Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * AEAD: Authenticated Encryption with Associated Data
  3 * 
  4 * Copyright (c) 2007 Herbert Xu <herbert@gondor.apana.org.au>
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License as published by the Free
  8 * Software Foundation; either version 2 of the License, or (at your option) 
  9 * any later version.
 10 *
 11 */
 12
 13#ifndef _CRYPTO_AEAD_H
 14#define _CRYPTO_AEAD_H
 15
 16#include <linux/crypto.h>
 17#include <linux/kernel.h>
 18#include <linux/slab.h>
 19
 20/**
 21 *	struct aead_givcrypt_request - AEAD request with IV generation
 22 *	@seq: Sequence number for IV generation
 23 *	@giv: Space for generated IV
 24 *	@areq: The AEAD request itself
 25 */
 26struct aead_givcrypt_request {
 27	u64 seq;
 28	u8 *giv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 29
 30	struct aead_request areq;
 31};
 32
 33static inline struct crypto_aead *aead_givcrypt_reqtfm(
 34	struct aead_givcrypt_request *req)
 
 
 
 
 
 
 35{
 36	return crypto_aead_reqtfm(&req->areq);
 37}
 38
 39static inline int crypto_aead_givencrypt(struct aead_givcrypt_request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40{
 41	struct aead_tfm *crt = crypto_aead_crt(aead_givcrypt_reqtfm(req));
 42	return crt->givencrypt(req);
 43};
 44
 45static inline int crypto_aead_givdecrypt(struct aead_givcrypt_request *req)
 
 
 
 
 46{
 47	struct aead_tfm *crt = crypto_aead_crt(aead_givcrypt_reqtfm(req));
 48	return crt->givdecrypt(req);
 49};
 50
 51static inline void aead_givcrypt_set_tfm(struct aead_givcrypt_request *req,
 52					 struct crypto_aead *tfm)
 53{
 54	req->areq.base.tfm = crypto_aead_tfm(tfm);
 
 55}
 56
 57static inline struct aead_givcrypt_request *aead_givcrypt_alloc(
 58	struct crypto_aead *tfm, gfp_t gfp)
 59{
 60	struct aead_givcrypt_request *req;
 
 61
 62	req = kmalloc(sizeof(struct aead_givcrypt_request) +
 63		      crypto_aead_reqsize(tfm), gfp);
 
 
 
 
 
 
 
 
 
 
 
 64
 65	if (likely(req))
 66		aead_givcrypt_set_tfm(req, tfm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67
 68	return req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 69}
 70
 71static inline void aead_givcrypt_free(struct aead_givcrypt_request *req)
 72{
 73	kfree(req);
 74}
 75
 76static inline void aead_givcrypt_set_callback(
 77	struct aead_givcrypt_request *req, u32 flags,
 78	crypto_completion_t complete, void *data)
 79{
 80	aead_request_set_callback(&req->areq, flags, complete, data);
 81}
 82
 83static inline void aead_givcrypt_set_crypt(struct aead_givcrypt_request *req,
 84					   struct scatterlist *src,
 85					   struct scatterlist *dst,
 86					   unsigned int nbytes, void *iv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87{
 88	aead_request_set_crypt(&req->areq, src, dst, nbytes, iv);
 89}
 90
 91static inline void aead_givcrypt_set_assoc(struct aead_givcrypt_request *req,
 92					   struct scatterlist *assoc,
 93					   unsigned int assoclen)
 
 
 
 
 
 
 
 94{
 95	aead_request_set_assoc(&req->areq, assoc, assoclen);
 96}
 97
 98static inline void aead_givcrypt_set_giv(struct aead_givcrypt_request *req,
 99					 u8 *giv, u64 seq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100{
101	req->giv = giv;
102	req->seq = seq;
103}
104
105#endif	/* _CRYPTO_AEAD_H */
v5.9
  1/* SPDX-License-Identifier: GPL-2.0-or-later */
  2/*
  3 * AEAD: Authenticated Encryption with Associated Data
  4 * 
  5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
 
 
 
 
 
 
  6 */
  7
  8#ifndef _CRYPTO_AEAD_H
  9#define _CRYPTO_AEAD_H
 10
 11#include <linux/crypto.h>
 12#include <linux/kernel.h>
 13#include <linux/slab.h>
 14
 15/**
 16 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
 17 *
 18 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
 19 * (listed as type "aead" in /proc/crypto)
 20 *
 21 * The most prominent examples for this type of encryption is GCM and CCM.
 22 * However, the kernel supports other types of AEAD ciphers which are defined
 23 * with the following cipher string:
 24 *
 25 *	authenc(keyed message digest, block cipher)
 26 *
 27 * For example: authenc(hmac(sha256), cbc(aes))
 28 *
 29 * The example code provided for the symmetric key cipher operation
 30 * applies here as well. Naturally all *skcipher* symbols must be exchanged
 31 * the *aead* pendants discussed in the following. In addition, for the AEAD
 32 * operation, the aead_request_set_ad function must be used to set the
 33 * pointer to the associated data memory location before performing the
 34 * encryption or decryption operation. In case of an encryption, the associated
 35 * data memory is filled during the encryption operation. For decryption, the
 36 * associated data memory must contain data that is used to verify the integrity
 37 * of the decrypted data. Another deviation from the asynchronous block cipher
 38 * operation is that the caller should explicitly check for -EBADMSG of the
 39 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
 40 * a breach in the integrity of the message. In essence, that -EBADMSG error
 41 * code is the key bonus an AEAD cipher has over "standard" block chaining
 42 * modes.
 43 *
 44 * Memory Structure:
 45 *
 46 * The source scatterlist must contain the concatenation of
 47 * associated data || plaintext or ciphertext.
 48 *
 49 * The destination scatterlist has the same layout, except that the plaintext
 50 * (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
 51 * during encryption (resp. decryption).
 52 *
 53 * In-place encryption/decryption is enabled by using the same scatterlist
 54 * pointer for both the source and destination.
 55 *
 56 * Even in the out-of-place case, space must be reserved in the destination for
 57 * the associated data, even though it won't be written to.  This makes the
 58 * in-place and out-of-place cases more consistent.  It is permissible for the
 59 * "destination" associated data to alias the "source" associated data.
 60 *
 61 * As with the other scatterlist crypto APIs, zero-length scatterlist elements
 62 * are not allowed in the used part of the scatterlist.  Thus, if there is no
 63 * associated data, the first element must point to the plaintext/ciphertext.
 64 *
 65 * To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
 66 * rfc4543, and rfc7539esp ciphers.  For these ciphers, the final 'ivsize' bytes
 67 * of the associated data buffer must contain a second copy of the IV.  This is
 68 * in addition to the copy passed to aead_request_set_crypt().  These two IV
 69 * copies must not differ; different implementations of the same algorithm may
 70 * behave differently in that case.  Note that the algorithm might not actually
 71 * treat the IV as associated data; nevertheless the length passed to
 72 * aead_request_set_ad() must include it.
 73 */
 74
 75struct crypto_aead;
 76
 77/**
 78 *	struct aead_request - AEAD request
 79 *	@base: Common attributes for async crypto requests
 80 *	@assoclen: Length in bytes of associated data for authentication
 81 *	@cryptlen: Length of data to be encrypted or decrypted
 82 *	@iv: Initialisation vector
 83 *	@src: Source data
 84 *	@dst: Destination data
 85 *	@__ctx: Start of private context data
 86 */
 87struct aead_request {
 88	struct crypto_async_request base;
 89
 90	unsigned int assoclen;
 91	unsigned int cryptlen;
 92
 93	u8 *iv;
 94
 95	struct scatterlist *src;
 96	struct scatterlist *dst;
 97
 98	void *__ctx[] CRYPTO_MINALIGN_ATTR;
 99};
100
101/**
102 * struct aead_alg - AEAD cipher definition
103 * @maxauthsize: Set the maximum authentication tag size supported by the
104 *		 transformation. A transformation may support smaller tag sizes.
105 *		 As the authentication tag is a message digest to ensure the
106 *		 integrity of the encrypted data, a consumer typically wants the
107 *		 largest authentication tag possible as defined by this
108 *		 variable.
109 * @setauthsize: Set authentication size for the AEAD transformation. This
110 *		 function is used to specify the consumer requested size of the
111 * 		 authentication tag to be either generated by the transformation
112 *		 during encryption or the size of the authentication tag to be
113 *		 supplied during the decryption operation. This function is also
114 *		 responsible for checking the authentication tag size for
115 *		 validity.
116 * @setkey: see struct skcipher_alg
117 * @encrypt: see struct skcipher_alg
118 * @decrypt: see struct skcipher_alg
119 * @ivsize: see struct skcipher_alg
120 * @chunksize: see struct skcipher_alg
121 * @init: Initialize the cryptographic transformation object. This function
122 *	  is used to initialize the cryptographic transformation object.
123 *	  This function is called only once at the instantiation time, right
124 *	  after the transformation context was allocated. In case the
125 *	  cryptographic hardware has some special requirements which need to
126 *	  be handled by software, this function shall check for the precise
127 *	  requirement of the transformation and put any software fallbacks
128 *	  in place.
129 * @exit: Deinitialize the cryptographic transformation object. This is a
130 *	  counterpart to @init, used to remove various changes set in
131 *	  @init.
132 * @base: Definition of a generic crypto cipher algorithm.
133 *
134 * All fields except @ivsize is mandatory and must be filled.
135 */
136struct aead_alg {
137	int (*setkey)(struct crypto_aead *tfm, const u8 *key,
138	              unsigned int keylen);
139	int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
140	int (*encrypt)(struct aead_request *req);
141	int (*decrypt)(struct aead_request *req);
142	int (*init)(struct crypto_aead *tfm);
143	void (*exit)(struct crypto_aead *tfm);
144
145	unsigned int ivsize;
146	unsigned int maxauthsize;
147	unsigned int chunksize;
148
149	struct crypto_alg base;
150};
151
152struct crypto_aead {
153	unsigned int authsize;
154	unsigned int reqsize;
155
156	struct crypto_tfm base;
157};
158
159static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
160{
161	return container_of(tfm, struct crypto_aead, base);
162}
163
164/**
165 * crypto_alloc_aead() - allocate AEAD cipher handle
166 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
167 *	     AEAD cipher
168 * @type: specifies the type of the cipher
169 * @mask: specifies the mask for the cipher
170 *
171 * Allocate a cipher handle for an AEAD. The returned struct
172 * crypto_aead is the cipher handle that is required for any subsequent
173 * API invocation for that AEAD.
174 *
175 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
176 *	   of an error, PTR_ERR() returns the error code.
177 */
178struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
179
180static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
181{
182	return &tfm->base;
183}
 
184
185/**
186 * crypto_free_aead() - zeroize and free aead handle
187 * @tfm: cipher handle to be freed
188 */
189static inline void crypto_free_aead(struct crypto_aead *tfm)
190{
191	crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
192}
 
193
194static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
 
195{
196	return container_of(crypto_aead_tfm(tfm)->__crt_alg,
197			    struct aead_alg, base);
198}
199
200static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
 
201{
202	return alg->ivsize;
203}
204
205/**
206 * crypto_aead_ivsize() - obtain IV size
207 * @tfm: cipher handle
208 *
209 * The size of the IV for the aead referenced by the cipher handle is
210 * returned. This IV size may be zero if the cipher does not need an IV.
211 *
212 * Return: IV size in bytes
213 */
214static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
215{
216	return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
217}
218
219/**
220 * crypto_aead_authsize() - obtain maximum authentication data size
221 * @tfm: cipher handle
222 *
223 * The maximum size of the authentication data for the AEAD cipher referenced
224 * by the AEAD cipher handle is returned. The authentication data size may be
225 * zero if the cipher implements a hard-coded maximum.
226 *
227 * The authentication data may also be known as "tag value".
228 *
229 * Return: authentication data size / tag size in bytes
230 */
231static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
232{
233	return tfm->authsize;
234}
235
236static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
237{
238	return alg->maxauthsize;
239}
240
241static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
242{
243	return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
244}
245
246/**
247 * crypto_aead_blocksize() - obtain block size of cipher
248 * @tfm: cipher handle
249 *
250 * The block size for the AEAD referenced with the cipher handle is returned.
251 * The caller may use that information to allocate appropriate memory for the
252 * data returned by the encryption or decryption operation
253 *
254 * Return: block size of cipher
255 */
256static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
257{
258	return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
259}
260
261static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
262{
263	return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
264}
265
266static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
267{
268	return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
269}
270
271static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
272{
273	crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
274}
275
276static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
 
 
277{
278	crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
279}
280
281/**
282 * crypto_aead_setkey() - set key for cipher
283 * @tfm: cipher handle
284 * @key: buffer holding the key
285 * @keylen: length of the key in bytes
286 *
287 * The caller provided key is set for the AEAD referenced by the cipher
288 * handle.
289 *
290 * Note, the key length determines the cipher type. Many block ciphers implement
291 * different cipher modes depending on the key size, such as AES-128 vs AES-192
292 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
293 * is performed.
294 *
295 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
296 */
297int crypto_aead_setkey(struct crypto_aead *tfm,
298		       const u8 *key, unsigned int keylen);
299
300/**
301 * crypto_aead_setauthsize() - set authentication data size
302 * @tfm: cipher handle
303 * @authsize: size of the authentication data / tag in bytes
304 *
305 * Set the authentication data size / tag size. AEAD requires an authentication
306 * tag (or MAC) in addition to the associated data.
307 *
308 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
309 */
310int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
311
312static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
313{
314	return __crypto_aead_cast(req->base.tfm);
315}
316
317/**
318 * crypto_aead_encrypt() - encrypt plaintext
319 * @req: reference to the aead_request handle that holds all information
320 *	 needed to perform the cipher operation
321 *
322 * Encrypt plaintext data using the aead_request handle. That data structure
323 * and how it is filled with data is discussed with the aead_request_*
324 * functions.
325 *
326 * IMPORTANT NOTE The encryption operation creates the authentication data /
327 *		  tag. That data is concatenated with the created ciphertext.
328 *		  The ciphertext memory size is therefore the given number of
329 *		  block cipher blocks + the size defined by the
330 *		  crypto_aead_setauthsize invocation. The caller must ensure
331 *		  that sufficient memory is available for the ciphertext and
332 *		  the authentication tag.
333 *
334 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
335 */
336int crypto_aead_encrypt(struct aead_request *req);
337
338/**
339 * crypto_aead_decrypt() - decrypt ciphertext
340 * @req: reference to the aead_request handle that holds all information
341 *	 needed to perform the cipher operation
342 *
343 * Decrypt ciphertext data using the aead_request handle. That data structure
344 * and how it is filled with data is discussed with the aead_request_*
345 * functions.
346 *
347 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
348 *		  authentication data / tag. That authentication data / tag
349 *		  must have the size defined by the crypto_aead_setauthsize
350 *		  invocation.
351 *
352 *
353 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
354 *	   cipher operation performs the authentication of the data during the
355 *	   decryption operation. Therefore, the function returns this error if
356 *	   the authentication of the ciphertext was unsuccessful (i.e. the
357 *	   integrity of the ciphertext or the associated data was violated);
358 *	   < 0 if an error occurred.
359 */
360int crypto_aead_decrypt(struct aead_request *req);
361
362/**
363 * DOC: Asynchronous AEAD Request Handle
364 *
365 * The aead_request data structure contains all pointers to data required for
366 * the AEAD cipher operation. This includes the cipher handle (which can be
367 * used by multiple aead_request instances), pointer to plaintext and
368 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
369 * aead_request_* API calls in a similar way as AEAD handle to the
370 * crypto_aead_* API calls.
371 */
372
373/**
374 * crypto_aead_reqsize() - obtain size of the request data structure
375 * @tfm: cipher handle
376 *
377 * Return: number of bytes
378 */
379static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
380{
381	return tfm->reqsize;
382}
383
384/**
385 * aead_request_set_tfm() - update cipher handle reference in request
386 * @req: request handle to be modified
387 * @tfm: cipher handle that shall be added to the request handle
388 *
389 * Allow the caller to replace the existing aead handle in the request
390 * data structure with a different one.
391 */
392static inline void aead_request_set_tfm(struct aead_request *req,
393					struct crypto_aead *tfm)
394{
395	req->base.tfm = crypto_aead_tfm(tfm);
396}
397
398/**
399 * aead_request_alloc() - allocate request data structure
400 * @tfm: cipher handle to be registered with the request
401 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
402 *
403 * Allocate the request data structure that must be used with the AEAD
404 * encrypt and decrypt API calls. During the allocation, the provided aead
405 * handle is registered in the request data structure.
406 *
407 * Return: allocated request handle in case of success, or NULL if out of memory
408 */
409static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
410						      gfp_t gfp)
411{
412	struct aead_request *req;
413
414	req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
415
416	if (likely(req))
417		aead_request_set_tfm(req, tfm);
418
419	return req;
420}
421
422/**
423 * aead_request_free() - zeroize and free request data structure
424 * @req: request data structure cipher handle to be freed
425 */
426static inline void aead_request_free(struct aead_request *req)
427{
428	kfree_sensitive(req);
429}
430
431/**
432 * aead_request_set_callback() - set asynchronous callback function
433 * @req: request handle
434 * @flags: specify zero or an ORing of the flags
435 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
436 *	   increase the wait queue beyond the initial maximum size;
437 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
438 * @compl: callback function pointer to be registered with the request handle
439 * @data: The data pointer refers to memory that is not used by the kernel
440 *	  crypto API, but provided to the callback function for it to use. Here,
441 *	  the caller can provide a reference to memory the callback function can
442 *	  operate on. As the callback function is invoked asynchronously to the
443 *	  related functionality, it may need to access data structures of the
444 *	  related functionality which can be referenced using this pointer. The
445 *	  callback function can access the memory via the "data" field in the
446 *	  crypto_async_request data structure provided to the callback function.
447 *
448 * Setting the callback function that is triggered once the cipher operation
449 * completes
450 *
451 * The callback function is registered with the aead_request handle and
452 * must comply with the following template::
453 *
454 *	void callback_function(struct crypto_async_request *req, int error)
455 */
456static inline void aead_request_set_callback(struct aead_request *req,
457					     u32 flags,
458					     crypto_completion_t compl,
459					     void *data)
460{
461	req->base.complete = compl;
462	req->base.data = data;
463	req->base.flags = flags;
464}
465
466/**
467 * aead_request_set_crypt - set data buffers
468 * @req: request handle
469 * @src: source scatter / gather list
470 * @dst: destination scatter / gather list
471 * @cryptlen: number of bytes to process from @src
472 * @iv: IV for the cipher operation which must comply with the IV size defined
473 *      by crypto_aead_ivsize()
474 *
475 * Setting the source data and destination data scatter / gather lists which
476 * hold the associated data concatenated with the plaintext or ciphertext. See
477 * below for the authentication tag.
478 *
479 * For encryption, the source is treated as the plaintext and the
480 * destination is the ciphertext. For a decryption operation, the use is
481 * reversed - the source is the ciphertext and the destination is the plaintext.
482 *
483 * The memory structure for cipher operation has the following structure:
484 *
485 * - AEAD encryption input:  assoc data || plaintext
486 * - AEAD encryption output: assoc data || cipherntext || auth tag
487 * - AEAD decryption input:  assoc data || ciphertext || auth tag
488 * - AEAD decryption output: assoc data || plaintext
489 *
490 * Albeit the kernel requires the presence of the AAD buffer, however,
491 * the kernel does not fill the AAD buffer in the output case. If the
492 * caller wants to have that data buffer filled, the caller must either
493 * use an in-place cipher operation (i.e. same memory location for
494 * input/output memory location).
495 */
496static inline void aead_request_set_crypt(struct aead_request *req,
497					  struct scatterlist *src,
498					  struct scatterlist *dst,
499					  unsigned int cryptlen, u8 *iv)
500{
501	req->src = src;
502	req->dst = dst;
503	req->cryptlen = cryptlen;
504	req->iv = iv;
505}
506
507/**
508 * aead_request_set_ad - set associated data information
509 * @req: request handle
510 * @assoclen: number of bytes in associated data
511 *
512 * Setting the AD information.  This function sets the length of
513 * the associated data.
514 */
515static inline void aead_request_set_ad(struct aead_request *req,
516				       unsigned int assoclen)
517{
518	req->assoclen = assoclen;
 
519}
520
521#endif	/* _CRYPTO_AEAD_H */