Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Tehuti Networks(R) Network Driver
   4 * ethtool interface implementation
   5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
   6 */
   7
   8/*
   9 * RX HW/SW interaction overview
  10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 * There are 2 types of RX communication channels between driver and NIC.
  12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
  13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
  14 * info about buffer's location, size and ID. An ID field is used to identify a
  15 * buffer when it's returned with data via RXD Fifo (see below)
  16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
  17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
  18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
  19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
  20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
  21 *
  22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
  23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
  24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
  25 * filled with data, HW builds new RXD descriptor for it and push it into single
  26 * RXD Fifo.
  27 *
  28 * RX SW Data Structures
  29 * ~~~~~~~~~~~~~~~~~~~~~
  30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
  31 * For RX case, ownership lasts from allocating new empty skb for RXF until
  32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
  33 * skb db. Implemented as array with bitmask.
  34 * fifo - keeps info about fifo's size and location, relevant HW registers,
  35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
  36 * Implemented as simple struct.
  37 *
  38 * RX SW Execution Flow
  39 * ~~~~~~~~~~~~~~~~~~~~
  40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
  41 * relevant registers. At the end of init phase, driver enables interrupts.
  42 * NIC sees that there is no RXF buffers and raises
  43 * RD_INTR interrupt, isr fills skbs and Rx begins.
  44 * Driver has two receive operation modes:
  45 *    NAPI - interrupt-driven mixed with polling
  46 *    interrupt-driven only
  47 *
  48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
  49 * interrupt and isr is called. isr collects all available packets
  50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
  51
  52 * Rx buffer allocation note
  53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
  54 * Driver cares to feed such amount of RxF descriptors that respective amount of
  55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
  56 * overflow check in Bordeaux for RxD fifo free/used size.
  57 * FIXME: this is NOT fully implemented, more work should be done
  58 *
  59 */
  60
  61#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  62
  63#include "tehuti.h"
  64
  65static const struct pci_device_id bdx_pci_tbl[] = {
  66	{ PCI_VDEVICE(TEHUTI, 0x3009), },
  67	{ PCI_VDEVICE(TEHUTI, 0x3010), },
  68	{ PCI_VDEVICE(TEHUTI, 0x3014), },
  69	{ 0 }
  70};
  71
  72MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
  73
  74/* Definitions needed by ISR or NAPI functions */
  75static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
  76static void bdx_tx_cleanup(struct bdx_priv *priv);
  77static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
  78
  79/* Definitions needed by FW loading */
  80static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
  81
  82/* Definitions needed by hw_start */
  83static int bdx_tx_init(struct bdx_priv *priv);
  84static int bdx_rx_init(struct bdx_priv *priv);
  85
  86/* Definitions needed by bdx_close */
  87static void bdx_rx_free(struct bdx_priv *priv);
  88static void bdx_tx_free(struct bdx_priv *priv);
  89
  90/* Definitions needed by bdx_probe */
  91static void bdx_set_ethtool_ops(struct net_device *netdev);
  92
  93/*************************************************************************
  94 *    Print Info                                                         *
  95 *************************************************************************/
  96
  97static void print_hw_id(struct pci_dev *pdev)
  98{
  99	struct pci_nic *nic = pci_get_drvdata(pdev);
 100	u16 pci_link_status = 0;
 101	u16 pci_ctrl = 0;
 102
 103	pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
 104	pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
 105
 106	pr_info("%s%s\n", BDX_NIC_NAME,
 107		nic->port_num == 1 ? "" : ", 2-Port");
 108	pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
 109		readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
 110		readl(nic->regs + FPGA_SEED),
 111		GET_LINK_STATUS_LANES(pci_link_status),
 112		GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
 113}
 114
 115static void print_fw_id(struct pci_nic *nic)
 116{
 117	pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
 118}
 119
 120static void print_eth_id(struct net_device *ndev)
 121{
 122	netdev_info(ndev, "%s, Port %c\n",
 123		    BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
 124
 125}
 126
 127/*************************************************************************
 128 *    Code                                                               *
 129 *************************************************************************/
 130
 131#define bdx_enable_interrupts(priv)	\
 132	do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
 133#define bdx_disable_interrupts(priv)	\
 134	do { WRITE_REG(priv, regIMR, 0); } while (0)
 135
 136/**
 137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
 138 * @priv: NIC private structure
 139 * @f: fifo to initialize
 140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
 141 * @reg_XXX: offsets of registers relative to base address
 142 *
 143 * 1K extra space is allocated at the end of the fifo to simplify
 144 * processing of descriptors that wraps around fifo's end
 145 *
 146 * Returns 0 on success, negative value on failure
 147 *
 148 */
 149static int
 150bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
 151	      u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
 152{
 153	u16 memsz = FIFO_SIZE * (1 << fsz_type);
 154
 155	memset(f, 0, sizeof(struct fifo));
 156	/* pci_alloc_consistent gives us 4k-aligned memory */
 157	f->va = pci_alloc_consistent(priv->pdev,
 158				     memsz + FIFO_EXTRA_SPACE, &f->da);
 159	if (!f->va) {
 160		pr_err("pci_alloc_consistent failed\n");
 161		RET(-ENOMEM);
 162	}
 163	f->reg_CFG0 = reg_CFG0;
 164	f->reg_CFG1 = reg_CFG1;
 165	f->reg_RPTR = reg_RPTR;
 166	f->reg_WPTR = reg_WPTR;
 167	f->rptr = 0;
 168	f->wptr = 0;
 169	f->memsz = memsz;
 170	f->size_mask = memsz - 1;
 171	WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
 172	WRITE_REG(priv, reg_CFG1, H32_64(f->da));
 173
 174	RET(0);
 175}
 176
 177/**
 178 * bdx_fifo_free - free all resources used by fifo
 179 * @priv: NIC private structure
 180 * @f: fifo to release
 181 */
 182static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
 183{
 184	ENTER;
 185	if (f->va) {
 186		pci_free_consistent(priv->pdev,
 187				    f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
 188		f->va = NULL;
 189	}
 190	RET();
 191}
 192
 193/**
 194 * bdx_link_changed - notifies OS about hw link state.
 195 * @priv: hw adapter structure
 196 */
 197static void bdx_link_changed(struct bdx_priv *priv)
 198{
 199	u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
 200
 201	if (!link) {
 202		if (netif_carrier_ok(priv->ndev)) {
 203			netif_stop_queue(priv->ndev);
 204			netif_carrier_off(priv->ndev);
 205			netdev_err(priv->ndev, "Link Down\n");
 206		}
 207	} else {
 208		if (!netif_carrier_ok(priv->ndev)) {
 209			netif_wake_queue(priv->ndev);
 210			netif_carrier_on(priv->ndev);
 211			netdev_err(priv->ndev, "Link Up\n");
 212		}
 213	}
 214}
 215
 216static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
 217{
 218	if (isr & IR_RX_FREE_0) {
 219		bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 220		DBG("RX_FREE_0\n");
 221	}
 222
 223	if (isr & IR_LNKCHG0)
 224		bdx_link_changed(priv);
 225
 226	if (isr & IR_PCIE_LINK)
 227		netdev_err(priv->ndev, "PCI-E Link Fault\n");
 228
 229	if (isr & IR_PCIE_TOUT)
 230		netdev_err(priv->ndev, "PCI-E Time Out\n");
 231
 232}
 233
 234/**
 235 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
 236 * @irq: interrupt number
 237 * @dev: network device
 238 *
 239 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
 240 *
 241 * It reads ISR register to know interrupt reasons, and proceed them one by one.
 242 * Reasons of interest are:
 243 *    RX_DESC - new packet has arrived and RXD fifo holds its descriptor
 244 *    RX_FREE - number of free Rx buffers in RXF fifo gets low
 245 *    TX_FREE - packet was transmited and RXF fifo holds its descriptor
 246 */
 247
 248static irqreturn_t bdx_isr_napi(int irq, void *dev)
 249{
 250	struct net_device *ndev = dev;
 251	struct bdx_priv *priv = netdev_priv(ndev);
 252	u32 isr;
 253
 254	ENTER;
 255	isr = (READ_REG(priv, regISR) & IR_RUN);
 256	if (unlikely(!isr)) {
 257		bdx_enable_interrupts(priv);
 258		return IRQ_NONE;	/* Not our interrupt */
 259	}
 260
 261	if (isr & IR_EXTRA)
 262		bdx_isr_extra(priv, isr);
 263
 264	if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
 265		if (likely(napi_schedule_prep(&priv->napi))) {
 266			__napi_schedule(&priv->napi);
 267			RET(IRQ_HANDLED);
 268		} else {
 269			/* NOTE: we get here if intr has slipped into window
 270			 * between these lines in bdx_poll:
 271			 *    bdx_enable_interrupts(priv);
 272			 *    return 0;
 273			 * currently intrs are disabled (since we read ISR),
 274			 * and we have failed to register next poll.
 275			 * so we read the regs to trigger chip
 276			 * and allow further interupts. */
 277			READ_REG(priv, regTXF_WPTR_0);
 278			READ_REG(priv, regRXD_WPTR_0);
 279		}
 280	}
 281
 282	bdx_enable_interrupts(priv);
 283	RET(IRQ_HANDLED);
 284}
 285
 286static int bdx_poll(struct napi_struct *napi, int budget)
 287{
 288	struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
 289	int work_done;
 290
 291	ENTER;
 292	bdx_tx_cleanup(priv);
 293	work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
 294	if ((work_done < budget) ||
 295	    (priv->napi_stop++ >= 30)) {
 296		DBG("rx poll is done. backing to isr-driven\n");
 297
 298		/* from time to time we exit to let NAPI layer release
 299		 * device lock and allow waiting tasks (eg rmmod) to advance) */
 300		priv->napi_stop = 0;
 301
 302		napi_complete_done(napi, work_done);
 303		bdx_enable_interrupts(priv);
 304	}
 305	return work_done;
 306}
 307
 308/**
 309 * bdx_fw_load - loads firmware to NIC
 310 * @priv: NIC private structure
 311 *
 312 * Firmware is loaded via TXD fifo, so it must be initialized first.
 313 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
 314 * can have few of them). So all drivers use semaphore register to choose one
 315 * that will actually load FW to NIC.
 316 */
 317
 318static int bdx_fw_load(struct bdx_priv *priv)
 319{
 320	const struct firmware *fw = NULL;
 321	int master, i;
 322	int rc;
 323
 324	ENTER;
 325	master = READ_REG(priv, regINIT_SEMAPHORE);
 326	if (!READ_REG(priv, regINIT_STATUS) && master) {
 327		rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
 328		if (rc)
 329			goto out;
 330		bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
 331		mdelay(100);
 332	}
 333	for (i = 0; i < 200; i++) {
 334		if (READ_REG(priv, regINIT_STATUS)) {
 335			rc = 0;
 336			goto out;
 337		}
 338		mdelay(2);
 339	}
 340	rc = -EIO;
 341out:
 342	if (master)
 343		WRITE_REG(priv, regINIT_SEMAPHORE, 1);
 344
 345	release_firmware(fw);
 346
 347	if (rc) {
 348		netdev_err(priv->ndev, "firmware loading failed\n");
 349		if (rc == -EIO)
 350			DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
 351			    READ_REG(priv, regVPC),
 352			    READ_REG(priv, regVIC),
 353			    READ_REG(priv, regINIT_STATUS), i);
 354		RET(rc);
 355	} else {
 356		DBG("%s: firmware loading success\n", priv->ndev->name);
 357		RET(0);
 358	}
 359}
 360
 361static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
 362{
 363	u32 val;
 364
 365	ENTER;
 366	DBG("mac0=%x mac1=%x mac2=%x\n",
 367	    READ_REG(priv, regUNC_MAC0_A),
 368	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 369
 370	val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
 371	WRITE_REG(priv, regUNC_MAC2_A, val);
 372	val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
 373	WRITE_REG(priv, regUNC_MAC1_A, val);
 374	val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
 375	WRITE_REG(priv, regUNC_MAC0_A, val);
 376
 377	DBG("mac0=%x mac1=%x mac2=%x\n",
 378	    READ_REG(priv, regUNC_MAC0_A),
 379	    READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
 380	RET();
 381}
 382
 383/**
 384 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
 385 * @priv: NIC private structure
 386 */
 387static int bdx_hw_start(struct bdx_priv *priv)
 388{
 389	int rc = -EIO;
 390	struct net_device *ndev = priv->ndev;
 391
 392	ENTER;
 393	bdx_link_changed(priv);
 394
 395	/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
 396	WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
 397	WRITE_REG(priv, regPAUSE_QUANT, 0x96);
 398	WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
 399	WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
 400	WRITE_REG(priv, regRX_FULLNESS, 0);
 401	WRITE_REG(priv, regTX_FULLNESS, 0);
 402	WRITE_REG(priv, regCTRLST,
 403		  regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
 404
 405	WRITE_REG(priv, regVGLB, 0);
 406	WRITE_REG(priv, regMAX_FRAME_A,
 407		  priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
 408
 409	DBG("RDINTCM=%08x\n", priv->rdintcm);	/*NOTE: test script uses this */
 410	WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
 411	WRITE_REG(priv, regRDINTCM2, 0);	/*cpu_to_le32(rcm.val)); */
 412
 413	DBG("TDINTCM=%08x\n", priv->tdintcm);	/*NOTE: test script uses this */
 414	WRITE_REG(priv, regTDINTCM0, priv->tdintcm);	/* old val = 0x300064 */
 415
 416	/* Enable timer interrupt once in 2 secs. */
 417	/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
 418	bdx_restore_mac(priv->ndev, priv);
 419
 420	WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
 421		  GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
 422
 423#define BDX_IRQ_TYPE	((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
 424
 425	rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
 426			 ndev->name, ndev);
 427	if (rc)
 428		goto err_irq;
 429	bdx_enable_interrupts(priv);
 430
 431	RET(0);
 432
 433err_irq:
 434	RET(rc);
 435}
 436
 437static void bdx_hw_stop(struct bdx_priv *priv)
 438{
 439	ENTER;
 440	bdx_disable_interrupts(priv);
 441	free_irq(priv->pdev->irq, priv->ndev);
 442
 443	netif_carrier_off(priv->ndev);
 444	netif_stop_queue(priv->ndev);
 445
 446	RET();
 447}
 448
 449static int bdx_hw_reset_direct(void __iomem *regs)
 450{
 451	u32 val, i;
 452	ENTER;
 453
 454	/* reset sequences: read, write 1, read, write 0 */
 455	val = readl(regs + regCLKPLL);
 456	writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
 457	udelay(50);
 458	val = readl(regs + regCLKPLL);
 459	writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
 460
 461	/* check that the PLLs are locked and reset ended */
 462	for (i = 0; i < 70; i++, mdelay(10))
 463		if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 464			/* do any PCI-E read transaction */
 465			readl(regs + regRXD_CFG0_0);
 466			return 0;
 467		}
 468	pr_err("HW reset failed\n");
 469	return 1;		/* failure */
 470}
 471
 472static int bdx_hw_reset(struct bdx_priv *priv)
 473{
 474	u32 val, i;
 475	ENTER;
 476
 477	if (priv->port == 0) {
 478		/* reset sequences: read, write 1, read, write 0 */
 479		val = READ_REG(priv, regCLKPLL);
 480		WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
 481		udelay(50);
 482		val = READ_REG(priv, regCLKPLL);
 483		WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
 484	}
 485	/* check that the PLLs are locked and reset ended */
 486	for (i = 0; i < 70; i++, mdelay(10))
 487		if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
 488			/* do any PCI-E read transaction */
 489			READ_REG(priv, regRXD_CFG0_0);
 490			return 0;
 491		}
 492	pr_err("HW reset failed\n");
 493	return 1;		/* failure */
 494}
 495
 496static int bdx_sw_reset(struct bdx_priv *priv)
 497{
 498	int i;
 499
 500	ENTER;
 501	/* 1. load MAC (obsolete) */
 502	/* 2. disable Rx (and Tx) */
 503	WRITE_REG(priv, regGMAC_RXF_A, 0);
 504	mdelay(100);
 505	/* 3. disable port */
 506	WRITE_REG(priv, regDIS_PORT, 1);
 507	/* 4. disable queue */
 508	WRITE_REG(priv, regDIS_QU, 1);
 509	/* 5. wait until hw is disabled */
 510	for (i = 0; i < 50; i++) {
 511		if (READ_REG(priv, regRST_PORT) & 1)
 512			break;
 513		mdelay(10);
 514	}
 515	if (i == 50)
 516		netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
 517
 518	/* 6. disable intrs */
 519	WRITE_REG(priv, regRDINTCM0, 0);
 520	WRITE_REG(priv, regTDINTCM0, 0);
 521	WRITE_REG(priv, regIMR, 0);
 522	READ_REG(priv, regISR);
 523
 524	/* 7. reset queue */
 525	WRITE_REG(priv, regRST_QU, 1);
 526	/* 8. reset port */
 527	WRITE_REG(priv, regRST_PORT, 1);
 528	/* 9. zero all read and write pointers */
 529	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 530		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 531	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 532		WRITE_REG(priv, i, 0);
 533	/* 10. unseet port disable */
 534	WRITE_REG(priv, regDIS_PORT, 0);
 535	/* 11. unset queue disable */
 536	WRITE_REG(priv, regDIS_QU, 0);
 537	/* 12. unset queue reset */
 538	WRITE_REG(priv, regRST_QU, 0);
 539	/* 13. unset port reset */
 540	WRITE_REG(priv, regRST_PORT, 0);
 541	/* 14. enable Rx */
 542	/* skiped. will be done later */
 543	/* 15. save MAC (obsolete) */
 544	for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
 545		DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
 546
 547	RET(0);
 548}
 549
 550/* bdx_reset - performs right type of reset depending on hw type */
 551static int bdx_reset(struct bdx_priv *priv)
 552{
 553	ENTER;
 554	RET((priv->pdev->device == 0x3009)
 555	    ? bdx_hw_reset(priv)
 556	    : bdx_sw_reset(priv));
 557}
 558
 559/**
 560 * bdx_close - Disables a network interface
 561 * @netdev: network interface device structure
 562 *
 563 * Returns 0, this is not allowed to fail
 564 *
 565 * The close entry point is called when an interface is de-activated
 566 * by the OS.  The hardware is still under the drivers control, but
 567 * needs to be disabled.  A global MAC reset is issued to stop the
 568 * hardware, and all transmit and receive resources are freed.
 569 **/
 570static int bdx_close(struct net_device *ndev)
 571{
 572	struct bdx_priv *priv = NULL;
 573
 574	ENTER;
 575	priv = netdev_priv(ndev);
 576
 577	napi_disable(&priv->napi);
 578
 579	bdx_reset(priv);
 580	bdx_hw_stop(priv);
 581	bdx_rx_free(priv);
 582	bdx_tx_free(priv);
 583	RET(0);
 584}
 585
 586/**
 587 * bdx_open - Called when a network interface is made active
 588 * @netdev: network interface device structure
 589 *
 590 * Returns 0 on success, negative value on failure
 591 *
 592 * The open entry point is called when a network interface is made
 593 * active by the system (IFF_UP).  At this point all resources needed
 594 * for transmit and receive operations are allocated, the interrupt
 595 * handler is registered with the OS, the watchdog timer is started,
 596 * and the stack is notified that the interface is ready.
 597 **/
 598static int bdx_open(struct net_device *ndev)
 599{
 600	struct bdx_priv *priv;
 601	int rc;
 602
 603	ENTER;
 604	priv = netdev_priv(ndev);
 605	bdx_reset(priv);
 606	if (netif_running(ndev))
 607		netif_stop_queue(priv->ndev);
 608
 609	if ((rc = bdx_tx_init(priv)) ||
 610	    (rc = bdx_rx_init(priv)) ||
 611	    (rc = bdx_fw_load(priv)))
 612		goto err;
 613
 614	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
 615
 616	rc = bdx_hw_start(priv);
 617	if (rc)
 618		goto err;
 619
 620	napi_enable(&priv->napi);
 621
 622	print_fw_id(priv->nic);
 623
 624	RET(0);
 625
 626err:
 627	bdx_close(ndev);
 628	RET(rc);
 629}
 630
 631static int bdx_range_check(struct bdx_priv *priv, u32 offset)
 632{
 633	return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
 634		-EINVAL : 0;
 635}
 636
 637static int bdx_ioctl_priv(struct net_device *ndev, struct ifreq *ifr, int cmd)
 638{
 639	struct bdx_priv *priv = netdev_priv(ndev);
 640	u32 data[3];
 641	int error;
 642
 643	ENTER;
 644
 645	DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
 646	if (cmd != SIOCDEVPRIVATE) {
 647		error = copy_from_user(data, ifr->ifr_data, sizeof(data));
 648		if (error) {
 649			pr_err("can't copy from user\n");
 650			RET(-EFAULT);
 651		}
 652		DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
 653	} else {
 654		return -EOPNOTSUPP;
 655	}
 656
 657	if (!capable(CAP_SYS_RAWIO))
 658		return -EPERM;
 659
 660	switch (data[0]) {
 661
 662	case BDX_OP_READ:
 663		error = bdx_range_check(priv, data[1]);
 664		if (error < 0)
 665			return error;
 666		data[2] = READ_REG(priv, data[1]);
 667		DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
 668		    data[2]);
 669		error = copy_to_user(ifr->ifr_data, data, sizeof(data));
 670		if (error)
 671			RET(-EFAULT);
 672		break;
 673
 674	case BDX_OP_WRITE:
 675		error = bdx_range_check(priv, data[1]);
 676		if (error < 0)
 677			return error;
 678		WRITE_REG(priv, data[1], data[2]);
 679		DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
 680		break;
 681
 682	default:
 683		RET(-EOPNOTSUPP);
 684	}
 685	return 0;
 686}
 687
 688static int bdx_ioctl(struct net_device *ndev, struct ifreq *ifr, int cmd)
 689{
 690	ENTER;
 691	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
 692		RET(bdx_ioctl_priv(ndev, ifr, cmd));
 693	else
 694		RET(-EOPNOTSUPP);
 695}
 696
 697/**
 698 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
 699 * @ndev: network device
 700 * @vid:  VLAN vid
 701 * @op:   add or kill operation
 702 *
 703 * Passes VLAN filter table to hardware
 704 */
 705static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
 706{
 707	struct bdx_priv *priv = netdev_priv(ndev);
 708	u32 reg, bit, val;
 709
 710	ENTER;
 711	DBG2("vid=%d value=%d\n", (int)vid, enable);
 712	if (unlikely(vid >= 4096)) {
 713		pr_err("invalid VID: %u (> 4096)\n", vid);
 714		RET();
 715	}
 716	reg = regVLAN_0 + (vid / 32) * 4;
 717	bit = 1 << vid % 32;
 718	val = READ_REG(priv, reg);
 719	DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
 720	if (enable)
 721		val |= bit;
 722	else
 723		val &= ~bit;
 724	DBG2("new val %x\n", val);
 725	WRITE_REG(priv, reg, val);
 726	RET();
 727}
 728
 729/**
 730 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
 731 * @ndev: network device
 732 * @vid:  VLAN vid to add
 733 */
 734static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
 735{
 736	__bdx_vlan_rx_vid(ndev, vid, 1);
 737	return 0;
 738}
 739
 740/**
 741 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
 742 * @ndev: network device
 743 * @vid:  VLAN vid to kill
 744 */
 745static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
 746{
 747	__bdx_vlan_rx_vid(ndev, vid, 0);
 748	return 0;
 749}
 750
 751/**
 752 * bdx_change_mtu - Change the Maximum Transfer Unit
 753 * @netdev: network interface device structure
 754 * @new_mtu: new value for maximum frame size
 755 *
 756 * Returns 0 on success, negative on failure
 757 */
 758static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
 759{
 760	ENTER;
 761
 762	ndev->mtu = new_mtu;
 763	if (netif_running(ndev)) {
 764		bdx_close(ndev);
 765		bdx_open(ndev);
 766	}
 767	RET(0);
 768}
 769
 770static void bdx_setmulti(struct net_device *ndev)
 771{
 772	struct bdx_priv *priv = netdev_priv(ndev);
 773
 774	u32 rxf_val =
 775	    GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
 776	int i;
 777
 778	ENTER;
 779	/* IMF - imperfect (hash) rx multicat filter */
 780	/* PMF - perfect rx multicat filter */
 781
 782	/* FIXME: RXE(OFF) */
 783	if (ndev->flags & IFF_PROMISC) {
 784		rxf_val |= GMAC_RX_FILTER_PRM;
 785	} else if (ndev->flags & IFF_ALLMULTI) {
 786		/* set IMF to accept all multicast frmaes */
 787		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 788			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
 789	} else if (!netdev_mc_empty(ndev)) {
 790		u8 hash;
 791		struct netdev_hw_addr *ha;
 792		u32 reg, val;
 793
 794		/* set IMF to deny all multicast frames */
 795		for (i = 0; i < MAC_MCST_HASH_NUM; i++)
 796			WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
 797		/* set PMF to deny all multicast frames */
 798		for (i = 0; i < MAC_MCST_NUM; i++) {
 799			WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
 800			WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
 801		}
 802
 803		/* use PMF to accept first MAC_MCST_NUM (15) addresses */
 804		/* TBD: sort addresses and write them in ascending order
 805		 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
 806		 * multicast frames throu IMF */
 807		/* accept the rest of addresses throu IMF */
 808		netdev_for_each_mc_addr(ha, ndev) {
 809			hash = 0;
 810			for (i = 0; i < ETH_ALEN; i++)
 811				hash ^= ha->addr[i];
 812			reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
 813			val = READ_REG(priv, reg);
 814			val |= (1 << (hash % 32));
 815			WRITE_REG(priv, reg, val);
 816		}
 817
 818	} else {
 819		DBG("only own mac %d\n", netdev_mc_count(ndev));
 820		rxf_val |= GMAC_RX_FILTER_AB;
 821	}
 822	WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
 823	/* enable RX */
 824	/* FIXME: RXE(ON) */
 825	RET();
 826}
 827
 828static int bdx_set_mac(struct net_device *ndev, void *p)
 829{
 830	struct bdx_priv *priv = netdev_priv(ndev);
 831	struct sockaddr *addr = p;
 832
 833	ENTER;
 834	/*
 835	   if (netif_running(dev))
 836	   return -EBUSY
 837	 */
 838	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
 839	bdx_restore_mac(ndev, priv);
 840	RET(0);
 841}
 842
 843static int bdx_read_mac(struct bdx_priv *priv)
 844{
 845	u16 macAddress[3], i;
 846	ENTER;
 847
 848	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 849	macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
 850	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 851	macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
 852	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 853	macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
 854	for (i = 0; i < 3; i++) {
 855		priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
 856		priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
 857	}
 858	RET(0);
 859}
 860
 861static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
 862{
 863	u64 val;
 864
 865	val = READ_REG(priv, reg);
 866	val |= ((u64) READ_REG(priv, reg + 8)) << 32;
 867	return val;
 868}
 869
 870/*Do the statistics-update work*/
 871static void bdx_update_stats(struct bdx_priv *priv)
 872{
 873	struct bdx_stats *stats = &priv->hw_stats;
 874	u64 *stats_vector = (u64 *) stats;
 875	int i;
 876	int addr;
 877
 878	/*Fill HW structure */
 879	addr = 0x7200;
 880	/*First 12 statistics - 0x7200 - 0x72B0 */
 881	for (i = 0; i < 12; i++) {
 882		stats_vector[i] = bdx_read_l2stat(priv, addr);
 883		addr += 0x10;
 884	}
 885	BDX_ASSERT(addr != 0x72C0);
 886	/* 0x72C0-0x72E0 RSRV */
 887	addr = 0x72F0;
 888	for (; i < 16; i++) {
 889		stats_vector[i] = bdx_read_l2stat(priv, addr);
 890		addr += 0x10;
 891	}
 892	BDX_ASSERT(addr != 0x7330);
 893	/* 0x7330-0x7360 RSRV */
 894	addr = 0x7370;
 895	for (; i < 19; i++) {
 896		stats_vector[i] = bdx_read_l2stat(priv, addr);
 897		addr += 0x10;
 898	}
 899	BDX_ASSERT(addr != 0x73A0);
 900	/* 0x73A0-0x73B0 RSRV */
 901	addr = 0x73C0;
 902	for (; i < 23; i++) {
 903		stats_vector[i] = bdx_read_l2stat(priv, addr);
 904		addr += 0x10;
 905	}
 906	BDX_ASSERT(addr != 0x7400);
 907	BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
 908}
 909
 910static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
 911		       u16 rxd_vlan);
 912static void print_rxfd(struct rxf_desc *rxfd);
 913
 914/*************************************************************************
 915 *     Rx DB                                                             *
 916 *************************************************************************/
 917
 918static void bdx_rxdb_destroy(struct rxdb *db)
 919{
 920	vfree(db);
 921}
 922
 923static struct rxdb *bdx_rxdb_create(int nelem)
 924{
 925	struct rxdb *db;
 926	int i;
 927
 928	db = vmalloc(sizeof(struct rxdb)
 929		     + (nelem * sizeof(int))
 930		     + (nelem * sizeof(struct rx_map)));
 931	if (likely(db != NULL)) {
 932		db->stack = (int *)(db + 1);
 933		db->elems = (void *)(db->stack + nelem);
 934		db->nelem = nelem;
 935		db->top = nelem;
 936		for (i = 0; i < nelem; i++)
 937			db->stack[i] = nelem - i - 1;	/* to make first allocs
 938							   close to db struct*/
 939	}
 940
 941	return db;
 942}
 943
 944static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
 945{
 946	BDX_ASSERT(db->top <= 0);
 947	return db->stack[--(db->top)];
 948}
 949
 950static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
 951{
 952	BDX_ASSERT((n < 0) || (n >= db->nelem));
 953	return db->elems + n;
 954}
 955
 956static inline int bdx_rxdb_available(struct rxdb *db)
 957{
 958	return db->top;
 959}
 960
 961static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
 962{
 963	BDX_ASSERT((n >= db->nelem) || (n < 0));
 964	db->stack[(db->top)++] = n;
 965}
 966
 967/*************************************************************************
 968 *     Rx Init                                                           *
 969 *************************************************************************/
 970
 971/**
 972 * bdx_rx_init - initialize RX all related HW and SW resources
 973 * @priv: NIC private structure
 974 *
 975 * Returns 0 on success, negative value on failure
 976 *
 977 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
 978 * skb for rx. It assumes that Rx is desabled in HW
 979 * funcs are grouped for better cache usage
 980 *
 981 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
 982 * filled and packets will be dropped by nic without getting into host or
 983 * cousing interrupt. Anyway, in that condition, host has no chance to process
 984 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
 985 */
 986
 987/* TBD: ensure proper packet size */
 988
 989static int bdx_rx_init(struct bdx_priv *priv)
 990{
 991	ENTER;
 992
 993	if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
 994			  regRXD_CFG0_0, regRXD_CFG1_0,
 995			  regRXD_RPTR_0, regRXD_WPTR_0))
 996		goto err_mem;
 997	if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
 998			  regRXF_CFG0_0, regRXF_CFG1_0,
 999			  regRXF_RPTR_0, regRXF_WPTR_0))
1000		goto err_mem;
1001	priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
1002				     sizeof(struct rxf_desc));
1003	if (!priv->rxdb)
1004		goto err_mem;
1005
1006	priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1007	return 0;
1008
1009err_mem:
1010	netdev_err(priv->ndev, "Rx init failed\n");
1011	return -ENOMEM;
1012}
1013
1014/**
1015 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1016 * @priv: NIC private structure
1017 * @f: RXF fifo
1018 */
1019static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1020{
1021	struct rx_map *dm;
1022	struct rxdb *db = priv->rxdb;
1023	u16 i;
1024
1025	ENTER;
1026	DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1027	    db->nelem - bdx_rxdb_available(db));
1028	while (bdx_rxdb_available(db) > 0) {
1029		i = bdx_rxdb_alloc_elem(db);
1030		dm = bdx_rxdb_addr_elem(db, i);
1031		dm->dma = 0;
1032	}
1033	for (i = 0; i < db->nelem; i++) {
1034		dm = bdx_rxdb_addr_elem(db, i);
1035		if (dm->dma) {
1036			pci_unmap_single(priv->pdev,
1037					 dm->dma, f->m.pktsz,
1038					 PCI_DMA_FROMDEVICE);
1039			dev_kfree_skb(dm->skb);
1040		}
1041	}
1042}
1043
1044/**
1045 * bdx_rx_free - release all Rx resources
1046 * @priv: NIC private structure
1047 *
1048 * It assumes that Rx is desabled in HW
1049 */
1050static void bdx_rx_free(struct bdx_priv *priv)
1051{
1052	ENTER;
1053	if (priv->rxdb) {
1054		bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1055		bdx_rxdb_destroy(priv->rxdb);
1056		priv->rxdb = NULL;
1057	}
1058	bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1059	bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1060
1061	RET();
1062}
1063
1064/*************************************************************************
1065 *     Rx Engine                                                         *
1066 *************************************************************************/
1067
1068/**
1069 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1070 * @priv: nic's private structure
1071 * @f: RXF fifo that needs skbs
1072 *
1073 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1074 * skb's virtual and physical addresses are stored in skb db.
1075 * To calculate free space, func uses cached values of RPTR and WPTR
1076 * When needed, it also updates RPTR and WPTR.
1077 */
1078
1079/* TBD: do not update WPTR if no desc were written */
1080
1081static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1082{
1083	struct sk_buff *skb;
1084	struct rxf_desc *rxfd;
1085	struct rx_map *dm;
1086	int dno, delta, idx;
1087	struct rxdb *db = priv->rxdb;
1088
1089	ENTER;
1090	dno = bdx_rxdb_available(db) - 1;
1091	while (dno > 0) {
1092		skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1093		if (!skb)
1094			break;
1095
1096		skb_reserve(skb, NET_IP_ALIGN);
1097
1098		idx = bdx_rxdb_alloc_elem(db);
1099		dm = bdx_rxdb_addr_elem(db, idx);
1100		dm->dma = pci_map_single(priv->pdev,
1101					 skb->data, f->m.pktsz,
1102					 PCI_DMA_FROMDEVICE);
1103		dm->skb = skb;
1104		rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1105		rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1106		rxfd->va_lo = idx;
1107		rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1108		rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1109		rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1110		print_rxfd(rxfd);
1111
1112		f->m.wptr += sizeof(struct rxf_desc);
1113		delta = f->m.wptr - f->m.memsz;
1114		if (unlikely(delta >= 0)) {
1115			f->m.wptr = delta;
1116			if (delta > 0) {
1117				memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1118				DBG("wrapped descriptor\n");
1119			}
1120		}
1121		dno--;
1122	}
1123	/*TBD: to do - delayed rxf wptr like in txd */
1124	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1125	RET();
1126}
1127
1128static inline void
1129NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1130	     struct sk_buff *skb)
1131{
1132	ENTER;
1133	DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1134	if (GET_RXD_VTAG(rxd_val1)) {
1135		DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1136		    priv->ndev->name,
1137		    GET_RXD_VLAN_ID(rxd_vlan),
1138		    GET_RXD_VTAG(rxd_val1));
1139		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1140	}
1141	netif_receive_skb(skb);
1142}
1143
1144static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1145{
1146	struct rxf_desc *rxfd;
1147	struct rx_map *dm;
1148	struct rxf_fifo *f;
1149	struct rxdb *db;
1150	int delta;
1151
1152	ENTER;
1153	DBG("priv=%p rxdd=%p\n", priv, rxdd);
1154	f = &priv->rxf_fifo0;
1155	db = priv->rxdb;
1156	DBG("db=%p f=%p\n", db, f);
1157	dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1158	DBG("dm=%p\n", dm);
1159	rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1160	rxfd->info = CPU_CHIP_SWAP32(0x10003);	/* INFO=1 BC=3 */
1161	rxfd->va_lo = rxdd->va_lo;
1162	rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1163	rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1164	rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1165	print_rxfd(rxfd);
1166
1167	f->m.wptr += sizeof(struct rxf_desc);
1168	delta = f->m.wptr - f->m.memsz;
1169	if (unlikely(delta >= 0)) {
1170		f->m.wptr = delta;
1171		if (delta > 0) {
1172			memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1173			DBG("wrapped descriptor\n");
1174		}
1175	}
1176	RET();
1177}
1178
1179/**
1180 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1181 * NOTE: a special treatment is given to non-continuous descriptors
1182 * that start near the end, wraps around and continue at the beginning. a second
1183 * part is copied right after the first, and then descriptor is interpreted as
1184 * normal. fifo has an extra space to allow such operations
1185 * @priv: nic's private structure
1186 * @f: RXF fifo that needs skbs
1187 * @budget: maximum number of packets to receive
1188 */
1189
1190/* TBD: replace memcpy func call by explicite inline asm */
1191
1192static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1193{
1194	struct net_device *ndev = priv->ndev;
1195	struct sk_buff *skb, *skb2;
1196	struct rxd_desc *rxdd;
1197	struct rx_map *dm;
1198	struct rxf_fifo *rxf_fifo;
1199	int tmp_len, size;
1200	int done = 0;
1201	int max_done = BDX_MAX_RX_DONE;
1202	struct rxdb *db = NULL;
1203	/* Unmarshalled descriptor - copy of descriptor in host order */
1204	u32 rxd_val1;
1205	u16 len;
1206	u16 rxd_vlan;
1207
1208	ENTER;
1209	max_done = budget;
1210
1211	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1212
1213	size = f->m.wptr - f->m.rptr;
1214	if (size < 0)
1215		size = f->m.memsz + size;	/* size is negative :-) */
1216
1217	while (size > 0) {
1218
1219		rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1220		rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1221
1222		len = CPU_CHIP_SWAP16(rxdd->len);
1223
1224		rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1225
1226		print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1227
1228		tmp_len = GET_RXD_BC(rxd_val1) << 3;
1229		BDX_ASSERT(tmp_len <= 0);
1230		size -= tmp_len;
1231		if (size < 0)	/* test for partially arrived descriptor */
1232			break;
1233
1234		f->m.rptr += tmp_len;
1235
1236		tmp_len = f->m.rptr - f->m.memsz;
1237		if (unlikely(tmp_len >= 0)) {
1238			f->m.rptr = tmp_len;
1239			if (tmp_len > 0) {
1240				DBG("wrapped desc rptr=%d tmp_len=%d\n",
1241				    f->m.rptr, tmp_len);
1242				memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1243			}
1244		}
1245
1246		if (unlikely(GET_RXD_ERR(rxd_val1))) {
1247			DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1248			ndev->stats.rx_errors++;
1249			bdx_recycle_skb(priv, rxdd);
1250			continue;
1251		}
1252
1253		rxf_fifo = &priv->rxf_fifo0;
1254		db = priv->rxdb;
1255		dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1256		skb = dm->skb;
1257
1258		if (len < BDX_COPYBREAK &&
1259		    (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1260			skb_reserve(skb2, NET_IP_ALIGN);
1261			/*skb_put(skb2, len); */
1262			pci_dma_sync_single_for_cpu(priv->pdev,
1263						    dm->dma, rxf_fifo->m.pktsz,
1264						    PCI_DMA_FROMDEVICE);
1265			memcpy(skb2->data, skb->data, len);
1266			bdx_recycle_skb(priv, rxdd);
1267			skb = skb2;
1268		} else {
1269			pci_unmap_single(priv->pdev,
1270					 dm->dma, rxf_fifo->m.pktsz,
1271					 PCI_DMA_FROMDEVICE);
1272			bdx_rxdb_free_elem(db, rxdd->va_lo);
1273		}
1274
1275		ndev->stats.rx_bytes += len;
1276
1277		skb_put(skb, len);
1278		skb->protocol = eth_type_trans(skb, ndev);
1279
1280		/* Non-IP packets aren't checksum-offloaded */
1281		if (GET_RXD_PKT_ID(rxd_val1) == 0)
1282			skb_checksum_none_assert(skb);
1283		else
1284			skb->ip_summed = CHECKSUM_UNNECESSARY;
1285
1286		NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1287
1288		if (++done >= max_done)
1289			break;
1290	}
1291
1292	ndev->stats.rx_packets += done;
1293
1294	/* FIXME: do smth to minimize pci accesses    */
1295	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1296
1297	bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1298
1299	RET(done);
1300}
1301
1302/*************************************************************************
1303 * Debug / Temprorary Code                                               *
1304 *************************************************************************/
1305static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1306		       u16 rxd_vlan)
1307{
1308	DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1309	    GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1310	    GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1311	    GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1312	    GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1313	    GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1314	    rxdd->va_hi);
1315}
1316
1317static void print_rxfd(struct rxf_desc *rxfd)
1318{
1319	DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1320	    "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1321	    rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1322}
1323
1324/*
1325 * TX HW/SW interaction overview
1326 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1327 * There are 2 types of TX communication channels between driver and NIC.
1328 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1329 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1330 *
1331 * Currently NIC supports TSO, checksuming and gather DMA
1332 * UFO and IP fragmentation is on the way
1333 *
1334 * RX SW Data Structures
1335 * ~~~~~~~~~~~~~~~~~~~~~
1336 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1337 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1338 * acknowledges sent by TXF descriptors.
1339 * Implemented as cyclic buffer.
1340 * fifo - keeps info about fifo's size and location, relevant HW registers,
1341 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1342 * Implemented as simple struct.
1343 *
1344 * TX SW Execution Flow
1345 * ~~~~~~~~~~~~~~~~~~~~
1346 * OS calls driver's hard_xmit method with packet to sent.
1347 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1348 * by updating TXD WPTR.
1349 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1350 * To prevent TXD fifo overflow without reading HW registers every time,
1351 * SW deploys "tx level" technique.
1352 * Upon strart up, tx level is initialized to TXD fifo length.
1353 * For every sent packet, SW gets its TXD descriptor sizei
1354 * (from precalculated array) and substructs it from tx level.
1355 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1356 * original TXD descriptor from txdb and adds it to tx level.
1357 * When Tx level drops under some predefined treshhold, the driver
1358 * stops the TX queue. When TX level rises above that level,
1359 * the tx queue is enabled again.
1360 *
1361 * This technique avoids eccessive reading of RPTR and WPTR registers.
1362 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1363 */
1364
1365/**
1366 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1367 * @db: tx data base
1368 * @pptr: read or write pointer
1369 */
1370static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1371{
1372	BDX_ASSERT(db == NULL || pptr == NULL);	/* sanity */
1373
1374	BDX_ASSERT(*pptr != db->rptr &&	/* expect either read */
1375		   *pptr != db->wptr);	/* or write pointer */
1376
1377	BDX_ASSERT(*pptr < db->start ||	/* pointer has to be */
1378		   *pptr >= db->end);	/* in range */
1379
1380	++*pptr;
1381	if (unlikely(*pptr == db->end))
1382		*pptr = db->start;
1383}
1384
1385/**
1386 * bdx_tx_db_inc_rptr - increment read pointer
1387 * @db: tx data base
1388 */
1389static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1390{
1391	BDX_ASSERT(db->rptr == db->wptr);	/* can't read from empty db */
1392	__bdx_tx_db_ptr_next(db, &db->rptr);
1393}
1394
1395/**
1396 * bdx_tx_db_inc_wptr - increment write pointer
1397 * @db: tx data base
1398 */
1399static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1400{
1401	__bdx_tx_db_ptr_next(db, &db->wptr);
1402	BDX_ASSERT(db->rptr == db->wptr);	/* we can not get empty db as
1403						   a result of write */
1404}
1405
1406/**
1407 * bdx_tx_db_init - creates and initializes tx db
1408 * @d: tx data base
1409 * @sz_type: size of tx fifo
1410 *
1411 * Returns 0 on success, error code otherwise
1412 */
1413static int bdx_tx_db_init(struct txdb *d, int sz_type)
1414{
1415	int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1416
1417	d->start = vmalloc(memsz);
1418	if (!d->start)
1419		return -ENOMEM;
1420
1421	/*
1422	 * In order to differentiate between db is empty and db is full
1423	 * states at least one element should always be empty in order to
1424	 * avoid rptr == wptr which means db is empty
1425	 */
1426	d->size = memsz / sizeof(struct tx_map) - 1;
1427	d->end = d->start + d->size + 1;	/* just after last element */
1428
1429	/* all dbs are created equally empty */
1430	d->rptr = d->start;
1431	d->wptr = d->start;
1432
1433	return 0;
1434}
1435
1436/**
1437 * bdx_tx_db_close - closes tx db and frees all memory
1438 * @d: tx data base
1439 */
1440static void bdx_tx_db_close(struct txdb *d)
1441{
1442	BDX_ASSERT(d == NULL);
1443
1444	vfree(d->start);
1445	d->start = NULL;
1446}
1447
1448/*************************************************************************
1449 *     Tx Engine                                                         *
1450 *************************************************************************/
1451
1452/* sizes of tx desc (including padding if needed) as function
1453 * of skb's frag number */
1454static struct {
1455	u16 bytes;
1456	u16 qwords;		/* qword = 64 bit */
1457} txd_sizes[MAX_SKB_FRAGS + 1];
1458
1459/**
1460 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1461 * @priv: NIC private structure
1462 * @skb: socket buffer to map
1463 * @txdd: TX descriptor to use
1464 *
1465 * It makes dma mappings for skb's data blocks and writes them to PBL of
1466 * new tx descriptor. It also stores them in the tx db, so they could be
1467 * unmaped after data was sent. It is reponsibility of a caller to make
1468 * sure that there is enough space in the tx db. Last element holds pointer
1469 * to skb itself and marked with zero length
1470 */
1471static inline void
1472bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1473	       struct txd_desc *txdd)
1474{
1475	struct txdb *db = &priv->txdb;
1476	struct pbl *pbl = &txdd->pbl[0];
1477	int nr_frags = skb_shinfo(skb)->nr_frags;
1478	int i;
1479
1480	db->wptr->len = skb_headlen(skb);
1481	db->wptr->addr.dma = pci_map_single(priv->pdev, skb->data,
1482					    db->wptr->len, PCI_DMA_TODEVICE);
1483	pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1484	pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1485	pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1486	DBG("=== pbl   len: 0x%x ================\n", pbl->len);
1487	DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1488	DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1489	bdx_tx_db_inc_wptr(db);
1490
1491	for (i = 0; i < nr_frags; i++) {
1492		const skb_frag_t *frag;
1493
1494		frag = &skb_shinfo(skb)->frags[i];
1495		db->wptr->len = skb_frag_size(frag);
1496		db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1497						      0, skb_frag_size(frag),
1498						      DMA_TO_DEVICE);
1499
1500		pbl++;
1501		pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1502		pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1503		pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1504		bdx_tx_db_inc_wptr(db);
1505	}
1506
1507	/* add skb clean up info. */
1508	db->wptr->len = -txd_sizes[nr_frags].bytes;
1509	db->wptr->addr.skb = skb;
1510	bdx_tx_db_inc_wptr(db);
1511}
1512
1513/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1514 * number of frags is used as index to fetch correct descriptors size,
1515 * instead of calculating it each time */
1516static void __init init_txd_sizes(void)
1517{
1518	int i, lwords;
1519
1520	/* 7 - is number of lwords in txd with one phys buffer
1521	 * 3 - is number of lwords used for every additional phys buffer */
1522	for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1523		lwords = 7 + (i * 3);
1524		if (lwords & 1)
1525			lwords++;	/* pad it with 1 lword */
1526		txd_sizes[i].qwords = lwords >> 1;
1527		txd_sizes[i].bytes = lwords << 2;
1528	}
1529}
1530
1531/* bdx_tx_init - initialize all Tx related stuff.
1532 * Namely, TXD and TXF fifos, database etc */
1533static int bdx_tx_init(struct bdx_priv *priv)
1534{
1535	if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1536			  regTXD_CFG0_0,
1537			  regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1538		goto err_mem;
1539	if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1540			  regTXF_CFG0_0,
1541			  regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1542		goto err_mem;
1543
1544	/* The TX db has to keep mappings for all packets sent (on TxD)
1545	 * and not yet reclaimed (on TxF) */
1546	if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1547		goto err_mem;
1548
1549	priv->tx_level = BDX_MAX_TX_LEVEL;
1550#ifdef BDX_DELAY_WPTR
1551	priv->tx_update_mark = priv->tx_level - 1024;
1552#endif
1553	return 0;
1554
1555err_mem:
1556	netdev_err(priv->ndev, "Tx init failed\n");
1557	return -ENOMEM;
1558}
1559
1560/**
1561 * bdx_tx_space - calculates available space in TX fifo
1562 * @priv: NIC private structure
1563 *
1564 * Returns available space in TX fifo in bytes
1565 */
1566static inline int bdx_tx_space(struct bdx_priv *priv)
1567{
1568	struct txd_fifo *f = &priv->txd_fifo0;
1569	int fsize;
1570
1571	f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1572	fsize = f->m.rptr - f->m.wptr;
1573	if (fsize <= 0)
1574		fsize = f->m.memsz + fsize;
1575	return fsize;
1576}
1577
1578/**
1579 * bdx_tx_transmit - send packet to NIC
1580 * @skb: packet to send
1581 * @ndev: network device assigned to NIC
1582 * Return codes:
1583 * o NETDEV_TX_OK everything ok.
1584 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1585 *   Usually a bug, means queue start/stop flow control is broken in
1586 *   the driver. Note: the driver must NOT put the skb in its DMA ring.
1587 */
1588static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1589				   struct net_device *ndev)
1590{
1591	struct bdx_priv *priv = netdev_priv(ndev);
1592	struct txd_fifo *f = &priv->txd_fifo0;
1593	int txd_checksum = 7;	/* full checksum */
1594	int txd_lgsnd = 0;
1595	int txd_vlan_id = 0;
1596	int txd_vtag = 0;
1597	int txd_mss = 0;
1598
1599	int nr_frags = skb_shinfo(skb)->nr_frags;
1600	struct txd_desc *txdd;
1601	int len;
1602	unsigned long flags;
1603
1604	ENTER;
1605	local_irq_save(flags);
1606	spin_lock(&priv->tx_lock);
1607
1608	/* build tx descriptor */
1609	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* started with valid wptr */
1610	txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1611	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1612		txd_checksum = 0;
1613
1614	if (skb_shinfo(skb)->gso_size) {
1615		txd_mss = skb_shinfo(skb)->gso_size;
1616		txd_lgsnd = 1;
1617		DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1618		    txd_mss);
1619	}
1620
1621	if (skb_vlan_tag_present(skb)) {
1622		/*Cut VLAN ID to 12 bits */
1623		txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1624		txd_vtag = 1;
1625	}
1626
1627	txdd->length = CPU_CHIP_SWAP16(skb->len);
1628	txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1629	txdd->txd_val1 =
1630	    CPU_CHIP_SWAP32(TXD_W1_VAL
1631			    (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1632			     txd_lgsnd, txd_vlan_id));
1633	DBG("=== TxD desc =====================\n");
1634	DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1635	DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1636
1637	bdx_tx_map_skb(priv, skb, txdd);
1638
1639	/* increment TXD write pointer. In case of
1640	   fifo wrapping copy reminder of the descriptor
1641	   to the beginning */
1642	f->m.wptr += txd_sizes[nr_frags].bytes;
1643	len = f->m.wptr - f->m.memsz;
1644	if (unlikely(len >= 0)) {
1645		f->m.wptr = len;
1646		if (len > 0) {
1647			BDX_ASSERT(len > f->m.memsz);
1648			memcpy(f->m.va, f->m.va + f->m.memsz, len);
1649		}
1650	}
1651	BDX_ASSERT(f->m.wptr >= f->m.memsz);	/* finished with valid wptr */
1652
1653	priv->tx_level -= txd_sizes[nr_frags].bytes;
1654	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1655#ifdef BDX_DELAY_WPTR
1656	if (priv->tx_level > priv->tx_update_mark) {
1657		/* Force memory writes to complete before letting h/w
1658		   know there are new descriptors to fetch.
1659		   (might be needed on platforms like IA64)
1660		   wmb(); */
1661		WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1662	} else {
1663		if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1664			priv->tx_noupd = 0;
1665			WRITE_REG(priv, f->m.reg_WPTR,
1666				  f->m.wptr & TXF_WPTR_WR_PTR);
1667		}
1668	}
1669#else
1670	/* Force memory writes to complete before letting h/w
1671	   know there are new descriptors to fetch.
1672	   (might be needed on platforms like IA64)
1673	   wmb(); */
1674	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1675
1676#endif
1677#ifdef BDX_LLTX
1678	netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1679#endif
1680	ndev->stats.tx_packets++;
1681	ndev->stats.tx_bytes += skb->len;
1682
1683	if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1684		DBG("%s: %s: TX Q STOP level %d\n",
1685		    BDX_DRV_NAME, ndev->name, priv->tx_level);
1686		netif_stop_queue(ndev);
1687	}
1688
1689	spin_unlock_irqrestore(&priv->tx_lock, flags);
1690	return NETDEV_TX_OK;
1691}
1692
1693/**
1694 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1695 * @priv: bdx adapter
1696 *
1697 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1698 * that those packets were sent
1699 */
1700static void bdx_tx_cleanup(struct bdx_priv *priv)
1701{
1702	struct txf_fifo *f = &priv->txf_fifo0;
1703	struct txdb *db = &priv->txdb;
1704	int tx_level = 0;
1705
1706	ENTER;
1707	f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1708	BDX_ASSERT(f->m.rptr >= f->m.memsz);	/* started with valid rptr */
1709
1710	while (f->m.wptr != f->m.rptr) {
1711		f->m.rptr += BDX_TXF_DESC_SZ;
1712		f->m.rptr &= f->m.size_mask;
1713
1714		/* unmap all the fragments */
1715		/* first has to come tx_maps containing dma */
1716		BDX_ASSERT(db->rptr->len == 0);
1717		do {
1718			BDX_ASSERT(db->rptr->addr.dma == 0);
1719			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1720				       db->rptr->len, PCI_DMA_TODEVICE);
1721			bdx_tx_db_inc_rptr(db);
1722		} while (db->rptr->len > 0);
1723		tx_level -= db->rptr->len;	/* '-' koz len is negative */
1724
1725		/* now should come skb pointer - free it */
1726		dev_consume_skb_irq(db->rptr->addr.skb);
1727		bdx_tx_db_inc_rptr(db);
1728	}
1729
1730	/* let h/w know which TXF descriptors were cleaned */
1731	BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1732	WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1733
1734	/* We reclaimed resources, so in case the Q is stopped by xmit callback,
1735	 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1736	spin_lock(&priv->tx_lock);
1737	priv->tx_level += tx_level;
1738	BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1739#ifdef BDX_DELAY_WPTR
1740	if (priv->tx_noupd) {
1741		priv->tx_noupd = 0;
1742		WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1743			  priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1744	}
1745#endif
1746
1747	if (unlikely(netif_queue_stopped(priv->ndev) &&
1748		     netif_carrier_ok(priv->ndev) &&
1749		     (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1750		DBG("%s: %s: TX Q WAKE level %d\n",
1751		    BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1752		netif_wake_queue(priv->ndev);
1753	}
1754	spin_unlock(&priv->tx_lock);
1755}
1756
1757/**
1758 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1759 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1760 */
1761static void bdx_tx_free_skbs(struct bdx_priv *priv)
1762{
1763	struct txdb *db = &priv->txdb;
1764
1765	ENTER;
1766	while (db->rptr != db->wptr) {
1767		if (likely(db->rptr->len))
1768			pci_unmap_page(priv->pdev, db->rptr->addr.dma,
1769				       db->rptr->len, PCI_DMA_TODEVICE);
1770		else
1771			dev_kfree_skb(db->rptr->addr.skb);
1772		bdx_tx_db_inc_rptr(db);
1773	}
1774	RET();
1775}
1776
1777/* bdx_tx_free - frees all Tx resources */
1778static void bdx_tx_free(struct bdx_priv *priv)
1779{
1780	ENTER;
1781	bdx_tx_free_skbs(priv);
1782	bdx_fifo_free(priv, &priv->txd_fifo0.m);
1783	bdx_fifo_free(priv, &priv->txf_fifo0.m);
1784	bdx_tx_db_close(&priv->txdb);
1785}
1786
1787/**
1788 * bdx_tx_push_desc - push descriptor to TxD fifo
1789 * @priv: NIC private structure
1790 * @data: desc's data
1791 * @size: desc's size
1792 *
1793 * Pushes desc to TxD fifo and overlaps it if needed.
1794 * NOTE: this func does not check for available space. this is responsibility
1795 *    of the caller. Neither does it check that data size is smaller than
1796 *    fifo size.
1797 */
1798static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1799{
1800	struct txd_fifo *f = &priv->txd_fifo0;
1801	int i = f->m.memsz - f->m.wptr;
1802
1803	if (size == 0)
1804		return;
1805
1806	if (i > size) {
1807		memcpy(f->m.va + f->m.wptr, data, size);
1808		f->m.wptr += size;
1809	} else {
1810		memcpy(f->m.va + f->m.wptr, data, i);
1811		f->m.wptr = size - i;
1812		memcpy(f->m.va, data + i, f->m.wptr);
1813	}
1814	WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1815}
1816
1817/**
1818 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1819 * @priv: NIC private structure
1820 * @data: desc's data
1821 * @size: desc's size
1822 *
1823 * NOTE: this func does check for available space and, if necessary, waits for
1824 *   NIC to read existing data before writing new one.
1825 */
1826static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1827{
1828	int timer = 0;
1829	ENTER;
1830
1831	while (size > 0) {
1832		/* we substruct 8 because when fifo is full rptr == wptr
1833		   which also means that fifo is empty, we can understand
1834		   the difference, but could hw do the same ??? :) */
1835		int avail = bdx_tx_space(priv) - 8;
1836		if (avail <= 0) {
1837			if (timer++ > 300) {	/* prevent endless loop */
1838				DBG("timeout while writing desc to TxD fifo\n");
1839				break;
1840			}
1841			udelay(50);	/* give hw a chance to clean fifo */
1842			continue;
1843		}
1844		avail = min(avail, size);
1845		DBG("about to push  %d bytes starting %p size %d\n", avail,
1846		    data, size);
1847		bdx_tx_push_desc(priv, data, avail);
1848		size -= avail;
1849		data += avail;
1850	}
1851	RET();
1852}
1853
1854static const struct net_device_ops bdx_netdev_ops = {
1855	.ndo_open		= bdx_open,
1856	.ndo_stop		= bdx_close,
1857	.ndo_start_xmit		= bdx_tx_transmit,
1858	.ndo_validate_addr	= eth_validate_addr,
1859	.ndo_do_ioctl		= bdx_ioctl,
1860	.ndo_set_rx_mode	= bdx_setmulti,
1861	.ndo_change_mtu		= bdx_change_mtu,
1862	.ndo_set_mac_address	= bdx_set_mac,
1863	.ndo_vlan_rx_add_vid	= bdx_vlan_rx_add_vid,
1864	.ndo_vlan_rx_kill_vid	= bdx_vlan_rx_kill_vid,
1865};
1866
1867/**
1868 * bdx_probe - Device Initialization Routine
1869 * @pdev: PCI device information struct
1870 * @ent: entry in bdx_pci_tbl
1871 *
1872 * Returns 0 on success, negative on failure
1873 *
1874 * bdx_probe initializes an adapter identified by a pci_dev structure.
1875 * The OS initialization, configuring of the adapter private structure,
1876 * and a hardware reset occur.
1877 *
1878 * functions and their order used as explained in
1879 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1880 *
1881 */
1882
1883/* TBD: netif_msg should be checked and implemented. I disable it for now */
1884static int
1885bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1886{
1887	struct net_device *ndev;
1888	struct bdx_priv *priv;
1889	int err, pci_using_dac, port;
1890	unsigned long pciaddr;
1891	u32 regionSize;
1892	struct pci_nic *nic;
1893
1894	ENTER;
1895
1896	nic = vmalloc(sizeof(*nic));
1897	if (!nic)
1898		RET(-ENOMEM);
1899
1900    /************** pci *****************/
1901	err = pci_enable_device(pdev);
1902	if (err)			/* it triggers interrupt, dunno why. */
1903		goto err_pci;		/* it's not a problem though */
1904
1905	if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) &&
1906	    !(err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))) {
1907		pci_using_dac = 1;
1908	} else {
1909		if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) ||
1910		    (err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))) {
1911			pr_err("No usable DMA configuration, aborting\n");
1912			goto err_dma;
1913		}
1914		pci_using_dac = 0;
1915	}
1916
1917	err = pci_request_regions(pdev, BDX_DRV_NAME);
1918	if (err)
1919		goto err_dma;
1920
1921	pci_set_master(pdev);
1922
1923	pciaddr = pci_resource_start(pdev, 0);
1924	if (!pciaddr) {
1925		err = -EIO;
1926		pr_err("no MMIO resource\n");
1927		goto err_out_res;
1928	}
1929	regionSize = pci_resource_len(pdev, 0);
1930	if (regionSize < BDX_REGS_SIZE) {
1931		err = -EIO;
1932		pr_err("MMIO resource (%x) too small\n", regionSize);
1933		goto err_out_res;
1934	}
1935
1936	nic->regs = ioremap(pciaddr, regionSize);
1937	if (!nic->regs) {
1938		err = -EIO;
1939		pr_err("ioremap failed\n");
1940		goto err_out_res;
1941	}
1942
1943	if (pdev->irq < 2) {
1944		err = -EIO;
1945		pr_err("invalid irq (%d)\n", pdev->irq);
1946		goto err_out_iomap;
1947	}
1948	pci_set_drvdata(pdev, nic);
1949
1950	if (pdev->device == 0x3014)
1951		nic->port_num = 2;
1952	else
1953		nic->port_num = 1;
1954
1955	print_hw_id(pdev);
1956
1957	bdx_hw_reset_direct(nic->regs);
1958
1959	nic->irq_type = IRQ_INTX;
1960#ifdef BDX_MSI
1961	if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1962		err = pci_enable_msi(pdev);
1963		if (err)
1964			pr_err("Can't enable msi. error is %d\n", err);
1965		else
1966			nic->irq_type = IRQ_MSI;
1967	} else
1968		DBG("HW does not support MSI\n");
1969#endif
1970
1971    /************** netdev **************/
1972	for (port = 0; port < nic->port_num; port++) {
1973		ndev = alloc_etherdev(sizeof(struct bdx_priv));
1974		if (!ndev) {
1975			err = -ENOMEM;
1976			goto err_out_iomap;
1977		}
1978
1979		ndev->netdev_ops = &bdx_netdev_ops;
1980		ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1981
1982		bdx_set_ethtool_ops(ndev);	/* ethtool interface */
1983
1984		/* these fields are used for info purposes only
1985		 * so we can have them same for all ports of the board */
1986		ndev->if_port = port;
1987		ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
1988		    | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1989		    NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
1990		    ;
1991		ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1992			NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
1993
1994		if (pci_using_dac)
1995			ndev->features |= NETIF_F_HIGHDMA;
1996
1997	/************** priv ****************/
1998		priv = nic->priv[port] = netdev_priv(ndev);
1999
2000		priv->pBdxRegs = nic->regs + port * 0x8000;
2001		priv->port = port;
2002		priv->pdev = pdev;
2003		priv->ndev = ndev;
2004		priv->nic = nic;
2005		priv->msg_enable = BDX_DEF_MSG_ENABLE;
2006
2007		netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2008
2009		if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2010			DBG("HW statistics not supported\n");
2011			priv->stats_flag = 0;
2012		} else {
2013			priv->stats_flag = 1;
2014		}
2015
2016		/* Initialize fifo sizes. */
2017		priv->txd_size = 2;
2018		priv->txf_size = 2;
2019		priv->rxd_size = 2;
2020		priv->rxf_size = 3;
2021
2022		/* Initialize the initial coalescing registers. */
2023		priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2024		priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2025
2026		/* ndev->xmit_lock spinlock is not used.
2027		 * Private priv->tx_lock is used for synchronization
2028		 * between transmit and TX irq cleanup.  In addition
2029		 * set multicast list callback has to use priv->tx_lock.
2030		 */
2031#ifdef BDX_LLTX
2032		ndev->features |= NETIF_F_LLTX;
2033#endif
2034		/* MTU range: 60 - 16384 */
2035		ndev->min_mtu = ETH_ZLEN;
2036		ndev->max_mtu = BDX_MAX_MTU;
2037
2038		spin_lock_init(&priv->tx_lock);
2039
2040		/*bdx_hw_reset(priv); */
2041		if (bdx_read_mac(priv)) {
2042			pr_err("load MAC address failed\n");
2043			goto err_out_iomap;
2044		}
2045		SET_NETDEV_DEV(ndev, &pdev->dev);
2046		err = register_netdev(ndev);
2047		if (err) {
2048			pr_err("register_netdev failed\n");
2049			goto err_out_free;
2050		}
2051		netif_carrier_off(ndev);
2052		netif_stop_queue(ndev);
2053
2054		print_eth_id(ndev);
2055	}
2056	RET(0);
2057
2058err_out_free:
2059	free_netdev(ndev);
2060err_out_iomap:
2061	iounmap(nic->regs);
2062err_out_res:
2063	pci_release_regions(pdev);
2064err_dma:
2065	pci_disable_device(pdev);
2066err_pci:
2067	vfree(nic);
2068
2069	RET(err);
2070}
2071
2072/****************** Ethtool interface *********************/
2073/* get strings for statistics counters */
2074static const char
2075 bdx_stat_names[][ETH_GSTRING_LEN] = {
2076	"InUCast",		/* 0x7200 */
2077	"InMCast",		/* 0x7210 */
2078	"InBCast",		/* 0x7220 */
2079	"InPkts",		/* 0x7230 */
2080	"InErrors",		/* 0x7240 */
2081	"InDropped",		/* 0x7250 */
2082	"FrameTooLong",		/* 0x7260 */
2083	"FrameSequenceErrors",	/* 0x7270 */
2084	"InVLAN",		/* 0x7280 */
2085	"InDroppedDFE",		/* 0x7290 */
2086	"InDroppedIntFull",	/* 0x72A0 */
2087	"InFrameAlignErrors",	/* 0x72B0 */
2088
2089	/* 0x72C0-0x72E0 RSRV */
2090
2091	"OutUCast",		/* 0x72F0 */
2092	"OutMCast",		/* 0x7300 */
2093	"OutBCast",		/* 0x7310 */
2094	"OutPkts",		/* 0x7320 */
2095
2096	/* 0x7330-0x7360 RSRV */
2097
2098	"OutVLAN",		/* 0x7370 */
2099	"InUCastOctects",	/* 0x7380 */
2100	"OutUCastOctects",	/* 0x7390 */
2101
2102	/* 0x73A0-0x73B0 RSRV */
2103
2104	"InBCastOctects",	/* 0x73C0 */
2105	"OutBCastOctects",	/* 0x73D0 */
2106	"InOctects",		/* 0x73E0 */
2107	"OutOctects",		/* 0x73F0 */
2108};
2109
2110/*
2111 * bdx_get_link_ksettings - get device-specific settings
2112 * @netdev
2113 * @ecmd
2114 */
2115static int bdx_get_link_ksettings(struct net_device *netdev,
2116				  struct ethtool_link_ksettings *ecmd)
2117{
2118	ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2119	ethtool_link_ksettings_add_link_mode(ecmd, supported,
2120					     10000baseT_Full);
2121	ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2122	ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2123	ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2124					     10000baseT_Full);
2125	ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2126
2127	ecmd->base.speed = SPEED_10000;
2128	ecmd->base.duplex = DUPLEX_FULL;
2129	ecmd->base.port = PORT_FIBRE;
2130	ecmd->base.autoneg = AUTONEG_DISABLE;
2131
2132	return 0;
2133}
2134
2135/*
2136 * bdx_get_drvinfo - report driver information
2137 * @netdev
2138 * @drvinfo
2139 */
2140static void
2141bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2142{
2143	struct bdx_priv *priv = netdev_priv(netdev);
2144
2145	strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2146	strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2147	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2148	strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2149		sizeof(drvinfo->bus_info));
2150}
2151
2152/*
2153 * bdx_get_coalesce - get interrupt coalescing parameters
2154 * @netdev
2155 * @ecoal
2156 */
2157static int
2158bdx_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2159{
2160	u32 rdintcm;
2161	u32 tdintcm;
2162	struct bdx_priv *priv = netdev_priv(netdev);
2163
2164	rdintcm = priv->rdintcm;
2165	tdintcm = priv->tdintcm;
2166
2167	/* PCK_TH measures in multiples of FIFO bytes
2168	   We translate to packets */
2169	ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2170	ecoal->rx_max_coalesced_frames =
2171	    ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2172
2173	ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2174	ecoal->tx_max_coalesced_frames =
2175	    ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2176
2177	/* adaptive parameters ignored */
2178	return 0;
2179}
2180
2181/*
2182 * bdx_set_coalesce - set interrupt coalescing parameters
2183 * @netdev
2184 * @ecoal
2185 */
2186static int
2187bdx_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecoal)
2188{
2189	u32 rdintcm;
2190	u32 tdintcm;
2191	struct bdx_priv *priv = netdev_priv(netdev);
2192	int rx_coal;
2193	int tx_coal;
2194	int rx_max_coal;
2195	int tx_max_coal;
2196
2197	/* Check for valid input */
2198	rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2199	tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2200	rx_max_coal = ecoal->rx_max_coalesced_frames;
2201	tx_max_coal = ecoal->tx_max_coalesced_frames;
2202
2203	/* Translate from packets to multiples of FIFO bytes */
2204	rx_max_coal =
2205	    (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2206	     / PCK_TH_MULT);
2207	tx_max_coal =
2208	    (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2209	     / PCK_TH_MULT);
2210
2211	if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2212	    (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2213		return -EINVAL;
2214
2215	rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2216			      GET_RXF_TH(priv->rdintcm), rx_max_coal);
2217	tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2218			      tx_max_coal);
2219
2220	priv->rdintcm = rdintcm;
2221	priv->tdintcm = tdintcm;
2222
2223	WRITE_REG(priv, regRDINTCM0, rdintcm);
2224	WRITE_REG(priv, regTDINTCM0, tdintcm);
2225
2226	return 0;
2227}
2228
2229/* Convert RX fifo size to number of pending packets */
2230static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2231{
2232	return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2233}
2234
2235/* Convert TX fifo size to number of pending packets */
2236static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2237{
2238	return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2239}
2240
2241/*
2242 * bdx_get_ringparam - report ring sizes
2243 * @netdev
2244 * @ring
2245 */
2246static void
2247bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2248{
2249	struct bdx_priv *priv = netdev_priv(netdev);
2250
2251	/*max_pending - the maximum-sized FIFO we allow */
2252	ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2253	ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2254	ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2255	ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2256}
2257
2258/*
2259 * bdx_set_ringparam - set ring sizes
2260 * @netdev
2261 * @ring
2262 */
2263static int
2264bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2265{
2266	struct bdx_priv *priv = netdev_priv(netdev);
2267	int rx_size = 0;
2268	int tx_size = 0;
2269
2270	for (; rx_size < 4; rx_size++) {
2271		if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2272			break;
2273	}
2274	if (rx_size == 4)
2275		rx_size = 3;
2276
2277	for (; tx_size < 4; tx_size++) {
2278		if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2279			break;
2280	}
2281	if (tx_size == 4)
2282		tx_size = 3;
2283
2284	/*Is there anything to do? */
2285	if ((rx_size == priv->rxf_size) &&
2286	    (tx_size == priv->txd_size))
2287		return 0;
2288
2289	priv->rxf_size = rx_size;
2290	if (rx_size > 1)
2291		priv->rxd_size = rx_size - 1;
2292	else
2293		priv->rxd_size = rx_size;
2294
2295	priv->txf_size = priv->txd_size = tx_size;
2296
2297	if (netif_running(netdev)) {
2298		bdx_close(netdev);
2299		bdx_open(netdev);
2300	}
2301	return 0;
2302}
2303
2304/*
2305 * bdx_get_strings - return a set of strings that describe the requested objects
2306 * @netdev
2307 * @data
2308 */
2309static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2310{
2311	switch (stringset) {
2312	case ETH_SS_STATS:
2313		memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2314		break;
2315	}
2316}
2317
2318/*
2319 * bdx_get_sset_count - return number of statistics or tests
2320 * @netdev
2321 */
2322static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2323{
2324	struct bdx_priv *priv = netdev_priv(netdev);
2325
2326	switch (stringset) {
2327	case ETH_SS_STATS:
2328		BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2329			   != sizeof(struct bdx_stats) / sizeof(u64));
2330		return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names)	: 0;
2331	}
2332
2333	return -EINVAL;
2334}
2335
2336/*
2337 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2338 * @netdev
2339 * @stats
2340 * @data
2341 */
2342static void bdx_get_ethtool_stats(struct net_device *netdev,
2343				  struct ethtool_stats *stats, u64 *data)
2344{
2345	struct bdx_priv *priv = netdev_priv(netdev);
2346
2347	if (priv->stats_flag) {
2348
2349		/* Update stats from HW */
2350		bdx_update_stats(priv);
2351
2352		/* Copy data to user buffer */
2353		memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2354	}
2355}
2356
2357/*
2358 * bdx_set_ethtool_ops - ethtool interface implementation
2359 * @netdev
2360 */
2361static void bdx_set_ethtool_ops(struct net_device *netdev)
2362{
2363	static const struct ethtool_ops bdx_ethtool_ops = {
2364		.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2365					     ETHTOOL_COALESCE_MAX_FRAMES,
2366		.get_drvinfo = bdx_get_drvinfo,
2367		.get_link = ethtool_op_get_link,
2368		.get_coalesce = bdx_get_coalesce,
2369		.set_coalesce = bdx_set_coalesce,
2370		.get_ringparam = bdx_get_ringparam,
2371		.set_ringparam = bdx_set_ringparam,
2372		.get_strings = bdx_get_strings,
2373		.get_sset_count = bdx_get_sset_count,
2374		.get_ethtool_stats = bdx_get_ethtool_stats,
2375		.get_link_ksettings = bdx_get_link_ksettings,
2376	};
2377
2378	netdev->ethtool_ops = &bdx_ethtool_ops;
2379}
2380
2381/**
2382 * bdx_remove - Device Removal Routine
2383 * @pdev: PCI device information struct
2384 *
2385 * bdx_remove is called by the PCI subsystem to alert the driver
2386 * that it should release a PCI device.  The could be caused by a
2387 * Hot-Plug event, or because the driver is going to be removed from
2388 * memory.
2389 **/
2390static void bdx_remove(struct pci_dev *pdev)
2391{
2392	struct pci_nic *nic = pci_get_drvdata(pdev);
2393	struct net_device *ndev;
2394	int port;
2395
2396	for (port = 0; port < nic->port_num; port++) {
2397		ndev = nic->priv[port]->ndev;
2398		unregister_netdev(ndev);
2399		free_netdev(ndev);
2400	}
2401
2402	/*bdx_hw_reset_direct(nic->regs); */
2403#ifdef BDX_MSI
2404	if (nic->irq_type == IRQ_MSI)
2405		pci_disable_msi(pdev);
2406#endif
2407
2408	iounmap(nic->regs);
2409	pci_release_regions(pdev);
2410	pci_disable_device(pdev);
2411	vfree(nic);
2412
2413	RET();
2414}
2415
2416static struct pci_driver bdx_pci_driver = {
2417	.name = BDX_DRV_NAME,
2418	.id_table = bdx_pci_tbl,
2419	.probe = bdx_probe,
2420	.remove = bdx_remove,
2421};
2422
2423/*
2424 * print_driver_id - print parameters of the driver build
2425 */
2426static void __init print_driver_id(void)
2427{
2428	pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2429	pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2430}
2431
2432static int __init bdx_module_init(void)
2433{
2434	ENTER;
2435	init_txd_sizes();
2436	print_driver_id();
2437	RET(pci_register_driver(&bdx_pci_driver));
2438}
2439
2440module_init(bdx_module_init);
2441
2442static void __exit bdx_module_exit(void)
2443{
2444	ENTER;
2445	pci_unregister_driver(&bdx_pci_driver);
2446	RET();
2447}
2448
2449module_exit(bdx_module_exit);
2450
2451MODULE_LICENSE("GPL");
2452MODULE_AUTHOR(DRIVER_AUTHOR);
2453MODULE_DESCRIPTION(BDX_DRV_DESC);
2454MODULE_FIRMWARE("tehuti/bdx.bin");