot;
584
585	slot = -1;
586	for (i = 0; i < FIX_BTMAPS_SLOTS; i++) {
587		if (prev_map[i] == addr) {
588			slot = i;
589			break;
590		}
591	}
592
593	if (slot < 0) {
594		printk(KERN_INFO "early_iounmap(%p, %08lx) not found slot\n",
595			 addr, size);
596		WARN_ON(1);
597		return;
598	}
599
600	if (prev_size[slot] != size) {
601		printk(KERN_INFO "early_iounmap(%p, %08lx) [%d] size not consistent %08lx\n",
602			 addr, size, slot, prev_size[slot]);
603		WARN_ON(1);
604		return;
605	}
606
607	if (early_ioremap_debug) {
608		printk(KERN_INFO "early_iounmap(%p, %08lx) [%d]\n", addr,
609		       size, slot);
610		dump_stack();
611	}
612
613	virt_addr = (unsigned long)addr;
614	if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN)) {
615		WARN_ON(1);
616		return;
617	}
618	offset = virt_addr & ~PAGE_MASK;
619	nrpages = PAGE_ALIGN(offset + size) >> PAGE_SHIFT;
620
621	idx = FIX_BTMAP_BEGIN - NR_FIX_BTMAPS*slot;
622	while (nrpages > 0) {
623		early_clear_fixmap(idx);
624		--idx;
625		--nrpages;
626	}
627	prev_map[slot] = NULL;
628}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/ioremap.h>
 15#include <linux/slab.h>
 16#include <linux/vmalloc.h>
 17#include <linux/mmiotrace.h>
 18#include <linux/cc_platform.h>
 19#include <linux/efi.h>
 20#include <linux/pgtable.h>
 21#include <linux/kmsan.h>
 22
 23#include <asm/set_memory.h>
 24#include <asm/e820/api.h>
 25#include <asm/efi.h>
 26#include <asm/fixmap.h>
 
 27#include <asm/tlbflush.h>
 28#include <asm/pgalloc.h>
 29#include <asm/memtype.h>
 30#include <asm/setup.h>
 31
 32#include "physaddr.h"
 33
 34/*
 35 * Descriptor controlling ioremap() behavior.
 36 */
 37struct ioremap_desc {
 38	unsigned int flags;
 39};
 40
 41/*
 42 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 43 * conflicts.
 44 */
 45int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 46			enum page_cache_mode pcm)
 47{
 48	unsigned long nrpages = size >> PAGE_SHIFT;
 49	int err;
 50
 51	switch (pcm) {
 52	case _PAGE_CACHE_MODE_UC:
 53	default:
 54		err = _set_memory_uc(vaddr, nrpages);
 55		break;
 56	case _PAGE_CACHE_MODE_WC:
 57		err = _set_memory_wc(vaddr, nrpages);
 58		break;
 59	case _PAGE_CACHE_MODE_WT:
 60		err = _set_memory_wt(vaddr, nrpages);
 61		break;
 62	case _PAGE_CACHE_MODE_WB:
 63		err = _set_memory_wb(vaddr, nrpages);
 64		break;
 65	}
 66
 67	return err;
 68}
 69
 70/* Does the range (or a subset of) contain normal RAM? */
 71static unsigned int __ioremap_check_ram(struct resource *res)
 72{
 73	unsigned long start_pfn, stop_pfn;
 74	unsigned long i;
 75
 76	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 77		return 0;
 78
 79	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 80	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 81	if (stop_pfn > start_pfn) {
 82		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 83			if (pfn_valid(start_pfn + i) &&
 84			    !PageReserved(pfn_to_page(start_pfn + i)))
 85				return IORES_MAP_SYSTEM_RAM;
 86	}
 87
 88	return 0;
 89}
 90
 91/*
 92 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 93 * there the whole memory is already encrypted.
 94 */
 95static unsigned int __ioremap_check_encrypted(struct resource *res)
 96{
 97	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
 98		return 0;
 99
100	switch (res->desc) {
101	case IORES_DESC_NONE:
102	case IORES_DESC_RESERVED:
103		break;
104	default:
105		return IORES_MAP_ENCRYPTED;
106	}
107
108	return 0;
109}
110
111/*
112 * The EFI runtime services data area is not covered by walk_mem_res(), but must
113 * be mapped encrypted when SEV is active.
114 */
115static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
116{
117	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
118		return;
119
120	if (x86_platform.hyper.is_private_mmio(addr)) {
121		desc->flags |= IORES_MAP_ENCRYPTED;
122		return;
123	}
124
125	if (!IS_ENABLED(CONFIG_EFI))
126		return;
127
128	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
129	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
130	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
131		desc->flags |= IORES_MAP_ENCRYPTED;
132}
133
134static int __ioremap_collect_map_flags(struct resource *res, void *arg)
135{
136	struct ioremap_desc *desc = arg;
137
138	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
139		desc->flags |= __ioremap_check_ram(res);
140
141	if (!(desc->flags & IORES_MAP_ENCRYPTED))
142		desc->flags |= __ioremap_check_encrypted(res);
143
144	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
145			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
146}
147
148/*
149 * To avoid multiple resource walks, this function walks resources marked as
150 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
151 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
152 *
153 * After that, deal with misc other ranges in __ioremap_check_other() which do
154 * not fall into the above category.
155 */
156static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
157				struct ioremap_desc *desc)
158{
159	u64 start, end;
160
161	start = (u64)addr;
162	end = start + size - 1;
163	memset(desc, 0, sizeof(struct ioremap_desc));
164
165	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
166
167	__ioremap_check_other(addr, desc);
168}
169
170/*
171 * Remap an arbitrary physical address space into the kernel virtual
172 * address space. It transparently creates kernel huge I/O mapping when
173 * the physical address is aligned by a huge page size (1GB or 2MB) and
174 * the requested size is at least the huge page size.
175 *
176 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
177 * Therefore, the mapping code falls back to use a smaller page toward 4KB
178 * when a mapping range is covered by non-WB type of MTRRs.
179 *
180 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
181 * have to convert them into an offset in a page-aligned mapping, but the
182 * caller shouldn't need to know that small detail.
183 */
184static void __iomem *
185__ioremap_caller(resource_size_t phys_addr, unsigned long size,
186		 enum page_cache_mode pcm, void *caller, bool encrypted)
187{
188	unsigned long offset, vaddr;
189	resource_size_t last_addr;
190	const resource_size_t unaligned_phys_addr = phys_addr;
191	const unsigned long unaligned_size = size;
192	struct ioremap_desc io_desc;
193	struct vm_struct *area;
194	enum page_cache_mode new_pcm;
195	pgprot_t prot;
196	int retval;
197	void __iomem *ret_addr;
198
199	/* Don't allow wraparound or zero size */
200	last_addr = phys_addr + size - 1;
201	if (!size || last_addr < phys_addr)
202		return NULL;
203
204	if (!phys_addr_valid(phys_addr)) {
205		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
206		       (unsigned long long)phys_addr);
207		WARN_ON_ONCE(1);
208		return NULL;
209	}
210
211	__ioremap_check_mem(phys_addr, size, &io_desc);
 
 
 
 
212
213	/*
214	 * Don't allow anybody to remap normal RAM that we're using..
215	 */
216	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
217		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
218			  &phys_addr, &last_addr);
219		return NULL;
 
 
 
220	}
221
222	/*
223	 * Mappings have to be page-aligned
224	 */
225	offset = phys_addr & ~PAGE_MASK;
226	phys_addr &= PAGE_MASK;
227	size = PAGE_ALIGN(last_addr+1) - phys_addr;
228
229	/*
230	 * Mask out any bits not part of the actual physical
231	 * address, like memory encryption bits.
232	 */
233	phys_addr &= PHYSICAL_PAGE_MASK;
234
235	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
236						pcm, &new_pcm);
237	if (retval) {
238		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
239		return NULL;
240	}
241
242	if (pcm != new_pcm) {
243		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
 
244			printk(KERN_ERR
245		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
246				(unsigned long long)phys_addr,
247				(unsigned long long)(phys_addr + size),
248				pcm, new_pcm);
249			goto err_free_memtype;
250		}
251		pcm = new_pcm;
252	}
253
254	/*
255	 * If the page being mapped is in memory and SEV is active then
256	 * make sure the memory encryption attribute is enabled in the
257	 * resulting mapping.
258	 * In TDX guests, memory is marked private by default. If encryption
259	 * is not requested (using encrypted), explicitly set decrypt
260	 * attribute in all IOREMAPPED memory.
261	 */
262	prot = PAGE_KERNEL_IO;
263	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
264		prot = pgprot_encrypted(prot);
265	else
266		prot = pgprot_decrypted(prot);
267
268	switch (pcm) {
269	case _PAGE_CACHE_MODE_UC:
270	default:
271		prot = __pgprot(pgprot_val(prot) |
272				cachemode2protval(_PAGE_CACHE_MODE_UC));
273		break;
274	case _PAGE_CACHE_MODE_UC_MINUS:
275		prot = __pgprot(pgprot_val(prot) |
276				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
277		break;
278	case _PAGE_CACHE_MODE_WC:
279		prot = __pgprot(pgprot_val(prot) |
280				cachemode2protval(_PAGE_CACHE_MODE_WC));
281		break;
282	case _PAGE_CACHE_MODE_WT:
283		prot = __pgprot(pgprot_val(prot) |
284				cachemode2protval(_PAGE_CACHE_MODE_WT));
285		break;
286	case _PAGE_CACHE_MODE_WB:
287		break;
288	}
289
290	/*
291	 * Ok, go for it..
292	 */
293	area = get_vm_area_caller(size, VM_IOREMAP, caller);
294	if (!area)
295		goto err_free_memtype;
296	area->phys_addr = phys_addr;
297	vaddr = (unsigned long) area->addr;
298
299	if (memtype_kernel_map_sync(phys_addr, size, pcm))
300		goto err_free_area;
301
302	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
303		goto err_free_area;
304
305	ret_addr = (void __iomem *) (vaddr + offset);
306	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
307
308	/*
309	 * Check if the request spans more than any BAR in the iomem resource
310	 * tree.
311	 */
312	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
313		pr_warn("caller %pS mapping multiple BARs\n", caller);
314
315	return ret_addr;
316err_free_area:
317	free_vm_area(area);
318err_free_memtype:
319	memtype_free(phys_addr, phys_addr + size);
320	return NULL;
321}
322
323/**
324 * ioremap     -   map bus memory into CPU space
325 * @phys_addr:    bus address of the memory
326 * @size:      size of the resource to map
327 *
328 * ioremap performs a platform specific sequence of operations to
329 * make bus memory CPU accessible via the readb/readw/readl/writeb/
330 * writew/writel functions and the other mmio helpers. The returned
331 * address is not guaranteed to be usable directly as a virtual
332 * address.
333 *
334 * This version of ioremap ensures that the memory is marked uncachable
335 * on the CPU as well as honouring existing caching rules from things like
336 * the PCI bus. Note that there are other caches and buffers on many
337 * busses. In particular driver authors should read up on PCI writes
338 *
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
341 *
342 * Must be freed with iounmap.
343 */
344void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
345{
346	/*
347	 * Ideally, this should be:
348	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
349	 *
350	 * Till we fix all X drivers to use ioremap_wc(), we will use
351	 * UC MINUS. Drivers that are certain they need or can already
352	 * be converted over to strong UC can use ioremap_uc().
353	 */
354	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
355
356	return __ioremap_caller(phys_addr, size, pcm,
357				__builtin_return_address(0), false);
358}
359EXPORT_SYMBOL(ioremap);
360
361/**
362 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
363 * @phys_addr:    bus address of the memory
364 * @size:      size of the resource to map
365 *
366 * ioremap_uc performs a platform specific sequence of operations to
367 * make bus memory CPU accessible via the readb/readw/readl/writeb/
368 * writew/writel functions and the other mmio helpers. The returned
369 * address is not guaranteed to be usable directly as a virtual
370 * address.
371 *
372 * This version of ioremap ensures that the memory is marked with a strong
373 * preference as completely uncachable on the CPU when possible. For non-PAT
374 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
375 * systems this will set the PAT entry for the pages as strong UC.  This call
376 * will honor existing caching rules from things like the PCI bus. Note that
377 * there are other caches and buffers on many busses. In particular driver
378 * authors should read up on PCI writes.
379 *
380 * It's useful if some control registers are in such an area and
381 * write combining or read caching is not desirable:
382 *
383 * Must be freed with iounmap.
384 */
385void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
386{
387	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
388
389	return __ioremap_caller(phys_addr, size, pcm,
390				__builtin_return_address(0), false);
391}
392EXPORT_SYMBOL_GPL(ioremap_uc);
393
394/**
395 * ioremap_wc	-	map memory into CPU space write combined
396 * @phys_addr:	bus address of the memory
397 * @size:	size of the resource to map
398 *
399 * This version of ioremap ensures that the memory is marked write combining.
400 * Write combining allows faster writes to some hardware devices.
401 *
402 * Must be freed with iounmap.
403 */
404void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
405{
406	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
407					__builtin_return_address(0), false);
 
 
 
408}
409EXPORT_SYMBOL(ioremap_wc);
410
411/**
412 * ioremap_wt	-	map memory into CPU space write through
413 * @phys_addr:	bus address of the memory
414 * @size:	size of the resource to map
415 *
416 * This version of ioremap ensures that the memory is marked write through.
417 * Write through stores data into memory while keeping the cache up-to-date.
418 *
419 * Must be freed with iounmap.
420 */
421void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
422{
423	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
424					__builtin_return_address(0), false);
425}
426EXPORT_SYMBOL(ioremap_wt);
427
428void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
429{
430	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
431				__builtin_return_address(0), true);
432}
433EXPORT_SYMBOL(ioremap_encrypted);
434
435void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
436{
437	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
438				__builtin_return_address(0), false);
439}
440EXPORT_SYMBOL(ioremap_cache);
441
442void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
443				unsigned long prot_val)
444{
445	return __ioremap_caller(phys_addr, size,
446				pgprot2cachemode(__pgprot(prot_val)),
447				__builtin_return_address(0), false);
448}
449EXPORT_SYMBOL(ioremap_prot);
450
451/**
452 * iounmap - Free a IO remapping
453 * @addr: virtual address from ioremap_*
454 *
455 * Caller must ensure there is only one unmapping for the same pointer.
456 */
457void iounmap(volatile void __iomem *addr)
458{
459	struct vm_struct *p, *o;
460
461	if (WARN_ON_ONCE(!is_ioremap_addr((void __force *)addr)))
462		return;
463
464	/*
465	 * The PCI/ISA range special-casing was removed from __ioremap()
466	 * so this check, in theory, can be removed. However, there are
467	 * cases where iounmap() is called for addresses not obtained via
468	 * ioremap() (vga16fb for example). Add a warning so that these
469	 * cases can be caught and fixed.
470	 */
471	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
472	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
473		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
474		return;
475	}
476
477	mmiotrace_iounmap(addr);
478
479	addr = (volatile void __iomem *)
480		(PAGE_MASK & (unsigned long __force)addr);
481
 
 
482	/* Use the vm area unlocked, assuming the caller
483	   ensures there isn't another iounmap for the same address
484	   in parallel. Reuse of the virtual address is prevented by
485	   leaving it in the global lists until we're done with it.
486	   cpa takes care of the direct mappings. */
487	p = find_vm_area((void __force *)addr);
 
 
 
 
 
488
489	if (!p) {
490		printk(KERN_ERR "iounmap: bad address %p\n", addr);
491		dump_stack();
492		return;
493	}
494
495	kmsan_iounmap_page_range((unsigned long)addr,
496		(unsigned long)addr + get_vm_area_size(p));
497	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
498
499	/* Finally remove it */
500	o = remove_vm_area((void __force *)addr);
501	BUG_ON(p != o || o == NULL);
502	kfree(p);
503}
504EXPORT_SYMBOL(iounmap);
505
506/*
507 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
508 * access
509 */
510void *xlate_dev_mem_ptr(phys_addr_t phys)
511{
512	unsigned long start  = phys &  PAGE_MASK;
513	unsigned long offset = phys & ~PAGE_MASK;
514	void *vaddr;
515
516	/* memremap() maps if RAM, otherwise falls back to ioremap() */
517	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
 
518
519	/* Only add the offset on success and return NULL if memremap() failed */
520	if (vaddr)
521		vaddr += offset;
522
523	return vaddr;
524}
525
526void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
527{
528	memunmap((void *)((unsigned long)addr & PAGE_MASK));
529}
530
531#ifdef CONFIG_AMD_MEM_ENCRYPT
532/*
533 * Examine the physical address to determine if it is an area of memory
534 * that should be mapped decrypted.  If the memory is not part of the
535 * kernel usable area it was accessed and created decrypted, so these
536 * areas should be mapped decrypted. And since the encryption key can
537 * change across reboots, persistent memory should also be mapped
538 * decrypted.
539 *
540 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
541 * only persistent memory should be mapped decrypted.
542 */
543static bool memremap_should_map_decrypted(resource_size_t phys_addr,
544					  unsigned long size)
545{
546	int is_pmem;
547
548	/*
549	 * Check if the address is part of a persistent memory region.
550	 * This check covers areas added by E820, EFI and ACPI.
551	 */
552	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
553				    IORES_DESC_PERSISTENT_MEMORY);
554	if (is_pmem != REGION_DISJOINT)
555		return true;
556
557	/*
558	 * Check if the non-volatile attribute is set for an EFI
559	 * reserved area.
560	 */
561	if (efi_enabled(EFI_BOOT)) {
562		switch (efi_mem_type(phys_addr)) {
563		case EFI_RESERVED_TYPE:
564			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
565				return true;
566			break;
567		default:
568			break;
569		}
570	}
571
572	/* Check if the address is outside kernel usable area */
573	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
574	case E820_TYPE_RESERVED:
575	case E820_TYPE_ACPI:
576	case E820_TYPE_NVS:
577	case E820_TYPE_UNUSABLE:
578		/* For SEV, these areas are encrypted */
579		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
580			break;
581		fallthrough;
582
583	case E820_TYPE_PRAM:
584		return true;
585	default:
586		break;
587	}
588
589	return false;
590}
591
592/*
593 * Examine the physical address to determine if it is EFI data. Check
594 * it against the boot params structure and EFI tables and memory types.
595 */
596static bool memremap_is_efi_data(resource_size_t phys_addr,
597				 unsigned long size)
598{
599	u64 paddr;
600
601	/* Check if the address is part of EFI boot/runtime data */
602	if (!efi_enabled(EFI_BOOT))
603		return false;
604
605	paddr = boot_params.efi_info.efi_memmap_hi;
606	paddr <<= 32;
607	paddr |= boot_params.efi_info.efi_memmap;
608	if (phys_addr == paddr)
609		return true;
610
611	paddr = boot_params.efi_info.efi_systab_hi;
612	paddr <<= 32;
613	paddr |= boot_params.efi_info.efi_systab;
614	if (phys_addr == paddr)
615		return true;
616
617	if (efi_is_table_address(phys_addr))
618		return true;
619
620	switch (efi_mem_type(phys_addr)) {
621	case EFI_BOOT_SERVICES_DATA:
622	case EFI_RUNTIME_SERVICES_DATA:
623		return true;
624	default:
625		break;
626	}
627
628	return false;
629}
630
631/*
632 * Examine the physical address to determine if it is boot data by checking
633 * it against the boot params setup_data chain.
634 */
635static bool memremap_is_setup_data(resource_size_t phys_addr,
636				   unsigned long size)
637{
638	struct setup_indirect *indirect;
639	struct setup_data *data;
640	u64 paddr, paddr_next;
641
642	paddr = boot_params.hdr.setup_data;
643	while (paddr) {
644		unsigned int len;
645
646		if (phys_addr == paddr)
647			return true;
648
649		data = memremap(paddr, sizeof(*data),
650				MEMREMAP_WB | MEMREMAP_DEC);
651		if (!data) {
652			pr_warn("failed to memremap setup_data entry\n");
653			return false;
654		}
655
656		paddr_next = data->next;
657		len = data->len;
658
659		if ((phys_addr > paddr) &&
660		    (phys_addr < (paddr + sizeof(struct setup_data) + len))) {
661			memunmap(data);
662			return true;
663		}
664
665		if (data->type == SETUP_INDIRECT) {
666			memunmap(data);
667			data = memremap(paddr, sizeof(*data) + len,
668					MEMREMAP_WB | MEMREMAP_DEC);
669			if (!data) {
670				pr_warn("failed to memremap indirect setup_data\n");
671				return false;
672			}
673
674			indirect = (struct setup_indirect *)data->data;
675
676			if (indirect->type != SETUP_INDIRECT) {
677				paddr = indirect->addr;
678				len = indirect->len;
679			}
680		}
681
682		memunmap(data);
683
684		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
685			return true;
686
687		paddr = paddr_next;
688	}
689
690	return false;
691}
692
693/*
694 * Examine the physical address to determine if it is boot data by checking
695 * it against the boot params setup_data chain (early boot version).
696 */
697static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
698						unsigned long size)
699{
700	struct setup_indirect *indirect;
701	struct setup_data *data;
702	u64 paddr, paddr_next;
703
704	paddr = boot_params.hdr.setup_data;
705	while (paddr) {
706		unsigned int len, size;
707
708		if (phys_addr == paddr)
709			return true;
710
711		data = early_memremap_decrypted(paddr, sizeof(*data));
712		if (!data) {
713			pr_warn("failed to early memremap setup_data entry\n");
714			return false;
715		}
716
717		size = sizeof(*data);
718
719		paddr_next = data->next;
720		len = data->len;
721
722		if ((phys_addr > paddr) &&
723		    (phys_addr < (paddr + sizeof(struct setup_data) + len))) {
724			early_memunmap(data, sizeof(*data));
725			return true;
726		}
727
728		if (data->type == SETUP_INDIRECT) {
729			size += len;
730			early_memunmap(data, sizeof(*data));
731			data = early_memremap_decrypted(paddr, size);
732			if (!data) {
733				pr_warn("failed to early memremap indirect setup_data\n");
734				return false;
735			}
736
737			indirect = (struct setup_indirect *)data->data;
738
739			if (indirect->type != SETUP_INDIRECT) {
740				paddr = indirect->addr;
741				len = indirect->len;
742			}
743		}
744
745		early_memunmap(data, size);
746
747		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
748			return true;
749
750		paddr = paddr_next;
751	}
752
753	return false;
754}
755
756/*
757 * Architecture function to determine if RAM remap is allowed. By default, a
758 * RAM remap will map the data as encrypted. Determine if a RAM remap should
759 * not be done so that the data will be mapped decrypted.
760 */
761bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
762				 unsigned long flags)
763{
764	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
765		return true;
766
767	if (flags & MEMREMAP_ENC)
768		return true;
769
770	if (flags & MEMREMAP_DEC)
771		return false;
772
773	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
774		if (memremap_is_setup_data(phys_addr, size) ||
775		    memremap_is_efi_data(phys_addr, size))
776			return false;
777	}
778
779	return !memremap_should_map_decrypted(phys_addr, size);
780}
781
782/*
783 * Architecture override of __weak function to adjust the protection attributes
784 * used when remapping memory. By default, early_memremap() will map the data
785 * as encrypted. Determine if an encrypted mapping should not be done and set
786 * the appropriate protection attributes.
787 */
788pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
789					     unsigned long size,
790					     pgprot_t prot)
791{
792	bool encrypted_prot;
793
794	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
795		return prot;
796
797	encrypted_prot = true;
798
799	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
800		if (early_memremap_is_setup_data(phys_addr, size) ||
801		    memremap_is_efi_data(phys_addr, size))
802			encrypted_prot = false;
803	}
804
805	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
806		encrypted_prot = false;
807
808	return encrypted_prot ? pgprot_encrypted(prot)
809			      : pgprot_decrypted(prot);
810}
811
812bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
813{
814	return arch_memremap_can_ram_remap(phys_addr, size, 0);
815}
 
816
817/* Remap memory with encryption */
818void __init *early_memremap_encrypted(resource_size_t phys_addr,
819				      unsigned long size)
820{
821	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
822}
823
824/*
825 * Remap memory with encryption and write-protected - cannot be called
826 * before pat_init() is called
827 */
828void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
829					 unsigned long size)
830{
831	if (!x86_has_pat_wp())
832		return NULL;
833	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
834}
835
836/* Remap memory without encryption */
837void __init *early_memremap_decrypted(resource_size_t phys_addr,
838				      unsigned long size)
839{
840	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
841}
842
843/*
844 * Remap memory without encryption and write-protected - cannot be called
845 * before pat_init() is called
846 */
847void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
848					 unsigned long size)
849{
850	if (!x86_has_pat_wp())
851		return NULL;
852	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
853}
854#endif	/* CONFIG_AMD_MEM_ENCRYPT */
855
856static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
857
858static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
859{
860	/* Don't assume we're using swapper_pg_dir at this point */
861	pgd_t *base = __va(read_cr3_pa());
862	pgd_t *pgd = &base[pgd_index(addr)];
863	p4d_t *p4d = p4d_offset(pgd, addr);
864	pud_t *pud = pud_offset(p4d, addr);
865	pmd_t *pmd = pmd_offset(pud, addr);
866
867	return pmd;
868}
869
870static inline pte_t * __init early_ioremap_pte(unsigned long addr)
871{
872	return &bm_pte[pte_index(addr)];
873}
874
875bool __init is_early_ioremap_ptep(pte_t *ptep)
876{
877	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
878}
879
 
 
880void __init early_ioremap_init(void)
881{
882	pmd_t *pmd;
 
883
884#ifdef CONFIG_X86_64
885	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
886#else
887	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
888#endif
889
890	early_ioremap_setup();
 
891
892	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
893	memset(bm_pte, 0, sizeof(bm_pte));
894	pmd_populate_kernel(&init_mm, pmd, bm_pte);
895
896	/*
897	 * The boot-ioremap range spans multiple pmds, for which
898	 * we are not prepared:
899	 */
900#define __FIXADDR_TOP (-PAGE_SIZE)
901	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
902		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
903#undef __FIXADDR_TOP
904	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
905		WARN_ON(1);
906		printk(KERN_WARNING "pmd %p != %p\n",
907		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
908		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
909			fix_to_virt(FIX_BTMAP_BEGIN));
910		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
911			fix_to_virt(FIX_BTMAP_END));
912
913		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
914		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
915		       FIX_BTMAP_BEGIN);
916	}
917}
918
919void __init __early_set_fixmap(enum fixed_addresses idx,
920			       phys_addr_t phys, pgprot_t flags)
 
 
 
 
 
921{
922	unsigned long addr = __fix_to_virt(idx);
923	pte_t *pte;
924
925	if (idx >= __end_of_fixed_addresses) {
926		BUG();
927		return;
928	}
929	pte = early_ioremap_pte(addr);
930
931	/* Sanitize 'prot' against any unsupported bits: */
932	pgprot_val(flags) &= __supported_pte_mask;
933
934	if (pgprot_val(flags))
935		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
936	else
937		pte_clear(&init_mm, addr, pte);
938	flush_tlb_one_kernel(addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
939}