Loading...
1#ifndef __LINUX_UHCI_HCD_H
2#define __LINUX_UHCI_HCD_H
3
4#include <linux/list.h>
5#include <linux/usb.h>
6
7#define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT)
8#define PIPE_DEVEP_MASK 0x0007ff00
9
10
11/*
12 * Universal Host Controller Interface data structures and defines
13 */
14
15/* Command register */
16#define USBCMD 0
17#define USBCMD_RS 0x0001 /* Run/Stop */
18#define USBCMD_HCRESET 0x0002 /* Host reset */
19#define USBCMD_GRESET 0x0004 /* Global reset */
20#define USBCMD_EGSM 0x0008 /* Global Suspend Mode */
21#define USBCMD_FGR 0x0010 /* Force Global Resume */
22#define USBCMD_SWDBG 0x0020 /* SW Debug mode */
23#define USBCMD_CF 0x0040 /* Config Flag (sw only) */
24#define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */
25
26/* Status register */
27#define USBSTS 2
28#define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */
29#define USBSTS_ERROR 0x0002 /* Interrupt due to error */
30#define USBSTS_RD 0x0004 /* Resume Detect */
31#define USBSTS_HSE 0x0008 /* Host System Error: PCI problems */
32#define USBSTS_HCPE 0x0010 /* Host Controller Process Error:
33 * the schedule is buggy */
34#define USBSTS_HCH 0x0020 /* HC Halted */
35
36/* Interrupt enable register */
37#define USBINTR 4
38#define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */
39#define USBINTR_RESUME 0x0002 /* Resume interrupt enable */
40#define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */
41#define USBINTR_SP 0x0008 /* Short packet interrupt enable */
42
43#define USBFRNUM 6
44#define USBFLBASEADD 8
45#define USBSOF 12
46#define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms */
47
48/* USB port status and control registers */
49#define USBPORTSC1 16
50#define USBPORTSC2 18
51#define USBPORTSC_CCS 0x0001 /* Current Connect Status
52 * ("device present") */
53#define USBPORTSC_CSC 0x0002 /* Connect Status Change */
54#define USBPORTSC_PE 0x0004 /* Port Enable */
55#define USBPORTSC_PEC 0x0008 /* Port Enable Change */
56#define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */
57#define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */
58#define USBPORTSC_RD 0x0040 /* Resume Detect */
59#define USBPORTSC_RES1 0x0080 /* reserved, always 1 */
60#define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */
61#define USBPORTSC_PR 0x0200 /* Port Reset */
62/* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */
63#define USBPORTSC_OC 0x0400 /* Over Current condition */
64#define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */
65#define USBPORTSC_SUSP 0x1000 /* Suspend */
66#define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */
67#define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */
68#define USBPORTSC_RES4 0x8000 /* reserved, write zeroes */
69
70/* PCI legacy support register */
71#define USBLEGSUP 0xc0
72#define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */
73#define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */
74#define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */
75
76/* PCI Intel-specific resume-enable register */
77#define USBRES_INTEL 0xc4
78#define USBPORT1EN 0x01
79#define USBPORT2EN 0x02
80
81#define UHCI_PTR_BITS(uhci) cpu_to_hc32((uhci), 0x000F)
82#define UHCI_PTR_TERM(uhci) cpu_to_hc32((uhci), 0x0001)
83#define UHCI_PTR_QH(uhci) cpu_to_hc32((uhci), 0x0002)
84#define UHCI_PTR_DEPTH(uhci) cpu_to_hc32((uhci), 0x0004)
85#define UHCI_PTR_BREADTH(uhci) cpu_to_hc32((uhci), 0x0000)
86
87#define UHCI_NUMFRAMES 1024 /* in the frame list [array] */
88#define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */
89#define CAN_SCHEDULE_FRAMES 1000 /* how far in the future frames
90 * can be scheduled */
91#define MAX_PHASE 32 /* Periodic scheduling length */
92
93/* When no queues need Full-Speed Bandwidth Reclamation,
94 * delay this long before turning FSBR off */
95#define FSBR_OFF_DELAY msecs_to_jiffies(10)
96
97/* If a queue hasn't advanced after this much time, assume it is stuck */
98#define QH_WAIT_TIMEOUT msecs_to_jiffies(200)
99
100
101/*
102 * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
103 * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on
104 * the host controller implementation.
105 *
106 * To facilitate the strongest possible byte-order checking from "sparse"
107 * and so on, we use __leXX unless that's not practical.
108 */
109#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
110typedef __u32 __bitwise __hc32;
111typedef __u16 __bitwise __hc16;
112#else
113#define __hc32 __le32
114#define __hc16 __le16
115#endif
116
117/*
118 * Queue Headers
119 */
120
121/*
122 * One role of a QH is to hold a queue of TDs for some endpoint. One QH goes
123 * with each endpoint, and qh->element (updated by the HC) is either:
124 * - the next unprocessed TD in the endpoint's queue, or
125 * - UHCI_PTR_TERM (when there's no more traffic for this endpoint).
126 *
127 * The other role of a QH is to serve as a "skeleton" framelist entry, so we
128 * can easily splice a QH for some endpoint into the schedule at the right
129 * place. Then qh->element is UHCI_PTR_TERM.
130 *
131 * In the schedule, qh->link maintains a list of QHs seen by the HC:
132 * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ...
133 *
134 * qh->node is the software equivalent of qh->link. The differences
135 * are that the software list is doubly-linked and QHs in the UNLINKING
136 * state are on the software list but not the hardware schedule.
137 *
138 * For bookkeeping purposes we maintain QHs even for Isochronous endpoints,
139 * but they never get added to the hardware schedule.
140 */
141#define QH_STATE_IDLE 1 /* QH is not being used */
142#define QH_STATE_UNLINKING 2 /* QH has been removed from the
143 * schedule but the hardware may
144 * still be using it */
145#define QH_STATE_ACTIVE 3 /* QH is on the schedule */
146
147struct uhci_qh {
148 /* Hardware fields */
149 __hc32 link; /* Next QH in the schedule */
150 __hc32 element; /* Queue element (TD) pointer */
151
152 /* Software fields */
153 dma_addr_t dma_handle;
154
155 struct list_head node; /* Node in the list of QHs */
156 struct usb_host_endpoint *hep; /* Endpoint information */
157 struct usb_device *udev;
158 struct list_head queue; /* Queue of urbps for this QH */
159 struct uhci_td *dummy_td; /* Dummy TD to end the queue */
160 struct uhci_td *post_td; /* Last TD completed */
161
162 struct usb_iso_packet_descriptor *iso_packet_desc;
163 /* Next urb->iso_frame_desc entry */
164 unsigned long advance_jiffies; /* Time of last queue advance */
165 unsigned int unlink_frame; /* When the QH was unlinked */
166 unsigned int period; /* For Interrupt and Isochronous QHs */
167 short phase; /* Between 0 and period-1 */
168 short load; /* Periodic time requirement, in us */
169 unsigned int iso_frame; /* Frame # for iso_packet_desc */
170
171 int state; /* QH_STATE_xxx; see above */
172 int type; /* Queue type (control, bulk, etc) */
173 int skel; /* Skeleton queue number */
174
175 unsigned int initial_toggle:1; /* Endpoint's current toggle value */
176 unsigned int needs_fixup:1; /* Must fix the TD toggle values */
177 unsigned int is_stopped:1; /* Queue was stopped by error/unlink */
178 unsigned int wait_expired:1; /* QH_WAIT_TIMEOUT has expired */
179 unsigned int bandwidth_reserved:1; /* Periodic bandwidth has
180 * been allocated */
181} __attribute__((aligned(16)));
182
183/*
184 * We need a special accessor for the element pointer because it is
185 * subject to asynchronous updates by the controller.
186 */
187#define qh_element(qh) ACCESS_ONCE((qh)->element)
188
189#define LINK_TO_QH(uhci, qh) (UHCI_PTR_QH((uhci)) | \
190 cpu_to_hc32((uhci), (qh)->dma_handle))
191
192
193/*
194 * Transfer Descriptors
195 */
196
197/*
198 * for TD <status>:
199 */
200#define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */
201#define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */
202#define TD_CTRL_C_ERR_SHIFT 27
203#define TD_CTRL_LS (1 << 26) /* Low Speed Device */
204#define TD_CTRL_IOS (1 << 25) /* Isochronous Select */
205#define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */
206#define TD_CTRL_ACTIVE (1 << 23) /* TD Active */
207#define TD_CTRL_STALLED (1 << 22) /* TD Stalled */
208#define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */
209#define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */
210#define TD_CTRL_NAK (1 << 19) /* NAK Received */
211#define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */
212#define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */
213#define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */
214
215#define TD_CTRL_ANY_ERROR (TD_CTRL_STALLED | TD_CTRL_DBUFERR | \
216 TD_CTRL_BABBLE | TD_CTRL_CRCTIME | \
217 TD_CTRL_BITSTUFF)
218
219#define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT)
220#define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000)
221#define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & \
222 TD_CTRL_ACTLEN_MASK) /* 1-based */
223
224/*
225 * for TD <info>: (a.k.a. Token)
226 */
227#define td_token(uhci, td) hc32_to_cpu((uhci), (td)->token)
228#define TD_TOKEN_DEVADDR_SHIFT 8
229#define TD_TOKEN_TOGGLE_SHIFT 19
230#define TD_TOKEN_TOGGLE (1 << 19)
231#define TD_TOKEN_EXPLEN_SHIFT 21
232#define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n-1 */
233#define TD_TOKEN_PID_MASK 0xFF
234
235#define uhci_explen(len) ((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \
236 TD_TOKEN_EXPLEN_SHIFT)
237
238#define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \
239 1) & TD_TOKEN_EXPLEN_MASK)
240#define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1)
241#define uhci_endpoint(token) (((token) >> 15) & 0xf)
242#define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f)
243#define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff)
244#define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK)
245#define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN)
246#define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN)
247
248/*
249 * The documentation says "4 words for hardware, 4 words for software".
250 *
251 * That's silly, the hardware doesn't care. The hardware only cares that
252 * the hardware words are 16-byte aligned, and we can have any amount of
253 * sw space after the TD entry.
254 *
255 * td->link points to either another TD (not necessarily for the same urb or
256 * even the same endpoint), or nothing (PTR_TERM), or a QH.
257 */
258struct uhci_td {
259 /* Hardware fields */
260 __hc32 link;
261 __hc32 status;
262 __hc32 token;
263 __hc32 buffer;
264
265 /* Software fields */
266 dma_addr_t dma_handle;
267
268 struct list_head list;
269
270 int frame; /* for iso: what frame? */
271 struct list_head fl_list;
272} __attribute__((aligned(16)));
273
274/*
275 * We need a special accessor for the control/status word because it is
276 * subject to asynchronous updates by the controller.
277 */
278#define td_status(uhci, td) hc32_to_cpu((uhci), \
279 ACCESS_ONCE((td)->status))
280
281#define LINK_TO_TD(uhci, td) (cpu_to_hc32((uhci), (td)->dma_handle))
282
283
284/*
285 * Skeleton Queue Headers
286 */
287
288/*
289 * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for
290 * automatic queuing. To make it easy to insert entries into the schedule,
291 * we have a skeleton of QHs for each predefined Interrupt latency.
292 * Asynchronous QHs (low-speed control, full-speed control, and bulk)
293 * go onto the period-1 interrupt list, since they all get accessed on
294 * every frame.
295 *
296 * When we want to add a new QH, we add it to the list starting from the
297 * appropriate skeleton QH. For instance, the schedule can look like this:
298 *
299 * skel int128 QH
300 * dev 1 interrupt QH
301 * dev 5 interrupt QH
302 * skel int64 QH
303 * skel int32 QH
304 * ...
305 * skel int1 + async QH
306 * dev 5 low-speed control QH
307 * dev 1 bulk QH
308 * dev 2 bulk QH
309 *
310 * There is a special terminating QH used to keep full-speed bandwidth
311 * reclamation active when no full-speed control or bulk QHs are linked
312 * into the schedule. It has an inactive TD (to work around a PIIX bug,
313 * see the Intel errata) and it points back to itself.
314 *
315 * There's a special skeleton QH for Isochronous QHs which never appears
316 * on the schedule. Isochronous TDs go on the schedule before the
317 * the skeleton QHs. The hardware accesses them directly rather than
318 * through their QH, which is used only for bookkeeping purposes.
319 * While the UHCI spec doesn't forbid the use of QHs for Isochronous,
320 * it doesn't use them either. And the spec says that queues never
321 * advance on an error completion status, which makes them totally
322 * unsuitable for Isochronous transfers.
323 *
324 * There's also a special skeleton QH used for QHs which are in the process
325 * of unlinking and so may still be in use by the hardware. It too never
326 * appears on the schedule.
327 */
328
329#define UHCI_NUM_SKELQH 11
330#define SKEL_UNLINK 0
331#define skel_unlink_qh skelqh[SKEL_UNLINK]
332#define SKEL_ISO 1
333#define skel_iso_qh skelqh[SKEL_ISO]
334 /* int128, int64, ..., int1 = 2, 3, ..., 9 */
335#define SKEL_INDEX(exponent) (9 - exponent)
336#define SKEL_ASYNC 9
337#define skel_async_qh skelqh[SKEL_ASYNC]
338#define SKEL_TERM 10
339#define skel_term_qh skelqh[SKEL_TERM]
340
341/* The following entries refer to sublists of skel_async_qh */
342#define SKEL_LS_CONTROL 20
343#define SKEL_FS_CONTROL 21
344#define SKEL_FSBR SKEL_FS_CONTROL
345#define SKEL_BULK 22
346
347/*
348 * The UHCI controller and root hub
349 */
350
351/*
352 * States for the root hub:
353 *
354 * To prevent "bouncing" in the presence of electrical noise,
355 * when there are no devices attached we delay for 1 second in the
356 * RUNNING_NODEVS state before switching to the AUTO_STOPPED state.
357 *
358 * (Note that the AUTO_STOPPED state won't be necessary once the hub
359 * driver learns to autosuspend.)
360 */
361enum uhci_rh_state {
362 /* In the following states the HC must be halted.
363 * These two must come first. */
364 UHCI_RH_RESET,
365 UHCI_RH_SUSPENDED,
366
367 UHCI_RH_AUTO_STOPPED,
368 UHCI_RH_RESUMING,
369
370 /* In this state the HC changes from running to halted,
371 * so it can legally appear either way. */
372 UHCI_RH_SUSPENDING,
373
374 /* In the following states it's an error if the HC is halted.
375 * These two must come last. */
376 UHCI_RH_RUNNING, /* The normal state */
377 UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */
378};
379
380/*
381 * The full UHCI controller information:
382 */
383struct uhci_hcd {
384
385 /* debugfs */
386 struct dentry *dentry;
387
388 /* Grabbed from PCI */
389 unsigned long io_addr;
390
391 /* Used when registers are memory mapped */
392 void __iomem *regs;
393
394 struct dma_pool *qh_pool;
395 struct dma_pool *td_pool;
396
397 struct uhci_td *term_td; /* Terminating TD, see UHCI bug */
398 struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QHs */
399 struct uhci_qh *next_qh; /* Next QH to scan */
400
401 spinlock_t lock;
402
403 dma_addr_t frame_dma_handle; /* Hardware frame list */
404 __hc32 *frame;
405 void **frame_cpu; /* CPU's frame list */
406
407 enum uhci_rh_state rh_state;
408 unsigned long auto_stop_time; /* When to AUTO_STOP */
409
410 unsigned int frame_number; /* As of last check */
411 unsigned int is_stopped;
412#define UHCI_IS_STOPPED 9999 /* Larger than a frame # */
413 unsigned int last_iso_frame; /* Frame of last scan */
414 unsigned int cur_iso_frame; /* Frame for current scan */
415
416 unsigned int scan_in_progress:1; /* Schedule scan is running */
417 unsigned int need_rescan:1; /* Redo the schedule scan */
418 unsigned int dead:1; /* Controller has died */
419 unsigned int RD_enable:1; /* Suspended root hub with
420 Resume-Detect interrupts
421 enabled */
422 unsigned int is_initialized:1; /* Data structure is usable */
423 unsigned int fsbr_is_on:1; /* FSBR is turned on */
424 unsigned int fsbr_is_wanted:1; /* Does any URB want FSBR? */
425 unsigned int fsbr_expiring:1; /* FSBR is timing out */
426
427 struct timer_list fsbr_timer; /* For turning off FBSR */
428
429 /* Silicon quirks */
430 unsigned int oc_low:1; /* OverCurrent bit active low */
431 unsigned int wait_for_hp:1; /* Wait for HP port reset */
432 unsigned int big_endian_mmio:1; /* Big endian registers */
433 unsigned int big_endian_desc:1; /* Big endian descriptors */
434
435 /* Support for port suspend/resume/reset */
436 unsigned long port_c_suspend; /* Bit-arrays of ports */
437 unsigned long resuming_ports;
438 unsigned long ports_timeout; /* Time to stop signalling */
439
440 struct list_head idle_qh_list; /* Where the idle QHs live */
441
442 int rh_numports; /* Number of root-hub ports */
443
444 wait_queue_head_t waitqh; /* endpoint_disable waiters */
445 int num_waiting; /* Number of waiters */
446
447 int total_load; /* Sum of array values */
448 short load[MAX_PHASE]; /* Periodic allocations */
449
450 /* Reset host controller */
451 void (*reset_hc) (struct uhci_hcd *uhci);
452 int (*check_and_reset_hc) (struct uhci_hcd *uhci);
453 /* configure_hc should perform arch specific settings, if needed */
454 void (*configure_hc) (struct uhci_hcd *uhci);
455 /* Check for broken resume detect interrupts */
456 int (*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci);
457 /* Check for broken global suspend */
458 int (*global_suspend_mode_is_broken) (struct uhci_hcd *uhci);
459};
460
461/* Convert between a usb_hcd pointer and the corresponding uhci_hcd */
462static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd)
463{
464 return (struct uhci_hcd *) (hcd->hcd_priv);
465}
466static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci)
467{
468 return container_of((void *) uhci, struct usb_hcd, hcd_priv);
469}
470
471#define uhci_dev(u) (uhci_to_hcd(u)->self.controller)
472
473/* Utility macro for comparing frame numbers */
474#define uhci_frame_before_eq(f1, f2) (0 <= (int) ((f2) - (f1)))
475
476
477/*
478 * Private per-URB data
479 */
480struct urb_priv {
481 struct list_head node; /* Node in the QH's urbp list */
482
483 struct urb *urb;
484
485 struct uhci_qh *qh; /* QH for this URB */
486 struct list_head td_list;
487
488 unsigned fsbr:1; /* URB wants FSBR */
489};
490
491
492/* Some special IDs */
493
494#define PCI_VENDOR_ID_GENESYS 0x17a0
495#define PCI_DEVICE_ID_GL880S_UHCI 0x8083
496
497/*
498 * Functions used to access controller registers. The UCHI spec says that host
499 * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts
500 * we use memory mapped registers.
501 */
502
503#ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC
504/* Support PCI only */
505static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
506{
507 return inl(uhci->io_addr + reg);
508}
509
510static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
511{
512 outl(val, uhci->io_addr + reg);
513}
514
515static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
516{
517 return inw(uhci->io_addr + reg);
518}
519
520static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
521{
522 outw(val, uhci->io_addr + reg);
523}
524
525static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
526{
527 return inb(uhci->io_addr + reg);
528}
529
530static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
531{
532 outb(val, uhci->io_addr + reg);
533}
534
535#else
536/* Support non-PCI host controllers */
537#ifdef CONFIG_PCI
538/* Support PCI and non-PCI host controllers */
539#define uhci_has_pci_registers(u) ((u)->io_addr != 0)
540#else
541/* Support non-PCI host controllers only */
542#define uhci_has_pci_registers(u) 0
543#endif
544
545#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
546/* Support (non-PCI) big endian host controllers */
547#define uhci_big_endian_mmio(u) ((u)->big_endian_mmio)
548#else
549#define uhci_big_endian_mmio(u) 0
550#endif
551
552static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
553{
554 if (uhci_has_pci_registers(uhci))
555 return inl(uhci->io_addr + reg);
556#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
557 else if (uhci_big_endian_mmio(uhci))
558 return readl_be(uhci->regs + reg);
559#endif
560 else
561 return readl(uhci->regs + reg);
562}
563
564static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
565{
566 if (uhci_has_pci_registers(uhci))
567 outl(val, uhci->io_addr + reg);
568#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
569 else if (uhci_big_endian_mmio(uhci))
570 writel_be(val, uhci->regs + reg);
571#endif
572 else
573 writel(val, uhci->regs + reg);
574}
575
576static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
577{
578 if (uhci_has_pci_registers(uhci))
579 return inw(uhci->io_addr + reg);
580#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
581 else if (uhci_big_endian_mmio(uhci))
582 return readw_be(uhci->regs + reg);
583#endif
584 else
585 return readw(uhci->regs + reg);
586}
587
588static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
589{
590 if (uhci_has_pci_registers(uhci))
591 outw(val, uhci->io_addr + reg);
592#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
593 else if (uhci_big_endian_mmio(uhci))
594 writew_be(val, uhci->regs + reg);
595#endif
596 else
597 writew(val, uhci->regs + reg);
598}
599
600static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
601{
602 if (uhci_has_pci_registers(uhci))
603 return inb(uhci->io_addr + reg);
604#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
605 else if (uhci_big_endian_mmio(uhci))
606 return readb_be(uhci->regs + reg);
607#endif
608 else
609 return readb(uhci->regs + reg);
610}
611
612static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
613{
614 if (uhci_has_pci_registers(uhci))
615 outb(val, uhci->io_addr + reg);
616#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
617 else if (uhci_big_endian_mmio(uhci))
618 writeb_be(val, uhci->regs + reg);
619#endif
620 else
621 writeb(val, uhci->regs + reg);
622}
623#endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */
624
625/*
626 * The GRLIB GRUSBHC controller can use big endian format for its descriptors.
627 *
628 * UHCI controllers accessed through PCI work normally (little-endian
629 * everywhere), so we don't bother supporting a BE-only mode.
630 */
631#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
632#define uhci_big_endian_desc(u) ((u)->big_endian_desc)
633
634/* cpu to uhci */
635static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
636{
637 return uhci_big_endian_desc(uhci)
638 ? (__force __hc32)cpu_to_be32(x)
639 : (__force __hc32)cpu_to_le32(x);
640}
641
642/* uhci to cpu */
643static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
644{
645 return uhci_big_endian_desc(uhci)
646 ? be32_to_cpu((__force __be32)x)
647 : le32_to_cpu((__force __le32)x);
648}
649
650#else
651/* cpu to uhci */
652static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
653{
654 return cpu_to_le32(x);
655}
656
657/* uhci to cpu */
658static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
659{
660 return le32_to_cpu(x);
661}
662#endif
663
664#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_UHCI_HCD_H
3#define __LINUX_UHCI_HCD_H
4
5#include <linux/list.h>
6#include <linux/usb.h>
7#include <linux/clk.h>
8
9#define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT)
10#define PIPE_DEVEP_MASK 0x0007ff00
11
12
13/*
14 * Universal Host Controller Interface data structures and defines
15 */
16
17/* Command register */
18#define USBCMD 0
19#define USBCMD_RS 0x0001 /* Run/Stop */
20#define USBCMD_HCRESET 0x0002 /* Host reset */
21#define USBCMD_GRESET 0x0004 /* Global reset */
22#define USBCMD_EGSM 0x0008 /* Global Suspend Mode */
23#define USBCMD_FGR 0x0010 /* Force Global Resume */
24#define USBCMD_SWDBG 0x0020 /* SW Debug mode */
25#define USBCMD_CF 0x0040 /* Config Flag (sw only) */
26#define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */
27
28/* Status register */
29#define USBSTS 2
30#define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */
31#define USBSTS_ERROR 0x0002 /* Interrupt due to error */
32#define USBSTS_RD 0x0004 /* Resume Detect */
33#define USBSTS_HSE 0x0008 /* Host System Error: PCI problems */
34#define USBSTS_HCPE 0x0010 /* Host Controller Process Error:
35 * the schedule is buggy */
36#define USBSTS_HCH 0x0020 /* HC Halted */
37
38/* Interrupt enable register */
39#define USBINTR 4
40#define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */
41#define USBINTR_RESUME 0x0002 /* Resume interrupt enable */
42#define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */
43#define USBINTR_SP 0x0008 /* Short packet interrupt enable */
44
45#define USBFRNUM 6
46#define USBFLBASEADD 8
47#define USBSOF 12
48#define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms */
49
50/* USB port status and control registers */
51#define USBPORTSC1 16
52#define USBPORTSC2 18
53#define USBPORTSC3 20
54#define USBPORTSC4 22
55#define USBPORTSC_CCS 0x0001 /* Current Connect Status
56 * ("device present") */
57#define USBPORTSC_CSC 0x0002 /* Connect Status Change */
58#define USBPORTSC_PE 0x0004 /* Port Enable */
59#define USBPORTSC_PEC 0x0008 /* Port Enable Change */
60#define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */
61#define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */
62#define USBPORTSC_RD 0x0040 /* Resume Detect */
63#define USBPORTSC_RES1 0x0080 /* reserved, always 1 */
64#define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */
65#define USBPORTSC_PR 0x0200 /* Port Reset */
66/* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */
67#define USBPORTSC_OC 0x0400 /* Over Current condition */
68#define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */
69#define USBPORTSC_SUSP 0x1000 /* Suspend */
70#define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */
71#define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */
72#define USBPORTSC_RES4 0x8000 /* reserved, write zeroes */
73
74/* PCI legacy support register */
75#define USBLEGSUP 0xc0
76#define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */
77#define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */
78#define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */
79
80/* PCI Intel-specific resume-enable register */
81#define USBRES_INTEL 0xc4
82#define USBPORT1EN 0x01
83#define USBPORT2EN 0x02
84
85#define UHCI_PTR_BITS(uhci) cpu_to_hc32((uhci), 0x000F)
86#define UHCI_PTR_TERM(uhci) cpu_to_hc32((uhci), 0x0001)
87#define UHCI_PTR_QH(uhci) cpu_to_hc32((uhci), 0x0002)
88#define UHCI_PTR_DEPTH(uhci) cpu_to_hc32((uhci), 0x0004)
89#define UHCI_PTR_BREADTH(uhci) cpu_to_hc32((uhci), 0x0000)
90
91#define UHCI_NUMFRAMES 1024 /* in the frame list [array] */
92#define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */
93#define CAN_SCHEDULE_FRAMES 1000 /* how far in the future frames
94 * can be scheduled */
95#define MAX_PHASE 32 /* Periodic scheduling length */
96
97/* When no queues need Full-Speed Bandwidth Reclamation,
98 * delay this long before turning FSBR off */
99#define FSBR_OFF_DELAY msecs_to_jiffies(10)
100
101/* If a queue hasn't advanced after this much time, assume it is stuck */
102#define QH_WAIT_TIMEOUT msecs_to_jiffies(200)
103
104
105/*
106 * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
107 * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on
108 * the host controller implementation.
109 *
110 * To facilitate the strongest possible byte-order checking from "sparse"
111 * and so on, we use __leXX unless that's not practical.
112 */
113#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
114typedef __u32 __bitwise __hc32;
115typedef __u16 __bitwise __hc16;
116#else
117#define __hc32 __le32
118#define __hc16 __le16
119#endif
120
121/*
122 * Queue Headers
123 */
124
125/*
126 * One role of a QH is to hold a queue of TDs for some endpoint. One QH goes
127 * with each endpoint, and qh->element (updated by the HC) is either:
128 * - the next unprocessed TD in the endpoint's queue, or
129 * - UHCI_PTR_TERM (when there's no more traffic for this endpoint).
130 *
131 * The other role of a QH is to serve as a "skeleton" framelist entry, so we
132 * can easily splice a QH for some endpoint into the schedule at the right
133 * place. Then qh->element is UHCI_PTR_TERM.
134 *
135 * In the schedule, qh->link maintains a list of QHs seen by the HC:
136 * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ...
137 *
138 * qh->node is the software equivalent of qh->link. The differences
139 * are that the software list is doubly-linked and QHs in the UNLINKING
140 * state are on the software list but not the hardware schedule.
141 *
142 * For bookkeeping purposes we maintain QHs even for Isochronous endpoints,
143 * but they never get added to the hardware schedule.
144 */
145#define QH_STATE_IDLE 1 /* QH is not being used */
146#define QH_STATE_UNLINKING 2 /* QH has been removed from the
147 * schedule but the hardware may
148 * still be using it */
149#define QH_STATE_ACTIVE 3 /* QH is on the schedule */
150
151struct uhci_qh {
152 /* Hardware fields */
153 __hc32 link; /* Next QH in the schedule */
154 __hc32 element; /* Queue element (TD) pointer */
155
156 /* Software fields */
157 dma_addr_t dma_handle;
158
159 struct list_head node; /* Node in the list of QHs */
160 struct usb_host_endpoint *hep; /* Endpoint information */
161 struct usb_device *udev;
162 struct list_head queue; /* Queue of urbps for this QH */
163 struct uhci_td *dummy_td; /* Dummy TD to end the queue */
164 struct uhci_td *post_td; /* Last TD completed */
165
166 struct usb_iso_packet_descriptor *iso_packet_desc;
167 /* Next urb->iso_frame_desc entry */
168 unsigned long advance_jiffies; /* Time of last queue advance */
169 unsigned int unlink_frame; /* When the QH was unlinked */
170 unsigned int period; /* For Interrupt and Isochronous QHs */
171 short phase; /* Between 0 and period-1 */
172 short load; /* Periodic time requirement, in us */
173 unsigned int iso_frame; /* Frame # for iso_packet_desc */
174
175 int state; /* QH_STATE_xxx; see above */
176 int type; /* Queue type (control, bulk, etc) */
177 int skel; /* Skeleton queue number */
178
179 unsigned int initial_toggle:1; /* Endpoint's current toggle value */
180 unsigned int needs_fixup:1; /* Must fix the TD toggle values */
181 unsigned int is_stopped:1; /* Queue was stopped by error/unlink */
182 unsigned int wait_expired:1; /* QH_WAIT_TIMEOUT has expired */
183 unsigned int bandwidth_reserved:1; /* Periodic bandwidth has
184 * been allocated */
185} __attribute__((aligned(16)));
186
187/*
188 * We need a special accessor for the element pointer because it is
189 * subject to asynchronous updates by the controller.
190 */
191#define qh_element(qh) READ_ONCE((qh)->element)
192
193#define LINK_TO_QH(uhci, qh) (UHCI_PTR_QH((uhci)) | \
194 cpu_to_hc32((uhci), (qh)->dma_handle))
195
196
197/*
198 * Transfer Descriptors
199 */
200
201/*
202 * for TD <status>:
203 */
204#define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */
205#define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */
206#define TD_CTRL_C_ERR_SHIFT 27
207#define TD_CTRL_LS (1 << 26) /* Low Speed Device */
208#define TD_CTRL_IOS (1 << 25) /* Isochronous Select */
209#define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */
210#define TD_CTRL_ACTIVE (1 << 23) /* TD Active */
211#define TD_CTRL_STALLED (1 << 22) /* TD Stalled */
212#define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */
213#define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */
214#define TD_CTRL_NAK (1 << 19) /* NAK Received */
215#define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */
216#define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */
217#define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */
218
219#define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT)
220#define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000)
221#define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & \
222 TD_CTRL_ACTLEN_MASK) /* 1-based */
223
224/*
225 * for TD <info>: (a.k.a. Token)
226 */
227#define td_token(uhci, td) hc32_to_cpu((uhci), (td)->token)
228#define TD_TOKEN_DEVADDR_SHIFT 8
229#define TD_TOKEN_TOGGLE_SHIFT 19
230#define TD_TOKEN_TOGGLE (1 << 19)
231#define TD_TOKEN_EXPLEN_SHIFT 21
232#define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n-1 */
233#define TD_TOKEN_PID_MASK 0xFF
234
235#define uhci_explen(len) ((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \
236 TD_TOKEN_EXPLEN_SHIFT)
237
238#define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \
239 1) & TD_TOKEN_EXPLEN_MASK)
240#define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1)
241#define uhci_endpoint(token) (((token) >> 15) & 0xf)
242#define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f)
243#define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff)
244#define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK)
245#define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN)
246#define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN)
247
248/*
249 * The documentation says "4 words for hardware, 4 words for software".
250 *
251 * That's silly, the hardware doesn't care. The hardware only cares that
252 * the hardware words are 16-byte aligned, and we can have any amount of
253 * sw space after the TD entry.
254 *
255 * td->link points to either another TD (not necessarily for the same urb or
256 * even the same endpoint), or nothing (PTR_TERM), or a QH.
257 */
258struct uhci_td {
259 /* Hardware fields */
260 __hc32 link;
261 __hc32 status;
262 __hc32 token;
263 __hc32 buffer;
264
265 /* Software fields */
266 dma_addr_t dma_handle;
267
268 struct list_head list;
269
270 int frame; /* for iso: what frame? */
271 struct list_head fl_list;
272} __attribute__((aligned(16)));
273
274/*
275 * We need a special accessor for the control/status word because it is
276 * subject to asynchronous updates by the controller.
277 */
278#define td_status(uhci, td) hc32_to_cpu((uhci), \
279 READ_ONCE((td)->status))
280
281#define LINK_TO_TD(uhci, td) (cpu_to_hc32((uhci), (td)->dma_handle))
282
283
284/*
285 * Skeleton Queue Headers
286 */
287
288/*
289 * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for
290 * automatic queuing. To make it easy to insert entries into the schedule,
291 * we have a skeleton of QHs for each predefined Interrupt latency.
292 * Asynchronous QHs (low-speed control, full-speed control, and bulk)
293 * go onto the period-1 interrupt list, since they all get accessed on
294 * every frame.
295 *
296 * When we want to add a new QH, we add it to the list starting from the
297 * appropriate skeleton QH. For instance, the schedule can look like this:
298 *
299 * skel int128 QH
300 * dev 1 interrupt QH
301 * dev 5 interrupt QH
302 * skel int64 QH
303 * skel int32 QH
304 * ...
305 * skel int1 + async QH
306 * dev 5 low-speed control QH
307 * dev 1 bulk QH
308 * dev 2 bulk QH
309 *
310 * There is a special terminating QH used to keep full-speed bandwidth
311 * reclamation active when no full-speed control or bulk QHs are linked
312 * into the schedule. It has an inactive TD (to work around a PIIX bug,
313 * see the Intel errata) and it points back to itself.
314 *
315 * There's a special skeleton QH for Isochronous QHs which never appears
316 * on the schedule. Isochronous TDs go on the schedule before the
317 * the skeleton QHs. The hardware accesses them directly rather than
318 * through their QH, which is used only for bookkeeping purposes.
319 * While the UHCI spec doesn't forbid the use of QHs for Isochronous,
320 * it doesn't use them either. And the spec says that queues never
321 * advance on an error completion status, which makes them totally
322 * unsuitable for Isochronous transfers.
323 *
324 * There's also a special skeleton QH used for QHs which are in the process
325 * of unlinking and so may still be in use by the hardware. It too never
326 * appears on the schedule.
327 */
328
329#define UHCI_NUM_SKELQH 11
330#define SKEL_UNLINK 0
331#define skel_unlink_qh skelqh[SKEL_UNLINK]
332#define SKEL_ISO 1
333#define skel_iso_qh skelqh[SKEL_ISO]
334 /* int128, int64, ..., int1 = 2, 3, ..., 9 */
335#define SKEL_INDEX(exponent) (9 - exponent)
336#define SKEL_ASYNC 9
337#define skel_async_qh skelqh[SKEL_ASYNC]
338#define SKEL_TERM 10
339#define skel_term_qh skelqh[SKEL_TERM]
340
341/* The following entries refer to sublists of skel_async_qh */
342#define SKEL_LS_CONTROL 20
343#define SKEL_FS_CONTROL 21
344#define SKEL_FSBR SKEL_FS_CONTROL
345#define SKEL_BULK 22
346
347/*
348 * The UHCI controller and root hub
349 */
350
351/*
352 * States for the root hub:
353 *
354 * To prevent "bouncing" in the presence of electrical noise,
355 * when there are no devices attached we delay for 1 second in the
356 * RUNNING_NODEVS state before switching to the AUTO_STOPPED state.
357 *
358 * (Note that the AUTO_STOPPED state won't be necessary once the hub
359 * driver learns to autosuspend.)
360 */
361enum uhci_rh_state {
362 /* In the following states the HC must be halted.
363 * These two must come first. */
364 UHCI_RH_RESET,
365 UHCI_RH_SUSPENDED,
366
367 UHCI_RH_AUTO_STOPPED,
368 UHCI_RH_RESUMING,
369
370 /* In this state the HC changes from running to halted,
371 * so it can legally appear either way. */
372 UHCI_RH_SUSPENDING,
373
374 /* In the following states it's an error if the HC is halted.
375 * These two must come last. */
376 UHCI_RH_RUNNING, /* The normal state */
377 UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */
378};
379
380/*
381 * The full UHCI controller information:
382 */
383struct uhci_hcd {
384
385 /* debugfs */
386 struct dentry *dentry;
387
388 /* Grabbed from PCI */
389 unsigned long io_addr;
390
391 /* Used when registers are memory mapped */
392 void __iomem *regs;
393
394 struct dma_pool *qh_pool;
395 struct dma_pool *td_pool;
396
397 struct uhci_td *term_td; /* Terminating TD, see UHCI bug */
398 struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QHs */
399 struct uhci_qh *next_qh; /* Next QH to scan */
400
401 spinlock_t lock;
402
403 dma_addr_t frame_dma_handle; /* Hardware frame list */
404 __hc32 *frame;
405 void **frame_cpu; /* CPU's frame list */
406
407 enum uhci_rh_state rh_state;
408 unsigned long auto_stop_time; /* When to AUTO_STOP */
409
410 unsigned int frame_number; /* As of last check */
411 unsigned int is_stopped;
412#define UHCI_IS_STOPPED 9999 /* Larger than a frame # */
413 unsigned int last_iso_frame; /* Frame of last scan */
414 unsigned int cur_iso_frame; /* Frame for current scan */
415
416 unsigned int scan_in_progress:1; /* Schedule scan is running */
417 unsigned int need_rescan:1; /* Redo the schedule scan */
418 unsigned int dead:1; /* Controller has died */
419 unsigned int RD_enable:1; /* Suspended root hub with
420 Resume-Detect interrupts
421 enabled */
422 unsigned int is_initialized:1; /* Data structure is usable */
423 unsigned int fsbr_is_on:1; /* FSBR is turned on */
424 unsigned int fsbr_is_wanted:1; /* Does any URB want FSBR? */
425 unsigned int fsbr_expiring:1; /* FSBR is timing out */
426
427 struct timer_list fsbr_timer; /* For turning off FBSR */
428
429 /* Silicon quirks */
430 unsigned int oc_low:1; /* OverCurrent bit active low */
431 unsigned int wait_for_hp:1; /* Wait for HP port reset */
432 unsigned int big_endian_mmio:1; /* Big endian registers */
433 unsigned int big_endian_desc:1; /* Big endian descriptors */
434 unsigned int is_aspeed:1; /* Aspeed impl. workarounds */
435
436 /* Support for port suspend/resume/reset */
437 unsigned long port_c_suspend; /* Bit-arrays of ports */
438 unsigned long resuming_ports;
439 unsigned long ports_timeout; /* Time to stop signalling */
440
441 struct list_head idle_qh_list; /* Where the idle QHs live */
442
443 int rh_numports; /* Number of root-hub ports */
444
445 wait_queue_head_t waitqh; /* endpoint_disable waiters */
446 int num_waiting; /* Number of waiters */
447
448 int total_load; /* Sum of array values */
449 short load[MAX_PHASE]; /* Periodic allocations */
450
451 struct clk *clk; /* (optional) clock source */
452
453 /* Reset host controller */
454 void (*reset_hc) (struct uhci_hcd *uhci);
455 int (*check_and_reset_hc) (struct uhci_hcd *uhci);
456 /* configure_hc should perform arch specific settings, if needed */
457 void (*configure_hc) (struct uhci_hcd *uhci);
458 /* Check for broken resume detect interrupts */
459 int (*resume_detect_interrupts_are_broken) (struct uhci_hcd *uhci);
460 /* Check for broken global suspend */
461 int (*global_suspend_mode_is_broken) (struct uhci_hcd *uhci);
462};
463
464/* Convert between a usb_hcd pointer and the corresponding uhci_hcd */
465static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd)
466{
467 return (struct uhci_hcd *) (hcd->hcd_priv);
468}
469static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci)
470{
471 return container_of((void *) uhci, struct usb_hcd, hcd_priv);
472}
473
474#define uhci_dev(u) (uhci_to_hcd(u)->self.controller)
475
476/* Utility macro for comparing frame numbers */
477#define uhci_frame_before_eq(f1, f2) (0 <= (int) ((f2) - (f1)))
478
479
480/*
481 * Private per-URB data
482 */
483struct urb_priv {
484 struct list_head node; /* Node in the QH's urbp list */
485
486 struct urb *urb;
487
488 struct uhci_qh *qh; /* QH for this URB */
489 struct list_head td_list;
490
491 unsigned fsbr:1; /* URB wants FSBR */
492};
493
494
495/* Some special IDs */
496
497#define PCI_VENDOR_ID_GENESYS 0x17a0
498#define PCI_DEVICE_ID_GL880S_UHCI 0x8083
499
500/* Aspeed SoC needs some quirks */
501static inline bool uhci_is_aspeed(const struct uhci_hcd *uhci)
502{
503 return IS_ENABLED(CONFIG_USB_UHCI_ASPEED) && uhci->is_aspeed;
504}
505
506/*
507 * Functions used to access controller registers. The UCHI spec says that host
508 * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts
509 * we use memory mapped registers.
510 */
511
512#ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC
513/* Support PCI only */
514static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
515{
516 return inl(uhci->io_addr + reg);
517}
518
519static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
520{
521 outl(val, uhci->io_addr + reg);
522}
523
524static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
525{
526 return inw(uhci->io_addr + reg);
527}
528
529static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
530{
531 outw(val, uhci->io_addr + reg);
532}
533
534static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
535{
536 return inb(uhci->io_addr + reg);
537}
538
539static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
540{
541 outb(val, uhci->io_addr + reg);
542}
543
544#else
545/* Support non-PCI host controllers */
546#ifdef CONFIG_USB_PCI
547/* Support PCI and non-PCI host controllers */
548#define uhci_has_pci_registers(u) ((u)->io_addr != 0)
549#else
550/* Support non-PCI host controllers only */
551#define uhci_has_pci_registers(u) 0
552#endif
553
554#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
555/* Support (non-PCI) big endian host controllers */
556#define uhci_big_endian_mmio(u) ((u)->big_endian_mmio)
557#else
558#define uhci_big_endian_mmio(u) 0
559#endif
560
561static inline int uhci_aspeed_reg(unsigned int reg)
562{
563 switch (reg) {
564 case USBCMD:
565 return 00;
566 case USBSTS:
567 return 0x04;
568 case USBINTR:
569 return 0x08;
570 case USBFRNUM:
571 return 0x80;
572 case USBFLBASEADD:
573 return 0x0c;
574 case USBSOF:
575 return 0x84;
576 case USBPORTSC1:
577 return 0x88;
578 case USBPORTSC2:
579 return 0x8c;
580 case USBPORTSC3:
581 return 0x90;
582 case USBPORTSC4:
583 return 0x94;
584 default:
585 pr_warn("UHCI: Unsupported register 0x%02x on Aspeed\n", reg);
586 /* Return an unimplemented register */
587 return 0x10;
588 }
589}
590
591static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
592{
593 if (uhci_has_pci_registers(uhci))
594 return inl(uhci->io_addr + reg);
595 else if (uhci_is_aspeed(uhci))
596 return readl(uhci->regs + uhci_aspeed_reg(reg));
597#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
598 else if (uhci_big_endian_mmio(uhci))
599 return readl_be(uhci->regs + reg);
600#endif
601 else
602 return readl(uhci->regs + reg);
603}
604
605static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
606{
607 if (uhci_has_pci_registers(uhci))
608 outl(val, uhci->io_addr + reg);
609 else if (uhci_is_aspeed(uhci))
610 writel(val, uhci->regs + uhci_aspeed_reg(reg));
611#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
612 else if (uhci_big_endian_mmio(uhci))
613 writel_be(val, uhci->regs + reg);
614#endif
615 else
616 writel(val, uhci->regs + reg);
617}
618
619static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
620{
621 if (uhci_has_pci_registers(uhci))
622 return inw(uhci->io_addr + reg);
623 else if (uhci_is_aspeed(uhci))
624 return readl(uhci->regs + uhci_aspeed_reg(reg));
625#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
626 else if (uhci_big_endian_mmio(uhci))
627 return readw_be(uhci->regs + reg);
628#endif
629 else
630 return readw(uhci->regs + reg);
631}
632
633static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
634{
635 if (uhci_has_pci_registers(uhci))
636 outw(val, uhci->io_addr + reg);
637 else if (uhci_is_aspeed(uhci))
638 writel(val, uhci->regs + uhci_aspeed_reg(reg));
639#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
640 else if (uhci_big_endian_mmio(uhci))
641 writew_be(val, uhci->regs + reg);
642#endif
643 else
644 writew(val, uhci->regs + reg);
645}
646
647static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
648{
649 if (uhci_has_pci_registers(uhci))
650 return inb(uhci->io_addr + reg);
651 else if (uhci_is_aspeed(uhci))
652 return readl(uhci->regs + uhci_aspeed_reg(reg));
653#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
654 else if (uhci_big_endian_mmio(uhci))
655 return readb_be(uhci->regs + reg);
656#endif
657 else
658 return readb(uhci->regs + reg);
659}
660
661static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
662{
663 if (uhci_has_pci_registers(uhci))
664 outb(val, uhci->io_addr + reg);
665 else if (uhci_is_aspeed(uhci))
666 writel(val, uhci->regs + uhci_aspeed_reg(reg));
667#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
668 else if (uhci_big_endian_mmio(uhci))
669 writeb_be(val, uhci->regs + reg);
670#endif
671 else
672 writeb(val, uhci->regs + reg);
673}
674#endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */
675
676/*
677 * The GRLIB GRUSBHC controller can use big endian format for its descriptors.
678 *
679 * UHCI controllers accessed through PCI work normally (little-endian
680 * everywhere), so we don't bother supporting a BE-only mode.
681 */
682#ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
683#define uhci_big_endian_desc(u) ((u)->big_endian_desc)
684
685/* cpu to uhci */
686static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
687{
688 return uhci_big_endian_desc(uhci)
689 ? (__force __hc32)cpu_to_be32(x)
690 : (__force __hc32)cpu_to_le32(x);
691}
692
693/* uhci to cpu */
694static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
695{
696 return uhci_big_endian_desc(uhci)
697 ? be32_to_cpu((__force __be32)x)
698 : le32_to_cpu((__force __le32)x);
699}
700
701#else
702/* cpu to uhci */
703static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
704{
705 return cpu_to_le32(x);
706}
707
708/* uhci to cpu */
709static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
710{
711 return le32_to_cpu(x);
712}
713#endif
714
715#endif