Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2012 Regents of the University of California
  4 * Copyright (C) 2017 SiFive
  5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
  6 */
  7
  8#include <linux/bitops.h>
  9#include <linux/cpumask.h>
 10#include <linux/mm.h>
 11#include <linux/percpu.h>
 12#include <linux/slab.h>
 13#include <linux/spinlock.h>
 14#include <linux/static_key.h>
 15#include <asm/tlbflush.h>
 16#include <asm/cacheflush.h>
 17#include <asm/mmu_context.h>
 18#include <asm/switch_to.h>
 19
 20#ifdef CONFIG_MMU
 21
 22DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
 23
 24static unsigned long num_asids;
 25
 26static atomic_long_t current_version;
 27
 28static DEFINE_RAW_SPINLOCK(context_lock);
 29static cpumask_t context_tlb_flush_pending;
 30static unsigned long *context_asid_map;
 31
 32static DEFINE_PER_CPU(atomic_long_t, active_context);
 33static DEFINE_PER_CPU(unsigned long, reserved_context);
 34
 35static bool check_update_reserved_context(unsigned long cntx,
 36					  unsigned long newcntx)
 37{
 38	int cpu;
 39	bool hit = false;
 40
 41	/*
 42	 * Iterate over the set of reserved CONTEXT looking for a match.
 43	 * If we find one, then we can update our mm to use new CONTEXT
 44	 * (i.e. the same CONTEXT in the current_version) but we can't
 45	 * exit the loop early, since we need to ensure that all copies
 46	 * of the old CONTEXT are updated to reflect the mm. Failure to do
 47	 * so could result in us missing the reserved CONTEXT in a future
 48	 * version.
 49	 */
 50	for_each_possible_cpu(cpu) {
 51		if (per_cpu(reserved_context, cpu) == cntx) {
 52			hit = true;
 53			per_cpu(reserved_context, cpu) = newcntx;
 54		}
 55	}
 56
 57	return hit;
 58}
 59
 60static void __flush_context(void)
 61{
 62	int i;
 63	unsigned long cntx;
 64
 65	/* Must be called with context_lock held */
 66	lockdep_assert_held(&context_lock);
 67
 68	/* Update the list of reserved ASIDs and the ASID bitmap. */
 69	bitmap_zero(context_asid_map, num_asids);
 70
 71	/* Mark already active ASIDs as used */
 72	for_each_possible_cpu(i) {
 73		cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
 74		/*
 75		 * If this CPU has already been through a rollover, but
 76		 * hasn't run another task in the meantime, we must preserve
 77		 * its reserved CONTEXT, as this is the only trace we have of
 78		 * the process it is still running.
 79		 */
 80		if (cntx == 0)
 81			cntx = per_cpu(reserved_context, i);
 82
 83		__set_bit(cntx2asid(cntx), context_asid_map);
 84		per_cpu(reserved_context, i) = cntx;
 85	}
 86
 87	/* Mark ASID #0 as used because it is used at boot-time */
 88	__set_bit(0, context_asid_map);
 89
 90	/* Queue a TLB invalidation for each CPU on next context-switch */
 91	cpumask_setall(&context_tlb_flush_pending);
 92}
 93
 94static unsigned long __new_context(struct mm_struct *mm)
 95{
 96	static u32 cur_idx = 1;
 97	unsigned long cntx = atomic_long_read(&mm->context.id);
 98	unsigned long asid, ver = atomic_long_read(&current_version);
 99
100	/* Must be called with context_lock held */
101	lockdep_assert_held(&context_lock);
102
103	if (cntx != 0) {
104		unsigned long newcntx = ver | cntx2asid(cntx);
105
106		/*
107		 * If our current CONTEXT was active during a rollover, we
108		 * can continue to use it and this was just a false alarm.
109		 */
110		if (check_update_reserved_context(cntx, newcntx))
111			return newcntx;
112
113		/*
114		 * We had a valid CONTEXT in a previous life, so try to
115		 * re-use it if possible.
116		 */
117		if (!__test_and_set_bit(cntx2asid(cntx), context_asid_map))
118			return newcntx;
119	}
120
121	/*
122	 * Allocate a free ASID. If we can't find one then increment
123	 * current_version and flush all ASIDs.
124	 */
125	asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
126	if (asid != num_asids)
127		goto set_asid;
128
129	/* We're out of ASIDs, so increment current_version */
130	ver = atomic_long_add_return_relaxed(BIT(SATP_ASID_BITS), &current_version);
131
132	/* Flush everything  */
133	__flush_context();
134
135	/* We have more ASIDs than CPUs, so this will always succeed */
136	asid = find_next_zero_bit(context_asid_map, num_asids, 1);
137
138set_asid:
139	__set_bit(asid, context_asid_map);
140	cur_idx = asid;
141	return asid | ver;
142}
143
144static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
145{
146	unsigned long flags;
147	bool need_flush_tlb = false;
148	unsigned long cntx, old_active_cntx;
149
150	cntx = atomic_long_read(&mm->context.id);
151
152	/*
153	 * If our active_context is non-zero and the context matches the
154	 * current_version, then we update the active_context entry with a
155	 * relaxed cmpxchg.
156	 *
157	 * Following is how we handle racing with a concurrent rollover:
158	 *
159	 * - We get a zero back from the cmpxchg and end up waiting on the
160	 *   lock. Taking the lock synchronises with the rollover and so
161	 *   we are forced to see the updated verion.
162	 *
163	 * - We get a valid context back from the cmpxchg then we continue
164	 *   using old ASID because __flush_context() would have marked ASID
165	 *   of active_context as used and next context switch we will
166	 *   allocate new context.
167	 */
168	old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
169	if (old_active_cntx &&
170	    (cntx2version(cntx) == atomic_long_read(&current_version)) &&
171	    atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
172					old_active_cntx, cntx))
173		goto switch_mm_fast;
174
175	raw_spin_lock_irqsave(&context_lock, flags);
176
177	/* Check that our ASID belongs to the current_version. */
178	cntx = atomic_long_read(&mm->context.id);
179	if (cntx2version(cntx) != atomic_long_read(&current_version)) {
180		cntx = __new_context(mm);
181		atomic_long_set(&mm->context.id, cntx);
182	}
183
184	if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
185		need_flush_tlb = true;
186
187	atomic_long_set(&per_cpu(active_context, cpu), cntx);
188
189	raw_spin_unlock_irqrestore(&context_lock, flags);
190
191switch_mm_fast:
192	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
193		  (cntx2asid(cntx) << SATP_ASID_SHIFT) |
194		  satp_mode);
195
196	if (need_flush_tlb)
197		local_flush_tlb_all();
198}
199
200static void set_mm_noasid(struct mm_struct *mm)
201{
202	/* Switch the page table and blindly nuke entire local TLB */
203	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
204	local_flush_tlb_all_asid(0);
205}
206
207static inline void set_mm(struct mm_struct *prev,
208			  struct mm_struct *next, unsigned int cpu)
209{
210	/*
211	 * The mm_cpumask indicates which harts' TLBs contain the virtual
212	 * address mapping of the mm. Compared to noasid, using asid
213	 * can't guarantee that stale TLB entries are invalidated because
214	 * the asid mechanism wouldn't flush TLB for every switch_mm for
215	 * performance. So when using asid, keep all CPUs footmarks in
216	 * cpumask() until mm reset.
217	 */
218	cpumask_set_cpu(cpu, mm_cpumask(next));
219	if (static_branch_unlikely(&use_asid_allocator)) {
220		set_mm_asid(next, cpu);
221	} else {
222		cpumask_clear_cpu(cpu, mm_cpumask(prev));
223		set_mm_noasid(next);
224	}
225}
226
227static int __init asids_init(void)
228{
229	unsigned long asid_bits, old;
230
231	/* Figure-out number of ASID bits in HW */
232	old = csr_read(CSR_SATP);
233	asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
234	csr_write(CSR_SATP, asid_bits);
235	asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK;
236	asid_bits = fls_long(asid_bits);
237	csr_write(CSR_SATP, old);
238
239	/*
240	 * In the process of determining number of ASID bits (above)
241	 * we polluted the TLB of current HART so let's do TLB flushed
242	 * to remove unwanted TLB enteries.
243	 */
244	local_flush_tlb_all();
245
246	/* Pre-compute ASID details */
247	if (asid_bits) {
248		num_asids = 1 << asid_bits;
249	}
250
251	/*
252	 * Use ASID allocator only if number of HW ASIDs are
253	 * at-least twice more than CPUs
254	 */
255	if (num_asids > (2 * num_possible_cpus())) {
256		atomic_long_set(&current_version, BIT(SATP_ASID_BITS));
257
258		context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
259		if (!context_asid_map)
260			panic("Failed to allocate bitmap for %lu ASIDs\n",
261			      num_asids);
262
263		__set_bit(0, context_asid_map);
264
265		static_branch_enable(&use_asid_allocator);
266
267		pr_info("ASID allocator using %lu bits (%lu entries)\n",
268			asid_bits, num_asids);
269	} else {
270		pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
271	}
272
273	return 0;
274}
275early_initcall(asids_init);
276#else
277static inline void set_mm(struct mm_struct *prev,
278			  struct mm_struct *next, unsigned int cpu)
279{
280	/* Nothing to do here when there is no MMU */
281}
282#endif
283
284/*
285 * When necessary, performs a deferred icache flush for the given MM context,
286 * on the local CPU.  RISC-V has no direct mechanism for instruction cache
287 * shoot downs, so instead we send an IPI that informs the remote harts they
288 * need to flush their local instruction caches.  To avoid pathologically slow
289 * behavior in a common case (a bunch of single-hart processes on a many-hart
290 * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
291 * executing a MM context and instead schedule a deferred local instruction
292 * cache flush to be performed before execution resumes on each hart.  This
293 * actually performs that local instruction cache flush, which implicitly only
294 * refers to the current hart.
295 *
296 * The "cpu" argument must be the current local CPU number.
297 */
298static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu,
299					 struct task_struct *task)
300{
301#ifdef CONFIG_SMP
302	if (cpumask_test_and_clear_cpu(cpu, &mm->context.icache_stale_mask)) {
303		/*
304		 * Ensure the remote hart's writes are visible to this hart.
305		 * This pairs with a barrier in flush_icache_mm.
306		 */
307		smp_mb();
308
309		/*
310		 * If cache will be flushed in switch_to, no need to flush here.
311		 */
312		if (!(task && switch_to_should_flush_icache(task)))
313			local_flush_icache_all();
314	}
315#endif
316}
317
318void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319	struct task_struct *task)
320{
321	unsigned int cpu;
322
323	if (unlikely(prev == next))
324		return;
325
326	membarrier_arch_switch_mm(prev, next, task);
327
328	/*
329	 * Mark the current MM context as inactive, and the next as
330	 * active.  This is at least used by the icache flushing
331	 * routines in order to determine who should be flushed.
332	 */
333	cpu = smp_processor_id();
334
335	set_mm(prev, next, cpu);
336
337	flush_icache_deferred(next, cpu, task);
338}