Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: ISC
   2/*
   3 * Copyright (c) 2005-2011 Atheros Communications Inc.
   4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
   5 */
   6
   7#include <linux/pci.h>
   8#include <linux/module.h>
   9#include <linux/interrupt.h>
  10#include <linux/spinlock.h>
  11#include <linux/bitops.h>
  12
  13#include "core.h"
  14#include "debug.h"
  15#include "coredump.h"
  16
  17#include "targaddrs.h"
  18#include "bmi.h"
  19
  20#include "hif.h"
  21#include "htc.h"
  22
  23#include "ce.h"
  24#include "pci.h"
  25
  26enum ath10k_pci_reset_mode {
  27	ATH10K_PCI_RESET_AUTO = 0,
  28	ATH10K_PCI_RESET_WARM_ONLY = 1,
  29};
  30
  31static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
  32static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
  33
  34module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
  35MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
  36
  37module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
  38MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
  39
  40/* how long wait to wait for target to initialise, in ms */
  41#define ATH10K_PCI_TARGET_WAIT 3000
  42#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
  43
  44/* Maximum number of bytes that can be handled atomically by
  45 * diag read and write.
  46 */
  47#define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
  48
  49#define QCA99X0_PCIE_BAR0_START_REG    0x81030
  50#define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
  51#define QCA99X0_CPU_MEM_DATA_REG       0x4d010
  52
  53static const struct pci_device_id ath10k_pci_id_table[] = {
  54	/* PCI-E QCA988X V2 (Ubiquiti branded) */
  55	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
  56
  57	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
  58	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
  59	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
  60	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
  61	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
  62	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
  63	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
  64	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
  65	{0}
  66};
  67
  68static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
  69	/* QCA988X pre 2.0 chips are not supported because they need some nasty
  70	 * hacks. ath10k doesn't have them and these devices crash horribly
  71	 * because of that.
  72	 */
  73	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
  74	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
  75
  76	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  77	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  78	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  79	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  80	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  81
  82	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
  83	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
  84	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
  85	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
  86	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
  87
  88	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
  89
  90	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
  91
  92	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
  93
  94	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
  95	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
  96
  97	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
  98};
  99
 100static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
 101static int ath10k_pci_cold_reset(struct ath10k *ar);
 102static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
 103static int ath10k_pci_init_irq(struct ath10k *ar);
 104static int ath10k_pci_deinit_irq(struct ath10k *ar);
 105static int ath10k_pci_request_irq(struct ath10k *ar);
 106static void ath10k_pci_free_irq(struct ath10k *ar);
 107static int ath10k_pci_bmi_wait(struct ath10k *ar,
 108			       struct ath10k_ce_pipe *tx_pipe,
 109			       struct ath10k_ce_pipe *rx_pipe,
 110			       struct bmi_xfer *xfer);
 111static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
 112static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
 113static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 114static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
 115static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
 116static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
 117static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
 118
 119static const struct ce_attr pci_host_ce_config_wlan[] = {
 120	/* CE0: host->target HTC control and raw streams */
 121	{
 122		.flags = CE_ATTR_FLAGS,
 123		.src_nentries = 16,
 124		.src_sz_max = 256,
 125		.dest_nentries = 0,
 126		.send_cb = ath10k_pci_htc_tx_cb,
 127	},
 128
 129	/* CE1: target->host HTT + HTC control */
 130	{
 131		.flags = CE_ATTR_FLAGS,
 132		.src_nentries = 0,
 133		.src_sz_max = 2048,
 134		.dest_nentries = 512,
 135		.recv_cb = ath10k_pci_htt_htc_rx_cb,
 136	},
 137
 138	/* CE2: target->host WMI */
 139	{
 140		.flags = CE_ATTR_FLAGS,
 141		.src_nentries = 0,
 142		.src_sz_max = 2048,
 143		.dest_nentries = 128,
 144		.recv_cb = ath10k_pci_htc_rx_cb,
 145	},
 146
 147	/* CE3: host->target WMI */
 148	{
 149		.flags = CE_ATTR_FLAGS,
 150		.src_nentries = 32,
 151		.src_sz_max = 2048,
 152		.dest_nentries = 0,
 153		.send_cb = ath10k_pci_htc_tx_cb,
 154	},
 155
 156	/* CE4: host->target HTT */
 157	{
 158		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
 159		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
 160		.src_sz_max = 256,
 161		.dest_nentries = 0,
 162		.send_cb = ath10k_pci_htt_tx_cb,
 163	},
 164
 165	/* CE5: target->host HTT (HIF->HTT) */
 166	{
 167		.flags = CE_ATTR_FLAGS,
 168		.src_nentries = 0,
 169		.src_sz_max = 512,
 170		.dest_nentries = 512,
 171		.recv_cb = ath10k_pci_htt_rx_cb,
 172	},
 173
 174	/* CE6: target autonomous hif_memcpy */
 175	{
 176		.flags = CE_ATTR_FLAGS,
 177		.src_nentries = 0,
 178		.src_sz_max = 0,
 179		.dest_nentries = 0,
 180	},
 181
 182	/* CE7: ce_diag, the Diagnostic Window */
 183	{
 184		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
 185		.src_nentries = 2,
 186		.src_sz_max = DIAG_TRANSFER_LIMIT,
 187		.dest_nentries = 2,
 188	},
 189
 190	/* CE8: target->host pktlog */
 191	{
 192		.flags = CE_ATTR_FLAGS,
 193		.src_nentries = 0,
 194		.src_sz_max = 2048,
 195		.dest_nentries = 128,
 196		.recv_cb = ath10k_pci_pktlog_rx_cb,
 197	},
 198
 199	/* CE9 target autonomous qcache memcpy */
 200	{
 201		.flags = CE_ATTR_FLAGS,
 202		.src_nentries = 0,
 203		.src_sz_max = 0,
 204		.dest_nentries = 0,
 205	},
 206
 207	/* CE10: target autonomous hif memcpy */
 208	{
 209		.flags = CE_ATTR_FLAGS,
 210		.src_nentries = 0,
 211		.src_sz_max = 0,
 212		.dest_nentries = 0,
 213	},
 214
 215	/* CE11: target autonomous hif memcpy */
 216	{
 217		.flags = CE_ATTR_FLAGS,
 218		.src_nentries = 0,
 219		.src_sz_max = 0,
 220		.dest_nentries = 0,
 221	},
 222};
 223
 224/* Target firmware's Copy Engine configuration. */
 225static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
 226	/* CE0: host->target HTC control and raw streams */
 227	{
 228		.pipenum = __cpu_to_le32(0),
 229		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 230		.nentries = __cpu_to_le32(32),
 231		.nbytes_max = __cpu_to_le32(256),
 232		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 233		.reserved = __cpu_to_le32(0),
 234	},
 235
 236	/* CE1: target->host HTT + HTC control */
 237	{
 238		.pipenum = __cpu_to_le32(1),
 239		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 240		.nentries = __cpu_to_le32(32),
 241		.nbytes_max = __cpu_to_le32(2048),
 242		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 243		.reserved = __cpu_to_le32(0),
 244	},
 245
 246	/* CE2: target->host WMI */
 247	{
 248		.pipenum = __cpu_to_le32(2),
 249		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 250		.nentries = __cpu_to_le32(64),
 251		.nbytes_max = __cpu_to_le32(2048),
 252		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 253		.reserved = __cpu_to_le32(0),
 254	},
 255
 256	/* CE3: host->target WMI */
 257	{
 258		.pipenum = __cpu_to_le32(3),
 259		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 260		.nentries = __cpu_to_le32(32),
 261		.nbytes_max = __cpu_to_le32(2048),
 262		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 263		.reserved = __cpu_to_le32(0),
 264	},
 265
 266	/* CE4: host->target HTT */
 267	{
 268		.pipenum = __cpu_to_le32(4),
 269		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
 270		.nentries = __cpu_to_le32(256),
 271		.nbytes_max = __cpu_to_le32(256),
 272		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 273		.reserved = __cpu_to_le32(0),
 274	},
 275
 276	/* NB: 50% of src nentries, since tx has 2 frags */
 277
 278	/* CE5: target->host HTT (HIF->HTT) */
 279	{
 280		.pipenum = __cpu_to_le32(5),
 281		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 282		.nentries = __cpu_to_le32(32),
 283		.nbytes_max = __cpu_to_le32(512),
 284		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 285		.reserved = __cpu_to_le32(0),
 286	},
 287
 288	/* CE6: Reserved for target autonomous hif_memcpy */
 289	{
 290		.pipenum = __cpu_to_le32(6),
 291		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 292		.nentries = __cpu_to_le32(32),
 293		.nbytes_max = __cpu_to_le32(4096),
 294		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
 295		.reserved = __cpu_to_le32(0),
 296	},
 297
 298	/* CE7 used only by Host */
 299	{
 300		.pipenum = __cpu_to_le32(7),
 301		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 302		.nentries = __cpu_to_le32(0),
 303		.nbytes_max = __cpu_to_le32(0),
 304		.flags = __cpu_to_le32(0),
 305		.reserved = __cpu_to_le32(0),
 306	},
 307
 308	/* CE8 target->host packtlog */
 309	{
 310		.pipenum = __cpu_to_le32(8),
 311		.pipedir = __cpu_to_le32(PIPEDIR_IN),
 312		.nentries = __cpu_to_le32(64),
 313		.nbytes_max = __cpu_to_le32(2048),
 314		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 315		.reserved = __cpu_to_le32(0),
 316	},
 317
 318	/* CE9 target autonomous qcache memcpy */
 319	{
 320		.pipenum = __cpu_to_le32(9),
 321		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
 322		.nentries = __cpu_to_le32(32),
 323		.nbytes_max = __cpu_to_le32(2048),
 324		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
 325		.reserved = __cpu_to_le32(0),
 326	},
 327
 328	/* It not necessary to send target wlan configuration for CE10 & CE11
 329	 * as these CEs are not actively used in target.
 330	 */
 331};
 332
 333/*
 334 * Map from service/endpoint to Copy Engine.
 335 * This table is derived from the CE_PCI TABLE, above.
 336 * It is passed to the Target at startup for use by firmware.
 337 */
 338static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
 339	{
 340		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 341		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 342		__cpu_to_le32(3),
 343	},
 344	{
 345		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
 346		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 347		__cpu_to_le32(2),
 348	},
 349	{
 350		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 351		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 352		__cpu_to_le32(3),
 353	},
 354	{
 355		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
 356		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 357		__cpu_to_le32(2),
 358	},
 359	{
 360		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 361		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 362		__cpu_to_le32(3),
 363	},
 364	{
 365		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
 366		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 367		__cpu_to_le32(2),
 368	},
 369	{
 370		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 371		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 372		__cpu_to_le32(3),
 373	},
 374	{
 375		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
 376		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 377		__cpu_to_le32(2),
 378	},
 379	{
 380		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 381		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 382		__cpu_to_le32(3),
 383	},
 384	{
 385		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
 386		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 387		__cpu_to_le32(2),
 388	},
 389	{
 390		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 391		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 392		__cpu_to_le32(0),
 393	},
 394	{
 395		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
 396		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 397		__cpu_to_le32(1),
 398	},
 399	{ /* not used */
 400		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 401		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 402		__cpu_to_le32(0),
 403	},
 404	{ /* not used */
 405		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
 406		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 407		__cpu_to_le32(1),
 408	},
 409	{
 410		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 411		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
 412		__cpu_to_le32(4),
 413	},
 414	{
 415		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
 416		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
 417		__cpu_to_le32(5),
 418	},
 419
 420	/* (Additions here) */
 421
 422	{ /* must be last */
 423		__cpu_to_le32(0),
 424		__cpu_to_le32(0),
 425		__cpu_to_le32(0),
 426	},
 427};
 428
 429static bool ath10k_pci_is_awake(struct ath10k *ar)
 430{
 431	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 432	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 433			   RTC_STATE_ADDRESS);
 434
 435	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
 436}
 437
 438static void __ath10k_pci_wake(struct ath10k *ar)
 439{
 440	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 441
 442	lockdep_assert_held(&ar_pci->ps_lock);
 443
 444	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
 445		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 446
 447	iowrite32(PCIE_SOC_WAKE_V_MASK,
 448		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 449		  PCIE_SOC_WAKE_ADDRESS);
 450}
 451
 452static void __ath10k_pci_sleep(struct ath10k *ar)
 453{
 454	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 455
 456	lockdep_assert_held(&ar_pci->ps_lock);
 457
 458	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
 459		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 460
 461	iowrite32(PCIE_SOC_WAKE_RESET,
 462		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 463		  PCIE_SOC_WAKE_ADDRESS);
 464	ar_pci->ps_awake = false;
 465}
 466
 467static int ath10k_pci_wake_wait(struct ath10k *ar)
 468{
 469	int tot_delay = 0;
 470	int curr_delay = 5;
 471
 472	while (tot_delay < PCIE_WAKE_TIMEOUT) {
 473		if (ath10k_pci_is_awake(ar)) {
 474			if (tot_delay > PCIE_WAKE_LATE_US)
 475				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
 476					    tot_delay / 1000);
 477			return 0;
 478		}
 479
 480		udelay(curr_delay);
 481		tot_delay += curr_delay;
 482
 483		if (curr_delay < 50)
 484			curr_delay += 5;
 485	}
 486
 487	return -ETIMEDOUT;
 488}
 489
 490static int ath10k_pci_force_wake(struct ath10k *ar)
 491{
 492	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 493	unsigned long flags;
 494	int ret = 0;
 495
 496	if (ar_pci->pci_ps)
 497		return ret;
 498
 499	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 500
 501	if (!ar_pci->ps_awake) {
 502		iowrite32(PCIE_SOC_WAKE_V_MASK,
 503			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 504			  PCIE_SOC_WAKE_ADDRESS);
 505
 506		ret = ath10k_pci_wake_wait(ar);
 507		if (ret == 0)
 508			ar_pci->ps_awake = true;
 509	}
 510
 511	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 512
 513	return ret;
 514}
 515
 516static void ath10k_pci_force_sleep(struct ath10k *ar)
 517{
 518	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 519	unsigned long flags;
 520
 521	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 522
 523	iowrite32(PCIE_SOC_WAKE_RESET,
 524		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
 525		  PCIE_SOC_WAKE_ADDRESS);
 526	ar_pci->ps_awake = false;
 527
 528	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 529}
 530
 531static int ath10k_pci_wake(struct ath10k *ar)
 532{
 533	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 534	unsigned long flags;
 535	int ret = 0;
 536
 537	if (ar_pci->pci_ps == 0)
 538		return ret;
 539
 540	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 541
 542	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
 543		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 544
 545	/* This function can be called very frequently. To avoid excessive
 546	 * CPU stalls for MMIO reads use a cache var to hold the device state.
 547	 */
 548	if (!ar_pci->ps_awake) {
 549		__ath10k_pci_wake(ar);
 550
 551		ret = ath10k_pci_wake_wait(ar);
 552		if (ret == 0)
 553			ar_pci->ps_awake = true;
 554	}
 555
 556	if (ret == 0) {
 557		ar_pci->ps_wake_refcount++;
 558		WARN_ON(ar_pci->ps_wake_refcount == 0);
 559	}
 560
 561	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 562
 563	return ret;
 564}
 565
 566static void ath10k_pci_sleep(struct ath10k *ar)
 567{
 568	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 569	unsigned long flags;
 570
 571	if (ar_pci->pci_ps == 0)
 572		return;
 573
 574	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 575
 576	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
 577		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 578
 579	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
 580		goto skip;
 581
 582	ar_pci->ps_wake_refcount--;
 583
 584	mod_timer(&ar_pci->ps_timer, jiffies +
 585		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
 586
 587skip:
 588	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 589}
 590
 591static void ath10k_pci_ps_timer(struct timer_list *t)
 592{
 593	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
 594	struct ath10k *ar = ar_pci->ar;
 595	unsigned long flags;
 596
 597	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 598
 599	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
 600		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
 601
 602	if (ar_pci->ps_wake_refcount > 0)
 603		goto skip;
 604
 605	__ath10k_pci_sleep(ar);
 606
 607skip:
 608	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 609}
 610
 611static void ath10k_pci_sleep_sync(struct ath10k *ar)
 612{
 613	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 614	unsigned long flags;
 615
 616	if (ar_pci->pci_ps == 0) {
 617		ath10k_pci_force_sleep(ar);
 618		return;
 619	}
 620
 621	del_timer_sync(&ar_pci->ps_timer);
 622
 623	spin_lock_irqsave(&ar_pci->ps_lock, flags);
 624	WARN_ON(ar_pci->ps_wake_refcount > 0);
 625	__ath10k_pci_sleep(ar);
 626	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
 627}
 628
 629static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 630{
 631	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 632	int ret;
 633
 634	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
 635		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 636			    offset, offset + sizeof(value), ar_pci->mem_len);
 637		return;
 638	}
 639
 640	ret = ath10k_pci_wake(ar);
 641	if (ret) {
 642		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
 643			    value, offset, ret);
 644		return;
 645	}
 646
 647	iowrite32(value, ar_pci->mem + offset);
 648	ath10k_pci_sleep(ar);
 649}
 650
 651static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
 652{
 653	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 654	u32 val;
 655	int ret;
 656
 657	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
 658		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
 659			    offset, offset + sizeof(val), ar_pci->mem_len);
 660		return 0;
 661	}
 662
 663	ret = ath10k_pci_wake(ar);
 664	if (ret) {
 665		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
 666			    offset, ret);
 667		return 0xffffffff;
 668	}
 669
 670	val = ioread32(ar_pci->mem + offset);
 671	ath10k_pci_sleep(ar);
 672
 673	return val;
 674}
 675
 676inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
 677{
 678	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 679
 680	ce->bus_ops->write32(ar, offset, value);
 681}
 682
 683inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
 684{
 685	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 686
 687	return ce->bus_ops->read32(ar, offset);
 688}
 689
 690u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
 691{
 692	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
 693}
 694
 695void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
 696{
 697	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
 698}
 699
 700u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
 701{
 702	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
 703}
 704
 705void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
 706{
 707	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
 708}
 709
 710bool ath10k_pci_irq_pending(struct ath10k *ar)
 711{
 712	u32 cause;
 713
 714	/* Check if the shared legacy irq is for us */
 715	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 716				  PCIE_INTR_CAUSE_ADDRESS);
 717	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
 718		return true;
 719
 720	return false;
 721}
 722
 723void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
 724{
 725	/* IMPORTANT: INTR_CLR register has to be set after
 726	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
 727	 * really cleared.
 728	 */
 729	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
 730			   0);
 731	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
 732			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 733
 734	/* IMPORTANT: this extra read transaction is required to
 735	 * flush the posted write buffer.
 736	 */
 737	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 738				PCIE_INTR_ENABLE_ADDRESS);
 739}
 740
 741void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
 742{
 743	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
 744			   PCIE_INTR_ENABLE_ADDRESS,
 745			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
 746
 747	/* IMPORTANT: this extra read transaction is required to
 748	 * flush the posted write buffer.
 749	 */
 750	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
 751				PCIE_INTR_ENABLE_ADDRESS);
 752}
 753
 754static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
 755{
 756	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 757
 758	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
 759		return "msi";
 760
 761	return "legacy";
 762}
 763
 764static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
 765{
 766	struct ath10k *ar = pipe->hif_ce_state;
 767	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 768	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 769	struct sk_buff *skb;
 770	dma_addr_t paddr;
 771	int ret;
 772
 773	skb = dev_alloc_skb(pipe->buf_sz);
 774	if (!skb)
 775		return -ENOMEM;
 776
 777	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
 778
 779	paddr = dma_map_single(ar->dev, skb->data,
 780			       skb->len + skb_tailroom(skb),
 781			       DMA_FROM_DEVICE);
 782	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
 783		ath10k_warn(ar, "failed to dma map pci rx buf\n");
 784		dev_kfree_skb_any(skb);
 785		return -EIO;
 786	}
 787
 788	ATH10K_SKB_RXCB(skb)->paddr = paddr;
 789
 790	spin_lock_bh(&ce->ce_lock);
 791	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
 792	spin_unlock_bh(&ce->ce_lock);
 793	if (ret) {
 794		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
 795				 DMA_FROM_DEVICE);
 796		dev_kfree_skb_any(skb);
 797		return ret;
 798	}
 799
 800	return 0;
 801}
 802
 803static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
 804{
 805	struct ath10k *ar = pipe->hif_ce_state;
 806	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 807	struct ath10k_ce *ce = ath10k_ce_priv(ar);
 808	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
 809	int ret, num;
 810
 811	if (pipe->buf_sz == 0)
 812		return;
 813
 814	if (!ce_pipe->dest_ring)
 815		return;
 816
 817	spin_lock_bh(&ce->ce_lock);
 818	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
 819	spin_unlock_bh(&ce->ce_lock);
 820
 821	while (num >= 0) {
 822		ret = __ath10k_pci_rx_post_buf(pipe);
 823		if (ret) {
 824			if (ret == -ENOSPC)
 825				break;
 826			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
 827			mod_timer(&ar_pci->rx_post_retry, jiffies +
 828				  ATH10K_PCI_RX_POST_RETRY_MS);
 829			break;
 830		}
 831		num--;
 832	}
 833}
 834
 835void ath10k_pci_rx_post(struct ath10k *ar)
 836{
 837	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 838	int i;
 839
 840	for (i = 0; i < CE_COUNT; i++)
 841		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
 842}
 843
 844void ath10k_pci_rx_replenish_retry(struct timer_list *t)
 845{
 846	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
 847	struct ath10k *ar = ar_pci->ar;
 848
 849	ath10k_pci_rx_post(ar);
 850}
 851
 852static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 853{
 854	u32 val = 0, region = addr & 0xfffff;
 855
 856	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 857				 & 0x7ff) << 21;
 858	val |= 0x100000 | region;
 859	return val;
 860}
 861
 862/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
 863 * Support to access target space below 1M for qca6174 and qca9377.
 864 * If target space is below 1M, the bit[20] of converted CE addr is 0.
 865 * Otherwise bit[20] of converted CE addr is 1.
 866 */
 867static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 868{
 869	u32 val = 0, region = addr & 0xfffff;
 870
 871	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
 872				 & 0x7ff) << 21;
 873	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
 874	return val;
 875}
 876
 877static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 878{
 879	u32 val = 0, region = addr & 0xfffff;
 880
 881	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
 882	val |= 0x100000 | region;
 883	return val;
 884}
 885
 886static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
 887{
 888	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 889
 890	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
 891		return -ENOTSUPP;
 892
 893	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
 894}
 895
 896/*
 897 * Diagnostic read/write access is provided for startup/config/debug usage.
 898 * Caller must guarantee proper alignment, when applicable, and single user
 899 * at any moment.
 900 */
 901static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
 902				    int nbytes)
 903{
 904	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
 905	int ret = 0;
 906	u32 *buf;
 907	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
 908	struct ath10k_ce_pipe *ce_diag;
 909	/* Host buffer address in CE space */
 910	u32 ce_data;
 911	dma_addr_t ce_data_base = 0;
 912	void *data_buf;
 913	int i;
 914
 915	mutex_lock(&ar_pci->ce_diag_mutex);
 916	ce_diag = ar_pci->ce_diag;
 917
 918	/*
 919	 * Allocate a temporary bounce buffer to hold caller's data
 920	 * to be DMA'ed from Target. This guarantees
 921	 *   1) 4-byte alignment
 922	 *   2) Buffer in DMA-able space
 923	 */
 924	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
 925
 926	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
 927				      GFP_ATOMIC);
 928	if (!data_buf) {
 929		ret = -ENOMEM;
 930		goto done;
 931	}
 932
 933	/* The address supplied by the caller is in the
 934	 * Target CPU virtual address space.
 935	 *
 936	 * In order to use this address with the diagnostic CE,
 937	 * convert it from Target CPU virtual address space
 938	 * to CE address space
 939	 */
 940	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
 941
 942	remaining_bytes = nbytes;
 943	ce_data = ce_data_base;
 944	while (remaining_bytes) {
 945		nbytes = min_t(unsigned int, remaining_bytes,
 946			       DIAG_TRANSFER_LIMIT);
 947
 948		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
 949		if (ret != 0)
 950			goto done;
 951
 952		/* Request CE to send from Target(!) address to Host buffer */
 953		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
 954		if (ret)
 955			goto done;
 956
 957		i = 0;
 958		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
 959			udelay(DIAG_ACCESS_CE_WAIT_US);
 960			i += DIAG_ACCESS_CE_WAIT_US;
 961
 962			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 963				ret = -EBUSY;
 964				goto done;
 965			}
 966		}
 967
 968		i = 0;
 969		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
 970						     &completed_nbytes) != 0) {
 971			udelay(DIAG_ACCESS_CE_WAIT_US);
 972			i += DIAG_ACCESS_CE_WAIT_US;
 973
 974			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
 975				ret = -EBUSY;
 976				goto done;
 977			}
 978		}
 979
 980		if (nbytes != completed_nbytes) {
 981			ret = -EIO;
 982			goto done;
 983		}
 984
 985		if (*buf != ce_data) {
 986			ret = -EIO;
 987			goto done;
 988		}
 989
 990		remaining_bytes -= nbytes;
 991		memcpy(data, data_buf, nbytes);
 992
 993		address += nbytes;
 994		data += nbytes;
 995	}
 996
 997done:
 998
 999	if (data_buf)
1000		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1001				  ce_data_base);
1002
1003	mutex_unlock(&ar_pci->ce_diag_mutex);
1004
1005	return ret;
1006}
1007
1008static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1009{
1010	__le32 val = 0;
1011	int ret;
1012
1013	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014	*value = __le32_to_cpu(val);
1015
1016	return ret;
1017}
1018
1019static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1020				     u32 src, u32 len)
1021{
1022	u32 host_addr, addr;
1023	int ret;
1024
1025	host_addr = host_interest_item_address(src);
1026
1027	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1028	if (ret != 0) {
1029		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1030			    src, ret);
1031		return ret;
1032	}
1033
1034	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1035	if (ret != 0) {
1036		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1037			    addr, len, ret);
1038		return ret;
1039	}
1040
1041	return 0;
1042}
1043
1044#define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1045	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1046
1047int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048			      const void *data, int nbytes)
1049{
1050	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051	int ret = 0;
1052	u32 *buf;
1053	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1054	struct ath10k_ce_pipe *ce_diag;
1055	void *data_buf;
1056	dma_addr_t ce_data_base = 0;
1057	int i;
1058
1059	mutex_lock(&ar_pci->ce_diag_mutex);
1060	ce_diag = ar_pci->ce_diag;
1061
1062	/*
1063	 * Allocate a temporary bounce buffer to hold caller's data
1064	 * to be DMA'ed to Target. This guarantees
1065	 *   1) 4-byte alignment
1066	 *   2) Buffer in DMA-able space
1067	 */
1068	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1069
1070	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1071				      GFP_ATOMIC);
1072	if (!data_buf) {
1073		ret = -ENOMEM;
1074		goto done;
1075	}
1076
1077	/*
1078	 * The address supplied by the caller is in the
1079	 * Target CPU virtual address space.
1080	 *
1081	 * In order to use this address with the diagnostic CE,
1082	 * convert it from
1083	 *    Target CPU virtual address space
1084	 * to
1085	 *    CE address space
1086	 */
1087	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1088
1089	remaining_bytes = nbytes;
1090	while (remaining_bytes) {
1091		/* FIXME: check cast */
1092		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1093
1094		/* Copy caller's data to allocated DMA buf */
1095		memcpy(data_buf, data, nbytes);
1096
1097		/* Set up to receive directly into Target(!) address */
1098		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1099		if (ret != 0)
1100			goto done;
1101
1102		/*
1103		 * Request CE to send caller-supplied data that
1104		 * was copied to bounce buffer to Target(!) address.
1105		 */
1106		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1107		if (ret != 0)
1108			goto done;
1109
1110		i = 0;
1111		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112			udelay(DIAG_ACCESS_CE_WAIT_US);
1113			i += DIAG_ACCESS_CE_WAIT_US;
1114
1115			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1116				ret = -EBUSY;
1117				goto done;
1118			}
1119		}
1120
1121		i = 0;
1122		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123						     &completed_nbytes) != 0) {
1124			udelay(DIAG_ACCESS_CE_WAIT_US);
1125			i += DIAG_ACCESS_CE_WAIT_US;
1126
1127			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1128				ret = -EBUSY;
1129				goto done;
1130			}
1131		}
1132
1133		if (nbytes != completed_nbytes) {
1134			ret = -EIO;
1135			goto done;
1136		}
1137
1138		if (*buf != address) {
1139			ret = -EIO;
1140			goto done;
1141		}
1142
1143		remaining_bytes -= nbytes;
1144		address += nbytes;
1145		data += nbytes;
1146	}
1147
1148done:
1149	if (data_buf) {
1150		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1151				  ce_data_base);
1152	}
1153
1154	if (ret != 0)
1155		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1156			    address, ret);
1157
1158	mutex_unlock(&ar_pci->ce_diag_mutex);
1159
1160	return ret;
1161}
1162
1163static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1164{
1165	__le32 val = __cpu_to_le32(value);
1166
1167	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1168}
1169
1170/* Called by lower (CE) layer when a send to Target completes. */
1171static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1172{
1173	struct ath10k *ar = ce_state->ar;
1174	struct sk_buff_head list;
1175	struct sk_buff *skb;
1176
1177	__skb_queue_head_init(&list);
1178	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179		/* no need to call tx completion for NULL pointers */
1180		if (skb == NULL)
1181			continue;
1182
1183		__skb_queue_tail(&list, skb);
1184	}
1185
1186	while ((skb = __skb_dequeue(&list)))
1187		ath10k_htc_tx_completion_handler(ar, skb);
1188}
1189
1190static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191				     void (*callback)(struct ath10k *ar,
1192						      struct sk_buff *skb))
1193{
1194	struct ath10k *ar = ce_state->ar;
1195	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1197	struct sk_buff *skb;
1198	struct sk_buff_head list;
1199	void *transfer_context;
1200	unsigned int nbytes, max_nbytes;
1201
1202	__skb_queue_head_init(&list);
1203	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1204					     &nbytes) == 0) {
1205		skb = transfer_context;
1206		max_nbytes = skb->len + skb_tailroom(skb);
1207		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208				 max_nbytes, DMA_FROM_DEVICE);
1209
1210		if (unlikely(max_nbytes < nbytes)) {
1211			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212				    nbytes, max_nbytes);
1213			dev_kfree_skb_any(skb);
1214			continue;
1215		}
1216
1217		skb_put(skb, nbytes);
1218		__skb_queue_tail(&list, skb);
1219	}
1220
1221	while ((skb = __skb_dequeue(&list))) {
1222		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223			   ce_state->id, skb->len);
1224		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225				skb->data, skb->len);
1226
1227		callback(ar, skb);
1228	}
1229
1230	ath10k_pci_rx_post_pipe(pipe_info);
1231}
1232
1233static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234					 void (*callback)(struct ath10k *ar,
1235							  struct sk_buff *skb))
1236{
1237	struct ath10k *ar = ce_state->ar;
1238	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1240	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241	struct sk_buff *skb;
1242	struct sk_buff_head list;
1243	void *transfer_context;
1244	unsigned int nbytes, max_nbytes, nentries;
1245	int orig_len;
1246
1247	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1248	 * is processed other than init and deinit. Before releasing CE5
1249	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1250	 */
1251	__skb_queue_head_init(&list);
1252	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1253						    &nbytes) == 0) {
1254		skb = transfer_context;
1255		max_nbytes = skb->len + skb_tailroom(skb);
1256
1257		if (unlikely(max_nbytes < nbytes)) {
1258			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259				    nbytes, max_nbytes);
1260			continue;
1261		}
1262
1263		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264					max_nbytes, DMA_FROM_DEVICE);
1265		skb_put(skb, nbytes);
1266		__skb_queue_tail(&list, skb);
1267	}
1268
1269	nentries = skb_queue_len(&list);
1270	while ((skb = __skb_dequeue(&list))) {
1271		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272			   ce_state->id, skb->len);
1273		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274				skb->data, skb->len);
1275
1276		orig_len = skb->len;
1277		callback(ar, skb);
1278		skb_push(skb, orig_len - skb->len);
1279		skb_reset_tail_pointer(skb);
1280		skb_trim(skb, 0);
1281
1282		/*let device gain the buffer again*/
1283		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284					   skb->len + skb_tailroom(skb),
1285					   DMA_FROM_DEVICE);
1286	}
1287	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1288}
1289
1290/* Called by lower (CE) layer when data is received from the Target. */
1291static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292{
1293	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1294}
1295
1296static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1297{
1298	/* CE4 polling needs to be done whenever CE pipe which transports
1299	 * HTT Rx (target->host) is processed.
1300	 */
1301	ath10k_ce_per_engine_service(ce_state->ar, 4);
1302
1303	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304}
1305
1306/* Called by lower (CE) layer when data is received from the Target.
1307 * Only 10.4 firmware uses separate CE to transfer pktlog data.
1308 */
1309static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1310{
1311	ath10k_pci_process_rx_cb(ce_state,
1312				 ath10k_htt_rx_pktlog_completion_handler);
1313}
1314
1315/* Called by lower (CE) layer when a send to HTT Target completes. */
1316static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1317{
1318	struct ath10k *ar = ce_state->ar;
1319	struct sk_buff *skb;
1320
1321	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322		/* no need to call tx completion for NULL pointers */
1323		if (!skb)
1324			continue;
1325
1326		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327				 skb->len, DMA_TO_DEVICE);
1328		ath10k_htt_hif_tx_complete(ar, skb);
1329	}
1330}
1331
1332static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1333{
1334	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335	ath10k_htt_t2h_msg_handler(ar, skb);
1336}
1337
1338/* Called by lower (CE) layer when HTT data is received from the Target. */
1339static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1340{
1341	/* CE4 polling needs to be done whenever CE pipe which transports
1342	 * HTT Rx (target->host) is processed.
1343	 */
1344	ath10k_ce_per_engine_service(ce_state->ar, 4);
1345
1346	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1347}
1348
1349int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350			 struct ath10k_hif_sg_item *items, int n_items)
1351{
1352	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357	unsigned int nentries_mask;
1358	unsigned int sw_index;
1359	unsigned int write_index;
1360	int err, i = 0;
1361
1362	spin_lock_bh(&ce->ce_lock);
1363
1364	nentries_mask = src_ring->nentries_mask;
1365	sw_index = src_ring->sw_index;
1366	write_index = src_ring->write_index;
1367
1368	if (unlikely(CE_RING_DELTA(nentries_mask,
1369				   write_index, sw_index - 1) < n_items)) {
1370		err = -ENOBUFS;
1371		goto err;
1372	}
1373
1374	for (i = 0; i < n_items - 1; i++) {
1375		ath10k_dbg(ar, ATH10K_DBG_PCI,
1376			   "pci tx item %d paddr %pad len %d n_items %d\n",
1377			   i, &items[i].paddr, items[i].len, n_items);
1378		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379				items[i].vaddr, items[i].len);
1380
1381		err = ath10k_ce_send_nolock(ce_pipe,
1382					    items[i].transfer_context,
1383					    items[i].paddr,
1384					    items[i].len,
1385					    items[i].transfer_id,
1386					    CE_SEND_FLAG_GATHER);
1387		if (err)
1388			goto err;
1389	}
1390
1391	/* `i` is equal to `n_items -1` after for() */
1392
1393	ath10k_dbg(ar, ATH10K_DBG_PCI,
1394		   "pci tx item %d paddr %pad len %d n_items %d\n",
1395		   i, &items[i].paddr, items[i].len, n_items);
1396	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397			items[i].vaddr, items[i].len);
1398
1399	err = ath10k_ce_send_nolock(ce_pipe,
1400				    items[i].transfer_context,
1401				    items[i].paddr,
1402				    items[i].len,
1403				    items[i].transfer_id,
1404				    0);
1405	if (err)
1406		goto err;
1407
1408	spin_unlock_bh(&ce->ce_lock);
1409	return 0;
1410
1411err:
1412	for (; i > 0; i--)
1413		__ath10k_ce_send_revert(ce_pipe);
1414
1415	spin_unlock_bh(&ce->ce_lock);
1416	return err;
1417}
1418
1419int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1420			     size_t buf_len)
1421{
1422	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1423}
1424
1425u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1426{
1427	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1428
1429	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1430
1431	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1432}
1433
1434static void ath10k_pci_dump_registers(struct ath10k *ar,
1435				      struct ath10k_fw_crash_data *crash_data)
1436{
1437	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1438	int i, ret;
1439
1440	lockdep_assert_held(&ar->dump_mutex);
1441
1442	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1443				      hi_failure_state,
1444				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1445	if (ret) {
1446		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1447		return;
1448	}
1449
1450	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1451
1452	ath10k_err(ar, "firmware register dump:\n");
1453	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1455			   i,
1456			   __le32_to_cpu(reg_dump_values[i]),
1457			   __le32_to_cpu(reg_dump_values[i + 1]),
1458			   __le32_to_cpu(reg_dump_values[i + 2]),
1459			   __le32_to_cpu(reg_dump_values[i + 3]));
1460
1461	if (!crash_data)
1462		return;
1463
1464	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465		crash_data->registers[i] = reg_dump_values[i];
1466}
1467
1468static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469					  const struct ath10k_mem_region *mem_region,
1470					  u8 *buf, size_t buf_len)
1471{
1472	const struct ath10k_mem_section *cur_section, *next_section;
1473	unsigned int count, section_size, skip_size;
1474	int ret, i, j;
1475
1476	if (!mem_region || !buf)
1477		return 0;
1478
1479	cur_section = &mem_region->section_table.sections[0];
1480
1481	if (mem_region->start > cur_section->start) {
1482		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483			    mem_region->start, cur_section->start);
1484		return 0;
1485	}
1486
1487	skip_size = cur_section->start - mem_region->start;
1488
1489	/* fill the gap between the first register section and register
1490	 * start address
1491	 */
1492	for (i = 0; i < skip_size; i++) {
1493		*buf = ATH10K_MAGIC_NOT_COPIED;
1494		buf++;
1495	}
1496
1497	count = 0;
1498
1499	for (i = 0; cur_section != NULL; i++) {
1500		section_size = cur_section->end - cur_section->start;
1501
1502		if (section_size <= 0) {
1503			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1504				    cur_section->start,
1505				    cur_section->end);
1506			break;
1507		}
1508
1509		if ((i + 1) == mem_region->section_table.size) {
1510			/* last section */
1511			next_section = NULL;
1512			skip_size = 0;
1513		} else {
1514			next_section = cur_section + 1;
1515
1516			if (cur_section->end > next_section->start) {
1517				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518					    next_section->start,
1519					    cur_section->end);
1520				break;
1521			}
1522
1523			skip_size = next_section->start - cur_section->end;
1524		}
1525
1526		if (buf_len < (skip_size + section_size)) {
1527			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1528			break;
1529		}
1530
1531		buf_len -= skip_size + section_size;
1532
1533		/* read section to dest memory */
1534		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1535					       buf, section_size);
1536		if (ret) {
1537			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538				    cur_section->start, ret);
1539			break;
1540		}
1541
1542		buf += section_size;
1543		count += section_size;
1544
1545		/* fill in the gap between this section and the next */
1546		for (j = 0; j < skip_size; j++) {
1547			*buf = ATH10K_MAGIC_NOT_COPIED;
1548			buf++;
1549		}
1550
1551		count += skip_size;
1552
1553		if (!next_section)
1554			/* this was the last section */
1555			break;
1556
1557		cur_section = next_section;
1558	}
1559
1560	return count;
1561}
1562
1563static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1564{
1565	u32 val;
1566
1567	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568			   FW_RAM_CONFIG_ADDRESS, config);
1569
1570	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571				FW_RAM_CONFIG_ADDRESS);
1572	if (val != config) {
1573		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1574			    val, config);
1575		return -EIO;
1576	}
1577
1578	return 0;
1579}
1580
1581/* Always returns the length */
1582static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583				       const struct ath10k_mem_region *region,
1584				       u8 *buf)
1585{
1586	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1587	u32 base_addr, i;
1588
1589	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590	base_addr += region->start;
1591
1592	for (i = 0; i < region->len; i += 4) {
1593		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1595	}
1596
1597	return region->len;
1598}
1599
1600/* if an error happened returns < 0, otherwise the length */
1601static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602				      const struct ath10k_mem_region *region,
1603				      u8 *buf)
1604{
1605	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1606	u32 i;
1607	int ret;
1608
1609	mutex_lock(&ar->conf_mutex);
1610	if (ar->state != ATH10K_STATE_ON) {
1611		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1612		ret = -EIO;
1613		goto done;
1614	}
1615
1616	for (i = 0; i < region->len; i += 4)
1617		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1618
1619	ret = region->len;
1620done:
1621	mutex_unlock(&ar->conf_mutex);
1622	return ret;
1623}
1624
1625/* if an error happened returns < 0, otherwise the length */
1626static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1627					  const struct ath10k_mem_region *current_region,
1628					  u8 *buf)
1629{
1630	int ret;
1631
1632	if (current_region->section_table.size > 0)
1633		/* Copy each section individually. */
1634		return ath10k_pci_dump_memory_section(ar,
1635						      current_region,
1636						      buf,
1637						      current_region->len);
1638
1639	/* No individiual memory sections defined so we can
1640	 * copy the entire memory region.
1641	 */
1642	ret = ath10k_pci_diag_read_mem(ar,
1643				       current_region->start,
1644				       buf,
1645				       current_region->len);
1646	if (ret) {
1647		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1648			    current_region->name, ret);
1649		return ret;
1650	}
1651
1652	return current_region->len;
1653}
1654
1655static void ath10k_pci_dump_memory(struct ath10k *ar,
1656				   struct ath10k_fw_crash_data *crash_data)
1657{
1658	const struct ath10k_hw_mem_layout *mem_layout;
1659	const struct ath10k_mem_region *current_region;
1660	struct ath10k_dump_ram_data_hdr *hdr;
1661	u32 count, shift;
1662	size_t buf_len;
1663	int ret, i;
1664	u8 *buf;
1665
1666	lockdep_assert_held(&ar->dump_mutex);
1667
1668	if (!crash_data)
1669		return;
1670
1671	mem_layout = ath10k_coredump_get_mem_layout(ar);
1672	if (!mem_layout)
1673		return;
1674
1675	current_region = &mem_layout->region_table.regions[0];
1676
1677	buf = crash_data->ramdump_buf;
1678	buf_len = crash_data->ramdump_buf_len;
1679
1680	memset(buf, 0, buf_len);
1681
1682	for (i = 0; i < mem_layout->region_table.size; i++) {
1683		count = 0;
1684
1685		if (current_region->len > buf_len) {
1686			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1687				    current_region->name,
1688				    current_region->len,
1689				    buf_len);
1690			break;
1691		}
1692
1693		/* To get IRAM dump, the host driver needs to switch target
1694		 * ram config from DRAM to IRAM.
1695		 */
1696		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1697		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1698			shift = current_region->start >> 20;
1699
1700			ret = ath10k_pci_set_ram_config(ar, shift);
1701			if (ret) {
1702				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1703					    current_region->name, ret);
1704				break;
1705			}
1706		}
1707
1708		/* Reserve space for the header. */
1709		hdr = (void *)buf;
1710		buf += sizeof(*hdr);
1711		buf_len -= sizeof(*hdr);
1712
1713		switch (current_region->type) {
1714		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1715			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1716			break;
1717		case ATH10K_MEM_REGION_TYPE_IOREG:
1718			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1719			if (ret < 0)
1720				break;
1721
1722			count = ret;
1723			break;
1724		default:
1725			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1726			if (ret < 0)
1727				break;
1728
1729			count = ret;
1730			break;
1731		}
1732
1733		hdr->region_type = cpu_to_le32(current_region->type);
1734		hdr->start = cpu_to_le32(current_region->start);
1735		hdr->length = cpu_to_le32(count);
1736
1737		if (count == 0)
1738			/* Note: the header remains, just with zero length. */
1739			break;
1740
1741		buf += count;
1742		buf_len -= count;
1743
1744		current_region++;
1745	}
1746}
1747
1748static void ath10k_pci_fw_dump_work(struct work_struct *work)
1749{
1750	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1751						 dump_work);
1752	struct ath10k_fw_crash_data *crash_data;
1753	struct ath10k *ar = ar_pci->ar;
1754	char guid[UUID_STRING_LEN + 1];
1755
1756	mutex_lock(&ar->dump_mutex);
1757
1758	spin_lock_bh(&ar->data_lock);
1759	ar->stats.fw_crash_counter++;
1760	spin_unlock_bh(&ar->data_lock);
1761
1762	crash_data = ath10k_coredump_new(ar);
1763
1764	if (crash_data)
1765		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1766	else
1767		scnprintf(guid, sizeof(guid), "n/a");
1768
1769	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1770	ath10k_print_driver_info(ar);
1771	ath10k_pci_dump_registers(ar, crash_data);
1772	ath10k_ce_dump_registers(ar, crash_data);
1773	ath10k_pci_dump_memory(ar, crash_data);
1774
1775	mutex_unlock(&ar->dump_mutex);
1776
1777	queue_work(ar->workqueue, &ar->restart_work);
1778}
1779
1780static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1781{
1782	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1783
1784	queue_work(ar->workqueue, &ar_pci->dump_work);
1785}
1786
1787void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1788					int force)
1789{
1790	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1791
1792	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1793
1794	if (!force) {
1795		int resources;
1796		/*
1797		 * Decide whether to actually poll for completions, or just
1798		 * wait for a later chance.
1799		 * If there seem to be plenty of resources left, then just wait
1800		 * since checking involves reading a CE register, which is a
1801		 * relatively expensive operation.
1802		 */
1803		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1804
1805		/*
1806		 * If at least 50% of the total resources are still available,
1807		 * don't bother checking again yet.
1808		 */
1809		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1810			return;
1811	}
1812	ath10k_ce_per_engine_service(ar, pipe);
1813}
1814
1815static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1816{
1817	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1818
1819	del_timer_sync(&ar_pci->rx_post_retry);
1820}
1821
1822int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1823				       u8 *ul_pipe, u8 *dl_pipe)
1824{
1825	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1826	const struct ce_service_to_pipe *entry;
1827	bool ul_set = false, dl_set = false;
1828	int i;
1829
1830	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1831
1832	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1833		entry = &ar_pci->serv_to_pipe[i];
1834
1835		if (__le32_to_cpu(entry->service_id) != service_id)
1836			continue;
1837
1838		switch (__le32_to_cpu(entry->pipedir)) {
1839		case PIPEDIR_NONE:
1840			break;
1841		case PIPEDIR_IN:
1842			WARN_ON(dl_set);
1843			*dl_pipe = __le32_to_cpu(entry->pipenum);
1844			dl_set = true;
1845			break;
1846		case PIPEDIR_OUT:
1847			WARN_ON(ul_set);
1848			*ul_pipe = __le32_to_cpu(entry->pipenum);
1849			ul_set = true;
1850			break;
1851		case PIPEDIR_INOUT:
1852			WARN_ON(dl_set);
1853			WARN_ON(ul_set);
1854			*dl_pipe = __le32_to_cpu(entry->pipenum);
1855			*ul_pipe = __le32_to_cpu(entry->pipenum);
1856			dl_set = true;
1857			ul_set = true;
1858			break;
1859		}
1860	}
1861
1862	if (!ul_set || !dl_set)
1863		return -ENOENT;
1864
1865	return 0;
1866}
1867
1868void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1869				     u8 *ul_pipe, u8 *dl_pipe)
1870{
1871	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1872
1873	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1874						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1875						 ul_pipe, dl_pipe);
1876}
1877
1878void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1879{
1880	u32 val;
1881
1882	switch (ar->hw_rev) {
1883	case ATH10K_HW_QCA988X:
1884	case ATH10K_HW_QCA9887:
1885	case ATH10K_HW_QCA6174:
1886	case ATH10K_HW_QCA9377:
1887		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1888					CORE_CTRL_ADDRESS);
1889		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1890		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1891				   CORE_CTRL_ADDRESS, val);
1892		break;
1893	case ATH10K_HW_QCA99X0:
1894	case ATH10K_HW_QCA9984:
1895	case ATH10K_HW_QCA9888:
1896	case ATH10K_HW_QCA4019:
1897		/* TODO: Find appropriate register configuration for QCA99X0
1898		 *  to mask irq/MSI.
1899		 */
1900		break;
1901	case ATH10K_HW_WCN3990:
1902		break;
1903	}
1904}
1905
1906static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1907{
1908	u32 val;
1909
1910	switch (ar->hw_rev) {
1911	case ATH10K_HW_QCA988X:
1912	case ATH10K_HW_QCA9887:
1913	case ATH10K_HW_QCA6174:
1914	case ATH10K_HW_QCA9377:
1915		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1916					CORE_CTRL_ADDRESS);
1917		val |= CORE_CTRL_PCIE_REG_31_MASK;
1918		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1919				   CORE_CTRL_ADDRESS, val);
1920		break;
1921	case ATH10K_HW_QCA99X0:
1922	case ATH10K_HW_QCA9984:
1923	case ATH10K_HW_QCA9888:
1924	case ATH10K_HW_QCA4019:
1925		/* TODO: Find appropriate register configuration for QCA99X0
1926		 *  to unmask irq/MSI.
1927		 */
1928		break;
1929	case ATH10K_HW_WCN3990:
1930		break;
1931	}
1932}
1933
1934static void ath10k_pci_irq_disable(struct ath10k *ar)
1935{
1936	ath10k_ce_disable_interrupts(ar);
1937	ath10k_pci_disable_and_clear_legacy_irq(ar);
1938	ath10k_pci_irq_msi_fw_mask(ar);
1939}
1940
1941static void ath10k_pci_irq_sync(struct ath10k *ar)
1942{
1943	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1944
1945	synchronize_irq(ar_pci->pdev->irq);
1946}
1947
1948static void ath10k_pci_irq_enable(struct ath10k *ar)
1949{
1950	ath10k_ce_enable_interrupts(ar);
1951	ath10k_pci_enable_legacy_irq(ar);
1952	ath10k_pci_irq_msi_fw_unmask(ar);
1953}
1954
1955static int ath10k_pci_hif_start(struct ath10k *ar)
1956{
1957	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1958
1959	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1960
1961	napi_enable(&ar->napi);
1962
1963	ath10k_pci_irq_enable(ar);
1964	ath10k_pci_rx_post(ar);
1965
1966	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1967				   ar_pci->link_ctl);
1968
1969	return 0;
1970}
1971
1972static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1973{
1974	struct ath10k *ar;
1975	struct ath10k_ce_pipe *ce_pipe;
1976	struct ath10k_ce_ring *ce_ring;
1977	struct sk_buff *skb;
1978	int i;
1979
1980	ar = pci_pipe->hif_ce_state;
1981	ce_pipe = pci_pipe->ce_hdl;
1982	ce_ring = ce_pipe->dest_ring;
1983
1984	if (!ce_ring)
1985		return;
1986
1987	if (!pci_pipe->buf_sz)
1988		return;
1989
1990	for (i = 0; i < ce_ring->nentries; i++) {
1991		skb = ce_ring->per_transfer_context[i];
1992		if (!skb)
1993			continue;
1994
1995		ce_ring->per_transfer_context[i] = NULL;
1996
1997		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1998				 skb->len + skb_tailroom(skb),
1999				 DMA_FROM_DEVICE);
2000		dev_kfree_skb_any(skb);
2001	}
2002}
2003
2004static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2005{
2006	struct ath10k *ar;
2007	struct ath10k_ce_pipe *ce_pipe;
2008	struct ath10k_ce_ring *ce_ring;
2009	struct sk_buff *skb;
2010	int i;
2011
2012	ar = pci_pipe->hif_ce_state;
2013	ce_pipe = pci_pipe->ce_hdl;
2014	ce_ring = ce_pipe->src_ring;
2015
2016	if (!ce_ring)
2017		return;
2018
2019	if (!pci_pipe->buf_sz)
2020		return;
2021
2022	for (i = 0; i < ce_ring->nentries; i++) {
2023		skb = ce_ring->per_transfer_context[i];
2024		if (!skb)
2025			continue;
2026
2027		ce_ring->per_transfer_context[i] = NULL;
2028
2029		ath10k_htc_tx_completion_handler(ar, skb);
2030	}
2031}
2032
2033/*
2034 * Cleanup residual buffers for device shutdown:
2035 *    buffers that were enqueued for receive
2036 *    buffers that were to be sent
2037 * Note: Buffers that had completed but which were
2038 * not yet processed are on a completion queue. They
2039 * are handled when the completion thread shuts down.
2040 */
2041static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2042{
2043	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2044	int pipe_num;
2045
2046	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2047		struct ath10k_pci_pipe *pipe_info;
2048
2049		pipe_info = &ar_pci->pipe_info[pipe_num];
2050		ath10k_pci_rx_pipe_cleanup(pipe_info);
2051		ath10k_pci_tx_pipe_cleanup(pipe_info);
2052	}
2053}
2054
2055void ath10k_pci_ce_deinit(struct ath10k *ar)
2056{
2057	int i;
2058
2059	for (i = 0; i < CE_COUNT; i++)
2060		ath10k_ce_deinit_pipe(ar, i);
2061}
2062
2063void ath10k_pci_flush(struct ath10k *ar)
2064{
2065	ath10k_pci_rx_retry_sync(ar);
2066	ath10k_pci_buffer_cleanup(ar);
2067}
2068
2069static void ath10k_pci_hif_stop(struct ath10k *ar)
2070{
2071	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2072	unsigned long flags;
2073
2074	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2075
2076	ath10k_pci_irq_disable(ar);
2077	ath10k_pci_irq_sync(ar);
2078	napi_synchronize(&ar->napi);
2079	napi_disable(&ar->napi);
2080	cancel_work_sync(&ar_pci->dump_work);
2081
2082	/* Most likely the device has HTT Rx ring configured. The only way to
2083	 * prevent the device from accessing (and possible corrupting) host
2084	 * memory is to reset the chip now.
2085	 *
2086	 * There's also no known way of masking MSI interrupts on the device.
2087	 * For ranged MSI the CE-related interrupts can be masked. However
2088	 * regardless how many MSI interrupts are assigned the first one
2089	 * is always used for firmware indications (crashes) and cannot be
2090	 * masked. To prevent the device from asserting the interrupt reset it
2091	 * before proceeding with cleanup.
2092	 */
2093	ath10k_pci_safe_chip_reset(ar);
2094
2095	ath10k_pci_flush(ar);
2096
2097	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2098	WARN_ON(ar_pci->ps_wake_refcount > 0);
2099	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2100}
2101
2102int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2103				    void *req, u32 req_len,
2104				    void *resp, u32 *resp_len)
2105{
2106	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2107	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2108	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2109	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2110	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2111	dma_addr_t req_paddr = 0;
2112	dma_addr_t resp_paddr = 0;
2113	struct bmi_xfer xfer = {};
2114	void *treq, *tresp = NULL;
2115	int ret = 0;
2116
2117	might_sleep();
2118
2119	if (resp && !resp_len)
2120		return -EINVAL;
2121
2122	if (resp && resp_len && *resp_len == 0)
2123		return -EINVAL;
2124
2125	treq = kmemdup(req, req_len, GFP_KERNEL);
2126	if (!treq)
2127		return -ENOMEM;
2128
2129	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2130	ret = dma_mapping_error(ar->dev, req_paddr);
2131	if (ret) {
2132		ret = -EIO;
2133		goto err_dma;
2134	}
2135
2136	if (resp && resp_len) {
2137		tresp = kzalloc(*resp_len, GFP_KERNEL);
2138		if (!tresp) {
2139			ret = -ENOMEM;
2140			goto err_req;
2141		}
2142
2143		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2144					    DMA_FROM_DEVICE);
2145		ret = dma_mapping_error(ar->dev, resp_paddr);
2146		if (ret) {
2147			ret = -EIO;
2148			goto err_req;
2149		}
2150
2151		xfer.wait_for_resp = true;
2152		xfer.resp_len = 0;
2153
2154		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2155	}
2156
2157	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2158	if (ret)
2159		goto err_resp;
2160
2161	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2162	if (ret) {
2163		dma_addr_t unused_buffer;
2164		unsigned int unused_nbytes;
2165		unsigned int unused_id;
2166
2167		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2168					   &unused_nbytes, &unused_id);
2169	} else {
2170		/* non-zero means we did not time out */
2171		ret = 0;
2172	}
2173
2174err_resp:
2175	if (resp) {
2176		dma_addr_t unused_buffer;
2177
2178		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2179		dma_unmap_single(ar->dev, resp_paddr,
2180				 *resp_len, DMA_FROM_DEVICE);
2181	}
2182err_req:
2183	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2184
2185	if (ret == 0 && resp_len) {
2186		*resp_len = min(*resp_len, xfer.resp_len);
2187		memcpy(resp, tresp, xfer.resp_len);
2188	}
2189err_dma:
2190	kfree(treq);
2191	kfree(tresp);
2192
2193	return ret;
2194}
2195
2196static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2197{
2198	struct bmi_xfer *xfer;
2199
2200	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2201		return;
2202
2203	xfer->tx_done = true;
2204}
2205
2206static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2207{
2208	struct ath10k *ar = ce_state->ar;
2209	struct bmi_xfer *xfer;
2210	unsigned int nbytes;
2211
2212	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2213					  &nbytes))
2214		return;
2215
2216	if (WARN_ON_ONCE(!xfer))
2217		return;
2218
2219	if (!xfer->wait_for_resp) {
2220		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2221		return;
2222	}
2223
2224	xfer->resp_len = nbytes;
2225	xfer->rx_done = true;
2226}
2227
2228static int ath10k_pci_bmi_wait(struct ath10k *ar,
2229			       struct ath10k_ce_pipe *tx_pipe,
2230			       struct ath10k_ce_pipe *rx_pipe,
2231			       struct bmi_xfer *xfer)
2232{
2233	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2234	unsigned long started = jiffies;
2235	unsigned long dur;
2236	int ret;
2237
2238	while (time_before_eq(jiffies, timeout)) {
2239		ath10k_pci_bmi_send_done(tx_pipe);
2240		ath10k_pci_bmi_recv_data(rx_pipe);
2241
2242		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2243			ret = 0;
2244			goto out;
2245		}
2246
2247		schedule();
2248	}
2249
2250	ret = -ETIMEDOUT;
2251
2252out:
2253	dur = jiffies - started;
2254	if (dur > HZ)
2255		ath10k_dbg(ar, ATH10K_DBG_BMI,
2256			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2257			   dur, HZ, ret);
2258	return ret;
2259}
2260
2261/*
2262 * Send an interrupt to the device to wake up the Target CPU
2263 * so it has an opportunity to notice any changed state.
2264 */
2265static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2266{
2267	u32 addr, val;
2268
2269	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2270	val = ath10k_pci_read32(ar, addr);
2271	val |= CORE_CTRL_CPU_INTR_MASK;
2272	ath10k_pci_write32(ar, addr, val);
2273
2274	return 0;
2275}
2276
2277static int ath10k_pci_get_num_banks(struct ath10k *ar)
2278{
2279	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2280
2281	switch (ar_pci->pdev->device) {
2282	case QCA988X_2_0_DEVICE_ID_UBNT:
2283	case QCA988X_2_0_DEVICE_ID:
2284	case QCA99X0_2_0_DEVICE_ID:
2285	case QCA9888_2_0_DEVICE_ID:
2286	case QCA9984_1_0_DEVICE_ID:
2287	case QCA9887_1_0_DEVICE_ID:
2288		return 1;
2289	case QCA6164_2_1_DEVICE_ID:
2290	case QCA6174_2_1_DEVICE_ID:
2291		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2292		case QCA6174_HW_1_0_CHIP_ID_REV:
2293		case QCA6174_HW_1_1_CHIP_ID_REV:
2294		case QCA6174_HW_2_1_CHIP_ID_REV:
2295		case QCA6174_HW_2_2_CHIP_ID_REV:
2296			return 3;
2297		case QCA6174_HW_1_3_CHIP_ID_REV:
2298			return 2;
2299		case QCA6174_HW_3_0_CHIP_ID_REV:
2300		case QCA6174_HW_3_1_CHIP_ID_REV:
2301		case QCA6174_HW_3_2_CHIP_ID_REV:
2302			return 9;
2303		}
2304		break;
2305	case QCA9377_1_0_DEVICE_ID:
2306		return 9;
2307	}
2308
2309	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2310	return 1;
2311}
2312
2313static int ath10k_bus_get_num_banks(struct ath10k *ar)
2314{
2315	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2316
2317	return ce->bus_ops->get_num_banks(ar);
2318}
2319
2320int ath10k_pci_init_config(struct ath10k *ar)
2321{
2322	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2323	u32 interconnect_targ_addr;
2324	u32 pcie_state_targ_addr = 0;
2325	u32 pipe_cfg_targ_addr = 0;
2326	u32 svc_to_pipe_map = 0;
2327	u32 pcie_config_flags = 0;
2328	u32 ealloc_value;
2329	u32 ealloc_targ_addr;
2330	u32 flag2_value;
2331	u32 flag2_targ_addr;
2332	int ret = 0;
2333
2334	/* Download to Target the CE Config and the service-to-CE map */
2335	interconnect_targ_addr =
2336		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2337
2338	/* Supply Target-side CE configuration */
2339	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2340				     &pcie_state_targ_addr);
2341	if (ret != 0) {
2342		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2343		return ret;
2344	}
2345
2346	if (pcie_state_targ_addr == 0) {
2347		ret = -EIO;
2348		ath10k_err(ar, "Invalid pcie state addr\n");
2349		return ret;
2350	}
2351
2352	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2353					  offsetof(struct pcie_state,
2354						   pipe_cfg_addr)),
2355				     &pipe_cfg_targ_addr);
2356	if (ret != 0) {
2357		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2358		return ret;
2359	}
2360
2361	if (pipe_cfg_targ_addr == 0) {
2362		ret = -EIO;
2363		ath10k_err(ar, "Invalid pipe cfg addr\n");
2364		return ret;
2365	}
2366
2367	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2368					ar_pci->pipe_config,
2369					sizeof(struct ce_pipe_config) *
2370					NUM_TARGET_CE_CONFIG_WLAN);
2371
2372	if (ret != 0) {
2373		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2374		return ret;
2375	}
2376
2377	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2378					  offsetof(struct pcie_state,
2379						   svc_to_pipe_map)),
2380				     &svc_to_pipe_map);
2381	if (ret != 0) {
2382		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2383		return ret;
2384	}
2385
2386	if (svc_to_pipe_map == 0) {
2387		ret = -EIO;
2388		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2389		return ret;
2390	}
2391
2392	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2393					ar_pci->serv_to_pipe,
2394					sizeof(pci_target_service_to_ce_map_wlan));
2395	if (ret != 0) {
2396		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2397		return ret;
2398	}
2399
2400	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2401					  offsetof(struct pcie_state,
2402						   config_flags)),
2403				     &pcie_config_flags);
2404	if (ret != 0) {
2405		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2406		return ret;
2407	}
2408
2409	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2410
2411	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2412					   offsetof(struct pcie_state,
2413						    config_flags)),
2414				      pcie_config_flags);
2415	if (ret != 0) {
2416		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2417		return ret;
2418	}
2419
2420	/* configure early allocation */
2421	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2422
2423	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2424	if (ret != 0) {
2425		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2426		return ret;
2427	}
2428
2429	/* first bank is switched to IRAM */
2430	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2431			 HI_EARLY_ALLOC_MAGIC_MASK);
2432	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2433			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2434			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2435
2436	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2437	if (ret != 0) {
2438		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2439		return ret;
2440	}
2441
2442	/* Tell Target to proceed with initialization */
2443	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2444
2445	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2446	if (ret != 0) {
2447		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2448		return ret;
2449	}
2450
2451	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2452
2453	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2454	if (ret != 0) {
2455		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2456		return ret;
2457	}
2458
2459	return 0;
2460}
2461
2462static void ath10k_pci_override_ce_config(struct ath10k *ar)
2463{
2464	struct ce_attr *attr;
2465	struct ce_pipe_config *config;
2466	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2467
2468	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2469	 * since it is currently used for other feature.
2470	 */
2471
2472	/* Override Host's Copy Engine 5 configuration */
2473	attr = &ar_pci->attr[5];
2474	attr->src_sz_max = 0;
2475	attr->dest_nentries = 0;
2476
2477	/* Override Target firmware's Copy Engine configuration */
2478	config = &ar_pci->pipe_config[5];
2479	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2480	config->nbytes_max = __cpu_to_le32(2048);
2481
2482	/* Map from service/endpoint to Copy Engine */
2483	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2484}
2485
2486int ath10k_pci_alloc_pipes(struct ath10k *ar)
2487{
2488	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2489	struct ath10k_pci_pipe *pipe;
2490	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2491	int i, ret;
2492
2493	for (i = 0; i < CE_COUNT; i++) {
2494		pipe = &ar_pci->pipe_info[i];
2495		pipe->ce_hdl = &ce->ce_states[i];
2496		pipe->pipe_num = i;
2497		pipe->hif_ce_state = ar;
2498
2499		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2500		if (ret) {
2501			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2502				   i, ret);
2503			return ret;
2504		}
2505
2506		/* Last CE is Diagnostic Window */
2507		if (i == CE_DIAG_PIPE) {
2508			ar_pci->ce_diag = pipe->ce_hdl;
2509			continue;
2510		}
2511
2512		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2513	}
2514
2515	return 0;
2516}
2517
2518void ath10k_pci_free_pipes(struct ath10k *ar)
2519{
2520	int i;
2521
2522	for (i = 0; i < CE_COUNT; i++)
2523		ath10k_ce_free_pipe(ar, i);
2524}
2525
2526int ath10k_pci_init_pipes(struct ath10k *ar)
2527{
2528	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2529	int i, ret;
2530
2531	for (i = 0; i < CE_COUNT; i++) {
2532		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2533		if (ret) {
2534			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2535				   i, ret);
2536			return ret;
2537		}
2538	}
2539
2540	return 0;
2541}
2542
2543static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2544{
2545	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2546	       FW_IND_EVENT_PENDING;
2547}
2548
2549static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2550{
2551	u32 val;
2552
2553	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2554	val &= ~FW_IND_EVENT_PENDING;
2555	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2556}
2557
2558static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2559{
2560	u32 val;
2561
2562	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2563	return (val == 0xffffffff);
2564}
2565
2566/* this function effectively clears target memory controller assert line */
2567static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2568{
2569	u32 val;
2570
2571	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2572	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2573			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2574	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2575
2576	msleep(10);
2577
2578	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2579	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2580			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2581	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2582
2583	msleep(10);
2584}
2585
2586static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2587{
2588	u32 val;
2589
2590	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2591
2592	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2593	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2594			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2595}
2596
2597static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2598{
2599	u32 val;
2600
2601	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2602
2603	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2604			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2605	msleep(10);
2606	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2607			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2608}
2609
2610static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2611{
2612	u32 val;
2613
2614	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2615	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2616			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2617}
2618
2619static int ath10k_pci_warm_reset(struct ath10k *ar)
2620{
2621	int ret;
2622
2623	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2624
2625	spin_lock_bh(&ar->data_lock);
2626	ar->stats.fw_warm_reset_counter++;
2627	spin_unlock_bh(&ar->data_lock);
2628
2629	ath10k_pci_irq_disable(ar);
2630
2631	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2632	 * were to access copy engine while host performs copy engine reset
2633	 * then it is possible for the device to confuse pci-e controller to
2634	 * the point of bringing host system to a complete stop (i.e. hang).
2635	 */
2636	ath10k_pci_warm_reset_si0(ar);
2637	ath10k_pci_warm_reset_cpu(ar);
2638	ath10k_pci_init_pipes(ar);
2639	ath10k_pci_wait_for_target_init(ar);
2640
2641	ath10k_pci_warm_reset_clear_lf(ar);
2642	ath10k_pci_warm_reset_ce(ar);
2643	ath10k_pci_warm_reset_cpu(ar);
2644	ath10k_pci_init_pipes(ar);
2645
2646	ret = ath10k_pci_wait_for_target_init(ar);
2647	if (ret) {
2648		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2649		return ret;
2650	}
2651
2652	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2653
2654	return 0;
2655}
2656
2657static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2658{
2659	ath10k_pci_irq_disable(ar);
2660	return ath10k_pci_qca99x0_chip_reset(ar);
2661}
2662
2663static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2664{
2665	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2666
2667	if (!ar_pci->pci_soft_reset)
2668		return -ENOTSUPP;
2669
2670	return ar_pci->pci_soft_reset(ar);
2671}
2672
2673static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2674{
2675	int i, ret;
2676	u32 val;
2677
2678	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2679
2680	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2681	 * It is thus preferred to use warm reset which is safer but may not be
2682	 * able to recover the device from all possible fail scenarios.
2683	 *
2684	 * Warm reset doesn't always work on first try so attempt it a few
2685	 * times before giving up.
2686	 */
2687	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2688		ret = ath10k_pci_warm_reset(ar);
2689		if (ret) {
2690			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2691				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2692				    ret);
2693			continue;
2694		}
2695
2696		/* FIXME: Sometimes copy engine doesn't recover after warm
2697		 * reset. In most cases this needs cold reset. In some of these
2698		 * cases the device is in such a state that a cold reset may
2699		 * lock up the host.
2700		 *
2701		 * Reading any host interest register via copy engine is
2702		 * sufficient to verify if device is capable of booting
2703		 * firmware blob.
2704		 */
2705		ret = ath10k_pci_init_pipes(ar);
2706		if (ret) {
2707			ath10k_warn(ar, "failed to init copy engine: %d\n",
2708				    ret);
2709			continue;
2710		}
2711
2712		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2713					     &val);
2714		if (ret) {
2715			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2716				    ret);
2717			continue;
2718		}
2719
2720		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2721		return 0;
2722	}
2723
2724	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2725		ath10k_warn(ar, "refusing cold reset as requested\n");
2726		return -EPERM;
2727	}
2728
2729	ret = ath10k_pci_cold_reset(ar);
2730	if (ret) {
2731		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2732		return ret;
2733	}
2734
2735	ret = ath10k_pci_wait_for_target_init(ar);
2736	if (ret) {
2737		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2738			    ret);
2739		return ret;
2740	}
2741
2742	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2743
2744	return 0;
2745}
2746
2747static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2748{
2749	int ret;
2750
2751	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2752
2753	/* FIXME: QCA6174 requires cold + warm reset to work. */
2754
2755	ret = ath10k_pci_cold_reset(ar);
2756	if (ret) {
2757		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2758		return ret;
2759	}
2760
2761	ret = ath10k_pci_wait_for_target_init(ar);
2762	if (ret) {
2763		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2764			    ret);
2765		return ret;
2766	}
2767
2768	ret = ath10k_pci_warm_reset(ar);
2769	if (ret) {
2770		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2771		return ret;
2772	}
2773
2774	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2775
2776	return 0;
2777}
2778
2779static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2780{
2781	int ret;
2782
2783	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2784
2785	ret = ath10k_pci_cold_reset(ar);
2786	if (ret) {
2787		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2788		return ret;
2789	}
2790
2791	ret = ath10k_pci_wait_for_target_init(ar);
2792	if (ret) {
2793		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2794			    ret);
2795		return ret;
2796	}
2797
2798	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2799
2800	return 0;
2801}
2802
2803static int ath10k_pci_chip_reset(struct ath10k *ar)
2804{
2805	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2806
2807	if (WARN_ON(!ar_pci->pci_hard_reset))
2808		return -ENOTSUPP;
2809
2810	return ar_pci->pci_hard_reset(ar);
2811}
2812
2813static int ath10k_pci_hif_power_up(struct ath10k *ar,
2814				   enum ath10k_firmware_mode fw_mode)
2815{
2816	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2817	int ret;
2818
2819	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2820
2821	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2822				  &ar_pci->link_ctl);
2823	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2824				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2825
2826	/*
2827	 * Bring the target up cleanly.
2828	 *
2829	 * The target may be in an undefined state with an AUX-powered Target
2830	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2831	 * restarted (without unloading the driver) then the Target is left
2832	 * (aux) powered and running. On a subsequent driver load, the Target
2833	 * is in an unexpected state. We try to catch that here in order to
2834	 * reset the Target and retry the probe.
2835	 */
2836	ret = ath10k_pci_chip_reset(ar);
2837	if (ret) {
2838		if (ath10k_pci_has_fw_crashed(ar)) {
2839			ath10k_warn(ar, "firmware crashed during chip reset\n");
2840			ath10k_pci_fw_crashed_clear(ar);
2841			ath10k_pci_fw_crashed_dump(ar);
2842		}
2843
2844		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2845		goto err_sleep;
2846	}
2847
2848	ret = ath10k_pci_init_pipes(ar);
2849	if (ret) {
2850		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2851		goto err_sleep;
2852	}
2853
2854	ret = ath10k_pci_init_config(ar);
2855	if (ret) {
2856		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2857		goto err_ce;
2858	}
2859
2860	ret = ath10k_pci_wake_target_cpu(ar);
2861	if (ret) {
2862		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2863		goto err_ce;
2864	}
2865
2866	return 0;
2867
2868err_ce:
2869	ath10k_pci_ce_deinit(ar);
2870
2871err_sleep:
2872	return ret;
2873}
2874
2875void ath10k_pci_hif_power_down(struct ath10k *ar)
2876{
2877	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2878
2879	/* Currently hif_power_up performs effectively a reset and hif_stop
2880	 * resets the chip as well so there's no point in resetting here.
2881	 */
2882}
2883
2884static int ath10k_pci_hif_suspend(struct ath10k *ar)
2885{
2886	/* Nothing to do; the important stuff is in the driver suspend. */
2887	return 0;
2888}
2889
2890static int ath10k_pci_suspend(struct ath10k *ar)
2891{
2892	/* The grace timer can still be counting down and ar->ps_awake be true.
2893	 * It is known that the device may be asleep after resuming regardless
2894	 * of the SoC powersave state before suspending. Hence make sure the
2895	 * device is asleep before proceeding.
2896	 */
2897	ath10k_pci_sleep_sync(ar);
2898
2899	return 0;
2900}
2901
2902static int ath10k_pci_hif_resume(struct ath10k *ar)
2903{
2904	/* Nothing to do; the important stuff is in the driver resume. */
2905	return 0;
2906}
2907
2908static int ath10k_pci_resume(struct ath10k *ar)
2909{
2910	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2911	struct pci_dev *pdev = ar_pci->pdev;
2912	u32 val;
2913	int ret = 0;
2914
2915	ret = ath10k_pci_force_wake(ar);
2916	if (ret) {
2917		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2918		return ret;
2919	}
2920
2921	/* Suspend/Resume resets the PCI configuration space, so we have to
2922	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2923	 * from interfering with C3 CPU state. pci_restore_state won't help
2924	 * here since it only restores the first 64 bytes pci config header.
2925	 */
2926	pci_read_config_dword(pdev, 0x40, &val);
2927	if ((val & 0x0000ff00) != 0)
2928		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2929
2930	return ret;
2931}
2932
2933static bool ath10k_pci_validate_cal(void *data, size_t size)
2934{
2935	__le16 *cal_words = data;
2936	u16 checksum = 0;
2937	size_t i;
2938
2939	if (size % 2 != 0)
2940		return false;
2941
2942	for (i = 0; i < size / 2; i++)
2943		checksum ^= le16_to_cpu(cal_words[i]);
2944
2945	return checksum == 0xffff;
2946}
2947
2948static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2949{
2950	/* Enable SI clock */
2951	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2952
2953	/* Configure GPIOs for I2C operation */
2954	ath10k_pci_write32(ar,
2955			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2956			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2957			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2958			      GPIO_PIN0_CONFIG) |
2959			   SM(1, GPIO_PIN0_PAD_PULL));
2960
2961	ath10k_pci_write32(ar,
2962			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2963			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2964			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2965			   SM(1, GPIO_PIN0_PAD_PULL));
2966
2967	ath10k_pci_write32(ar,
2968			   GPIO_BASE_ADDRESS +
2969			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2970			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2971
2972	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2973	ath10k_pci_write32(ar,
2974			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2975			   SM(1, SI_CONFIG_ERR_INT) |
2976			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2977			   SM(1, SI_CONFIG_I2C) |
2978			   SM(1, SI_CONFIG_POS_SAMPLE) |
2979			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2980			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2981			   SM(8, SI_CONFIG_DIVIDER));
2982}
2983
2984static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2985{
2986	u32 reg;
2987	int wait_limit;
2988
2989	/* set device select byte and for the read operation */
2990	reg = QCA9887_EEPROM_SELECT_READ |
2991	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2992	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2993	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2994
2995	/* write transmit data, transfer length, and START bit */
2996	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2997			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2998			   SM(4, SI_CS_TX_CNT));
2999
3000	/* wait max 1 sec */
3001	wait_limit = 100000;
3002
3003	/* wait for SI_CS_DONE_INT */
3004	do {
3005		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3006		if (MS(reg, SI_CS_DONE_INT))
3007			break;
3008
3009		wait_limit--;
3010		udelay(10);
3011	} while (wait_limit > 0);
3012
3013	if (!MS(reg, SI_CS_DONE_INT)) {
3014		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3015			   addr);
3016		return -ETIMEDOUT;
3017	}
3018
3019	/* clear SI_CS_DONE_INT */
3020	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3021
3022	if (MS(reg, SI_CS_DONE_ERR)) {
3023		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3024		return -EIO;
3025	}
3026
3027	/* extract receive data */
3028	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3029	*out = reg;
3030
3031	return 0;
3032}
3033
3034static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3035					   size_t *data_len)
3036{
3037	u8 *caldata = NULL;
3038	size_t calsize, i;
3039	int ret;
3040
3041	if (!QCA_REV_9887(ar))
3042		return -EOPNOTSUPP;
3043
3044	calsize = ar->hw_params.cal_data_len;
3045	caldata = kmalloc(calsize, GFP_KERNEL);
3046	if (!caldata)
3047		return -ENOMEM;
3048
3049	ath10k_pci_enable_eeprom(ar);
3050
3051	for (i = 0; i < calsize; i++) {
3052		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3053		if (ret)
3054			goto err_free;
3055	}
3056
3057	if (!ath10k_pci_validate_cal(caldata, calsize))
3058		goto err_free;
3059
3060	*data = caldata;
3061	*data_len = calsize;
3062
3063	return 0;
3064
3065err_free:
3066	kfree(caldata);
3067
3068	return -EINVAL;
3069}
3070
3071static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3072	.tx_sg			= ath10k_pci_hif_tx_sg,
3073	.diag_read		= ath10k_pci_hif_diag_read,
3074	.diag_write		= ath10k_pci_diag_write_mem,
3075	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3076	.start			= ath10k_pci_hif_start,
3077	.stop			= ath10k_pci_hif_stop,
3078	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3079	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3080	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3081	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3082	.power_up		= ath10k_pci_hif_power_up,
3083	.power_down		= ath10k_pci_hif_power_down,
3084	.read32			= ath10k_pci_read32,
3085	.write32		= ath10k_pci_write32,
3086	.suspend		= ath10k_pci_hif_suspend,
3087	.resume			= ath10k_pci_hif_resume,
3088	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3089};
3090
3091/*
3092 * Top-level interrupt handler for all PCI interrupts from a Target.
3093 * When a block of MSI interrupts is allocated, this top-level handler
3094 * is not used; instead, we directly call the correct sub-handler.
3095 */
3096static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3097{
3098	struct ath10k *ar = arg;
3099	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3100	int ret;
3101
3102	if (ath10k_pci_has_device_gone(ar))
3103		return IRQ_NONE;
3104
3105	ret = ath10k_pci_force_wake(ar);
3106	if (ret) {
3107		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3108		return IRQ_NONE;
3109	}
3110
3111	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3112	    !ath10k_pci_irq_pending(ar))
3113		return IRQ_NONE;
3114
3115	ath10k_pci_disable_and_clear_legacy_irq(ar);
3116	ath10k_pci_irq_msi_fw_mask(ar);
3117	napi_schedule(&ar->napi);
3118
3119	return IRQ_HANDLED;
3120}
3121
3122static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3123{
3124	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3125	int done = 0;
3126
3127	if (ath10k_pci_has_fw_crashed(ar)) {
3128		ath10k_pci_fw_crashed_clear(ar);
3129		ath10k_pci_fw_crashed_dump(ar);
3130		napi_complete(ctx);
3131		return done;
3132	}
3133
3134	ath10k_ce_per_engine_service_any(ar);
3135
3136	done = ath10k_htt_txrx_compl_task(ar, budget);
3137
3138	if (done < budget) {
3139		napi_complete_done(ctx, done);
3140		/* In case of MSI, it is possible that interrupts are received
3141		 * while NAPI poll is inprogress. So pending interrupts that are
3142		 * received after processing all copy engine pipes by NAPI poll
3143		 * will not be handled again. This is causing failure to
3144		 * complete boot sequence in x86 platform. So before enabling
3145		 * interrupts safer to check for pending interrupts for
3146		 * immediate servicing.
3147		 */
3148		if (ath10k_ce_interrupt_summary(ar)) {
3149			napi_reschedule(ctx);
3150			goto out;
3151		}
3152		ath10k_pci_enable_legacy_irq(ar);
3153		ath10k_pci_irq_msi_fw_unmask(ar);
3154	}
3155
3156out:
3157	return done;
3158}
3159
3160static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3161{
3162	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3163	int ret;
3164
3165	ret = request_irq(ar_pci->pdev->irq,
3166			  ath10k_pci_interrupt_handler,
3167			  IRQF_SHARED, "ath10k_pci", ar);
3168	if (ret) {
3169		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3170			    ar_pci->pdev->irq, ret);
3171		return ret;
3172	}
3173
3174	return 0;
3175}
3176
3177static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3178{
3179	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3180	int ret;
3181
3182	ret = request_irq(ar_pci->pdev->irq,
3183			  ath10k_pci_interrupt_handler,
3184			  IRQF_SHARED, "ath10k_pci", ar);
3185	if (ret) {
3186		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3187			    ar_pci->pdev->irq, ret);
3188		return ret;
3189	}
3190
3191	return 0;
3192}
3193
3194static int ath10k_pci_request_irq(struct ath10k *ar)
3195{
3196	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3197
3198	switch (ar_pci->oper_irq_mode) {
3199	case ATH10K_PCI_IRQ_LEGACY:
3200		return ath10k_pci_request_irq_legacy(ar);
3201	case ATH10K_PCI_IRQ_MSI:
3202		return ath10k_pci_request_irq_msi(ar);
3203	default:
3204		return -EINVAL;
3205	}
3206}
3207
3208static void ath10k_pci_free_irq(struct ath10k *ar)
3209{
3210	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3211
3212	free_irq(ar_pci->pdev->irq, ar);
3213}
3214
3215void ath10k_pci_init_napi(struct ath10k *ar)
3216{
3217	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3218		       ATH10K_NAPI_BUDGET);
3219}
3220
3221static int ath10k_pci_init_irq(struct ath10k *ar)
3222{
3223	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3224	int ret;
3225
3226	ath10k_pci_init_napi(ar);
3227
3228	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3229		ath10k_info(ar, "limiting irq mode to: %d\n",
3230			    ath10k_pci_irq_mode);
3231
3232	/* Try MSI */
3233	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3234		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3235		ret = pci_enable_msi(ar_pci->pdev);
3236		if (ret == 0)
3237			return 0;
3238
3239		/* fall-through */
3240	}
3241
3242	/* Try legacy irq
3243	 *
3244	 * A potential race occurs here: The CORE_BASE write
3245	 * depends on target correctly decoding AXI address but
3246	 * host won't know when target writes BAR to CORE_CTRL.
3247	 * This write might get lost if target has NOT written BAR.
3248	 * For now, fix the race by repeating the write in below
3249	 * synchronization checking.
3250	 */
3251	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3252
3253	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3254			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3255
3256	return 0;
3257}
3258
3259static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3260{
3261	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3262			   0);
3263}
3264
3265static int ath10k_pci_deinit_irq(struct ath10k *ar)
3266{
3267	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3268
3269	switch (ar_pci->oper_irq_mode) {
3270	case ATH10K_PCI_IRQ_LEGACY:
3271		ath10k_pci_deinit_irq_legacy(ar);
3272		break;
3273	default:
3274		pci_disable_msi(ar_pci->pdev);
3275		break;
3276	}
3277
3278	return 0;
3279}
3280
3281int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3282{
3283	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3284	unsigned long timeout;
3285	u32 val;
3286
3287	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3288
3289	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3290
3291	do {
3292		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3293
3294		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3295			   val);
3296
3297		/* target should never return this */
3298		if (val == 0xffffffff)
3299			continue;
3300
3301		/* the device has crashed so don't bother trying anymore */
3302		if (val & FW_IND_EVENT_PENDING)
3303			break;
3304
3305		if (val & FW_IND_INITIALIZED)
3306			break;
3307
3308		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3309			/* Fix potential race by repeating CORE_BASE writes */
3310			ath10k_pci_enable_legacy_irq(ar);
3311
3312		mdelay(10);
3313	} while (time_before(jiffies, timeout));
3314
3315	ath10k_pci_disable_and_clear_legacy_irq(ar);
3316	ath10k_pci_irq_msi_fw_mask(ar);
3317
3318	if (val == 0xffffffff) {
3319		ath10k_err(ar, "failed to read device register, device is gone\n");
3320		return -EIO;
3321	}
3322
3323	if (val & FW_IND_EVENT_PENDING) {
3324		ath10k_warn(ar, "device has crashed during init\n");
3325		return -ECOMM;
3326	}
3327
3328	if (!(val & FW_IND_INITIALIZED)) {
3329		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3330			   val);
3331		return -ETIMEDOUT;
3332	}
3333
3334	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3335	return 0;
3336}
3337
3338static int ath10k_pci_cold_reset(struct ath10k *ar)
3339{
3340	u32 val;
3341
3342	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3343
3344	spin_lock_bh(&ar->data_lock);
3345
3346	ar->stats.fw_cold_reset_counter++;
3347
3348	spin_unlock_bh(&ar->data_lock);
3349
3350	/* Put Target, including PCIe, into RESET. */
3351	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3352	val |= 1;
3353	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3354
3355	/* After writing into SOC_GLOBAL_RESET to put device into
3356	 * reset and pulling out of reset pcie may not be stable
3357	 * for any immediate pcie register access and cause bus error,
3358	 * add delay before any pcie access request to fix this issue.
3359	 */
3360	msleep(20);
3361
3362	/* Pull Target, including PCIe, out of RESET. */
3363	val &= ~1;
3364	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3365
3366	msleep(20);
3367
3368	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3369
3370	return 0;
3371}
3372
3373static int ath10k_pci_claim(struct ath10k *ar)
3374{
3375	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3376	struct pci_dev *pdev = ar_pci->pdev;
3377	int ret;
3378
3379	pci_set_drvdata(pdev, ar);
3380
3381	ret = pci_enable_device(pdev);
3382	if (ret) {
3383		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3384		return ret;
3385	}
3386
3387	ret = pci_request_region(pdev, BAR_NUM, "ath");
3388	if (ret) {
3389		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3390			   ret);
3391		goto err_device;
3392	}
3393
3394	/* Target expects 32 bit DMA. Enforce it. */
3395	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3396	if (ret) {
3397		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3398		goto err_region;
3399	}
3400
3401	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3402	if (ret) {
3403		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3404			   ret);
3405		goto err_region;
3406	}
3407
3408	pci_set_master(pdev);
3409
3410	/* Arrange for access to Target SoC registers. */
3411	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3412	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3413	if (!ar_pci->mem) {
3414		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3415		ret = -EIO;
3416		goto err_master;
3417	}
3418
3419	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3420	return 0;
3421
3422err_master:
3423	pci_clear_master(pdev);
3424
3425err_region:
3426	pci_release_region(pdev, BAR_NUM);
3427
3428err_device:
3429	pci_disable_device(pdev);
3430
3431	return ret;
3432}
3433
3434static void ath10k_pci_release(struct ath10k *ar)
3435{
3436	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3437	struct pci_dev *pdev = ar_pci->pdev;
3438
3439	pci_iounmap(pdev, ar_pci->mem);
3440	pci_release_region(pdev, BAR_NUM);
3441	pci_clear_master(pdev);
3442	pci_disable_device(pdev);
3443}
3444
3445static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3446{
3447	const struct ath10k_pci_supp_chip *supp_chip;
3448	int i;
3449	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3450
3451	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3452		supp_chip = &ath10k_pci_supp_chips[i];
3453
3454		if (supp_chip->dev_id == dev_id &&
3455		    supp_chip->rev_id == rev_id)
3456			return true;
3457	}
3458
3459	return false;
3460}
3461
3462int ath10k_pci_setup_resource(struct ath10k *ar)
3463{
3464	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3465	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3466	int ret;
3467
3468	spin_lock_init(&ce->ce_lock);
3469	spin_lock_init(&ar_pci->ps_lock);
3470	mutex_init(&ar_pci->ce_diag_mutex);
3471
3472	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3473
3474	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3475
3476	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3477			       sizeof(pci_host_ce_config_wlan),
3478			       GFP_KERNEL);
3479	if (!ar_pci->attr)
3480		return -ENOMEM;
3481
3482	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3483				      sizeof(pci_target_ce_config_wlan),
3484				      GFP_KERNEL);
3485	if (!ar_pci->pipe_config) {
3486		ret = -ENOMEM;
3487		goto err_free_attr;
3488	}
3489
3490	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3491				       sizeof(pci_target_service_to_ce_map_wlan),
3492				       GFP_KERNEL);
3493	if (!ar_pci->serv_to_pipe) {
3494		ret = -ENOMEM;
3495		goto err_free_pipe_config;
3496	}
3497
3498	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3499		ath10k_pci_override_ce_config(ar);
3500
3501	ret = ath10k_pci_alloc_pipes(ar);
3502	if (ret) {
3503		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3504			   ret);
3505		goto err_free_serv_to_pipe;
3506	}
3507
3508	return 0;
3509
3510err_free_serv_to_pipe:
3511	kfree(ar_pci->serv_to_pipe);
3512err_free_pipe_config:
3513	kfree(ar_pci->pipe_config);
3514err_free_attr:
3515	kfree(ar_pci->attr);
3516	return ret;
3517}
3518
3519void ath10k_pci_release_resource(struct ath10k *ar)
3520{
3521	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3522
3523	ath10k_pci_rx_retry_sync(ar);
3524	netif_napi_del(&ar->napi);
3525	ath10k_pci_ce_deinit(ar);
3526	ath10k_pci_free_pipes(ar);
3527	kfree(ar_pci->attr);
3528	kfree(ar_pci->pipe_config);
3529	kfree(ar_pci->serv_to_pipe);
3530}
3531
3532static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3533	.read32		= ath10k_bus_pci_read32,
3534	.write32	= ath10k_bus_pci_write32,
3535	.get_num_banks	= ath10k_pci_get_num_banks,
3536};
3537
3538static int ath10k_pci_probe(struct pci_dev *pdev,
3539			    const struct pci_device_id *pci_dev)
3540{
3541	int ret = 0;
3542	struct ath10k *ar;
3543	struct ath10k_pci *ar_pci;
3544	enum ath10k_hw_rev hw_rev;
3545	struct ath10k_bus_params bus_params = {};
3546	bool pci_ps, is_qca988x = false;
3547	int (*pci_soft_reset)(struct ath10k *ar);
3548	int (*pci_hard_reset)(struct ath10k *ar);
3549	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3550
3551	switch (pci_dev->device) {
3552	case QCA988X_2_0_DEVICE_ID_UBNT:
3553	case QCA988X_2_0_DEVICE_ID:
3554		hw_rev = ATH10K_HW_QCA988X;
3555		pci_ps = false;
3556		is_qca988x = true;
3557		pci_soft_reset = ath10k_pci_warm_reset;
3558		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3559		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3560		break;
3561	case QCA9887_1_0_DEVICE_ID:
3562		hw_rev = ATH10K_HW_QCA9887;
3563		pci_ps = false;
3564		pci_soft_reset = ath10k_pci_warm_reset;
3565		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3566		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3567		break;
3568	case QCA6164_2_1_DEVICE_ID:
3569	case QCA6174_2_1_DEVICE_ID:
3570		hw_rev = ATH10K_HW_QCA6174;
3571		pci_ps = true;
3572		pci_soft_reset = ath10k_pci_warm_reset;
3573		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3574		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3575		break;
3576	case QCA99X0_2_0_DEVICE_ID:
3577		hw_rev = ATH10K_HW_QCA99X0;
3578		pci_ps = false;
3579		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3580		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3581		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3582		break;
3583	case QCA9984_1_0_DEVICE_ID:
3584		hw_rev = ATH10K_HW_QCA9984;
3585		pci_ps = false;
3586		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3587		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3588		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3589		break;
3590	case QCA9888_2_0_DEVICE_ID:
3591		hw_rev = ATH10K_HW_QCA9888;
3592		pci_ps = false;
3593		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3594		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3595		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3596		break;
3597	case QCA9377_1_0_DEVICE_ID:
3598		hw_rev = ATH10K_HW_QCA9377;
3599		pci_ps = true;
3600		pci_soft_reset = ath10k_pci_warm_reset;
3601		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3602		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3603		break;
3604	default:
3605		WARN_ON(1);
3606		return -ENOTSUPP;
3607	}
3608
3609	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3610				hw_rev, &ath10k_pci_hif_ops);
3611	if (!ar) {
3612		dev_err(&pdev->dev, "failed to allocate core\n");
3613		return -ENOMEM;
3614	}
3615
3616	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3617		   pdev->vendor, pdev->device,
3618		   pdev->subsystem_vendor, pdev->subsystem_device);
3619
3620	ar_pci = ath10k_pci_priv(ar);
3621	ar_pci->pdev = pdev;
3622	ar_pci->dev = &pdev->dev;
3623	ar_pci->ar = ar;
3624	ar->dev_id = pci_dev->device;
3625	ar_pci->pci_ps = pci_ps;
3626	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3627	ar_pci->pci_soft_reset = pci_soft_reset;
3628	ar_pci->pci_hard_reset = pci_hard_reset;
3629	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3630	ar->ce_priv = &ar_pci->ce;
3631
3632	ar->id.vendor = pdev->vendor;
3633	ar->id.device = pdev->device;
3634	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3635	ar->id.subsystem_device = pdev->subsystem_device;
3636
3637	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3638
3639	ret = ath10k_pci_setup_resource(ar);
3640	if (ret) {
3641		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3642		goto err_core_destroy;
3643	}
3644
3645	ret = ath10k_pci_claim(ar);
3646	if (ret) {
3647		ath10k_err(ar, "failed to claim device: %d\n", ret);
3648		goto err_free_pipes;
3649	}
3650
3651	ret = ath10k_pci_force_wake(ar);
3652	if (ret) {
3653		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3654		goto err_sleep;
3655	}
3656
3657	ath10k_pci_ce_deinit(ar);
3658	ath10k_pci_irq_disable(ar);
3659
3660	ret = ath10k_pci_init_irq(ar);
3661	if (ret) {
3662		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3663		goto err_sleep;
3664	}
3665
3666	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3667		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3668		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3669
3670	ret = ath10k_pci_request_irq(ar);
3671	if (ret) {
3672		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3673		goto err_deinit_irq;
3674	}
3675
3676	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3677	bus_params.link_can_suspend = true;
3678	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3679	 * fall off the bus during chip_reset. These chips have the same pci
3680	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3681	 */
3682	if (is_qca988x) {
3683		bus_params.chip_id =
3684			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3685		if (bus_params.chip_id != 0xffffffff) {
3686			if (!ath10k_pci_chip_is_supported(pdev->device,
3687							  bus_params.chip_id))
3688				goto err_unsupported;
3689		}
3690	}
3691
3692	ret = ath10k_pci_chip_reset(ar);
3693	if (ret) {
3694		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3695		goto err_free_irq;
3696	}
3697
3698	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3699	if (bus_params.chip_id == 0xffffffff)
3700		goto err_unsupported;
3701
3702	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id))
3703		goto err_free_irq;
3704
3705	ret = ath10k_core_register(ar, &bus_params);
3706	if (ret) {
3707		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3708		goto err_free_irq;
3709	}
3710
3711	return 0;
3712
3713err_unsupported:
3714	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3715		   pdev->device, bus_params.chip_id);
3716
3717err_free_irq:
3718	ath10k_pci_free_irq(ar);
3719
3720err_deinit_irq:
3721	ath10k_pci_release_resource(ar);
3722
3723err_sleep:
3724	ath10k_pci_sleep_sync(ar);
3725	ath10k_pci_release(ar);
3726
3727err_free_pipes:
3728	ath10k_pci_free_pipes(ar);
3729
3730err_core_destroy:
3731	ath10k_core_destroy(ar);
3732
3733	return ret;
3734}
3735
3736static void ath10k_pci_remove(struct pci_dev *pdev)
3737{
3738	struct ath10k *ar = pci_get_drvdata(pdev);
3739
3740	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3741
3742	if (!ar)
3743		return;
3744
3745	ath10k_core_unregister(ar);
3746	ath10k_pci_free_irq(ar);
3747	ath10k_pci_deinit_irq(ar);
3748	ath10k_pci_release_resource(ar);
3749	ath10k_pci_sleep_sync(ar);
3750	ath10k_pci_release(ar);
3751	ath10k_core_destroy(ar);
3752}
3753
3754MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3755
3756static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3757{
3758	struct ath10k *ar = dev_get_drvdata(dev);
3759	int ret;
3760
3761	ret = ath10k_pci_suspend(ar);
3762	if (ret)
3763		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3764
3765	return ret;
3766}
3767
3768static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3769{
3770	struct ath10k *ar = dev_get_drvdata(dev);
3771	int ret;
3772
3773	ret = ath10k_pci_resume(ar);
3774	if (ret)
3775		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3776
3777	return ret;
3778}
3779
3780static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3781			 ath10k_pci_pm_suspend,
3782			 ath10k_pci_pm_resume);
3783
3784static struct pci_driver ath10k_pci_driver = {
3785	.name = "ath10k_pci",
3786	.id_table = ath10k_pci_id_table,
3787	.probe = ath10k_pci_probe,
3788	.remove = ath10k_pci_remove,
3789#ifdef CONFIG_PM
3790	.driver.pm = &ath10k_pci_pm_ops,
3791#endif
3792};
3793
3794static int __init ath10k_pci_init(void)
3795{
3796	int ret;
3797
3798	ret = pci_register_driver(&ath10k_pci_driver);
3799	if (ret)
3800		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3801		       ret);
3802
3803	ret = ath10k_ahb_init();
3804	if (ret)
3805		printk(KERN_ERR "ahb init failed: %d\n", ret);
3806
3807	return ret;
3808}
3809module_init(ath10k_pci_init);
3810
3811static void __exit ath10k_pci_exit(void)
3812{
3813	pci_unregister_driver(&ath10k_pci_driver);
3814	ath10k_ahb_exit();
3815}
3816
3817module_exit(ath10k_pci_exit);
3818
3819MODULE_AUTHOR("Qualcomm Atheros");
3820MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3821MODULE_LICENSE("Dual BSD/GPL");
3822
3823/* QCA988x 2.0 firmware files */
3824MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3825MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3826MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3827MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3828MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3829MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3830
3831/* QCA9887 1.0 firmware files */
3832MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3833MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3834MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3835
3836/* QCA6174 2.1 firmware files */
3837MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3838MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3839MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3840MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3841
3842/* QCA6174 3.1 firmware files */
3843MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3844MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3845MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3846MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3847MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3848
3849/* QCA9377 1.0 firmware files */
3850MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3851MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3852MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);