Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/*
  2 * arch/arm/kernel/kprobes.c
  3 *
  4 * Kprobes on ARM
  5 *
  6 * Abhishek Sagar <sagar.abhishek@gmail.com>
  7 * Copyright (C) 2006, 2007 Motorola Inc.
  8 *
  9 * Nicolas Pitre <nico@marvell.com>
 10 * Copyright (C) 2007 Marvell Ltd.
 11 *
 12 * This program is free software; you can redistribute it and/or modify
 13 * it under the terms of the GNU General Public License version 2 as
 14 * published by the Free Software Foundation.
 15 *
 16 * This program is distributed in the hope that it will be useful,
 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 19 * General Public License for more details.
 20 */
 21
 22#include <linux/kernel.h>
 23#include <linux/kprobes.h>
 24#include <linux/module.h>
 25#include <linux/slab.h>
 26#include <linux/stop_machine.h>
 27#include <linux/stringify.h>
 28#include <asm/traps.h>
 29#include <asm/cacheflush.h>
 30
 31#include "kprobes.h"
 32
 33#define MIN_STACK_SIZE(addr) 				\
 34	min((unsigned long)MAX_STACK_SIZE,		\
 35	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
 36
 37#define flush_insns(addr, size)				\
 38	flush_icache_range((unsigned long)(addr),	\
 39			   (unsigned long)(addr) +	\
 40			   (size))
 41
 42/* Used as a marker in ARM_pc to note when we're in a jprobe. */
 43#define JPROBE_MAGIC_ADDR		0xffffffff
 44
 45DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 46DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 47
 48
 49int __kprobes arch_prepare_kprobe(struct kprobe *p)
 50{
 51	kprobe_opcode_t insn;
 52	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
 53	unsigned long addr = (unsigned long)p->addr;
 54	bool thumb;
 55	kprobe_decode_insn_t *decode_insn;
 56	int is;
 57
 58	if (in_exception_text(addr))
 59		return -EINVAL;
 60
 61#ifdef CONFIG_THUMB2_KERNEL
 62	thumb = true;
 63	addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
 64	insn = ((u16 *)addr)[0];
 65	if (is_wide_instruction(insn)) {
 66		insn <<= 16;
 67		insn |= ((u16 *)addr)[1];
 68		decode_insn = thumb32_kprobe_decode_insn;
 69	} else
 70		decode_insn = thumb16_kprobe_decode_insn;
 71#else /* !CONFIG_THUMB2_KERNEL */
 72	thumb = false;
 73	if (addr & 0x3)
 74		return -EINVAL;
 75	insn = *p->addr;
 76	decode_insn = arm_kprobe_decode_insn;
 77#endif
 78
 79	p->opcode = insn;
 80	p->ainsn.insn = tmp_insn;
 81
 82	switch ((*decode_insn)(insn, &p->ainsn)) {
 83	case INSN_REJECTED:	/* not supported */
 84		return -EINVAL;
 85
 86	case INSN_GOOD:		/* instruction uses slot */
 87		p->ainsn.insn = get_insn_slot();
 88		if (!p->ainsn.insn)
 89			return -ENOMEM;
 90		for (is = 0; is < MAX_INSN_SIZE; ++is)
 91			p->ainsn.insn[is] = tmp_insn[is];
 92		flush_insns(p->ainsn.insn,
 93				sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
 94		p->ainsn.insn_fn = (kprobe_insn_fn_t *)
 95					((uintptr_t)p->ainsn.insn | thumb);
 96		break;
 97
 98	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
 99		p->ainsn.insn = NULL;
100		break;
101	}
102
103	return 0;
104}
105
106#ifdef CONFIG_THUMB2_KERNEL
107
108/*
109 * For a 32-bit Thumb breakpoint spanning two memory words we need to take
110 * special precautions to insert the breakpoint atomically, especially on SMP
111 * systems. This is achieved by calling this arming function using stop_machine.
112 */
113static int __kprobes set_t32_breakpoint(void *addr)
114{
115	((u16 *)addr)[0] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION >> 16;
116	((u16 *)addr)[1] = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION & 0xffff;
117	flush_insns(addr, 2*sizeof(u16));
118	return 0;
119}
120
121void __kprobes arch_arm_kprobe(struct kprobe *p)
122{
123	uintptr_t addr = (uintptr_t)p->addr & ~1; /* Remove any Thumb flag */
124
125	if (!is_wide_instruction(p->opcode)) {
126		*(u16 *)addr = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
127		flush_insns(addr, sizeof(u16));
128	} else if (addr & 2) {
129		/* A 32-bit instruction spanning two words needs special care */
130		stop_machine(set_t32_breakpoint, (void *)addr, &cpu_online_map);
131	} else {
132		/* Word aligned 32-bit instruction can be written atomically */
133		u32 bkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
134#ifndef __ARMEB__ /* Swap halfwords for little-endian */
135		bkp = (bkp >> 16) | (bkp << 16);
136#endif
137		*(u32 *)addr = bkp;
138		flush_insns(addr, sizeof(u32));
139	}
140}
141
142#else /* !CONFIG_THUMB2_KERNEL */
143
144void __kprobes arch_arm_kprobe(struct kprobe *p)
145{
146	kprobe_opcode_t insn = p->opcode;
147	kprobe_opcode_t brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
148	if (insn >= 0xe0000000)
149		brkp |= 0xe0000000;  /* Unconditional instruction */
150	else
151		brkp |= insn & 0xf0000000;  /* Copy condition from insn */
152	*p->addr = brkp;
153	flush_insns(p->addr, sizeof(p->addr[0]));
154}
155
156#endif /* !CONFIG_THUMB2_KERNEL */
157
158/*
159 * The actual disarming is done here on each CPU and synchronized using
160 * stop_machine. This synchronization is necessary on SMP to avoid removing
161 * a probe between the moment the 'Undefined Instruction' exception is raised
162 * and the moment the exception handler reads the faulting instruction from
163 * memory. It is also needed to atomically set the two half-words of a 32-bit
164 * Thumb breakpoint.
165 */
166int __kprobes __arch_disarm_kprobe(void *p)
167{
168	struct kprobe *kp = p;
169#ifdef CONFIG_THUMB2_KERNEL
170	u16 *addr = (u16 *)((uintptr_t)kp->addr & ~1);
171	kprobe_opcode_t insn = kp->opcode;
172	unsigned int len;
173
174	if (is_wide_instruction(insn)) {
175		((u16 *)addr)[0] = insn>>16;
176		((u16 *)addr)[1] = insn;
177		len = 2*sizeof(u16);
178	} else {
179		((u16 *)addr)[0] = insn;
180		len = sizeof(u16);
181	}
182	flush_insns(addr, len);
183
184#else /* !CONFIG_THUMB2_KERNEL */
185	*kp->addr = kp->opcode;
186	flush_insns(kp->addr, sizeof(kp->addr[0]));
187#endif
188	return 0;
189}
190
191void __kprobes arch_disarm_kprobe(struct kprobe *p)
192{
193	stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
194}
195
196void __kprobes arch_remove_kprobe(struct kprobe *p)
197{
198	if (p->ainsn.insn) {
199		free_insn_slot(p->ainsn.insn, 0);
200		p->ainsn.insn = NULL;
201	}
202}
203
204static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
205{
206	kcb->prev_kprobe.kp = kprobe_running();
207	kcb->prev_kprobe.status = kcb->kprobe_status;
208}
209
210static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
211{
212	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
213	kcb->kprobe_status = kcb->prev_kprobe.status;
214}
215
216static void __kprobes set_current_kprobe(struct kprobe *p)
217{
218	__get_cpu_var(current_kprobe) = p;
219}
220
221static void __kprobes
222singlestep_skip(struct kprobe *p, struct pt_regs *regs)
223{
224#ifdef CONFIG_THUMB2_KERNEL
225	regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
226	if (is_wide_instruction(p->opcode))
227		regs->ARM_pc += 4;
228	else
229		regs->ARM_pc += 2;
230#else
231	regs->ARM_pc += 4;
232#endif
233}
234
235static inline void __kprobes
236singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
237{
238	p->ainsn.insn_singlestep(p, regs);
239}
240
241/*
242 * Called with IRQs disabled. IRQs must remain disabled from that point
243 * all the way until processing this kprobe is complete.  The current
244 * kprobes implementation cannot process more than one nested level of
245 * kprobe, and that level is reserved for user kprobe handlers, so we can't
246 * risk encountering a new kprobe in an interrupt handler.
247 */
248void __kprobes kprobe_handler(struct pt_regs *regs)
249{
250	struct kprobe *p, *cur;
251	struct kprobe_ctlblk *kcb;
252
253	kcb = get_kprobe_ctlblk();
254	cur = kprobe_running();
255
256#ifdef CONFIG_THUMB2_KERNEL
257	/*
258	 * First look for a probe which was registered using an address with
259	 * bit 0 set, this is the usual situation for pointers to Thumb code.
260	 * If not found, fallback to looking for one with bit 0 clear.
261	 */
262	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
263	if (!p)
264		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
265
266#else /* ! CONFIG_THUMB2_KERNEL */
267	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
268#endif
269
270	if (p) {
271		if (cur) {
272			/* Kprobe is pending, so we're recursing. */
273			switch (kcb->kprobe_status) {
274			case KPROBE_HIT_ACTIVE:
275			case KPROBE_HIT_SSDONE:
276				/* A pre- or post-handler probe got us here. */
277				kprobes_inc_nmissed_count(p);
278				save_previous_kprobe(kcb);
279				set_current_kprobe(p);
280				kcb->kprobe_status = KPROBE_REENTER;
281				singlestep(p, regs, kcb);
282				restore_previous_kprobe(kcb);
283				break;
284			default:
285				/* impossible cases */
286				BUG();
287			}
288		} else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
289			/* Probe hit and conditional execution check ok. */
290			set_current_kprobe(p);
291			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
292
293			/*
294			 * If we have no pre-handler or it returned 0, we
295			 * continue with normal processing.  If we have a
296			 * pre-handler and it returned non-zero, it prepped
297			 * for calling the break_handler below on re-entry,
298			 * so get out doing nothing more here.
299			 */
300			if (!p->pre_handler || !p->pre_handler(p, regs)) {
301				kcb->kprobe_status = KPROBE_HIT_SS;
302				singlestep(p, regs, kcb);
303				if (p->post_handler) {
304					kcb->kprobe_status = KPROBE_HIT_SSDONE;
305					p->post_handler(p, regs, 0);
306				}
307				reset_current_kprobe();
308			}
309		} else {
310			/*
311			 * Probe hit but conditional execution check failed,
312			 * so just skip the instruction and continue as if
313			 * nothing had happened.
314			 */
315			singlestep_skip(p, regs);
316		}
317	} else if (cur) {
318		/* We probably hit a jprobe.  Call its break handler. */
319		if (cur->break_handler && cur->break_handler(cur, regs)) {
320			kcb->kprobe_status = KPROBE_HIT_SS;
321			singlestep(cur, regs, kcb);
322			if (cur->post_handler) {
323				kcb->kprobe_status = KPROBE_HIT_SSDONE;
324				cur->post_handler(cur, regs, 0);
325			}
326		}
327		reset_current_kprobe();
328	} else {
329		/*
330		 * The probe was removed and a race is in progress.
331		 * There is nothing we can do about it.  Let's restart
332		 * the instruction.  By the time we can restart, the
333		 * real instruction will be there.
334		 */
335	}
336}
337
338static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
339{
340	unsigned long flags;
341	local_irq_save(flags);
342	kprobe_handler(regs);
343	local_irq_restore(flags);
344	return 0;
345}
346
347int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
348{
349	struct kprobe *cur = kprobe_running();
350	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
351
352	switch (kcb->kprobe_status) {
353	case KPROBE_HIT_SS:
354	case KPROBE_REENTER:
355		/*
356		 * We are here because the instruction being single
357		 * stepped caused a page fault. We reset the current
358		 * kprobe and the PC to point back to the probe address
359		 * and allow the page fault handler to continue as a
360		 * normal page fault.
361		 */
362		regs->ARM_pc = (long)cur->addr;
363		if (kcb->kprobe_status == KPROBE_REENTER) {
364			restore_previous_kprobe(kcb);
365		} else {
366			reset_current_kprobe();
367		}
368		break;
369
370	case KPROBE_HIT_ACTIVE:
371	case KPROBE_HIT_SSDONE:
372		/*
373		 * We increment the nmissed count for accounting,
374		 * we can also use npre/npostfault count for accounting
375		 * these specific fault cases.
376		 */
377		kprobes_inc_nmissed_count(cur);
378
379		/*
380		 * We come here because instructions in the pre/post
381		 * handler caused the page_fault, this could happen
382		 * if handler tries to access user space by
383		 * copy_from_user(), get_user() etc. Let the
384		 * user-specified handler try to fix it.
385		 */
386		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
387			return 1;
388		break;
389
390	default:
391		break;
392	}
393
394	return 0;
395}
396
397int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
398				       unsigned long val, void *data)
399{
400	/*
401	 * notify_die() is currently never called on ARM,
402	 * so this callback is currently empty.
403	 */
404	return NOTIFY_DONE;
405}
406
407/*
408 * When a retprobed function returns, trampoline_handler() is called,
409 * calling the kretprobe's handler. We construct a struct pt_regs to
410 * give a view of registers r0-r11 to the user return-handler.  This is
411 * not a complete pt_regs structure, but that should be plenty sufficient
412 * for kretprobe handlers which should normally be interested in r0 only
413 * anyway.
414 */
415void __naked __kprobes kretprobe_trampoline(void)
416{
417	__asm__ __volatile__ (
418		"stmdb	sp!, {r0 - r11}		\n\t"
419		"mov	r0, sp			\n\t"
420		"bl	trampoline_handler	\n\t"
421		"mov	lr, r0			\n\t"
422		"ldmia	sp!, {r0 - r11}		\n\t"
423#ifdef CONFIG_THUMB2_KERNEL
424		"bx	lr			\n\t"
425#else
426		"mov	pc, lr			\n\t"
427#endif
428		: : : "memory");
429}
430
431/* Called from kretprobe_trampoline */
432static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
433{
434	struct kretprobe_instance *ri = NULL;
435	struct hlist_head *head, empty_rp;
436	struct hlist_node *node, *tmp;
437	unsigned long flags, orig_ret_address = 0;
438	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
439
440	INIT_HLIST_HEAD(&empty_rp);
441	kretprobe_hash_lock(current, &head, &flags);
442
443	/*
444	 * It is possible to have multiple instances associated with a given
445	 * task either because multiple functions in the call path have
446	 * a return probe installed on them, and/or more than one return
447	 * probe was registered for a target function.
448	 *
449	 * We can handle this because:
450	 *     - instances are always inserted at the head of the list
451	 *     - when multiple return probes are registered for the same
452	 *       function, the first instance's ret_addr will point to the
453	 *       real return address, and all the rest will point to
454	 *       kretprobe_trampoline
455	 */
456	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
457		if (ri->task != current)
458			/* another task is sharing our hash bucket */
459			continue;
460
461		if (ri->rp && ri->rp->handler) {
462			__get_cpu_var(current_kprobe) = &ri->rp->kp;
463			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
464			ri->rp->handler(ri, regs);
465			__get_cpu_var(current_kprobe) = NULL;
466		}
467
468		orig_ret_address = (unsigned long)ri->ret_addr;
469		recycle_rp_inst(ri, &empty_rp);
470
471		if (orig_ret_address != trampoline_address)
472			/*
473			 * This is the real return address. Any other
474			 * instances associated with this task are for
475			 * other calls deeper on the call stack
476			 */
477			break;
478	}
479
480	kretprobe_assert(ri, orig_ret_address, trampoline_address);
481	kretprobe_hash_unlock(current, &flags);
482
483	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
484		hlist_del(&ri->hlist);
485		kfree(ri);
486	}
487
488	return (void *)orig_ret_address;
489}
490
491void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
492				      struct pt_regs *regs)
493{
494	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
495
496	/* Replace the return addr with trampoline addr. */
497	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
498}
499
500int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
501{
502	struct jprobe *jp = container_of(p, struct jprobe, kp);
503	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
504	long sp_addr = regs->ARM_sp;
505	long cpsr;
506
507	kcb->jprobe_saved_regs = *regs;
508	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
509	regs->ARM_pc = (long)jp->entry;
510
511	cpsr = regs->ARM_cpsr | PSR_I_BIT;
512#ifdef CONFIG_THUMB2_KERNEL
513	/* Set correct Thumb state in cpsr */
514	if (regs->ARM_pc & 1)
515		cpsr |= PSR_T_BIT;
516	else
517		cpsr &= ~PSR_T_BIT;
518#endif
519	regs->ARM_cpsr = cpsr;
520
521	preempt_disable();
522	return 1;
523}
524
525void __kprobes jprobe_return(void)
526{
527	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
528
529	__asm__ __volatile__ (
530		/*
531		 * Setup an empty pt_regs. Fill SP and PC fields as
532		 * they're needed by longjmp_break_handler.
533		 *
534		 * We allocate some slack between the original SP and start of
535		 * our fabricated regs. To be precise we want to have worst case
536		 * covered which is STMFD with all 16 regs so we allocate 2 *
537		 * sizeof(struct_pt_regs)).
538		 *
539		 * This is to prevent any simulated instruction from writing
540		 * over the regs when they are accessing the stack.
541		 */
542#ifdef CONFIG_THUMB2_KERNEL
543		"sub    r0, %0, %1		\n\t"
544		"mov    sp, r0			\n\t"
545#else
546		"sub    sp, %0, %1		\n\t"
547#endif
548		"ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
549		"str    %0, [sp, %2]		\n\t"
550		"str    r0, [sp, %3]		\n\t"
551		"mov    r0, sp			\n\t"
552		"bl     kprobe_handler		\n\t"
553
554		/*
555		 * Return to the context saved by setjmp_pre_handler
556		 * and restored by longjmp_break_handler.
557		 */
558#ifdef CONFIG_THUMB2_KERNEL
559		"ldr	lr, [sp, %2]		\n\t" /* lr = saved sp */
560		"ldrd	r0, r1, [sp, %5]	\n\t" /* r0,r1 = saved lr,pc */
561		"ldr	r2, [sp, %4]		\n\t" /* r2 = saved psr */
562		"stmdb	lr!, {r0, r1, r2}	\n\t" /* push saved lr and */
563						      /* rfe context */
564		"ldmia	sp, {r0 - r12}		\n\t"
565		"mov	sp, lr			\n\t"
566		"ldr	lr, [sp], #4		\n\t"
567		"rfeia	sp!			\n\t"
568#else
569		"ldr	r0, [sp, %4]		\n\t"
570		"msr	cpsr_cxsf, r0		\n\t"
571		"ldmia	sp, {r0 - pc}		\n\t"
572#endif
573		:
574		: "r" (kcb->jprobe_saved_regs.ARM_sp),
575		  "I" (sizeof(struct pt_regs) * 2),
576		  "J" (offsetof(struct pt_regs, ARM_sp)),
577		  "J" (offsetof(struct pt_regs, ARM_pc)),
578		  "J" (offsetof(struct pt_regs, ARM_cpsr)),
579		  "J" (offsetof(struct pt_regs, ARM_lr))
580		: "memory", "cc");
581}
582
583int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
584{
585	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
586	long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
587	long orig_sp = regs->ARM_sp;
588	struct jprobe *jp = container_of(p, struct jprobe, kp);
589
590	if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
591		if (orig_sp != stack_addr) {
592			struct pt_regs *saved_regs =
593				(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
594			printk("current sp %lx does not match saved sp %lx\n",
595			       orig_sp, stack_addr);
596			printk("Saved registers for jprobe %p\n", jp);
597			show_regs(saved_regs);
598			printk("Current registers\n");
599			show_regs(regs);
600			BUG();
601		}
602		*regs = kcb->jprobe_saved_regs;
603		memcpy((void *)stack_addr, kcb->jprobes_stack,
604		       MIN_STACK_SIZE(stack_addr));
605		preempt_enable_no_resched();
606		return 1;
607	}
608	return 0;
609}
610
611int __kprobes arch_trampoline_kprobe(struct kprobe *p)
612{
613	return 0;
614}
615
616#ifdef CONFIG_THUMB2_KERNEL
617
618static struct undef_hook kprobes_thumb16_break_hook = {
619	.instr_mask	= 0xffff,
620	.instr_val	= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
621	.cpsr_mask	= MODE_MASK,
622	.cpsr_val	= SVC_MODE,
623	.fn		= kprobe_trap_handler,
624};
625
626static struct undef_hook kprobes_thumb32_break_hook = {
627	.instr_mask	= 0xffffffff,
628	.instr_val	= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
629	.cpsr_mask	= MODE_MASK,
630	.cpsr_val	= SVC_MODE,
631	.fn		= kprobe_trap_handler,
632};
633
634#else  /* !CONFIG_THUMB2_KERNEL */
635
636static struct undef_hook kprobes_arm_break_hook = {
637	.instr_mask	= 0x0fffffff,
638	.instr_val	= KPROBE_ARM_BREAKPOINT_INSTRUCTION,
639	.cpsr_mask	= MODE_MASK,
640	.cpsr_val	= SVC_MODE,
641	.fn		= kprobe_trap_handler,
642};
643
644#endif /* !CONFIG_THUMB2_KERNEL */
645
646int __init arch_init_kprobes()
647{
648	arm_kprobe_decode_init();
649#ifdef CONFIG_THUMB2_KERNEL
650	register_undef_hook(&kprobes_thumb16_break_hook);
651	register_undef_hook(&kprobes_thumb32_break_hook);
652#else
653	register_undef_hook(&kprobes_arm_break_hook);
654#endif
655	return 0;
656}