Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * zcache.c
   3 *
   4 * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp.
   5 * Copyright (c) 2010,2011, Nitin Gupta
   6 *
   7 * Zcache provides an in-kernel "host implementation" for transcendent memory
   8 * and, thus indirectly, for cleancache and frontswap.  Zcache includes two
   9 * page-accessible memory [1] interfaces, both utilizing lzo1x compression:
  10 * 1) "compression buddies" ("zbud") is used for ephemeral pages
  11 * 2) xvmalloc is used for persistent pages.
  12 * Xvmalloc (based on the TLSF allocator) has very low fragmentation
  13 * so maximizes space efficiency, while zbud allows pairs (and potentially,
  14 * in the future, more than a pair of) compressed pages to be closely linked
  15 * so that reclaiming can be done via the kernel's physical-page-oriented
  16 * "shrinker" interface.
  17 *
  18 * [1] For a definition of page-accessible memory (aka PAM), see:
  19 *   http://marc.info/?l=linux-mm&m=127811271605009
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/cpu.h>
  24#include <linux/highmem.h>
  25#include <linux/list.h>
  26#include <linux/lzo.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/types.h>
  30#include <linux/atomic.h>
  31#include <linux/math64.h>
  32#include "tmem.h"
  33
  34#include "../zram/xvmalloc.h" /* if built in drivers/staging */
  35
  36#if (!defined(CONFIG_CLEANCACHE) && !defined(CONFIG_FRONTSWAP))
  37#error "zcache is useless without CONFIG_CLEANCACHE or CONFIG_FRONTSWAP"
  38#endif
  39#ifdef CONFIG_CLEANCACHE
  40#include <linux/cleancache.h>
  41#endif
  42#ifdef CONFIG_FRONTSWAP
  43#include <linux/frontswap.h>
  44#endif
  45
  46#if 0
  47/* this is more aggressive but may cause other problems? */
  48#define ZCACHE_GFP_MASK	(GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN)
  49#else
  50#define ZCACHE_GFP_MASK \
  51	(__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC)
  52#endif
  53
  54#define MAX_POOLS_PER_CLIENT 16
  55
  56#define MAX_CLIENTS 16
  57#define LOCAL_CLIENT ((uint16_t)-1)
  58
  59MODULE_LICENSE("GPL");
  60
  61struct zcache_client {
  62	struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT];
  63	struct xv_pool *xvpool;
  64	bool allocated;
  65	atomic_t refcount;
  66};
  67
  68static struct zcache_client zcache_host;
  69static struct zcache_client zcache_clients[MAX_CLIENTS];
  70
  71static inline uint16_t get_client_id_from_client(struct zcache_client *cli)
  72{
  73	BUG_ON(cli == NULL);
  74	if (cli == &zcache_host)
  75		return LOCAL_CLIENT;
  76	return cli - &zcache_clients[0];
  77}
  78
  79static inline bool is_local_client(struct zcache_client *cli)
  80{
  81	return cli == &zcache_host;
  82}
  83
  84/**********
  85 * Compression buddies ("zbud") provides for packing two (or, possibly
  86 * in the future, more) compressed ephemeral pages into a single "raw"
  87 * (physical) page and tracking them with data structures so that
  88 * the raw pages can be easily reclaimed.
  89 *
  90 * A zbud page ("zbpg") is an aligned page containing a list_head,
  91 * a lock, and two "zbud headers".  The remainder of the physical
  92 * page is divided up into aligned 64-byte "chunks" which contain
  93 * the compressed data for zero, one, or two zbuds.  Each zbpg
  94 * resides on: (1) an "unused list" if it has no zbuds; (2) a
  95 * "buddied" list if it is fully populated  with two zbuds; or
  96 * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks
  97 * the one unbuddied zbud uses.  The data inside a zbpg cannot be
  98 * read or written unless the zbpg's lock is held.
  99 */
 100
 101#define ZBH_SENTINEL  0x43214321
 102#define ZBPG_SENTINEL  0xdeadbeef
 103
 104#define ZBUD_MAX_BUDS 2
 105
 106struct zbud_hdr {
 107	uint16_t client_id;
 108	uint16_t pool_id;
 109	struct tmem_oid oid;
 110	uint32_t index;
 111	uint16_t size; /* compressed size in bytes, zero means unused */
 112	DECL_SENTINEL
 113};
 114
 115struct zbud_page {
 116	struct list_head bud_list;
 117	spinlock_t lock;
 118	struct zbud_hdr buddy[ZBUD_MAX_BUDS];
 119	DECL_SENTINEL
 120	/* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */
 121};
 122
 123#define CHUNK_SHIFT	6
 124#define CHUNK_SIZE	(1 << CHUNK_SHIFT)
 125#define CHUNK_MASK	(~(CHUNK_SIZE-1))
 126#define NCHUNKS		(((PAGE_SIZE - sizeof(struct zbud_page)) & \
 127				CHUNK_MASK) >> CHUNK_SHIFT)
 128#define MAX_CHUNK	(NCHUNKS-1)
 129
 130static struct {
 131	struct list_head list;
 132	unsigned count;
 133} zbud_unbuddied[NCHUNKS];
 134/* list N contains pages with N chunks USED and NCHUNKS-N unused */
 135/* element 0 is never used but optimizing that isn't worth it */
 136static unsigned long zbud_cumul_chunk_counts[NCHUNKS];
 137
 138struct list_head zbud_buddied_list;
 139static unsigned long zcache_zbud_buddied_count;
 140
 141/* protects the buddied list and all unbuddied lists */
 142static DEFINE_SPINLOCK(zbud_budlists_spinlock);
 143
 144static LIST_HEAD(zbpg_unused_list);
 145static unsigned long zcache_zbpg_unused_list_count;
 146
 147/* protects the unused page list */
 148static DEFINE_SPINLOCK(zbpg_unused_list_spinlock);
 149
 150static atomic_t zcache_zbud_curr_raw_pages;
 151static atomic_t zcache_zbud_curr_zpages;
 152static unsigned long zcache_zbud_curr_zbytes;
 153static unsigned long zcache_zbud_cumul_zpages;
 154static unsigned long zcache_zbud_cumul_zbytes;
 155static unsigned long zcache_compress_poor;
 156static unsigned long zcache_mean_compress_poor;
 157
 158/* forward references */
 159static void *zcache_get_free_page(void);
 160static void zcache_free_page(void *p);
 161
 162/*
 163 * zbud helper functions
 164 */
 165
 166static inline unsigned zbud_max_buddy_size(void)
 167{
 168	return MAX_CHUNK << CHUNK_SHIFT;
 169}
 170
 171static inline unsigned zbud_size_to_chunks(unsigned size)
 172{
 173	BUG_ON(size == 0 || size > zbud_max_buddy_size());
 174	return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
 175}
 176
 177static inline int zbud_budnum(struct zbud_hdr *zh)
 178{
 179	unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1);
 180	struct zbud_page *zbpg = NULL;
 181	unsigned budnum = -1U;
 182	int i;
 183
 184	for (i = 0; i < ZBUD_MAX_BUDS; i++)
 185		if (offset == offsetof(typeof(*zbpg), buddy[i])) {
 186			budnum = i;
 187			break;
 188		}
 189	BUG_ON(budnum == -1U);
 190	return budnum;
 191}
 192
 193static char *zbud_data(struct zbud_hdr *zh, unsigned size)
 194{
 195	struct zbud_page *zbpg;
 196	char *p;
 197	unsigned budnum;
 198
 199	ASSERT_SENTINEL(zh, ZBH);
 200	budnum = zbud_budnum(zh);
 201	BUG_ON(size == 0 || size > zbud_max_buddy_size());
 202	zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
 203	ASSERT_SPINLOCK(&zbpg->lock);
 204	p = (char *)zbpg;
 205	if (budnum == 0)
 206		p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) &
 207							CHUNK_MASK);
 208	else if (budnum == 1)
 209		p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK);
 210	return p;
 211}
 212
 213/*
 214 * zbud raw page management
 215 */
 216
 217static struct zbud_page *zbud_alloc_raw_page(void)
 218{
 219	struct zbud_page *zbpg = NULL;
 220	struct zbud_hdr *zh0, *zh1;
 221	bool recycled = 0;
 222
 223	/* if any pages on the zbpg list, use one */
 224	spin_lock(&zbpg_unused_list_spinlock);
 225	if (!list_empty(&zbpg_unused_list)) {
 226		zbpg = list_first_entry(&zbpg_unused_list,
 227				struct zbud_page, bud_list);
 228		list_del_init(&zbpg->bud_list);
 229		zcache_zbpg_unused_list_count--;
 230		recycled = 1;
 231	}
 232	spin_unlock(&zbpg_unused_list_spinlock);
 233	if (zbpg == NULL)
 234		/* none on zbpg list, try to get a kernel page */
 235		zbpg = zcache_get_free_page();
 236	if (likely(zbpg != NULL)) {
 237		INIT_LIST_HEAD(&zbpg->bud_list);
 238		zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
 239		spin_lock_init(&zbpg->lock);
 240		if (recycled) {
 241			ASSERT_INVERTED_SENTINEL(zbpg, ZBPG);
 242			SET_SENTINEL(zbpg, ZBPG);
 243			BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
 244			BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
 245		} else {
 246			atomic_inc(&zcache_zbud_curr_raw_pages);
 247			INIT_LIST_HEAD(&zbpg->bud_list);
 248			SET_SENTINEL(zbpg, ZBPG);
 249			zh0->size = 0; zh1->size = 0;
 250			tmem_oid_set_invalid(&zh0->oid);
 251			tmem_oid_set_invalid(&zh1->oid);
 252		}
 253	}
 254	return zbpg;
 255}
 256
 257static void zbud_free_raw_page(struct zbud_page *zbpg)
 258{
 259	struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1];
 260
 261	ASSERT_SENTINEL(zbpg, ZBPG);
 262	BUG_ON(!list_empty(&zbpg->bud_list));
 263	ASSERT_SPINLOCK(&zbpg->lock);
 264	BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid));
 265	BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid));
 266	INVERT_SENTINEL(zbpg, ZBPG);
 267	spin_unlock(&zbpg->lock);
 268	spin_lock(&zbpg_unused_list_spinlock);
 269	list_add(&zbpg->bud_list, &zbpg_unused_list);
 270	zcache_zbpg_unused_list_count++;
 271	spin_unlock(&zbpg_unused_list_spinlock);
 272}
 273
 274/*
 275 * core zbud handling routines
 276 */
 277
 278static unsigned zbud_free(struct zbud_hdr *zh)
 279{
 280	unsigned size;
 281
 282	ASSERT_SENTINEL(zh, ZBH);
 283	BUG_ON(!tmem_oid_valid(&zh->oid));
 284	size = zh->size;
 285	BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
 286	zh->size = 0;
 287	tmem_oid_set_invalid(&zh->oid);
 288	INVERT_SENTINEL(zh, ZBH);
 289	zcache_zbud_curr_zbytes -= size;
 290	atomic_dec(&zcache_zbud_curr_zpages);
 291	return size;
 292}
 293
 294static void zbud_free_and_delist(struct zbud_hdr *zh)
 295{
 296	unsigned chunks;
 297	struct zbud_hdr *zh_other;
 298	unsigned budnum = zbud_budnum(zh), size;
 299	struct zbud_page *zbpg =
 300		container_of(zh, struct zbud_page, buddy[budnum]);
 301
 302	spin_lock(&zbpg->lock);
 303	if (list_empty(&zbpg->bud_list)) {
 304		/* ignore zombie page... see zbud_evict_pages() */
 305		spin_unlock(&zbpg->lock);
 306		return;
 307	}
 308	size = zbud_free(zh);
 309	ASSERT_SPINLOCK(&zbpg->lock);
 310	zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0];
 311	if (zh_other->size == 0) { /* was unbuddied: unlist and free */
 312		chunks = zbud_size_to_chunks(size) ;
 313		spin_lock(&zbud_budlists_spinlock);
 314		BUG_ON(list_empty(&zbud_unbuddied[chunks].list));
 315		list_del_init(&zbpg->bud_list);
 316		zbud_unbuddied[chunks].count--;
 317		spin_unlock(&zbud_budlists_spinlock);
 318		zbud_free_raw_page(zbpg);
 319	} else { /* was buddied: move remaining buddy to unbuddied list */
 320		chunks = zbud_size_to_chunks(zh_other->size) ;
 321		spin_lock(&zbud_budlists_spinlock);
 322		list_del_init(&zbpg->bud_list);
 323		zcache_zbud_buddied_count--;
 324		list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list);
 325		zbud_unbuddied[chunks].count++;
 326		spin_unlock(&zbud_budlists_spinlock);
 327		spin_unlock(&zbpg->lock);
 328	}
 329}
 330
 331static struct zbud_hdr *zbud_create(uint16_t client_id, uint16_t pool_id,
 332					struct tmem_oid *oid,
 333					uint32_t index, struct page *page,
 334					void *cdata, unsigned size)
 335{
 336	struct zbud_hdr *zh0, *zh1, *zh = NULL;
 337	struct zbud_page *zbpg = NULL, *ztmp;
 338	unsigned nchunks;
 339	char *to;
 340	int i, found_good_buddy = 0;
 341
 342	nchunks = zbud_size_to_chunks(size) ;
 343	for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) {
 344		spin_lock(&zbud_budlists_spinlock);
 345		if (!list_empty(&zbud_unbuddied[i].list)) {
 346			list_for_each_entry_safe(zbpg, ztmp,
 347				    &zbud_unbuddied[i].list, bud_list) {
 348				if (spin_trylock(&zbpg->lock)) {
 349					found_good_buddy = i;
 350					goto found_unbuddied;
 351				}
 352			}
 353		}
 354		spin_unlock(&zbud_budlists_spinlock);
 355	}
 356	/* didn't find a good buddy, try allocating a new page */
 357	zbpg = zbud_alloc_raw_page();
 358	if (unlikely(zbpg == NULL))
 359		goto out;
 360	/* ok, have a page, now compress the data before taking locks */
 361	spin_lock(&zbpg->lock);
 362	spin_lock(&zbud_budlists_spinlock);
 363	list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list);
 364	zbud_unbuddied[nchunks].count++;
 365	zh = &zbpg->buddy[0];
 366	goto init_zh;
 367
 368found_unbuddied:
 369	ASSERT_SPINLOCK(&zbpg->lock);
 370	zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1];
 371	BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0)));
 372	if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */
 373		ASSERT_SENTINEL(zh0, ZBH);
 374		zh = zh1;
 375	} else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */
 376		ASSERT_SENTINEL(zh1, ZBH);
 377		zh = zh0;
 378	} else
 379		BUG();
 380	list_del_init(&zbpg->bud_list);
 381	zbud_unbuddied[found_good_buddy].count--;
 382	list_add_tail(&zbpg->bud_list, &zbud_buddied_list);
 383	zcache_zbud_buddied_count++;
 384
 385init_zh:
 386	SET_SENTINEL(zh, ZBH);
 387	zh->size = size;
 388	zh->index = index;
 389	zh->oid = *oid;
 390	zh->pool_id = pool_id;
 391	zh->client_id = client_id;
 392	/* can wait to copy the data until the list locks are dropped */
 393	spin_unlock(&zbud_budlists_spinlock);
 394
 395	to = zbud_data(zh, size);
 396	memcpy(to, cdata, size);
 397	spin_unlock(&zbpg->lock);
 398	zbud_cumul_chunk_counts[nchunks]++;
 399	atomic_inc(&zcache_zbud_curr_zpages);
 400	zcache_zbud_cumul_zpages++;
 401	zcache_zbud_curr_zbytes += size;
 402	zcache_zbud_cumul_zbytes += size;
 403out:
 404	return zh;
 405}
 406
 407static int zbud_decompress(struct page *page, struct zbud_hdr *zh)
 408{
 409	struct zbud_page *zbpg;
 410	unsigned budnum = zbud_budnum(zh);
 411	size_t out_len = PAGE_SIZE;
 412	char *to_va, *from_va;
 413	unsigned size;
 414	int ret = 0;
 415
 416	zbpg = container_of(zh, struct zbud_page, buddy[budnum]);
 417	spin_lock(&zbpg->lock);
 418	if (list_empty(&zbpg->bud_list)) {
 419		/* ignore zombie page... see zbud_evict_pages() */
 420		ret = -EINVAL;
 421		goto out;
 422	}
 423	ASSERT_SENTINEL(zh, ZBH);
 424	BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size());
 425	to_va = kmap_atomic(page, KM_USER0);
 426	size = zh->size;
 427	from_va = zbud_data(zh, size);
 428	ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len);
 429	BUG_ON(ret != LZO_E_OK);
 430	BUG_ON(out_len != PAGE_SIZE);
 431	kunmap_atomic(to_va, KM_USER0);
 432out:
 433	spin_unlock(&zbpg->lock);
 434	return ret;
 435}
 436
 437/*
 438 * The following routines handle shrinking of ephemeral pages by evicting
 439 * pages "least valuable" first.
 440 */
 441
 442static unsigned long zcache_evicted_raw_pages;
 443static unsigned long zcache_evicted_buddied_pages;
 444static unsigned long zcache_evicted_unbuddied_pages;
 445
 446static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id,
 447						uint16_t poolid);
 448static void zcache_put_pool(struct tmem_pool *pool);
 449
 450/*
 451 * Flush and free all zbuds in a zbpg, then free the pageframe
 452 */
 453static void zbud_evict_zbpg(struct zbud_page *zbpg)
 454{
 455	struct zbud_hdr *zh;
 456	int i, j;
 457	uint32_t pool_id[ZBUD_MAX_BUDS], client_id[ZBUD_MAX_BUDS];
 458	uint32_t index[ZBUD_MAX_BUDS];
 459	struct tmem_oid oid[ZBUD_MAX_BUDS];
 460	struct tmem_pool *pool;
 461
 462	ASSERT_SPINLOCK(&zbpg->lock);
 463	BUG_ON(!list_empty(&zbpg->bud_list));
 464	for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) {
 465		zh = &zbpg->buddy[i];
 466		if (zh->size) {
 467			client_id[j] = zh->client_id;
 468			pool_id[j] = zh->pool_id;
 469			oid[j] = zh->oid;
 470			index[j] = zh->index;
 471			j++;
 472			zbud_free(zh);
 473		}
 474	}
 475	spin_unlock(&zbpg->lock);
 476	for (i = 0; i < j; i++) {
 477		pool = zcache_get_pool_by_id(client_id[i], pool_id[i]);
 478		if (pool != NULL) {
 479			tmem_flush_page(pool, &oid[i], index[i]);
 480			zcache_put_pool(pool);
 481		}
 482	}
 483	ASSERT_SENTINEL(zbpg, ZBPG);
 484	spin_lock(&zbpg->lock);
 485	zbud_free_raw_page(zbpg);
 486}
 487
 488/*
 489 * Free nr pages.  This code is funky because we want to hold the locks
 490 * protecting various lists for as short a time as possible, and in some
 491 * circumstances the list may change asynchronously when the list lock is
 492 * not held.  In some cases we also trylock not only to avoid waiting on a
 493 * page in use by another cpu, but also to avoid potential deadlock due to
 494 * lock inversion.
 495 */
 496static void zbud_evict_pages(int nr)
 497{
 498	struct zbud_page *zbpg;
 499	int i;
 500
 501	/* first try freeing any pages on unused list */
 502retry_unused_list:
 503	spin_lock_bh(&zbpg_unused_list_spinlock);
 504	if (!list_empty(&zbpg_unused_list)) {
 505		/* can't walk list here, since it may change when unlocked */
 506		zbpg = list_first_entry(&zbpg_unused_list,
 507				struct zbud_page, bud_list);
 508		list_del_init(&zbpg->bud_list);
 509		zcache_zbpg_unused_list_count--;
 510		atomic_dec(&zcache_zbud_curr_raw_pages);
 511		spin_unlock_bh(&zbpg_unused_list_spinlock);
 512		zcache_free_page(zbpg);
 513		zcache_evicted_raw_pages++;
 514		if (--nr <= 0)
 515			goto out;
 516		goto retry_unused_list;
 517	}
 518	spin_unlock_bh(&zbpg_unused_list_spinlock);
 519
 520	/* now try freeing unbuddied pages, starting with least space avail */
 521	for (i = 0; i < MAX_CHUNK; i++) {
 522retry_unbud_list_i:
 523		spin_lock_bh(&zbud_budlists_spinlock);
 524		if (list_empty(&zbud_unbuddied[i].list)) {
 525			spin_unlock_bh(&zbud_budlists_spinlock);
 526			continue;
 527		}
 528		list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) {
 529			if (unlikely(!spin_trylock(&zbpg->lock)))
 530				continue;
 531			list_del_init(&zbpg->bud_list);
 532			zbud_unbuddied[i].count--;
 533			spin_unlock(&zbud_budlists_spinlock);
 534			zcache_evicted_unbuddied_pages++;
 535			/* want budlists unlocked when doing zbpg eviction */
 536			zbud_evict_zbpg(zbpg);
 537			local_bh_enable();
 538			if (--nr <= 0)
 539				goto out;
 540			goto retry_unbud_list_i;
 541		}
 542		spin_unlock_bh(&zbud_budlists_spinlock);
 543	}
 544
 545	/* as a last resort, free buddied pages */
 546retry_bud_list:
 547	spin_lock_bh(&zbud_budlists_spinlock);
 548	if (list_empty(&zbud_buddied_list)) {
 549		spin_unlock_bh(&zbud_budlists_spinlock);
 550		goto out;
 551	}
 552	list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) {
 553		if (unlikely(!spin_trylock(&zbpg->lock)))
 554			continue;
 555		list_del_init(&zbpg->bud_list);
 556		zcache_zbud_buddied_count--;
 557		spin_unlock(&zbud_budlists_spinlock);
 558		zcache_evicted_buddied_pages++;
 559		/* want budlists unlocked when doing zbpg eviction */
 560		zbud_evict_zbpg(zbpg);
 561		local_bh_enable();
 562		if (--nr <= 0)
 563			goto out;
 564		goto retry_bud_list;
 565	}
 566	spin_unlock_bh(&zbud_budlists_spinlock);
 567out:
 568	return;
 569}
 570
 571static void zbud_init(void)
 572{
 573	int i;
 574
 575	INIT_LIST_HEAD(&zbud_buddied_list);
 576	zcache_zbud_buddied_count = 0;
 577	for (i = 0; i < NCHUNKS; i++) {
 578		INIT_LIST_HEAD(&zbud_unbuddied[i].list);
 579		zbud_unbuddied[i].count = 0;
 580	}
 581}
 582
 583#ifdef CONFIG_SYSFS
 584/*
 585 * These sysfs routines show a nice distribution of how many zbpg's are
 586 * currently (and have ever been placed) in each unbuddied list.  It's fun
 587 * to watch but can probably go away before final merge.
 588 */
 589static int zbud_show_unbuddied_list_counts(char *buf)
 590{
 591	int i;
 592	char *p = buf;
 593
 594	for (i = 0; i < NCHUNKS; i++)
 595		p += sprintf(p, "%u ", zbud_unbuddied[i].count);
 596	return p - buf;
 597}
 598
 599static int zbud_show_cumul_chunk_counts(char *buf)
 600{
 601	unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0;
 602	unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0;
 603	unsigned long total_chunks_lte_42 = 0;
 604	char *p = buf;
 605
 606	for (i = 0; i < NCHUNKS; i++) {
 607		p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]);
 608		chunks += zbud_cumul_chunk_counts[i];
 609		total_chunks += zbud_cumul_chunk_counts[i];
 610		sum_total_chunks += i * zbud_cumul_chunk_counts[i];
 611		if (i == 21)
 612			total_chunks_lte_21 = total_chunks;
 613		if (i == 32)
 614			total_chunks_lte_32 = total_chunks;
 615		if (i == 42)
 616			total_chunks_lte_42 = total_chunks;
 617	}
 618	p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n",
 619		total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42,
 620		chunks == 0 ? 0 : sum_total_chunks / chunks);
 621	return p - buf;
 622}
 623#endif
 624
 625/**********
 626 * This "zv" PAM implementation combines the TLSF-based xvMalloc
 627 * with lzo1x compression to maximize the amount of data that can
 628 * be packed into a physical page.
 629 *
 630 * Zv represents a PAM page with the index and object (plus a "size" value
 631 * necessary for decompression) immediately preceding the compressed data.
 632 */
 633
 634#define ZVH_SENTINEL  0x43214321
 635
 636struct zv_hdr {
 637	uint32_t pool_id;
 638	struct tmem_oid oid;
 639	uint32_t index;
 640	DECL_SENTINEL
 641};
 642
 643/* rudimentary policy limits */
 644/* total number of persistent pages may not exceed this percentage */
 645static unsigned int zv_page_count_policy_percent = 75;
 646/*
 647 * byte count defining poor compression; pages with greater zsize will be
 648 * rejected
 649 */
 650static unsigned int zv_max_zsize = (PAGE_SIZE / 8) * 7;
 651/*
 652 * byte count defining poor *mean* compression; pages with greater zsize
 653 * will be rejected until sufficient better-compressed pages are accepted
 654 * driving the man below this threshold
 655 */
 656static unsigned int zv_max_mean_zsize = (PAGE_SIZE / 8) * 5;
 657
 658static unsigned long zv_curr_dist_counts[NCHUNKS];
 659static unsigned long zv_cumul_dist_counts[NCHUNKS];
 660
 661static struct zv_hdr *zv_create(struct xv_pool *xvpool, uint32_t pool_id,
 662				struct tmem_oid *oid, uint32_t index,
 663				void *cdata, unsigned clen)
 664{
 665	struct page *page;
 666	struct zv_hdr *zv = NULL;
 667	uint32_t offset;
 668	int alloc_size = clen + sizeof(struct zv_hdr);
 669	int chunks = (alloc_size + (CHUNK_SIZE - 1)) >> CHUNK_SHIFT;
 670	int ret;
 671
 672	BUG_ON(!irqs_disabled());
 673	BUG_ON(chunks >= NCHUNKS);
 674	ret = xv_malloc(xvpool, alloc_size,
 675			&page, &offset, ZCACHE_GFP_MASK);
 676	if (unlikely(ret))
 677		goto out;
 678	zv_curr_dist_counts[chunks]++;
 679	zv_cumul_dist_counts[chunks]++;
 680	zv = kmap_atomic(page, KM_USER0) + offset;
 681	zv->index = index;
 682	zv->oid = *oid;
 683	zv->pool_id = pool_id;
 684	SET_SENTINEL(zv, ZVH);
 685	memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen);
 686	kunmap_atomic(zv, KM_USER0);
 687out:
 688	return zv;
 689}
 690
 691static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv)
 692{
 693	unsigned long flags;
 694	struct page *page;
 695	uint32_t offset;
 696	uint16_t size = xv_get_object_size(zv);
 697	int chunks = (size + (CHUNK_SIZE - 1)) >> CHUNK_SHIFT;
 698
 699	ASSERT_SENTINEL(zv, ZVH);
 700	BUG_ON(chunks >= NCHUNKS);
 701	zv_curr_dist_counts[chunks]--;
 702	size -= sizeof(*zv);
 703	BUG_ON(size == 0);
 704	INVERT_SENTINEL(zv, ZVH);
 705	page = virt_to_page(zv);
 706	offset = (unsigned long)zv & ~PAGE_MASK;
 707	local_irq_save(flags);
 708	xv_free(xvpool, page, offset);
 709	local_irq_restore(flags);
 710}
 711
 712static void zv_decompress(struct page *page, struct zv_hdr *zv)
 713{
 714	size_t clen = PAGE_SIZE;
 715	char *to_va;
 716	unsigned size;
 717	int ret;
 718
 719	ASSERT_SENTINEL(zv, ZVH);
 720	size = xv_get_object_size(zv) - sizeof(*zv);
 721	BUG_ON(size == 0);
 722	to_va = kmap_atomic(page, KM_USER0);
 723	ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv),
 724					size, to_va, &clen);
 725	kunmap_atomic(to_va, KM_USER0);
 726	BUG_ON(ret != LZO_E_OK);
 727	BUG_ON(clen != PAGE_SIZE);
 728}
 729
 730#ifdef CONFIG_SYSFS
 731/*
 732 * show a distribution of compression stats for zv pages.
 733 */
 734
 735static int zv_curr_dist_counts_show(char *buf)
 736{
 737	unsigned long i, n, chunks = 0, sum_total_chunks = 0;
 738	char *p = buf;
 739
 740	for (i = 0; i < NCHUNKS; i++) {
 741		n = zv_curr_dist_counts[i];
 742		p += sprintf(p, "%lu ", n);
 743		chunks += n;
 744		sum_total_chunks += i * n;
 745	}
 746	p += sprintf(p, "mean:%lu\n",
 747		chunks == 0 ? 0 : sum_total_chunks / chunks);
 748	return p - buf;
 749}
 750
 751static int zv_cumul_dist_counts_show(char *buf)
 752{
 753	unsigned long i, n, chunks = 0, sum_total_chunks = 0;
 754	char *p = buf;
 755
 756	for (i = 0; i < NCHUNKS; i++) {
 757		n = zv_cumul_dist_counts[i];
 758		p += sprintf(p, "%lu ", n);
 759		chunks += n;
 760		sum_total_chunks += i * n;
 761	}
 762	p += sprintf(p, "mean:%lu\n",
 763		chunks == 0 ? 0 : sum_total_chunks / chunks);
 764	return p - buf;
 765}
 766
 767/*
 768 * setting zv_max_zsize via sysfs causes all persistent (e.g. swap)
 769 * pages that don't compress to less than this value (including metadata
 770 * overhead) to be rejected.  We don't allow the value to get too close
 771 * to PAGE_SIZE.
 772 */
 773static ssize_t zv_max_zsize_show(struct kobject *kobj,
 774				    struct kobj_attribute *attr,
 775				    char *buf)
 776{
 777	return sprintf(buf, "%u\n", zv_max_zsize);
 778}
 779
 780static ssize_t zv_max_zsize_store(struct kobject *kobj,
 781				    struct kobj_attribute *attr,
 782				    const char *buf, size_t count)
 783{
 784	unsigned long val;
 785	int err;
 786
 787	if (!capable(CAP_SYS_ADMIN))
 788		return -EPERM;
 789
 790	err = strict_strtoul(buf, 10, &val);
 791	if (err || (val == 0) || (val > (PAGE_SIZE / 8) * 7))
 792		return -EINVAL;
 793	zv_max_zsize = val;
 794	return count;
 795}
 796
 797/*
 798 * setting zv_max_mean_zsize via sysfs causes all persistent (e.g. swap)
 799 * pages that don't compress to less than this value (including metadata
 800 * overhead) to be rejected UNLESS the mean compression is also smaller
 801 * than this value.  In other words, we are load-balancing-by-zsize the
 802 * accepted pages.  Again, we don't allow the value to get too close
 803 * to PAGE_SIZE.
 804 */
 805static ssize_t zv_max_mean_zsize_show(struct kobject *kobj,
 806				    struct kobj_attribute *attr,
 807				    char *buf)
 808{
 809	return sprintf(buf, "%u\n", zv_max_mean_zsize);
 810}
 811
 812static ssize_t zv_max_mean_zsize_store(struct kobject *kobj,
 813				    struct kobj_attribute *attr,
 814				    const char *buf, size_t count)
 815{
 816	unsigned long val;
 817	int err;
 818
 819	if (!capable(CAP_SYS_ADMIN))
 820		return -EPERM;
 821
 822	err = strict_strtoul(buf, 10, &val);
 823	if (err || (val == 0) || (val > (PAGE_SIZE / 8) * 7))
 824		return -EINVAL;
 825	zv_max_mean_zsize = val;
 826	return count;
 827}
 828
 829/*
 830 * setting zv_page_count_policy_percent via sysfs sets an upper bound of
 831 * persistent (e.g. swap) pages that will be retained according to:
 832 *     (zv_page_count_policy_percent * totalram_pages) / 100)
 833 * when that limit is reached, further puts will be rejected (until
 834 * some pages have been flushed).  Note that, due to compression,
 835 * this number may exceed 100; it defaults to 75 and we set an
 836 * arbitary limit of 150.  A poor choice will almost certainly result
 837 * in OOM's, so this value should only be changed prudently.
 838 */
 839static ssize_t zv_page_count_policy_percent_show(struct kobject *kobj,
 840						 struct kobj_attribute *attr,
 841						 char *buf)
 842{
 843	return sprintf(buf, "%u\n", zv_page_count_policy_percent);
 844}
 845
 846static ssize_t zv_page_count_policy_percent_store(struct kobject *kobj,
 847						  struct kobj_attribute *attr,
 848						  const char *buf, size_t count)
 849{
 850	unsigned long val;
 851	int err;
 852
 853	if (!capable(CAP_SYS_ADMIN))
 854		return -EPERM;
 855
 856	err = strict_strtoul(buf, 10, &val);
 857	if (err || (val == 0) || (val > 150))
 858		return -EINVAL;
 859	zv_page_count_policy_percent = val;
 860	return count;
 861}
 862
 863static struct kobj_attribute zcache_zv_max_zsize_attr = {
 864		.attr = { .name = "zv_max_zsize", .mode = 0644 },
 865		.show = zv_max_zsize_show,
 866		.store = zv_max_zsize_store,
 867};
 868
 869static struct kobj_attribute zcache_zv_max_mean_zsize_attr = {
 870		.attr = { .name = "zv_max_mean_zsize", .mode = 0644 },
 871		.show = zv_max_mean_zsize_show,
 872		.store = zv_max_mean_zsize_store,
 873};
 874
 875static struct kobj_attribute zcache_zv_page_count_policy_percent_attr = {
 876		.attr = { .name = "zv_page_count_policy_percent",
 877			  .mode = 0644 },
 878		.show = zv_page_count_policy_percent_show,
 879		.store = zv_page_count_policy_percent_store,
 880};
 881#endif
 882
 883/*
 884 * zcache core code starts here
 885 */
 886
 887/* useful stats not collected by cleancache or frontswap */
 888static unsigned long zcache_flush_total;
 889static unsigned long zcache_flush_found;
 890static unsigned long zcache_flobj_total;
 891static unsigned long zcache_flobj_found;
 892static unsigned long zcache_failed_eph_puts;
 893static unsigned long zcache_failed_pers_puts;
 894
 895/*
 896 * Tmem operations assume the poolid implies the invoking client.
 897 * Zcache only has one client (the kernel itself): LOCAL_CLIENT.
 898 * RAMster has each client numbered by cluster node, and a KVM version
 899 * of zcache would have one client per guest and each client might
 900 * have a poolid==N.
 901 */
 902static struct tmem_pool *zcache_get_pool_by_id(uint16_t cli_id, uint16_t poolid)
 903{
 904	struct tmem_pool *pool = NULL;
 905	struct zcache_client *cli = NULL;
 906
 907	if (cli_id == LOCAL_CLIENT)
 908		cli = &zcache_host;
 909	else {
 910		if (cli_id >= MAX_CLIENTS)
 911			goto out;
 912		cli = &zcache_clients[cli_id];
 913		if (cli == NULL)
 914			goto out;
 915		atomic_inc(&cli->refcount);
 916	}
 917	if (poolid < MAX_POOLS_PER_CLIENT) {
 918		pool = cli->tmem_pools[poolid];
 919		if (pool != NULL)
 920			atomic_inc(&pool->refcount);
 921	}
 922out:
 923	return pool;
 924}
 925
 926static void zcache_put_pool(struct tmem_pool *pool)
 927{
 928	struct zcache_client *cli = NULL;
 929
 930	if (pool == NULL)
 931		BUG();
 932	cli = pool->client;
 933	atomic_dec(&pool->refcount);
 934	atomic_dec(&cli->refcount);
 935}
 936
 937int zcache_new_client(uint16_t cli_id)
 938{
 939	struct zcache_client *cli = NULL;
 940	int ret = -1;
 941
 942	if (cli_id == LOCAL_CLIENT)
 943		cli = &zcache_host;
 944	else if ((unsigned int)cli_id < MAX_CLIENTS)
 945		cli = &zcache_clients[cli_id];
 946	if (cli == NULL)
 947		goto out;
 948	if (cli->allocated)
 949		goto out;
 950	cli->allocated = 1;
 951#ifdef CONFIG_FRONTSWAP
 952	cli->xvpool = xv_create_pool();
 953	if (cli->xvpool == NULL)
 954		goto out;
 955#endif
 956	ret = 0;
 957out:
 958	return ret;
 959}
 960
 961/* counters for debugging */
 962static unsigned long zcache_failed_get_free_pages;
 963static unsigned long zcache_failed_alloc;
 964static unsigned long zcache_put_to_flush;
 965static unsigned long zcache_aborted_preload;
 966static unsigned long zcache_aborted_shrink;
 967
 968/*
 969 * Ensure that memory allocation requests in zcache don't result
 970 * in direct reclaim requests via the shrinker, which would cause
 971 * an infinite loop.  Maybe a GFP flag would be better?
 972 */
 973static DEFINE_SPINLOCK(zcache_direct_reclaim_lock);
 974
 975/*
 976 * for now, used named slabs so can easily track usage; later can
 977 * either just use kmalloc, or perhaps add a slab-like allocator
 978 * to more carefully manage total memory utilization
 979 */
 980static struct kmem_cache *zcache_objnode_cache;
 981static struct kmem_cache *zcache_obj_cache;
 982static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0);
 983static unsigned long zcache_curr_obj_count_max;
 984static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0);
 985static unsigned long zcache_curr_objnode_count_max;
 986
 987/*
 988 * to avoid memory allocation recursion (e.g. due to direct reclaim), we
 989 * preload all necessary data structures so the hostops callbacks never
 990 * actually do a malloc
 991 */
 992struct zcache_preload {
 993	void *page;
 994	struct tmem_obj *obj;
 995	int nr;
 996	struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH];
 997};
 998static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, };
 999
1000static int zcache_do_preload(struct tmem_pool *pool)
1001{
1002	struct zcache_preload *kp;
1003	struct tmem_objnode *objnode;
1004	struct tmem_obj *obj;
1005	void *page;
1006	int ret = -ENOMEM;
1007
1008	if (unlikely(zcache_objnode_cache == NULL))
1009		goto out;
1010	if (unlikely(zcache_obj_cache == NULL))
1011		goto out;
1012	if (!spin_trylock(&zcache_direct_reclaim_lock)) {
1013		zcache_aborted_preload++;
1014		goto out;
1015	}
1016	preempt_disable();
1017	kp = &__get_cpu_var(zcache_preloads);
1018	while (kp->nr < ARRAY_SIZE(kp->objnodes)) {
1019		preempt_enable_no_resched();
1020		objnode = kmem_cache_alloc(zcache_objnode_cache,
1021				ZCACHE_GFP_MASK);
1022		if (unlikely(objnode == NULL)) {
1023			zcache_failed_alloc++;
1024			goto unlock_out;
1025		}
1026		preempt_disable();
1027		kp = &__get_cpu_var(zcache_preloads);
1028		if (kp->nr < ARRAY_SIZE(kp->objnodes))
1029			kp->objnodes[kp->nr++] = objnode;
1030		else
1031			kmem_cache_free(zcache_objnode_cache, objnode);
1032	}
1033	preempt_enable_no_resched();
1034	obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK);
1035	if (unlikely(obj == NULL)) {
1036		zcache_failed_alloc++;
1037		goto unlock_out;
1038	}
1039	page = (void *)__get_free_page(ZCACHE_GFP_MASK);
1040	if (unlikely(page == NULL)) {
1041		zcache_failed_get_free_pages++;
1042		kmem_cache_free(zcache_obj_cache, obj);
1043		goto unlock_out;
1044	}
1045	preempt_disable();
1046	kp = &__get_cpu_var(zcache_preloads);
1047	if (kp->obj == NULL)
1048		kp->obj = obj;
1049	else
1050		kmem_cache_free(zcache_obj_cache, obj);
1051	if (kp->page == NULL)
1052		kp->page = page;
1053	else
1054		free_page((unsigned long)page);
1055	ret = 0;
1056unlock_out:
1057	spin_unlock(&zcache_direct_reclaim_lock);
1058out:
1059	return ret;
1060}
1061
1062static void *zcache_get_free_page(void)
1063{
1064	struct zcache_preload *kp;
1065	void *page;
1066
1067	kp = &__get_cpu_var(zcache_preloads);
1068	page = kp->page;
1069	BUG_ON(page == NULL);
1070	kp->page = NULL;
1071	return page;
1072}
1073
1074static void zcache_free_page(void *p)
1075{
1076	free_page((unsigned long)p);
1077}
1078
1079/*
1080 * zcache implementation for tmem host ops
1081 */
1082
1083static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool)
1084{
1085	struct tmem_objnode *objnode = NULL;
1086	unsigned long count;
1087	struct zcache_preload *kp;
1088
1089	kp = &__get_cpu_var(zcache_preloads);
1090	if (kp->nr <= 0)
1091		goto out;
1092	objnode = kp->objnodes[kp->nr - 1];
1093	BUG_ON(objnode == NULL);
1094	kp->objnodes[kp->nr - 1] = NULL;
1095	kp->nr--;
1096	count = atomic_inc_return(&zcache_curr_objnode_count);
1097	if (count > zcache_curr_objnode_count_max)
1098		zcache_curr_objnode_count_max = count;
1099out:
1100	return objnode;
1101}
1102
1103static void zcache_objnode_free(struct tmem_objnode *objnode,
1104					struct tmem_pool *pool)
1105{
1106	atomic_dec(&zcache_curr_objnode_count);
1107	BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0);
1108	kmem_cache_free(zcache_objnode_cache, objnode);
1109}
1110
1111static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool)
1112{
1113	struct tmem_obj *obj = NULL;
1114	unsigned long count;
1115	struct zcache_preload *kp;
1116
1117	kp = &__get_cpu_var(zcache_preloads);
1118	obj = kp->obj;
1119	BUG_ON(obj == NULL);
1120	kp->obj = NULL;
1121	count = atomic_inc_return(&zcache_curr_obj_count);
1122	if (count > zcache_curr_obj_count_max)
1123		zcache_curr_obj_count_max = count;
1124	return obj;
1125}
1126
1127static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool)
1128{
1129	atomic_dec(&zcache_curr_obj_count);
1130	BUG_ON(atomic_read(&zcache_curr_obj_count) < 0);
1131	kmem_cache_free(zcache_obj_cache, obj);
1132}
1133
1134static struct tmem_hostops zcache_hostops = {
1135	.obj_alloc = zcache_obj_alloc,
1136	.obj_free = zcache_obj_free,
1137	.objnode_alloc = zcache_objnode_alloc,
1138	.objnode_free = zcache_objnode_free,
1139};
1140
1141/*
1142 * zcache implementations for PAM page descriptor ops
1143 */
1144
1145static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0);
1146static unsigned long zcache_curr_eph_pampd_count_max;
1147static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0);
1148static unsigned long zcache_curr_pers_pampd_count_max;
1149
1150/* forward reference */
1151static int zcache_compress(struct page *from, void **out_va, size_t *out_len);
1152
1153static void *zcache_pampd_create(char *data, size_t size, bool raw, int eph,
1154				struct tmem_pool *pool, struct tmem_oid *oid,
1155				 uint32_t index)
1156{
1157	void *pampd = NULL, *cdata;
1158	size_t clen;
1159	int ret;
1160	unsigned long count;
1161	struct page *page = (struct page *)(data);
1162	struct zcache_client *cli = pool->client;
1163	uint16_t client_id = get_client_id_from_client(cli);
1164	unsigned long zv_mean_zsize;
1165	unsigned long curr_pers_pampd_count;
1166	u64 total_zsize;
1167
1168	if (eph) {
1169		ret = zcache_compress(page, &cdata, &clen);
1170		if (ret == 0)
1171			goto out;
1172		if (clen == 0 || clen > zbud_max_buddy_size()) {
1173			zcache_compress_poor++;
1174			goto out;
1175		}
1176		pampd = (void *)zbud_create(client_id, pool->pool_id, oid,
1177						index, page, cdata, clen);
1178		if (pampd != NULL) {
1179			count = atomic_inc_return(&zcache_curr_eph_pampd_count);
1180			if (count > zcache_curr_eph_pampd_count_max)
1181				zcache_curr_eph_pampd_count_max = count;
1182		}
1183	} else {
1184		curr_pers_pampd_count =
1185			atomic_read(&zcache_curr_pers_pampd_count);
1186		if (curr_pers_pampd_count >
1187		    (zv_page_count_policy_percent * totalram_pages) / 100)
1188			goto out;
1189		ret = zcache_compress(page, &cdata, &clen);
1190		if (ret == 0)
1191			goto out;
1192		/* reject if compression is too poor */
1193		if (clen > zv_max_zsize) {
1194			zcache_compress_poor++;
1195			goto out;
1196		}
1197		/* reject if mean compression is too poor */
1198		if ((clen > zv_max_mean_zsize) && (curr_pers_pampd_count > 0)) {
1199			total_zsize = xv_get_total_size_bytes(cli->xvpool);
1200			zv_mean_zsize = div_u64(total_zsize,
1201						curr_pers_pampd_count);
1202			if (zv_mean_zsize > zv_max_mean_zsize) {
1203				zcache_mean_compress_poor++;
1204				goto out;
1205			}
1206		}
1207		pampd = (void *)zv_create(cli->xvpool, pool->pool_id,
1208						oid, index, cdata, clen);
1209		if (pampd == NULL)
1210			goto out;
1211		count = atomic_inc_return(&zcache_curr_pers_pampd_count);
1212		if (count > zcache_curr_pers_pampd_count_max)
1213			zcache_curr_pers_pampd_count_max = count;
1214	}
1215out:
1216	return pampd;
1217}
1218
1219/*
1220 * fill the pageframe corresponding to the struct page with the data
1221 * from the passed pampd
1222 */
1223static int zcache_pampd_get_data(char *data, size_t *bufsize, bool raw,
1224					void *pampd, struct tmem_pool *pool,
1225					struct tmem_oid *oid, uint32_t index)
1226{
1227	int ret = 0;
1228
1229	BUG_ON(is_ephemeral(pool));
1230	zv_decompress((struct page *)(data), pampd);
1231	return ret;
1232}
1233
1234/*
1235 * fill the pageframe corresponding to the struct page with the data
1236 * from the passed pampd
1237 */
1238static int zcache_pampd_get_data_and_free(char *data, size_t *bufsize, bool raw,
1239					void *pampd, struct tmem_pool *pool,
1240					struct tmem_oid *oid, uint32_t index)
1241{
1242	int ret = 0;
1243
1244	BUG_ON(!is_ephemeral(pool));
1245	zbud_decompress((struct page *)(data), pampd);
1246	zbud_free_and_delist((struct zbud_hdr *)pampd);
1247	atomic_dec(&zcache_curr_eph_pampd_count);
1248	return ret;
1249}
1250
1251/*
1252 * free the pampd and remove it from any zcache lists
1253 * pampd must no longer be pointed to from any tmem data structures!
1254 */
1255static void zcache_pampd_free(void *pampd, struct tmem_pool *pool,
1256				struct tmem_oid *oid, uint32_t index)
1257{
1258	struct zcache_client *cli = pool->client;
1259
1260	if (is_ephemeral(pool)) {
1261		zbud_free_and_delist((struct zbud_hdr *)pampd);
1262		atomic_dec(&zcache_curr_eph_pampd_count);
1263		BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0);
1264	} else {
1265		zv_free(cli->xvpool, (struct zv_hdr *)pampd);
1266		atomic_dec(&zcache_curr_pers_pampd_count);
1267		BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0);
1268	}
1269}
1270
1271static void zcache_pampd_free_obj(struct tmem_pool *pool, struct tmem_obj *obj)
1272{
1273}
1274
1275static void zcache_pampd_new_obj(struct tmem_obj *obj)
1276{
1277}
1278
1279static int zcache_pampd_replace_in_obj(void *pampd, struct tmem_obj *obj)
1280{
1281	return -1;
1282}
1283
1284static bool zcache_pampd_is_remote(void *pampd)
1285{
1286	return 0;
1287}
1288
1289static struct tmem_pamops zcache_pamops = {
1290	.create = zcache_pampd_create,
1291	.get_data = zcache_pampd_get_data,
1292	.get_data_and_free = zcache_pampd_get_data_and_free,
1293	.free = zcache_pampd_free,
1294	.free_obj = zcache_pampd_free_obj,
1295	.new_obj = zcache_pampd_new_obj,
1296	.replace_in_obj = zcache_pampd_replace_in_obj,
1297	.is_remote = zcache_pampd_is_remote,
1298};
1299
1300/*
1301 * zcache compression/decompression and related per-cpu stuff
1302 */
1303
1304#define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS
1305#define LZO_DSTMEM_PAGE_ORDER 1
1306static DEFINE_PER_CPU(unsigned char *, zcache_workmem);
1307static DEFINE_PER_CPU(unsigned char *, zcache_dstmem);
1308
1309static int zcache_compress(struct page *from, void **out_va, size_t *out_len)
1310{
1311	int ret = 0;
1312	unsigned char *dmem = __get_cpu_var(zcache_dstmem);
1313	unsigned char *wmem = __get_cpu_var(zcache_workmem);
1314	char *from_va;
1315
1316	BUG_ON(!irqs_disabled());
1317	if (unlikely(dmem == NULL || wmem == NULL))
1318		goto out;  /* no buffer, so can't compress */
1319	from_va = kmap_atomic(from, KM_USER0);
1320	mb();
1321	ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem);
1322	BUG_ON(ret != LZO_E_OK);
1323	*out_va = dmem;
1324	kunmap_atomic(from_va, KM_USER0);
1325	ret = 1;
1326out:
1327	return ret;
1328}
1329
1330
1331static int zcache_cpu_notifier(struct notifier_block *nb,
1332				unsigned long action, void *pcpu)
1333{
1334	int cpu = (long)pcpu;
1335	struct zcache_preload *kp;
1336
1337	switch (action) {
1338	case CPU_UP_PREPARE:
1339		per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages(
1340			GFP_KERNEL | __GFP_REPEAT,
1341			LZO_DSTMEM_PAGE_ORDER),
1342		per_cpu(zcache_workmem, cpu) =
1343			kzalloc(LZO1X_MEM_COMPRESS,
1344				GFP_KERNEL | __GFP_REPEAT);
1345		break;
1346	case CPU_DEAD:
1347	case CPU_UP_CANCELED:
1348		free_pages((unsigned long)per_cpu(zcache_dstmem, cpu),
1349				LZO_DSTMEM_PAGE_ORDER);
1350		per_cpu(zcache_dstmem, cpu) = NULL;
1351		kfree(per_cpu(zcache_workmem, cpu));
1352		per_cpu(zcache_workmem, cpu) = NULL;
1353		kp = &per_cpu(zcache_preloads, cpu);
1354		while (kp->nr) {
1355			kmem_cache_free(zcache_objnode_cache,
1356					kp->objnodes[kp->nr - 1]);
1357			kp->objnodes[kp->nr - 1] = NULL;
1358			kp->nr--;
1359		}
1360		kmem_cache_free(zcache_obj_cache, kp->obj);
1361		free_page((unsigned long)kp->page);
1362		break;
1363	default:
1364		break;
1365	}
1366	return NOTIFY_OK;
1367}
1368
1369static struct notifier_block zcache_cpu_notifier_block = {
1370	.notifier_call = zcache_cpu_notifier
1371};
1372
1373#ifdef CONFIG_SYSFS
1374#define ZCACHE_SYSFS_RO(_name) \
1375	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1376				struct kobj_attribute *attr, char *buf) \
1377	{ \
1378		return sprintf(buf, "%lu\n", zcache_##_name); \
1379	} \
1380	static struct kobj_attribute zcache_##_name##_attr = { \
1381		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1382		.show = zcache_##_name##_show, \
1383	}
1384
1385#define ZCACHE_SYSFS_RO_ATOMIC(_name) \
1386	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1387				struct kobj_attribute *attr, char *buf) \
1388	{ \
1389	    return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \
1390	} \
1391	static struct kobj_attribute zcache_##_name##_attr = { \
1392		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1393		.show = zcache_##_name##_show, \
1394	}
1395
1396#define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \
1397	static ssize_t zcache_##_name##_show(struct kobject *kobj, \
1398				struct kobj_attribute *attr, char *buf) \
1399	{ \
1400	    return _func(buf); \
1401	} \
1402	static struct kobj_attribute zcache_##_name##_attr = { \
1403		.attr = { .name = __stringify(_name), .mode = 0444 }, \
1404		.show = zcache_##_name##_show, \
1405	}
1406
1407ZCACHE_SYSFS_RO(curr_obj_count_max);
1408ZCACHE_SYSFS_RO(curr_objnode_count_max);
1409ZCACHE_SYSFS_RO(flush_total);
1410ZCACHE_SYSFS_RO(flush_found);
1411ZCACHE_SYSFS_RO(flobj_total);
1412ZCACHE_SYSFS_RO(flobj_found);
1413ZCACHE_SYSFS_RO(failed_eph_puts);
1414ZCACHE_SYSFS_RO(failed_pers_puts);
1415ZCACHE_SYSFS_RO(zbud_curr_zbytes);
1416ZCACHE_SYSFS_RO(zbud_cumul_zpages);
1417ZCACHE_SYSFS_RO(zbud_cumul_zbytes);
1418ZCACHE_SYSFS_RO(zbud_buddied_count);
1419ZCACHE_SYSFS_RO(zbpg_unused_list_count);
1420ZCACHE_SYSFS_RO(evicted_raw_pages);
1421ZCACHE_SYSFS_RO(evicted_unbuddied_pages);
1422ZCACHE_SYSFS_RO(evicted_buddied_pages);
1423ZCACHE_SYSFS_RO(failed_get_free_pages);
1424ZCACHE_SYSFS_RO(failed_alloc);
1425ZCACHE_SYSFS_RO(put_to_flush);
1426ZCACHE_SYSFS_RO(aborted_preload);
1427ZCACHE_SYSFS_RO(aborted_shrink);
1428ZCACHE_SYSFS_RO(compress_poor);
1429ZCACHE_SYSFS_RO(mean_compress_poor);
1430ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages);
1431ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages);
1432ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count);
1433ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count);
1434ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts,
1435			zbud_show_unbuddied_list_counts);
1436ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts,
1437			zbud_show_cumul_chunk_counts);
1438ZCACHE_SYSFS_RO_CUSTOM(zv_curr_dist_counts,
1439			zv_curr_dist_counts_show);
1440ZCACHE_SYSFS_RO_CUSTOM(zv_cumul_dist_counts,
1441			zv_cumul_dist_counts_show);
1442
1443static struct attribute *zcache_attrs[] = {
1444	&zcache_curr_obj_count_attr.attr,
1445	&zcache_curr_obj_count_max_attr.attr,
1446	&zcache_curr_objnode_count_attr.attr,
1447	&zcache_curr_objnode_count_max_attr.attr,
1448	&zcache_flush_total_attr.attr,
1449	&zcache_flobj_total_attr.attr,
1450	&zcache_flush_found_attr.attr,
1451	&zcache_flobj_found_attr.attr,
1452	&zcache_failed_eph_puts_attr.attr,
1453	&zcache_failed_pers_puts_attr.attr,
1454	&zcache_compress_poor_attr.attr,
1455	&zcache_mean_compress_poor_attr.attr,
1456	&zcache_zbud_curr_raw_pages_attr.attr,
1457	&zcache_zbud_curr_zpages_attr.attr,
1458	&zcache_zbud_curr_zbytes_attr.attr,
1459	&zcache_zbud_cumul_zpages_attr.attr,
1460	&zcache_zbud_cumul_zbytes_attr.attr,
1461	&zcache_zbud_buddied_count_attr.attr,
1462	&zcache_zbpg_unused_list_count_attr.attr,
1463	&zcache_evicted_raw_pages_attr.attr,
1464	&zcache_evicted_unbuddied_pages_attr.attr,
1465	&zcache_evicted_buddied_pages_attr.attr,
1466	&zcache_failed_get_free_pages_attr.attr,
1467	&zcache_failed_alloc_attr.attr,
1468	&zcache_put_to_flush_attr.attr,
1469	&zcache_aborted_preload_attr.attr,
1470	&zcache_aborted_shrink_attr.attr,
1471	&zcache_zbud_unbuddied_list_counts_attr.attr,
1472	&zcache_zbud_cumul_chunk_counts_attr.attr,
1473	&zcache_zv_curr_dist_counts_attr.attr,
1474	&zcache_zv_cumul_dist_counts_attr.attr,
1475	&zcache_zv_max_zsize_attr.attr,
1476	&zcache_zv_max_mean_zsize_attr.attr,
1477	&zcache_zv_page_count_policy_percent_attr.attr,
1478	NULL,
1479};
1480
1481static struct attribute_group zcache_attr_group = {
1482	.attrs = zcache_attrs,
1483	.name = "zcache",
1484};
1485
1486#endif /* CONFIG_SYSFS */
1487/*
1488 * When zcache is disabled ("frozen"), pools can be created and destroyed,
1489 * but all puts (and thus all other operations that require memory allocation)
1490 * must fail.  If zcache is unfrozen, accepts puts, then frozen again,
1491 * data consistency requires all puts while frozen to be converted into
1492 * flushes.
1493 */
1494static bool zcache_freeze;
1495
1496/*
1497 * zcache shrinker interface (only useful for ephemeral pages, so zbud only)
1498 */
1499static int shrink_zcache_memory(struct shrinker *shrink,
1500				struct shrink_control *sc)
1501{
1502	int ret = -1;
1503	int nr = sc->nr_to_scan;
1504	gfp_t gfp_mask = sc->gfp_mask;
1505
1506	if (nr >= 0) {
1507		if (!(gfp_mask & __GFP_FS))
1508			/* does this case really need to be skipped? */
1509			goto out;
1510		if (spin_trylock(&zcache_direct_reclaim_lock)) {
1511			zbud_evict_pages(nr);
1512			spin_unlock(&zcache_direct_reclaim_lock);
1513		} else
1514			zcache_aborted_shrink++;
1515	}
1516	ret = (int)atomic_read(&zcache_zbud_curr_raw_pages);
1517out:
1518	return ret;
1519}
1520
1521static struct shrinker zcache_shrinker = {
1522	.shrink = shrink_zcache_memory,
1523	.seeks = DEFAULT_SEEKS,
1524};
1525
1526/*
1527 * zcache shims between cleancache/frontswap ops and tmem
1528 */
1529
1530static int zcache_put_page(int cli_id, int pool_id, struct tmem_oid *oidp,
1531				uint32_t index, struct page *page)
1532{
1533	struct tmem_pool *pool;
1534	int ret = -1;
1535
1536	BUG_ON(!irqs_disabled());
1537	pool = zcache_get_pool_by_id(cli_id, pool_id);
1538	if (unlikely(pool == NULL))
1539		goto out;
1540	if (!zcache_freeze && zcache_do_preload(pool) == 0) {
1541		/* preload does preempt_disable on success */
1542		ret = tmem_put(pool, oidp, index, (char *)(page),
1543				PAGE_SIZE, 0, is_ephemeral(pool));
1544		if (ret < 0) {
1545			if (is_ephemeral(pool))
1546				zcache_failed_eph_puts++;
1547			else
1548				zcache_failed_pers_puts++;
1549		}
1550		zcache_put_pool(pool);
1551		preempt_enable_no_resched();
1552	} else {
1553		zcache_put_to_flush++;
1554		if (atomic_read(&pool->obj_count) > 0)
1555			/* the put fails whether the flush succeeds or not */
1556			(void)tmem_flush_page(pool, oidp, index);
1557		zcache_put_pool(pool);
1558	}
1559out:
1560	return ret;
1561}
1562
1563static int zcache_get_page(int cli_id, int pool_id, struct tmem_oid *oidp,
1564				uint32_t index, struct page *page)
1565{
1566	struct tmem_pool *pool;
1567	int ret = -1;
1568	unsigned long flags;
1569	size_t size = PAGE_SIZE;
1570
1571	local_irq_save(flags);
1572	pool = zcache_get_pool_by_id(cli_id, pool_id);
1573	if (likely(pool != NULL)) {
1574		if (atomic_read(&pool->obj_count) > 0)
1575			ret = tmem_get(pool, oidp, index, (char *)(page),
1576					&size, 0, is_ephemeral(pool));
1577		zcache_put_pool(pool);
1578	}
1579	local_irq_restore(flags);
1580	return ret;
1581}
1582
1583static int zcache_flush_page(int cli_id, int pool_id,
1584				struct tmem_oid *oidp, uint32_t index)
1585{
1586	struct tmem_pool *pool;
1587	int ret = -1;
1588	unsigned long flags;
1589
1590	local_irq_save(flags);
1591	zcache_flush_total++;
1592	pool = zcache_get_pool_by_id(cli_id, pool_id);
1593	if (likely(pool != NULL)) {
1594		if (atomic_read(&pool->obj_count) > 0)
1595			ret = tmem_flush_page(pool, oidp, index);
1596		zcache_put_pool(pool);
1597	}
1598	if (ret >= 0)
1599		zcache_flush_found++;
1600	local_irq_restore(flags);
1601	return ret;
1602}
1603
1604static int zcache_flush_object(int cli_id, int pool_id,
1605				struct tmem_oid *oidp)
1606{
1607	struct tmem_pool *pool;
1608	int ret = -1;
1609	unsigned long flags;
1610
1611	local_irq_save(flags);
1612	zcache_flobj_total++;
1613	pool = zcache_get_pool_by_id(cli_id, pool_id);
1614	if (likely(pool != NULL)) {
1615		if (atomic_read(&pool->obj_count) > 0)
1616			ret = tmem_flush_object(pool, oidp);
1617		zcache_put_pool(pool);
1618	}
1619	if (ret >= 0)
1620		zcache_flobj_found++;
1621	local_irq_restore(flags);
1622	return ret;
1623}
1624
1625static int zcache_destroy_pool(int cli_id, int pool_id)
1626{
1627	struct tmem_pool *pool = NULL;
1628	struct zcache_client *cli = NULL;
1629	int ret = -1;
1630
1631	if (pool_id < 0)
1632		goto out;
1633	if (cli_id == LOCAL_CLIENT)
1634		cli = &zcache_host;
1635	else if ((unsigned int)cli_id < MAX_CLIENTS)
1636		cli = &zcache_clients[cli_id];
1637	if (cli == NULL)
1638		goto out;
1639	atomic_inc(&cli->refcount);
1640	pool = cli->tmem_pools[pool_id];
1641	if (pool == NULL)
1642		goto out;
1643	cli->tmem_pools[pool_id] = NULL;
1644	/* wait for pool activity on other cpus to quiesce */
1645	while (atomic_read(&pool->refcount) != 0)
1646		;
1647	atomic_dec(&cli->refcount);
1648	local_bh_disable();
1649	ret = tmem_destroy_pool(pool);
1650	local_bh_enable();
1651	kfree(pool);
1652	pr_info("zcache: destroyed pool id=%d, cli_id=%d\n",
1653			pool_id, cli_id);
1654out:
1655	return ret;
1656}
1657
1658static int zcache_new_pool(uint16_t cli_id, uint32_t flags)
1659{
1660	int poolid = -1;
1661	struct tmem_pool *pool;
1662	struct zcache_client *cli = NULL;
1663
1664	if (cli_id == LOCAL_CLIENT)
1665		cli = &zcache_host;
1666	else if ((unsigned int)cli_id < MAX_CLIENTS)
1667		cli = &zcache_clients[cli_id];
1668	if (cli == NULL)
1669		goto out;
1670	atomic_inc(&cli->refcount);
1671	pool = kmalloc(sizeof(struct tmem_pool), GFP_KERNEL);
1672	if (pool == NULL) {
1673		pr_info("zcache: pool creation failed: out of memory\n");
1674		goto out;
1675	}
1676
1677	for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++)
1678		if (cli->tmem_pools[poolid] == NULL)
1679			break;
1680	if (poolid >= MAX_POOLS_PER_CLIENT) {
1681		pr_info("zcache: pool creation failed: max exceeded\n");
1682		kfree(pool);
1683		poolid = -1;
1684		goto out;
1685	}
1686	atomic_set(&pool->refcount, 0);
1687	pool->client = cli;
1688	pool->pool_id = poolid;
1689	tmem_new_pool(pool, flags);
1690	cli->tmem_pools[poolid] = pool;
1691	pr_info("zcache: created %s tmem pool, id=%d, client=%d\n",
1692		flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral",
1693		poolid, cli_id);
1694out:
1695	if (cli != NULL)
1696		atomic_dec(&cli->refcount);
1697	return poolid;
1698}
1699
1700/**********
1701 * Two kernel functionalities currently can be layered on top of tmem.
1702 * These are "cleancache" which is used as a second-chance cache for clean
1703 * page cache pages; and "frontswap" which is used for swap pages
1704 * to avoid writes to disk.  A generic "shim" is provided here for each
1705 * to translate in-kernel semantics to zcache semantics.
1706 */
1707
1708#ifdef CONFIG_CLEANCACHE
1709static void zcache_cleancache_put_page(int pool_id,
1710					struct cleancache_filekey key,
1711					pgoff_t index, struct page *page)
1712{
1713	u32 ind = (u32) index;
1714	struct tmem_oid oid = *(struct tmem_oid *)&key;
1715
1716	if (likely(ind == index))
1717		(void)zcache_put_page(LOCAL_CLIENT, pool_id, &oid, index, page);
1718}
1719
1720static int zcache_cleancache_get_page(int pool_id,
1721					struct cleancache_filekey key,
1722					pgoff_t index, struct page *page)
1723{
1724	u32 ind = (u32) index;
1725	struct tmem_oid oid = *(struct tmem_oid *)&key;
1726	int ret = -1;
1727
1728	if (likely(ind == index))
1729		ret = zcache_get_page(LOCAL_CLIENT, pool_id, &oid, index, page);
1730	return ret;
1731}
1732
1733static void zcache_cleancache_flush_page(int pool_id,
1734					struct cleancache_filekey key,
1735					pgoff_t index)
1736{
1737	u32 ind = (u32) index;
1738	struct tmem_oid oid = *(struct tmem_oid *)&key;
1739
1740	if (likely(ind == index))
1741		(void)zcache_flush_page(LOCAL_CLIENT, pool_id, &oid, ind);
1742}
1743
1744static void zcache_cleancache_flush_inode(int pool_id,
1745					struct cleancache_filekey key)
1746{
1747	struct tmem_oid oid = *(struct tmem_oid *)&key;
1748
1749	(void)zcache_flush_object(LOCAL_CLIENT, pool_id, &oid);
1750}
1751
1752static void zcache_cleancache_flush_fs(int pool_id)
1753{
1754	if (pool_id >= 0)
1755		(void)zcache_destroy_pool(LOCAL_CLIENT, pool_id);
1756}
1757
1758static int zcache_cleancache_init_fs(size_t pagesize)
1759{
1760	BUG_ON(sizeof(struct cleancache_filekey) !=
1761				sizeof(struct tmem_oid));
1762	BUG_ON(pagesize != PAGE_SIZE);
1763	return zcache_new_pool(LOCAL_CLIENT, 0);
1764}
1765
1766static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize)
1767{
1768	/* shared pools are unsupported and map to private */
1769	BUG_ON(sizeof(struct cleancache_filekey) !=
1770				sizeof(struct tmem_oid));
1771	BUG_ON(pagesize != PAGE_SIZE);
1772	return zcache_new_pool(LOCAL_CLIENT, 0);
1773}
1774
1775static struct cleancache_ops zcache_cleancache_ops = {
1776	.put_page = zcache_cleancache_put_page,
1777	.get_page = zcache_cleancache_get_page,
1778	.flush_page = zcache_cleancache_flush_page,
1779	.flush_inode = zcache_cleancache_flush_inode,
1780	.flush_fs = zcache_cleancache_flush_fs,
1781	.init_shared_fs = zcache_cleancache_init_shared_fs,
1782	.init_fs = zcache_cleancache_init_fs
1783};
1784
1785struct cleancache_ops zcache_cleancache_register_ops(void)
1786{
1787	struct cleancache_ops old_ops =
1788		cleancache_register_ops(&zcache_cleancache_ops);
1789
1790	return old_ops;
1791}
1792#endif
1793
1794#ifdef CONFIG_FRONTSWAP
1795/* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1796static int zcache_frontswap_poolid = -1;
1797
1798/*
1799 * Swizzling increases objects per swaptype, increasing tmem concurrency
1800 * for heavy swaploads.  Later, larger nr_cpus -> larger SWIZ_BITS
1801 */
1802#define SWIZ_BITS		4
1803#define SWIZ_MASK		((1 << SWIZ_BITS) - 1)
1804#define _oswiz(_type, _ind)	((_type << SWIZ_BITS) | (_ind & SWIZ_MASK))
1805#define iswiz(_ind)		(_ind >> SWIZ_BITS)
1806
1807static inline struct tmem_oid oswiz(unsigned type, u32 ind)
1808{
1809	struct tmem_oid oid = { .oid = { 0 } };
1810	oid.oid[0] = _oswiz(type, ind);
1811	return oid;
1812}
1813
1814static int zcache_frontswap_put_page(unsigned type, pgoff_t offset,
1815				   struct page *page)
1816{
1817	u64 ind64 = (u64)offset;
1818	u32 ind = (u32)offset;
1819	struct tmem_oid oid = oswiz(type, ind);
1820	int ret = -1;
1821	unsigned long flags;
1822
1823	BUG_ON(!PageLocked(page));
1824	if (likely(ind64 == ind)) {
1825		local_irq_save(flags);
1826		ret = zcache_put_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1827					&oid, iswiz(ind), page);
1828		local_irq_restore(flags);
1829	}
1830	return ret;
1831}
1832
1833/* returns 0 if the page was successfully gotten from frontswap, -1 if
1834 * was not present (should never happen!) */
1835static int zcache_frontswap_get_page(unsigned type, pgoff_t offset,
1836				   struct page *page)
1837{
1838	u64 ind64 = (u64)offset;
1839	u32 ind = (u32)offset;
1840	struct tmem_oid oid = oswiz(type, ind);
1841	int ret = -1;
1842
1843	BUG_ON(!PageLocked(page));
1844	if (likely(ind64 == ind))
1845		ret = zcache_get_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1846					&oid, iswiz(ind), page);
1847	return ret;
1848}
1849
1850/* flush a single page from frontswap */
1851static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset)
1852{
1853	u64 ind64 = (u64)offset;
1854	u32 ind = (u32)offset;
1855	struct tmem_oid oid = oswiz(type, ind);
1856
1857	if (likely(ind64 == ind))
1858		(void)zcache_flush_page(LOCAL_CLIENT, zcache_frontswap_poolid,
1859					&oid, iswiz(ind));
1860}
1861
1862/* flush all pages from the passed swaptype */
1863static void zcache_frontswap_flush_area(unsigned type)
1864{
1865	struct tmem_oid oid;
1866	int ind;
1867
1868	for (ind = SWIZ_MASK; ind >= 0; ind--) {
1869		oid = oswiz(type, ind);
1870		(void)zcache_flush_object(LOCAL_CLIENT,
1871						zcache_frontswap_poolid, &oid);
1872	}
1873}
1874
1875static void zcache_frontswap_init(unsigned ignored)
1876{
1877	/* a single tmem poolid is used for all frontswap "types" (swapfiles) */
1878	if (zcache_frontswap_poolid < 0)
1879		zcache_frontswap_poolid =
1880			zcache_new_pool(LOCAL_CLIENT, TMEM_POOL_PERSIST);
1881}
1882
1883static struct frontswap_ops zcache_frontswap_ops = {
1884	.put_page = zcache_frontswap_put_page,
1885	.get_page = zcache_frontswap_get_page,
1886	.flush_page = zcache_frontswap_flush_page,
1887	.flush_area = zcache_frontswap_flush_area,
1888	.init = zcache_frontswap_init
1889};
1890
1891struct frontswap_ops zcache_frontswap_register_ops(void)
1892{
1893	struct frontswap_ops old_ops =
1894		frontswap_register_ops(&zcache_frontswap_ops);
1895
1896	return old_ops;
1897}
1898#endif
1899
1900/*
1901 * zcache initialization
1902 * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR
1903 * NOTHING HAPPENS!
1904 */
1905
1906static int zcache_enabled;
1907
1908static int __init enable_zcache(char *s)
1909{
1910	zcache_enabled = 1;
1911	return 1;
1912}
1913__setup("zcache", enable_zcache);
1914
1915/* allow independent dynamic disabling of cleancache and frontswap */
1916
1917static int use_cleancache = 1;
1918
1919static int __init no_cleancache(char *s)
1920{
1921	use_cleancache = 0;
1922	return 1;
1923}
1924
1925__setup("nocleancache", no_cleancache);
1926
1927static int use_frontswap = 1;
1928
1929static int __init no_frontswap(char *s)
1930{
1931	use_frontswap = 0;
1932	return 1;
1933}
1934
1935__setup("nofrontswap", no_frontswap);
1936
1937static int __init zcache_init(void)
1938{
1939	int ret = 0;
1940
1941#ifdef CONFIG_SYSFS
1942	ret = sysfs_create_group(mm_kobj, &zcache_attr_group);
1943	if (ret) {
1944		pr_err("zcache: can't create sysfs\n");
1945		goto out;
1946	}
1947#endif /* CONFIG_SYSFS */
1948#if defined(CONFIG_CLEANCACHE) || defined(CONFIG_FRONTSWAP)
1949	if (zcache_enabled) {
1950		unsigned int cpu;
1951
1952		tmem_register_hostops(&zcache_hostops);
1953		tmem_register_pamops(&zcache_pamops);
1954		ret = register_cpu_notifier(&zcache_cpu_notifier_block);
1955		if (ret) {
1956			pr_err("zcache: can't register cpu notifier\n");
1957			goto out;
1958		}
1959		for_each_online_cpu(cpu) {
1960			void *pcpu = (void *)(long)cpu;
1961			zcache_cpu_notifier(&zcache_cpu_notifier_block,
1962				CPU_UP_PREPARE, pcpu);
1963		}
1964	}
1965	zcache_objnode_cache = kmem_cache_create("zcache_objnode",
1966				sizeof(struct tmem_objnode), 0, 0, NULL);
1967	zcache_obj_cache = kmem_cache_create("zcache_obj",
1968				sizeof(struct tmem_obj), 0, 0, NULL);
1969	ret = zcache_new_client(LOCAL_CLIENT);
1970	if (ret) {
1971		pr_err("zcache: can't create client\n");
1972		goto out;
1973	}
1974#endif
1975#ifdef CONFIG_CLEANCACHE
1976	if (zcache_enabled && use_cleancache) {
1977		struct cleancache_ops old_ops;
1978
1979		zbud_init();
1980		register_shrinker(&zcache_shrinker);
1981		old_ops = zcache_cleancache_register_ops();
1982		pr_info("zcache: cleancache enabled using kernel "
1983			"transcendent memory and compression buddies\n");
1984		if (old_ops.init_fs != NULL)
1985			pr_warning("zcache: cleancache_ops overridden");
1986	}
1987#endif
1988#ifdef CONFIG_FRONTSWAP
1989	if (zcache_enabled && use_frontswap) {
1990		struct frontswap_ops old_ops;
1991
1992		old_ops = zcache_frontswap_register_ops();
1993		pr_info("zcache: frontswap enabled using kernel "
1994			"transcendent memory and xvmalloc\n");
1995		if (old_ops.init != NULL)
1996			pr_warning("ktmem: frontswap_ops overridden");
1997	}
1998#endif
1999out:
2000	return ret;
2001}
2002
2003module_init(zcache_init)