Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
   3 *           auto carrier detecting ethernet driver.  Also known as the
   4 *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
   5 *
   6 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
   7 *		2006, 2008 David S. Miller (davem@davemloft.net)
   8 *
   9 * Changes :
  10 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
  11 *   - port to non-sparc architectures. Tested only on x86 and
  12 *     only currently works with QFE PCI cards.
  13 *   - ability to specify the MAC address at module load time by passing this
  14 *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
  15 */
  16
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/types.h>
  20#include <linux/fcntl.h>
  21#include <linux/interrupt.h>
  22#include <linux/ioport.h>
  23#include <linux/in.h>
  24#include <linux/slab.h>
  25#include <linux/string.h>
  26#include <linux/delay.h>
  27#include <linux/init.h>
  28#include <linux/ethtool.h>
  29#include <linux/mii.h>
  30#include <linux/crc32.h>
  31#include <linux/random.h>
  32#include <linux/errno.h>
  33#include <linux/netdevice.h>
  34#include <linux/etherdevice.h>
  35#include <linux/skbuff.h>
  36#include <linux/mm.h>
  37#include <linux/bitops.h>
  38#include <linux/dma-mapping.h>
  39
  40#include <asm/io.h>
  41#include <asm/dma.h>
  42#include <asm/byteorder.h>
  43
  44#ifdef CONFIG_SPARC
  45#include <linux/of.h>
  46#include <linux/of_device.h>
  47#include <asm/idprom.h>
  48#include <asm/openprom.h>
  49#include <asm/oplib.h>
  50#include <asm/prom.h>
  51#include <asm/auxio.h>
  52#endif
  53#include <linux/uaccess.h>
  54
  55#include <asm/irq.h>
  56
  57#ifdef CONFIG_PCI
  58#include <linux/pci.h>
  59#endif
  60
  61#include "sunhme.h"
  62
  63#define DRV_NAME	"sunhme"
  64#define DRV_VERSION	"3.10"
  65#define DRV_RELDATE	"August 26, 2008"
  66#define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
  67
  68static char version[] =
  69	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  70
  71MODULE_VERSION(DRV_VERSION);
  72MODULE_AUTHOR(DRV_AUTHOR);
  73MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
  74MODULE_LICENSE("GPL");
  75
  76static int macaddr[6];
  77
  78/* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
  79module_param_array(macaddr, int, NULL, 0);
  80MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
  81
  82#ifdef CONFIG_SBUS
  83static struct quattro *qfe_sbus_list;
  84#endif
  85
  86#ifdef CONFIG_PCI
  87static struct quattro *qfe_pci_list;
  88#endif
  89
  90#undef HMEDEBUG
  91#undef SXDEBUG
  92#undef RXDEBUG
  93#undef TXDEBUG
  94#undef TXLOGGING
  95
  96#ifdef TXLOGGING
  97struct hme_tx_logent {
  98	unsigned int tstamp;
  99	int tx_new, tx_old;
 100	unsigned int action;
 101#define TXLOG_ACTION_IRQ	0x01
 102#define TXLOG_ACTION_TXMIT	0x02
 103#define TXLOG_ACTION_TBUSY	0x04
 104#define TXLOG_ACTION_NBUFS	0x08
 105	unsigned int status;
 106};
 107#define TX_LOG_LEN	128
 108static struct hme_tx_logent tx_log[TX_LOG_LEN];
 109static int txlog_cur_entry;
 110static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
 111{
 112	struct hme_tx_logent *tlp;
 113	unsigned long flags;
 114
 115	local_irq_save(flags);
 116	tlp = &tx_log[txlog_cur_entry];
 117	tlp->tstamp = (unsigned int)jiffies;
 118	tlp->tx_new = hp->tx_new;
 119	tlp->tx_old = hp->tx_old;
 120	tlp->action = a;
 121	tlp->status = s;
 122	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
 123	local_irq_restore(flags);
 124}
 125static __inline__ void tx_dump_log(void)
 126{
 127	int i, this;
 128
 129	this = txlog_cur_entry;
 130	for (i = 0; i < TX_LOG_LEN; i++) {
 131		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
 132		       tx_log[this].tstamp,
 133		       tx_log[this].tx_new, tx_log[this].tx_old,
 134		       tx_log[this].action, tx_log[this].status);
 135		this = (this + 1) & (TX_LOG_LEN - 1);
 136	}
 137}
 138static __inline__ void tx_dump_ring(struct happy_meal *hp)
 139{
 140	struct hmeal_init_block *hb = hp->happy_block;
 141	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
 142	int i;
 143
 144	for (i = 0; i < TX_RING_SIZE; i+=4) {
 145		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
 146		       i, i + 4,
 147		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
 148		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
 149		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
 150		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
 151	}
 152}
 153#else
 154#define tx_add_log(hp, a, s)		do { } while(0)
 155#define tx_dump_log()			do { } while(0)
 156#define tx_dump_ring(hp)		do { } while(0)
 157#endif
 158
 159#ifdef HMEDEBUG
 160#define HMD(x)  printk x
 161#else
 162#define HMD(x)
 163#endif
 164
 165/* #define AUTO_SWITCH_DEBUG */
 166
 167#ifdef AUTO_SWITCH_DEBUG
 168#define ASD(x)  printk x
 169#else
 170#define ASD(x)
 171#endif
 172
 173#define DEFAULT_IPG0      16 /* For lance-mode only */
 174#define DEFAULT_IPG1       8 /* For all modes */
 175#define DEFAULT_IPG2       4 /* For all modes */
 176#define DEFAULT_JAMSIZE    4 /* Toe jam */
 177
 178/* NOTE: In the descriptor writes one _must_ write the address
 179 *	 member _first_.  The card must not be allowed to see
 180 *	 the updated descriptor flags until the address is
 181 *	 correct.  I've added a write memory barrier between
 182 *	 the two stores so that I can sleep well at night... -DaveM
 183 */
 184
 185#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
 186static void sbus_hme_write32(void __iomem *reg, u32 val)
 187{
 188	sbus_writel(val, reg);
 189}
 190
 191static u32 sbus_hme_read32(void __iomem *reg)
 192{
 193	return sbus_readl(reg);
 194}
 195
 196static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 197{
 198	rxd->rx_addr = (__force hme32)addr;
 199	dma_wmb();
 200	rxd->rx_flags = (__force hme32)flags;
 201}
 202
 203static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 204{
 205	txd->tx_addr = (__force hme32)addr;
 206	dma_wmb();
 207	txd->tx_flags = (__force hme32)flags;
 208}
 209
 210static u32 sbus_hme_read_desc32(hme32 *p)
 211{
 212	return (__force u32)*p;
 213}
 214
 215static void pci_hme_write32(void __iomem *reg, u32 val)
 216{
 217	writel(val, reg);
 218}
 219
 220static u32 pci_hme_read32(void __iomem *reg)
 221{
 222	return readl(reg);
 223}
 224
 225static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
 226{
 227	rxd->rx_addr = (__force hme32)cpu_to_le32(addr);
 228	dma_wmb();
 229	rxd->rx_flags = (__force hme32)cpu_to_le32(flags);
 230}
 231
 232static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
 233{
 234	txd->tx_addr = (__force hme32)cpu_to_le32(addr);
 235	dma_wmb();
 236	txd->tx_flags = (__force hme32)cpu_to_le32(flags);
 237}
 238
 239static u32 pci_hme_read_desc32(hme32 *p)
 240{
 241	return le32_to_cpup((__le32 *)p);
 242}
 243
 244#define hme_write32(__hp, __reg, __val) \
 245	((__hp)->write32((__reg), (__val)))
 246#define hme_read32(__hp, __reg) \
 247	((__hp)->read32(__reg))
 248#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 249	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
 250#define hme_write_txd(__hp, __txd, __flags, __addr) \
 251	((__hp)->write_txd((__txd), (__flags), (__addr)))
 252#define hme_read_desc32(__hp, __p) \
 253	((__hp)->read_desc32(__p))
 254#define hme_dma_map(__hp, __ptr, __size, __dir) \
 255	((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
 256#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 257	((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
 258#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 259	((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
 260#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 261	((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
 262#else
 263#ifdef CONFIG_SBUS
 264/* SBUS only compilation */
 265#define hme_write32(__hp, __reg, __val) \
 266	sbus_writel((__val), (__reg))
 267#define hme_read32(__hp, __reg) \
 268	sbus_readl(__reg)
 269#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 270do {	(__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
 271	dma_wmb(); \
 272	(__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
 273} while(0)
 274#define hme_write_txd(__hp, __txd, __flags, __addr) \
 275do {	(__txd)->tx_addr = (__force hme32)(u32)(__addr); \
 276	dma_wmb(); \
 277	(__txd)->tx_flags = (__force hme32)(u32)(__flags); \
 278} while(0)
 279#define hme_read_desc32(__hp, __p)	((__force u32)(hme32)*(__p))
 280#define hme_dma_map(__hp, __ptr, __size, __dir) \
 281	dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 282#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 283	dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 284#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 285	dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 286#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 287	dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 288#else
 289/* PCI only compilation */
 290#define hme_write32(__hp, __reg, __val) \
 291	writel((__val), (__reg))
 292#define hme_read32(__hp, __reg) \
 293	readl(__reg)
 294#define hme_write_rxd(__hp, __rxd, __flags, __addr) \
 295do {	(__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
 296	dma_wmb(); \
 297	(__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
 298} while(0)
 299#define hme_write_txd(__hp, __txd, __flags, __addr) \
 300do {	(__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
 301	dma_wmb(); \
 302	(__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
 303} while(0)
 304static inline u32 hme_read_desc32(struct happy_meal *hp, hme32 *p)
 305{
 306	return le32_to_cpup((__le32 *)p);
 307}
 308#define hme_dma_map(__hp, __ptr, __size, __dir) \
 309	pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
 310#define hme_dma_unmap(__hp, __addr, __size, __dir) \
 311	pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
 312#define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
 313	pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
 314#define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
 315	pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
 316#endif
 317#endif
 318
 319
 320/* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
 321static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
 322{
 323	hme_write32(hp, tregs + TCVR_BBDATA, bit);
 324	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 325	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 326}
 327
 328#if 0
 329static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
 330{
 331	u32 ret;
 332
 333	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 334	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 335	ret = hme_read32(hp, tregs + TCVR_CFG);
 336	if (internal)
 337		ret &= TCV_CFG_MDIO0;
 338	else
 339		ret &= TCV_CFG_MDIO1;
 340
 341	return ret;
 342}
 343#endif
 344
 345static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
 346{
 347	u32 retval;
 348
 349	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
 350	udelay(1);
 351	retval = hme_read32(hp, tregs + TCVR_CFG);
 352	if (internal)
 353		retval &= TCV_CFG_MDIO0;
 354	else
 355		retval &= TCV_CFG_MDIO1;
 356	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
 357
 358	return retval;
 359}
 360
 361#define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
 362
 363static int happy_meal_bb_read(struct happy_meal *hp,
 364			      void __iomem *tregs, int reg)
 365{
 366	u32 tmp;
 367	int retval = 0;
 368	int i;
 369
 370	ASD(("happy_meal_bb_read: reg=%d ", reg));
 371
 372	/* Enable the MIF BitBang outputs. */
 373	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 374
 375	/* Force BitBang into the idle state. */
 376	for (i = 0; i < 32; i++)
 377		BB_PUT_BIT(hp, tregs, 1);
 378
 379	/* Give it the read sequence. */
 380	BB_PUT_BIT(hp, tregs, 0);
 381	BB_PUT_BIT(hp, tregs, 1);
 382	BB_PUT_BIT(hp, tregs, 1);
 383	BB_PUT_BIT(hp, tregs, 0);
 384
 385	/* Give it the PHY address. */
 386	tmp = hp->paddr & 0xff;
 387	for (i = 4; i >= 0; i--)
 388		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 389
 390	/* Tell it what register we want to read. */
 391	tmp = (reg & 0xff);
 392	for (i = 4; i >= 0; i--)
 393		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 394
 395	/* Close down the MIF BitBang outputs. */
 396	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 397
 398	/* Now read in the value. */
 399	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 400	for (i = 15; i >= 0; i--)
 401		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 402	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 403	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 404	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
 405	ASD(("value=%x\n", retval));
 406	return retval;
 407}
 408
 409static void happy_meal_bb_write(struct happy_meal *hp,
 410				void __iomem *tregs, int reg,
 411				unsigned short value)
 412{
 413	u32 tmp;
 414	int i;
 415
 416	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
 417
 418	/* Enable the MIF BitBang outputs. */
 419	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
 420
 421	/* Force BitBang into the idle state. */
 422	for (i = 0; i < 32; i++)
 423		BB_PUT_BIT(hp, tregs, 1);
 424
 425	/* Give it write sequence. */
 426	BB_PUT_BIT(hp, tregs, 0);
 427	BB_PUT_BIT(hp, tregs, 1);
 428	BB_PUT_BIT(hp, tregs, 0);
 429	BB_PUT_BIT(hp, tregs, 1);
 430
 431	/* Give it the PHY address. */
 432	tmp = (hp->paddr & 0xff);
 433	for (i = 4; i >= 0; i--)
 434		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 435
 436	/* Tell it what register we will be writing. */
 437	tmp = (reg & 0xff);
 438	for (i = 4; i >= 0; i--)
 439		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
 440
 441	/* Tell it to become ready for the bits. */
 442	BB_PUT_BIT(hp, tregs, 1);
 443	BB_PUT_BIT(hp, tregs, 0);
 444
 445	for (i = 15; i >= 0; i--)
 446		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
 447
 448	/* Close down the MIF BitBang outputs. */
 449	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
 450}
 451
 452#define TCVR_READ_TRIES   16
 453
 454static int happy_meal_tcvr_read(struct happy_meal *hp,
 455				void __iomem *tregs, int reg)
 456{
 457	int tries = TCVR_READ_TRIES;
 458	int retval;
 459
 460	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
 461	if (hp->tcvr_type == none) {
 462		ASD(("no transceiver, value=TCVR_FAILURE\n"));
 463		return TCVR_FAILURE;
 464	}
 465
 466	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 467		ASD(("doing bit bang\n"));
 468		return happy_meal_bb_read(hp, tregs, reg);
 469	}
 470
 471	hme_write32(hp, tregs + TCVR_FRAME,
 472		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
 473	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 474		udelay(20);
 475	if (!tries) {
 476		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
 477		return TCVR_FAILURE;
 478	}
 479	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
 480	ASD(("value=%04x\n", retval));
 481	return retval;
 482}
 483
 484#define TCVR_WRITE_TRIES  16
 485
 486static void happy_meal_tcvr_write(struct happy_meal *hp,
 487				  void __iomem *tregs, int reg,
 488				  unsigned short value)
 489{
 490	int tries = TCVR_WRITE_TRIES;
 491
 492	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
 493
 494	/* Welcome to Sun Microsystems, can I take your order please? */
 495	if (!(hp->happy_flags & HFLAG_FENABLE)) {
 496		happy_meal_bb_write(hp, tregs, reg, value);
 497		return;
 498	}
 499
 500	/* Would you like fries with that? */
 501	hme_write32(hp, tregs + TCVR_FRAME,
 502		    (FRAME_WRITE | (hp->paddr << 23) |
 503		     ((reg & 0xff) << 18) | (value & 0xffff)));
 504	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
 505		udelay(20);
 506
 507	/* Anything else? */
 508	if (!tries)
 509		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
 510
 511	/* Fifty-two cents is your change, have a nice day. */
 512}
 513
 514/* Auto negotiation.  The scheme is very simple.  We have a timer routine
 515 * that keeps watching the auto negotiation process as it progresses.
 516 * The DP83840 is first told to start doing it's thing, we set up the time
 517 * and place the timer state machine in it's initial state.
 518 *
 519 * Here the timer peeks at the DP83840 status registers at each click to see
 520 * if the auto negotiation has completed, we assume here that the DP83840 PHY
 521 * will time out at some point and just tell us what (didn't) happen.  For
 522 * complete coverage we only allow so many of the ticks at this level to run,
 523 * when this has expired we print a warning message and try another strategy.
 524 * This "other" strategy is to force the interface into various speed/duplex
 525 * configurations and we stop when we see a link-up condition before the
 526 * maximum number of "peek" ticks have occurred.
 527 *
 528 * Once a valid link status has been detected we configure the BigMAC and
 529 * the rest of the Happy Meal to speak the most efficient protocol we could
 530 * get a clean link for.  The priority for link configurations, highest first
 531 * is:
 532 *                 100 Base-T Full Duplex
 533 *                 100 Base-T Half Duplex
 534 *                 10 Base-T Full Duplex
 535 *                 10 Base-T Half Duplex
 536 *
 537 * We start a new timer now, after a successful auto negotiation status has
 538 * been detected.  This timer just waits for the link-up bit to get set in
 539 * the BMCR of the DP83840.  When this occurs we print a kernel log message
 540 * describing the link type in use and the fact that it is up.
 541 *
 542 * If a fatal error of some sort is signalled and detected in the interrupt
 543 * service routine, and the chip is reset, or the link is ifconfig'd down
 544 * and then back up, this entire process repeats itself all over again.
 545 */
 546static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
 547{
 548	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 549
 550	/* Downgrade from full to half duplex.  Only possible
 551	 * via ethtool.
 552	 */
 553	if (hp->sw_bmcr & BMCR_FULLDPLX) {
 554		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
 555		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 556		return 0;
 557	}
 558
 559	/* Downgrade from 100 to 10. */
 560	if (hp->sw_bmcr & BMCR_SPEED100) {
 561		hp->sw_bmcr &= ~(BMCR_SPEED100);
 562		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 563		return 0;
 564	}
 565
 566	/* We've tried everything. */
 567	return -1;
 568}
 569
 570static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
 571{
 572	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
 573	if (hp->tcvr_type == external)
 574		printk("external ");
 575	else
 576		printk("internal ");
 577	printk("transceiver at ");
 578	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 579	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
 580		if (hp->sw_lpa & LPA_100FULL)
 581			printk("100Mb/s, Full Duplex.\n");
 582		else
 583			printk("100Mb/s, Half Duplex.\n");
 584	} else {
 585		if (hp->sw_lpa & LPA_10FULL)
 586			printk("10Mb/s, Full Duplex.\n");
 587		else
 588			printk("10Mb/s, Half Duplex.\n");
 589	}
 590}
 591
 592static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
 593{
 594	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
 595	if (hp->tcvr_type == external)
 596		printk("external ");
 597	else
 598		printk("internal ");
 599	printk("transceiver at ");
 600	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 601	if (hp->sw_bmcr & BMCR_SPEED100)
 602		printk("100Mb/s, ");
 603	else
 604		printk("10Mb/s, ");
 605	if (hp->sw_bmcr & BMCR_FULLDPLX)
 606		printk("Full Duplex.\n");
 607	else
 608		printk("Half Duplex.\n");
 609}
 610
 611static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
 612{
 613	int full;
 614
 615	/* All we care about is making sure the bigmac tx_cfg has a
 616	 * proper duplex setting.
 617	 */
 618	if (hp->timer_state == arbwait) {
 619		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
 620		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
 621			goto no_response;
 622		if (hp->sw_lpa & LPA_100FULL)
 623			full = 1;
 624		else if (hp->sw_lpa & LPA_100HALF)
 625			full = 0;
 626		else if (hp->sw_lpa & LPA_10FULL)
 627			full = 1;
 628		else
 629			full = 0;
 630	} else {
 631		/* Forcing a link mode. */
 632		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 633		if (hp->sw_bmcr & BMCR_FULLDPLX)
 634			full = 1;
 635		else
 636			full = 0;
 637	}
 638
 639	/* Before changing other bits in the tx_cfg register, and in
 640	 * general any of other the TX config registers too, you
 641	 * must:
 642	 * 1) Clear Enable
 643	 * 2) Poll with reads until that bit reads back as zero
 644	 * 3) Make TX configuration changes
 645	 * 4) Set Enable once more
 646	 */
 647	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 648		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 649		    ~(BIGMAC_TXCFG_ENABLE));
 650	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
 651		barrier();
 652	if (full) {
 653		hp->happy_flags |= HFLAG_FULL;
 654		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 655			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 656			    BIGMAC_TXCFG_FULLDPLX);
 657	} else {
 658		hp->happy_flags &= ~(HFLAG_FULL);
 659		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 660			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
 661			    ~(BIGMAC_TXCFG_FULLDPLX));
 662	}
 663	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
 664		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
 665		    BIGMAC_TXCFG_ENABLE);
 666	return 0;
 667no_response:
 668	return 1;
 669}
 670
 671static int happy_meal_init(struct happy_meal *hp);
 672
 673static int is_lucent_phy(struct happy_meal *hp)
 674{
 675	void __iomem *tregs = hp->tcvregs;
 676	unsigned short mr2, mr3;
 677	int ret = 0;
 678
 679	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
 680	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
 681	if ((mr2 & 0xffff) == 0x0180 &&
 682	    ((mr3 & 0xffff) >> 10) == 0x1d)
 683		ret = 1;
 684
 685	return ret;
 686}
 687
 688static void happy_meal_timer(struct timer_list *t)
 689{
 690	struct happy_meal *hp = from_timer(hp, t, happy_timer);
 691	void __iomem *tregs = hp->tcvregs;
 692	int restart_timer = 0;
 693
 694	spin_lock_irq(&hp->happy_lock);
 695
 696	hp->timer_ticks++;
 697	switch(hp->timer_state) {
 698	case arbwait:
 699		/* Only allow for 5 ticks, thats 10 seconds and much too
 700		 * long to wait for arbitration to complete.
 701		 */
 702		if (hp->timer_ticks >= 10) {
 703			/* Enter force mode. */
 704	do_force_mode:
 705			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
 706			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
 707			       hp->dev->name);
 708			hp->sw_bmcr = BMCR_SPEED100;
 709			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
 710
 711			if (!is_lucent_phy(hp)) {
 712				/* OK, seems we need do disable the transceiver for the first
 713				 * tick to make sure we get an accurate link state at the
 714				 * second tick.
 715				 */
 716				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 717				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 718				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
 719			}
 720			hp->timer_state = ltrywait;
 721			hp->timer_ticks = 0;
 722			restart_timer = 1;
 723		} else {
 724			/* Anything interesting happen? */
 725			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 726			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
 727				int ret;
 728
 729				/* Just what we've been waiting for... */
 730				ret = set_happy_link_modes(hp, tregs);
 731				if (ret) {
 732					/* Ooops, something bad happened, go to force
 733					 * mode.
 734					 *
 735					 * XXX Broken hubs which don't support 802.3u
 736					 * XXX auto-negotiation make this happen as well.
 737					 */
 738					goto do_force_mode;
 739				}
 740
 741				/* Success, at least so far, advance our state engine. */
 742				hp->timer_state = lupwait;
 743				restart_timer = 1;
 744			} else {
 745				restart_timer = 1;
 746			}
 747		}
 748		break;
 749
 750	case lupwait:
 751		/* Auto negotiation was successful and we are awaiting a
 752		 * link up status.  I have decided to let this timer run
 753		 * forever until some sort of error is signalled, reporting
 754		 * a message to the user at 10 second intervals.
 755		 */
 756		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 757		if (hp->sw_bmsr & BMSR_LSTATUS) {
 758			/* Wheee, it's up, display the link mode in use and put
 759			 * the timer to sleep.
 760			 */
 761			display_link_mode(hp, tregs);
 762			hp->timer_state = asleep;
 763			restart_timer = 0;
 764		} else {
 765			if (hp->timer_ticks >= 10) {
 766				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
 767				       "not completely up.\n", hp->dev->name);
 768				hp->timer_ticks = 0;
 769				restart_timer = 1;
 770			} else {
 771				restart_timer = 1;
 772			}
 773		}
 774		break;
 775
 776	case ltrywait:
 777		/* Making the timeout here too long can make it take
 778		 * annoyingly long to attempt all of the link mode
 779		 * permutations, but then again this is essentially
 780		 * error recovery code for the most part.
 781		 */
 782		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
 783		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
 784		if (hp->timer_ticks == 1) {
 785			if (!is_lucent_phy(hp)) {
 786				/* Re-enable transceiver, we'll re-enable the transceiver next
 787				 * tick, then check link state on the following tick.
 788				 */
 789				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 790				happy_meal_tcvr_write(hp, tregs,
 791						      DP83840_CSCONFIG, hp->sw_csconfig);
 792			}
 793			restart_timer = 1;
 794			break;
 795		}
 796		if (hp->timer_ticks == 2) {
 797			if (!is_lucent_phy(hp)) {
 798				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
 799				happy_meal_tcvr_write(hp, tregs,
 800						      DP83840_CSCONFIG, hp->sw_csconfig);
 801			}
 802			restart_timer = 1;
 803			break;
 804		}
 805		if (hp->sw_bmsr & BMSR_LSTATUS) {
 806			/* Force mode selection success. */
 807			display_forced_link_mode(hp, tregs);
 808			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
 809			hp->timer_state = asleep;
 810			restart_timer = 0;
 811		} else {
 812			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
 813				int ret;
 814
 815				ret = try_next_permutation(hp, tregs);
 816				if (ret == -1) {
 817					/* Aieee, tried them all, reset the
 818					 * chip and try all over again.
 819					 */
 820
 821					/* Let the user know... */
 822					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
 823					       hp->dev->name);
 824
 825					ret = happy_meal_init(hp);
 826					if (ret) {
 827						/* ho hum... */
 828						printk(KERN_ERR "%s: Error, cannot re-init the "
 829						       "Happy Meal.\n", hp->dev->name);
 830					}
 831					goto out;
 832				}
 833				if (!is_lucent_phy(hp)) {
 834					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
 835									       DP83840_CSCONFIG);
 836					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
 837					happy_meal_tcvr_write(hp, tregs,
 838							      DP83840_CSCONFIG, hp->sw_csconfig);
 839				}
 840				hp->timer_ticks = 0;
 841				restart_timer = 1;
 842			} else {
 843				restart_timer = 1;
 844			}
 845		}
 846		break;
 847
 848	case asleep:
 849	default:
 850		/* Can't happens.... */
 851		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
 852		       hp->dev->name);
 853		restart_timer = 0;
 854		hp->timer_ticks = 0;
 855		hp->timer_state = asleep; /* foo on you */
 856		break;
 857	}
 858
 859	if (restart_timer) {
 860		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
 861		add_timer(&hp->happy_timer);
 862	}
 863
 864out:
 865	spin_unlock_irq(&hp->happy_lock);
 866}
 867
 868#define TX_RESET_TRIES     32
 869#define RX_RESET_TRIES     32
 870
 871/* hp->happy_lock must be held */
 872static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
 873{
 874	int tries = TX_RESET_TRIES;
 875
 876	HMD(("happy_meal_tx_reset: reset, "));
 877
 878	/* Would you like to try our SMCC Delux? */
 879	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
 880	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
 881		udelay(20);
 882
 883	/* Lettuce, tomato, buggy hardware (no extra charge)? */
 884	if (!tries)
 885		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
 886
 887	/* Take care. */
 888	HMD(("done\n"));
 889}
 890
 891/* hp->happy_lock must be held */
 892static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
 893{
 894	int tries = RX_RESET_TRIES;
 895
 896	HMD(("happy_meal_rx_reset: reset, "));
 897
 898	/* We have a special on GNU/Viking hardware bugs today. */
 899	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
 900	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
 901		udelay(20);
 902
 903	/* Will that be all? */
 904	if (!tries)
 905		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
 906
 907	/* Don't forget your vik_1137125_wa.  Have a nice day. */
 908	HMD(("done\n"));
 909}
 910
 911#define STOP_TRIES         16
 912
 913/* hp->happy_lock must be held */
 914static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
 915{
 916	int tries = STOP_TRIES;
 917
 918	HMD(("happy_meal_stop: reset, "));
 919
 920	/* We're consolidating our STB products, it's your lucky day. */
 921	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
 922	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
 923		udelay(20);
 924
 925	/* Come back next week when we are "Sun Microelectronics". */
 926	if (!tries)
 927		printk(KERN_ERR "happy meal: Fry guys.");
 928
 929	/* Remember: "Different name, same old buggy as shit hardware." */
 930	HMD(("done\n"));
 931}
 932
 933/* hp->happy_lock must be held */
 934static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
 935{
 936	struct net_device_stats *stats = &hp->dev->stats;
 937
 938	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
 939	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
 940
 941	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
 942	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
 943
 944	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
 945	hme_write32(hp, bregs + BMAC_GLECTR, 0);
 946
 947	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
 948
 949	stats->collisions +=
 950		(hme_read32(hp, bregs + BMAC_EXCTR) +
 951		 hme_read32(hp, bregs + BMAC_LTCTR));
 952	hme_write32(hp, bregs + BMAC_EXCTR, 0);
 953	hme_write32(hp, bregs + BMAC_LTCTR, 0);
 954}
 955
 956/* hp->happy_lock must be held */
 957static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
 958{
 959	ASD(("happy_meal_poll_stop: "));
 960
 961	/* If polling disabled or not polling already, nothing to do. */
 962	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
 963	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
 964		HMD(("not polling, return\n"));
 965		return;
 966	}
 967
 968	/* Shut up the MIF. */
 969	ASD(("were polling, mif ints off, "));
 970	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
 971
 972	/* Turn off polling. */
 973	ASD(("polling off, "));
 974	hme_write32(hp, tregs + TCVR_CFG,
 975		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
 976
 977	/* We are no longer polling. */
 978	hp->happy_flags &= ~(HFLAG_POLL);
 979
 980	/* Let the bits set. */
 981	udelay(200);
 982	ASD(("done\n"));
 983}
 984
 985/* Only Sun can take such nice parts and fuck up the programming interface
 986 * like this.  Good job guys...
 987 */
 988#define TCVR_RESET_TRIES       16 /* It should reset quickly        */
 989#define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
 990
 991/* hp->happy_lock must be held */
 992static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
 993{
 994	u32 tconfig;
 995	int result, tries = TCVR_RESET_TRIES;
 996
 997	tconfig = hme_read32(hp, tregs + TCVR_CFG);
 998	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
 999	if (hp->tcvr_type == external) {
1000		ASD(("external<"));
1001		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
1002		hp->tcvr_type = internal;
1003		hp->paddr = TCV_PADDR_ITX;
1004		ASD(("ISOLATE,"));
1005		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1006				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1007		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1008		if (result == TCVR_FAILURE) {
1009			ASD(("phyread_fail>\n"));
1010			return -1;
1011		}
1012		ASD(("phyread_ok,PSELECT>"));
1013		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1014		hp->tcvr_type = external;
1015		hp->paddr = TCV_PADDR_ETX;
1016	} else {
1017		if (tconfig & TCV_CFG_MDIO1) {
1018			ASD(("internal<PSELECT,"));
1019			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
1020			ASD(("ISOLATE,"));
1021			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
1022					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
1023			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1024			if (result == TCVR_FAILURE) {
1025				ASD(("phyread_fail>\n"));
1026				return -1;
1027			}
1028			ASD(("phyread_ok,~PSELECT>"));
1029			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
1030			hp->tcvr_type = internal;
1031			hp->paddr = TCV_PADDR_ITX;
1032		}
1033	}
1034
1035	ASD(("BMCR_RESET "));
1036	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
1037
1038	while (--tries) {
1039		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1040		if (result == TCVR_FAILURE)
1041			return -1;
1042		hp->sw_bmcr = result;
1043		if (!(result & BMCR_RESET))
1044			break;
1045		udelay(20);
1046	}
1047	if (!tries) {
1048		ASD(("BMCR RESET FAILED!\n"));
1049		return -1;
1050	}
1051	ASD(("RESET_OK\n"));
1052
1053	/* Get fresh copies of the PHY registers. */
1054	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1055	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1056	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1057	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1058
1059	ASD(("UNISOLATE"));
1060	hp->sw_bmcr &= ~(BMCR_ISOLATE);
1061	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1062
1063	tries = TCVR_UNISOLATE_TRIES;
1064	while (--tries) {
1065		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1066		if (result == TCVR_FAILURE)
1067			return -1;
1068		if (!(result & BMCR_ISOLATE))
1069			break;
1070		udelay(20);
1071	}
1072	if (!tries) {
1073		ASD((" FAILED!\n"));
1074		return -1;
1075	}
1076	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1077	if (!is_lucent_phy(hp)) {
1078		result = happy_meal_tcvr_read(hp, tregs,
1079					      DP83840_CSCONFIG);
1080		happy_meal_tcvr_write(hp, tregs,
1081				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
1082	}
1083	return 0;
1084}
1085
1086/* Figure out whether we have an internal or external transceiver.
1087 *
1088 * hp->happy_lock must be held
1089 */
1090static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
1091{
1092	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
1093
1094	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
1095	if (hp->happy_flags & HFLAG_POLL) {
1096		/* If we are polling, we must stop to get the transceiver type. */
1097		ASD(("<polling> "));
1098		if (hp->tcvr_type == internal) {
1099			if (tconfig & TCV_CFG_MDIO1) {
1100				ASD(("<internal> <poll stop> "));
1101				happy_meal_poll_stop(hp, tregs);
1102				hp->paddr = TCV_PADDR_ETX;
1103				hp->tcvr_type = external;
1104				ASD(("<external>\n"));
1105				tconfig &= ~(TCV_CFG_PENABLE);
1106				tconfig |= TCV_CFG_PSELECT;
1107				hme_write32(hp, tregs + TCVR_CFG, tconfig);
1108			}
1109		} else {
1110			if (hp->tcvr_type == external) {
1111				ASD(("<external> "));
1112				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
1113					ASD(("<poll stop> "));
1114					happy_meal_poll_stop(hp, tregs);
1115					hp->paddr = TCV_PADDR_ITX;
1116					hp->tcvr_type = internal;
1117					ASD(("<internal>\n"));
1118					hme_write32(hp, tregs + TCVR_CFG,
1119						    hme_read32(hp, tregs + TCVR_CFG) &
1120						    ~(TCV_CFG_PSELECT));
1121				}
1122				ASD(("\n"));
1123			} else {
1124				ASD(("<none>\n"));
1125			}
1126		}
1127	} else {
1128		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
1129
1130		/* Else we can just work off of the MDIO bits. */
1131		ASD(("<not polling> "));
1132		if (reread & TCV_CFG_MDIO1) {
1133			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
1134			hp->paddr = TCV_PADDR_ETX;
1135			hp->tcvr_type = external;
1136			ASD(("<external>\n"));
1137		} else {
1138			if (reread & TCV_CFG_MDIO0) {
1139				hme_write32(hp, tregs + TCVR_CFG,
1140					    tconfig & ~(TCV_CFG_PSELECT));
1141				hp->paddr = TCV_PADDR_ITX;
1142				hp->tcvr_type = internal;
1143				ASD(("<internal>\n"));
1144			} else {
1145				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
1146				hp->tcvr_type = none; /* Grrr... */
1147				ASD(("<none>\n"));
1148			}
1149		}
1150	}
1151}
1152
1153/* The receive ring buffers are a bit tricky to get right.  Here goes...
1154 *
1155 * The buffers we dma into must be 64 byte aligned.  So we use a special
1156 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1157 * we really need.
1158 *
1159 * We use skb_reserve() to align the data block we get in the skb.  We
1160 * also program the etxregs->cfg register to use an offset of 2.  This
1161 * imperical constant plus the ethernet header size will always leave
1162 * us with a nicely aligned ip header once we pass things up to the
1163 * protocol layers.
1164 *
1165 * The numbers work out to:
1166 *
1167 *         Max ethernet frame size         1518
1168 *         Ethernet header size              14
1169 *         Happy Meal base offset             2
1170 *
1171 * Say a skb data area is at 0xf001b010, and its size alloced is
1172 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1173 *
1174 * First our alloc_skb() routine aligns the data base to a 64 byte
1175 * boundary.  We now have 0xf001b040 as our skb data address.  We
1176 * plug this into the receive descriptor address.
1177 *
1178 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1179 * So now the data we will end up looking at starts at 0xf001b042.  When
1180 * the packet arrives, we will check out the size received and subtract
1181 * this from the skb->length.  Then we just pass the packet up to the
1182 * protocols as is, and allocate a new skb to replace this slot we have
1183 * just received from.
1184 *
1185 * The ethernet layer will strip the ether header from the front of the
1186 * skb we just sent to it, this leaves us with the ip header sitting
1187 * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
1188 * Happy Meal has even checksummed the tcp/udp data for us.  The 16
1189 * bit checksum is obtained from the low bits of the receive descriptor
1190 * flags, thus:
1191 *
1192 * 	skb->csum = rxd->rx_flags & 0xffff;
1193 * 	skb->ip_summed = CHECKSUM_COMPLETE;
1194 *
1195 * before sending off the skb to the protocols, and we are good as gold.
1196 */
1197static void happy_meal_clean_rings(struct happy_meal *hp)
1198{
1199	int i;
1200
1201	for (i = 0; i < RX_RING_SIZE; i++) {
1202		if (hp->rx_skbs[i] != NULL) {
1203			struct sk_buff *skb = hp->rx_skbs[i];
1204			struct happy_meal_rxd *rxd;
1205			u32 dma_addr;
1206
1207			rxd = &hp->happy_block->happy_meal_rxd[i];
1208			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
1209			dma_unmap_single(hp->dma_dev, dma_addr,
1210					 RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
1211			dev_kfree_skb_any(skb);
1212			hp->rx_skbs[i] = NULL;
1213		}
1214	}
1215
1216	for (i = 0; i < TX_RING_SIZE; i++) {
1217		if (hp->tx_skbs[i] != NULL) {
1218			struct sk_buff *skb = hp->tx_skbs[i];
1219			struct happy_meal_txd *txd;
1220			u32 dma_addr;
1221			int frag;
1222
1223			hp->tx_skbs[i] = NULL;
1224
1225			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1226				txd = &hp->happy_block->happy_meal_txd[i];
1227				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
1228				if (!frag)
1229					dma_unmap_single(hp->dma_dev, dma_addr,
1230							 (hme_read_desc32(hp, &txd->tx_flags)
1231							  & TXFLAG_SIZE),
1232							 DMA_TO_DEVICE);
1233				else
1234					dma_unmap_page(hp->dma_dev, dma_addr,
1235							 (hme_read_desc32(hp, &txd->tx_flags)
1236							  & TXFLAG_SIZE),
1237							 DMA_TO_DEVICE);
1238
1239				if (frag != skb_shinfo(skb)->nr_frags)
1240					i++;
1241			}
1242
1243			dev_kfree_skb_any(skb);
1244		}
1245	}
1246}
1247
1248/* hp->happy_lock must be held */
1249static void happy_meal_init_rings(struct happy_meal *hp)
1250{
1251	struct hmeal_init_block *hb = hp->happy_block;
1252	int i;
1253
1254	HMD(("happy_meal_init_rings: counters to zero, "));
1255	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
1256
1257	/* Free any skippy bufs left around in the rings. */
1258	HMD(("clean, "));
1259	happy_meal_clean_rings(hp);
1260
1261	/* Now get new skippy bufs for the receive ring. */
1262	HMD(("init rxring, "));
1263	for (i = 0; i < RX_RING_SIZE; i++) {
1264		struct sk_buff *skb;
1265		u32 mapping;
1266
1267		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
1268		if (!skb) {
1269			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1270			continue;
1271		}
1272		hp->rx_skbs[i] = skb;
1273
1274		/* Because we reserve afterwards. */
1275		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
1276		mapping = dma_map_single(hp->dma_dev, skb->data, RX_BUF_ALLOC_SIZE,
1277					 DMA_FROM_DEVICE);
1278		if (dma_mapping_error(hp->dma_dev, mapping)) {
1279			dev_kfree_skb_any(skb);
1280			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
1281			continue;
1282		}
1283		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
1284			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
1285			      mapping);
1286		skb_reserve(skb, RX_OFFSET);
1287	}
1288
1289	HMD(("init txring, "));
1290	for (i = 0; i < TX_RING_SIZE; i++)
1291		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
1292
1293	HMD(("done\n"));
1294}
1295
1296/* hp->happy_lock must be held */
1297static void
1298happy_meal_begin_auto_negotiation(struct happy_meal *hp,
1299				  void __iomem *tregs,
1300				  const struct ethtool_link_ksettings *ep)
1301{
1302	int timeout;
1303
1304	/* Read all of the registers we are interested in now. */
1305	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1306	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1307	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
1308	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
1309
1310	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1311
1312	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1313	if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1314		/* Advertise everything we can support. */
1315		if (hp->sw_bmsr & BMSR_10HALF)
1316			hp->sw_advertise |= (ADVERTISE_10HALF);
1317		else
1318			hp->sw_advertise &= ~(ADVERTISE_10HALF);
1319
1320		if (hp->sw_bmsr & BMSR_10FULL)
1321			hp->sw_advertise |= (ADVERTISE_10FULL);
1322		else
1323			hp->sw_advertise &= ~(ADVERTISE_10FULL);
1324		if (hp->sw_bmsr & BMSR_100HALF)
1325			hp->sw_advertise |= (ADVERTISE_100HALF);
1326		else
1327			hp->sw_advertise &= ~(ADVERTISE_100HALF);
1328		if (hp->sw_bmsr & BMSR_100FULL)
1329			hp->sw_advertise |= (ADVERTISE_100FULL);
1330		else
1331			hp->sw_advertise &= ~(ADVERTISE_100FULL);
1332		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1333
1334		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1335		 * XXX and this is because the DP83840 does not support it, changes
1336		 * XXX would need to be made to the tx/rx logic in the driver as well
1337		 * XXX so I completely skip checking for it in the BMSR for now.
1338		 */
1339
1340#ifdef AUTO_SWITCH_DEBUG
1341		ASD(("%s: Advertising [ ", hp->dev->name));
1342		if (hp->sw_advertise & ADVERTISE_10HALF)
1343			ASD(("10H "));
1344		if (hp->sw_advertise & ADVERTISE_10FULL)
1345			ASD(("10F "));
1346		if (hp->sw_advertise & ADVERTISE_100HALF)
1347			ASD(("100H "));
1348		if (hp->sw_advertise & ADVERTISE_100FULL)
1349			ASD(("100F "));
1350#endif
1351
1352		/* Enable Auto-Negotiation, this is usually on already... */
1353		hp->sw_bmcr |= BMCR_ANENABLE;
1354		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1355
1356		/* Restart it to make sure it is going. */
1357		hp->sw_bmcr |= BMCR_ANRESTART;
1358		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1359
1360		/* BMCR_ANRESTART self clears when the process has begun. */
1361
1362		timeout = 64;  /* More than enough. */
1363		while (--timeout) {
1364			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1365			if (!(hp->sw_bmcr & BMCR_ANRESTART))
1366				break; /* got it. */
1367			udelay(10);
1368		}
1369		if (!timeout) {
1370			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
1371			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
1372			printk(KERN_NOTICE "%s: Performing force link detection.\n",
1373			       hp->dev->name);
1374			goto force_link;
1375		} else {
1376			hp->timer_state = arbwait;
1377		}
1378	} else {
1379force_link:
1380		/* Force the link up, trying first a particular mode.
1381		 * Either we are here at the request of ethtool or
1382		 * because the Happy Meal would not start to autoneg.
1383		 */
1384
1385		/* Disable auto-negotiation in BMCR, enable the duplex and
1386		 * speed setting, init the timer state machine, and fire it off.
1387		 */
1388		if (!ep || ep->base.autoneg == AUTONEG_ENABLE) {
1389			hp->sw_bmcr = BMCR_SPEED100;
1390		} else {
1391			if (ep->base.speed == SPEED_100)
1392				hp->sw_bmcr = BMCR_SPEED100;
1393			else
1394				hp->sw_bmcr = 0;
1395			if (ep->base.duplex == DUPLEX_FULL)
1396				hp->sw_bmcr |= BMCR_FULLDPLX;
1397		}
1398		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1399
1400		if (!is_lucent_phy(hp)) {
1401			/* OK, seems we need do disable the transceiver for the first
1402			 * tick to make sure we get an accurate link state at the
1403			 * second tick.
1404			 */
1405			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
1406							       DP83840_CSCONFIG);
1407			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
1408			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
1409					      hp->sw_csconfig);
1410		}
1411		hp->timer_state = ltrywait;
1412	}
1413
1414	hp->timer_ticks = 0;
1415	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
1416	add_timer(&hp->happy_timer);
1417}
1418
1419/* hp->happy_lock must be held */
1420static int happy_meal_init(struct happy_meal *hp)
1421{
1422	void __iomem *gregs        = hp->gregs;
1423	void __iomem *etxregs      = hp->etxregs;
1424	void __iomem *erxregs      = hp->erxregs;
1425	void __iomem *bregs        = hp->bigmacregs;
1426	void __iomem *tregs        = hp->tcvregs;
1427	u32 regtmp, rxcfg;
1428	unsigned char *e = &hp->dev->dev_addr[0];
1429
1430	/* If auto-negotiation timer is running, kill it. */
1431	del_timer(&hp->happy_timer);
1432
1433	HMD(("happy_meal_init: happy_flags[%08x] ",
1434	     hp->happy_flags));
1435	if (!(hp->happy_flags & HFLAG_INIT)) {
1436		HMD(("set HFLAG_INIT, "));
1437		hp->happy_flags |= HFLAG_INIT;
1438		happy_meal_get_counters(hp, bregs);
1439	}
1440
1441	/* Stop polling. */
1442	HMD(("to happy_meal_poll_stop\n"));
1443	happy_meal_poll_stop(hp, tregs);
1444
1445	/* Stop transmitter and receiver. */
1446	HMD(("happy_meal_init: to happy_meal_stop\n"));
1447	happy_meal_stop(hp, gregs);
1448
1449	/* Alloc and reset the tx/rx descriptor chains. */
1450	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1451	happy_meal_init_rings(hp);
1452
1453	/* Shut up the MIF. */
1454	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1455	     hme_read32(hp, tregs + TCVR_IMASK)));
1456	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1457
1458	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
1459	if (hp->happy_flags & HFLAG_FENABLE) {
1460		HMD(("use frame old[%08x], ",
1461		     hme_read32(hp, tregs + TCVR_CFG)));
1462		hme_write32(hp, tregs + TCVR_CFG,
1463			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1464	} else {
1465		HMD(("use bitbang old[%08x], ",
1466		     hme_read32(hp, tregs + TCVR_CFG)));
1467		hme_write32(hp, tregs + TCVR_CFG,
1468			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1469	}
1470
1471	/* Check the state of the transceiver. */
1472	HMD(("to happy_meal_transceiver_check\n"));
1473	happy_meal_transceiver_check(hp, tregs);
1474
1475	/* Put the Big Mac into a sane state. */
1476	HMD(("happy_meal_init: "));
1477	switch(hp->tcvr_type) {
1478	case none:
1479		/* Cannot operate if we don't know the transceiver type! */
1480		HMD(("AAIEEE no transceiver type, EAGAIN"));
1481		return -EAGAIN;
1482
1483	case internal:
1484		/* Using the MII buffers. */
1485		HMD(("internal, using MII, "));
1486		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1487		break;
1488
1489	case external:
1490		/* Not using the MII, disable it. */
1491		HMD(("external, disable MII, "));
1492		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1493		break;
1494	}
1495
1496	if (happy_meal_tcvr_reset(hp, tregs))
1497		return -EAGAIN;
1498
1499	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
1500	HMD(("tx/rx reset, "));
1501	happy_meal_tx_reset(hp, bregs);
1502	happy_meal_rx_reset(hp, bregs);
1503
1504	/* Set jam size and inter-packet gaps to reasonable defaults. */
1505	HMD(("jsize/ipg1/ipg2, "));
1506	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
1507	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
1508	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
1509
1510	/* Load up the MAC address and random seed. */
1511	HMD(("rseed/macaddr, "));
1512
1513	/* The docs recommend to use the 10LSB of our MAC here. */
1514	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
1515
1516	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
1517	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
1518	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
1519
1520	HMD(("htable, "));
1521	if ((hp->dev->flags & IFF_ALLMULTI) ||
1522	    (netdev_mc_count(hp->dev) > 64)) {
1523		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
1524		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
1525		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
1526		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
1527	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
1528		u16 hash_table[4];
1529		struct netdev_hw_addr *ha;
1530		u32 crc;
1531
1532		memset(hash_table, 0, sizeof(hash_table));
1533		netdev_for_each_mc_addr(ha, hp->dev) {
1534			crc = ether_crc_le(6, ha->addr);
1535			crc >>= 26;
1536			hash_table[crc >> 4] |= 1 << (crc & 0xf);
1537		}
1538		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
1539		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
1540		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
1541		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
1542	} else {
1543		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
1544		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
1545		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
1546		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
1547	}
1548
1549	/* Set the RX and TX ring ptrs. */
1550	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1551	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
1552	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
1553	hme_write32(hp, erxregs + ERX_RING,
1554		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
1555	hme_write32(hp, etxregs + ETX_RING,
1556		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
1557
1558	/* Parity issues in the ERX unit of some HME revisions can cause some
1559	 * registers to not be written unless their parity is even.  Detect such
1560	 * lost writes and simply rewrite with a low bit set (which will be ignored
1561	 * since the rxring needs to be 2K aligned).
1562	 */
1563	if (hme_read32(hp, erxregs + ERX_RING) !=
1564	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
1565		hme_write32(hp, erxregs + ERX_RING,
1566			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
1567			    | 0x4);
1568
1569	/* Set the supported burst sizes. */
1570	HMD(("happy_meal_init: old[%08x] bursts<",
1571	     hme_read32(hp, gregs + GREG_CFG)));
1572
1573#ifndef CONFIG_SPARC
1574	/* It is always PCI and can handle 64byte bursts. */
1575	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
1576#else
1577	if ((hp->happy_bursts & DMA_BURST64) &&
1578	    ((hp->happy_flags & HFLAG_PCI) != 0
1579#ifdef CONFIG_SBUS
1580	     || sbus_can_burst64()
1581#endif
1582	     || 0)) {
1583		u32 gcfg = GREG_CFG_BURST64;
1584
1585		/* I have no idea if I should set the extended
1586		 * transfer mode bit for Cheerio, so for now I
1587		 * do not.  -DaveM
1588		 */
1589#ifdef CONFIG_SBUS
1590		if ((hp->happy_flags & HFLAG_PCI) == 0) {
1591			struct platform_device *op = hp->happy_dev;
1592			if (sbus_can_dma_64bit()) {
1593				sbus_set_sbus64(&op->dev,
1594						hp->happy_bursts);
1595				gcfg |= GREG_CFG_64BIT;
1596			}
1597		}
1598#endif
1599
1600		HMD(("64>"));
1601		hme_write32(hp, gregs + GREG_CFG, gcfg);
1602	} else if (hp->happy_bursts & DMA_BURST32) {
1603		HMD(("32>"));
1604		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
1605	} else if (hp->happy_bursts & DMA_BURST16) {
1606		HMD(("16>"));
1607		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
1608	} else {
1609		HMD(("XXX>"));
1610		hme_write32(hp, gregs + GREG_CFG, 0);
1611	}
1612#endif /* CONFIG_SPARC */
1613
1614	/* Turn off interrupts we do not want to hear. */
1615	HMD((", enable global interrupts, "));
1616	hme_write32(hp, gregs + GREG_IMASK,
1617		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
1618		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
1619
1620	/* Set the transmit ring buffer size. */
1621	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
1622	     hme_read32(hp, etxregs + ETX_RSIZE)));
1623	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
1624
1625	/* Enable transmitter DVMA. */
1626	HMD(("tx dma enable old[%08x], ",
1627	     hme_read32(hp, etxregs + ETX_CFG)));
1628	hme_write32(hp, etxregs + ETX_CFG,
1629		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
1630
1631	/* This chip really rots, for the receiver sometimes when you
1632	 * write to its control registers not all the bits get there
1633	 * properly.  I cannot think of a sane way to provide complete
1634	 * coverage for this hardware bug yet.
1635	 */
1636	HMD(("erx regs bug old[%08x]\n",
1637	     hme_read32(hp, erxregs + ERX_CFG)));
1638	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1639	regtmp = hme_read32(hp, erxregs + ERX_CFG);
1640	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
1641	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
1642		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
1643		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
1644		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
1645		/* XXX Should return failure here... */
1646	}
1647
1648	/* Enable Big Mac hash table filter. */
1649	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1650	     hme_read32(hp, bregs + BMAC_RXCFG)));
1651	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
1652	if (hp->dev->flags & IFF_PROMISC)
1653		rxcfg |= BIGMAC_RXCFG_PMISC;
1654	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
1655
1656	/* Let the bits settle in the chip. */
1657	udelay(10);
1658
1659	/* Ok, configure the Big Mac transmitter. */
1660	HMD(("BIGMAC init, "));
1661	regtmp = 0;
1662	if (hp->happy_flags & HFLAG_FULL)
1663		regtmp |= BIGMAC_TXCFG_FULLDPLX;
1664
1665	/* Don't turn on the "don't give up" bit for now.  It could cause hme
1666	 * to deadlock with the PHY if a Jabber occurs.
1667	 */
1668	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
1669
1670	/* Give up after 16 TX attempts. */
1671	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
1672
1673	/* Enable the output drivers no matter what. */
1674	regtmp = BIGMAC_XCFG_ODENABLE;
1675
1676	/* If card can do lance mode, enable it. */
1677	if (hp->happy_flags & HFLAG_LANCE)
1678		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
1679
1680	/* Disable the MII buffers if using external transceiver. */
1681	if (hp->tcvr_type == external)
1682		regtmp |= BIGMAC_XCFG_MIIDISAB;
1683
1684	HMD(("XIF config old[%08x], ",
1685	     hme_read32(hp, bregs + BMAC_XIFCFG)));
1686	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
1687
1688	/* Start things up. */
1689	HMD(("tx old[%08x] and rx [%08x] ON!\n",
1690	     hme_read32(hp, bregs + BMAC_TXCFG),
1691	     hme_read32(hp, bregs + BMAC_RXCFG)));
1692
1693	/* Set larger TX/RX size to allow for 802.1q */
1694	hme_write32(hp, bregs + BMAC_TXMAX, ETH_FRAME_LEN + 8);
1695	hme_write32(hp, bregs + BMAC_RXMAX, ETH_FRAME_LEN + 8);
1696
1697	hme_write32(hp, bregs + BMAC_TXCFG,
1698		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
1699	hme_write32(hp, bregs + BMAC_RXCFG,
1700		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
1701
1702	/* Get the autonegotiation started, and the watch timer ticking. */
1703	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
1704
1705	/* Success. */
1706	return 0;
1707}
1708
1709/* hp->happy_lock must be held */
1710static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
1711{
1712	void __iomem *tregs	= hp->tcvregs;
1713	void __iomem *bregs	= hp->bigmacregs;
1714	void __iomem *gregs	= hp->gregs;
1715
1716	happy_meal_stop(hp, gregs);
1717	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
1718	if (hp->happy_flags & HFLAG_FENABLE)
1719		hme_write32(hp, tregs + TCVR_CFG,
1720			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
1721	else
1722		hme_write32(hp, tregs + TCVR_CFG,
1723			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
1724	happy_meal_transceiver_check(hp, tregs);
1725	switch(hp->tcvr_type) {
1726	case none:
1727		return;
1728	case internal:
1729		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
1730		break;
1731	case external:
1732		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
1733		break;
1734	}
1735	if (happy_meal_tcvr_reset(hp, tregs))
1736		return;
1737
1738	/* Latch PHY registers as of now. */
1739	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
1740	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
1741
1742	/* Advertise everything we can support. */
1743	if (hp->sw_bmsr & BMSR_10HALF)
1744		hp->sw_advertise |= (ADVERTISE_10HALF);
1745	else
1746		hp->sw_advertise &= ~(ADVERTISE_10HALF);
1747
1748	if (hp->sw_bmsr & BMSR_10FULL)
1749		hp->sw_advertise |= (ADVERTISE_10FULL);
1750	else
1751		hp->sw_advertise &= ~(ADVERTISE_10FULL);
1752	if (hp->sw_bmsr & BMSR_100HALF)
1753		hp->sw_advertise |= (ADVERTISE_100HALF);
1754	else
1755		hp->sw_advertise &= ~(ADVERTISE_100HALF);
1756	if (hp->sw_bmsr & BMSR_100FULL)
1757		hp->sw_advertise |= (ADVERTISE_100FULL);
1758	else
1759		hp->sw_advertise &= ~(ADVERTISE_100FULL);
1760
1761	/* Update the PHY advertisement register. */
1762	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
1763}
1764
1765/* Once status is latched (by happy_meal_interrupt) it is cleared by
1766 * the hardware, so we cannot re-read it and get a correct value.
1767 *
1768 * hp->happy_lock must be held
1769 */
1770static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
1771{
1772	int reset = 0;
1773
1774	/* Only print messages for non-counter related interrupts. */
1775	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
1776		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
1777		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
1778		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
1779		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
1780		      GREG_STAT_SLVPERR))
1781		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
1782		       hp->dev->name, status);
1783
1784	if (status & GREG_STAT_RFIFOVF) {
1785		/* Receive FIFO overflow is harmless and the hardware will take
1786		   care of it, just some packets are lost. Who cares. */
1787		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
1788	}
1789
1790	if (status & GREG_STAT_STSTERR) {
1791		/* BigMAC SQE link test failed. */
1792		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
1793		reset = 1;
1794	}
1795
1796	if (status & GREG_STAT_TFIFO_UND) {
1797		/* Transmit FIFO underrun, again DMA error likely. */
1798		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1799		       hp->dev->name);
1800		reset = 1;
1801	}
1802
1803	if (status & GREG_STAT_MAXPKTERR) {
1804		/* Driver error, tried to transmit something larger
1805		 * than ethernet max mtu.
1806		 */
1807		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
1808		reset = 1;
1809	}
1810
1811	if (status & GREG_STAT_NORXD) {
1812		/* This is harmless, it just means the system is
1813		 * quite loaded and the incoming packet rate was
1814		 * faster than the interrupt handler could keep up
1815		 * with.
1816		 */
1817		printk(KERN_INFO "%s: Happy Meal out of receive "
1818		       "descriptors, packet dropped.\n",
1819		       hp->dev->name);
1820	}
1821
1822	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
1823		/* All sorts of DMA receive errors. */
1824		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
1825		if (status & GREG_STAT_RXERR)
1826			printk("GenericError ");
1827		if (status & GREG_STAT_RXPERR)
1828			printk("ParityError ");
1829		if (status & GREG_STAT_RXTERR)
1830			printk("RxTagBotch ");
1831		printk("]\n");
1832		reset = 1;
1833	}
1834
1835	if (status & GREG_STAT_EOPERR) {
1836		/* Driver bug, didn't set EOP bit in tx descriptor given
1837		 * to the happy meal.
1838		 */
1839		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
1840		       hp->dev->name);
1841		reset = 1;
1842	}
1843
1844	if (status & GREG_STAT_MIFIRQ) {
1845		/* MIF signalled an interrupt, were we polling it? */
1846		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
1847	}
1848
1849	if (status &
1850	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
1851		/* All sorts of transmit DMA errors. */
1852		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
1853		if (status & GREG_STAT_TXEACK)
1854			printk("GenericError ");
1855		if (status & GREG_STAT_TXLERR)
1856			printk("LateError ");
1857		if (status & GREG_STAT_TXPERR)
1858			printk("ParityError ");
1859		if (status & GREG_STAT_TXTERR)
1860			printk("TagBotch ");
1861		printk("]\n");
1862		reset = 1;
1863	}
1864
1865	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
1866		/* Bus or parity error when cpu accessed happy meal registers
1867		 * or it's internal FIFO's.  Should never see this.
1868		 */
1869		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
1870		       hp->dev->name,
1871		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
1872		reset = 1;
1873	}
1874
1875	if (reset) {
1876		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
1877		happy_meal_init(hp);
1878		return 1;
1879	}
1880	return 0;
1881}
1882
1883/* hp->happy_lock must be held */
1884static void happy_meal_mif_interrupt(struct happy_meal *hp)
1885{
1886	void __iomem *tregs = hp->tcvregs;
1887
1888	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
1889	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
1890	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
1891
1892	/* Use the fastest transmission protocol possible. */
1893	if (hp->sw_lpa & LPA_100FULL) {
1894		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
1895		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
1896	} else if (hp->sw_lpa & LPA_100HALF) {
1897		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
1898		hp->sw_bmcr |= BMCR_SPEED100;
1899	} else if (hp->sw_lpa & LPA_10FULL) {
1900		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
1901		hp->sw_bmcr |= BMCR_FULLDPLX;
1902	} else {
1903		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
1904	}
1905	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
1906
1907	/* Finally stop polling and shut up the MIF. */
1908	happy_meal_poll_stop(hp, tregs);
1909}
1910
1911#ifdef TXDEBUG
1912#define TXD(x) printk x
1913#else
1914#define TXD(x)
1915#endif
1916
1917/* hp->happy_lock must be held */
1918static void happy_meal_tx(struct happy_meal *hp)
1919{
1920	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
1921	struct happy_meal_txd *this;
1922	struct net_device *dev = hp->dev;
1923	int elem;
1924
1925	elem = hp->tx_old;
1926	TXD(("TX<"));
1927	while (elem != hp->tx_new) {
1928		struct sk_buff *skb;
1929		u32 flags, dma_addr, dma_len;
1930		int frag;
1931
1932		TXD(("[%d]", elem));
1933		this = &txbase[elem];
1934		flags = hme_read_desc32(hp, &this->tx_flags);
1935		if (flags & TXFLAG_OWN)
1936			break;
1937		skb = hp->tx_skbs[elem];
1938		if (skb_shinfo(skb)->nr_frags) {
1939			int last;
1940
1941			last = elem + skb_shinfo(skb)->nr_frags;
1942			last &= (TX_RING_SIZE - 1);
1943			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
1944			if (flags & TXFLAG_OWN)
1945				break;
1946		}
1947		hp->tx_skbs[elem] = NULL;
1948		dev->stats.tx_bytes += skb->len;
1949
1950		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1951			dma_addr = hme_read_desc32(hp, &this->tx_addr);
1952			dma_len = hme_read_desc32(hp, &this->tx_flags);
1953
1954			dma_len &= TXFLAG_SIZE;
1955			if (!frag)
1956				dma_unmap_single(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1957			else
1958				dma_unmap_page(hp->dma_dev, dma_addr, dma_len, DMA_TO_DEVICE);
1959
1960			elem = NEXT_TX(elem);
1961			this = &txbase[elem];
1962		}
1963
1964		dev_consume_skb_irq(skb);
1965		dev->stats.tx_packets++;
1966	}
1967	hp->tx_old = elem;
1968	TXD((">"));
1969
1970	if (netif_queue_stopped(dev) &&
1971	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
1972		netif_wake_queue(dev);
1973}
1974
1975#ifdef RXDEBUG
1976#define RXD(x) printk x
1977#else
1978#define RXD(x)
1979#endif
1980
1981/* Originally I used to handle the allocation failure by just giving back just
1982 * that one ring buffer to the happy meal.  Problem is that usually when that
1983 * condition is triggered, the happy meal expects you to do something reasonable
1984 * with all of the packets it has DMA'd in.  So now I just drop the entire
1985 * ring when we cannot get a new skb and give them all back to the happy meal,
1986 * maybe things will be "happier" now.
1987 *
1988 * hp->happy_lock must be held
1989 */
1990static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
1991{
1992	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
1993	struct happy_meal_rxd *this;
1994	int elem = hp->rx_new, drops = 0;
1995	u32 flags;
1996
1997	RXD(("RX<"));
1998	this = &rxbase[elem];
1999	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
2000		struct sk_buff *skb;
2001		int len = flags >> 16;
2002		u16 csum = flags & RXFLAG_CSUM;
2003		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
2004
2005		RXD(("[%d ", elem));
2006
2007		/* Check for errors. */
2008		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
2009			RXD(("ERR(%08x)]", flags));
2010			dev->stats.rx_errors++;
2011			if (len < ETH_ZLEN)
2012				dev->stats.rx_length_errors++;
2013			if (len & (RXFLAG_OVERFLOW >> 16)) {
2014				dev->stats.rx_over_errors++;
2015				dev->stats.rx_fifo_errors++;
2016			}
2017
2018			/* Return it to the Happy meal. */
2019	drop_it:
2020			dev->stats.rx_dropped++;
2021			hme_write_rxd(hp, this,
2022				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2023				      dma_addr);
2024			goto next;
2025		}
2026		skb = hp->rx_skbs[elem];
2027		if (len > RX_COPY_THRESHOLD) {
2028			struct sk_buff *new_skb;
2029			u32 mapping;
2030
2031			/* Now refill the entry, if we can. */
2032			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
2033			if (new_skb == NULL) {
2034				drops++;
2035				goto drop_it;
2036			}
2037			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET + 4));
2038			mapping = dma_map_single(hp->dma_dev, new_skb->data,
2039						 RX_BUF_ALLOC_SIZE,
2040						 DMA_FROM_DEVICE);
2041			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2042				dev_kfree_skb_any(new_skb);
2043				drops++;
2044				goto drop_it;
2045			}
2046
2047			dma_unmap_single(hp->dma_dev, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROM_DEVICE);
2048			hp->rx_skbs[elem] = new_skb;
2049			hme_write_rxd(hp, this,
2050				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2051				      mapping);
2052			skb_reserve(new_skb, RX_OFFSET);
2053
2054			/* Trim the original skb for the netif. */
2055			skb_trim(skb, len);
2056		} else {
2057			struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
2058
2059			if (copy_skb == NULL) {
2060				drops++;
2061				goto drop_it;
2062			}
2063
2064			skb_reserve(copy_skb, 2);
2065			skb_put(copy_skb, len);
2066			dma_sync_single_for_cpu(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2067			skb_copy_from_linear_data(skb, copy_skb->data, len);
2068			dma_sync_single_for_device(hp->dma_dev, dma_addr, len, DMA_FROM_DEVICE);
2069			/* Reuse original ring buffer. */
2070			hme_write_rxd(hp, this,
2071				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
2072				      dma_addr);
2073
2074			skb = copy_skb;
2075		}
2076
2077		/* This card is _fucking_ hot... */
2078		skb->csum = csum_unfold(~(__force __sum16)htons(csum));
2079		skb->ip_summed = CHECKSUM_COMPLETE;
2080
2081		RXD(("len=%d csum=%4x]", len, csum));
2082		skb->protocol = eth_type_trans(skb, dev);
2083		netif_rx(skb);
2084
2085		dev->stats.rx_packets++;
2086		dev->stats.rx_bytes += len;
2087	next:
2088		elem = NEXT_RX(elem);
2089		this = &rxbase[elem];
2090	}
2091	hp->rx_new = elem;
2092	if (drops)
2093		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
2094	RXD((">"));
2095}
2096
2097static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
2098{
2099	struct net_device *dev = dev_id;
2100	struct happy_meal *hp  = netdev_priv(dev);
2101	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2102
2103	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
2104
2105	spin_lock(&hp->happy_lock);
2106
2107	if (happy_status & GREG_STAT_ERRORS) {
2108		HMD(("ERRORS "));
2109		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
2110			goto out;
2111	}
2112
2113	if (happy_status & GREG_STAT_MIFIRQ) {
2114		HMD(("MIFIRQ "));
2115		happy_meal_mif_interrupt(hp);
2116	}
2117
2118	if (happy_status & GREG_STAT_TXALL) {
2119		HMD(("TXALL "));
2120		happy_meal_tx(hp);
2121	}
2122
2123	if (happy_status & GREG_STAT_RXTOHOST) {
2124		HMD(("RXTOHOST "));
2125		happy_meal_rx(hp, dev);
2126	}
2127
2128	HMD(("done\n"));
2129out:
2130	spin_unlock(&hp->happy_lock);
2131
2132	return IRQ_HANDLED;
2133}
2134
2135#ifdef CONFIG_SBUS
2136static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
2137{
2138	struct quattro *qp = (struct quattro *) cookie;
2139	int i;
2140
2141	for (i = 0; i < 4; i++) {
2142		struct net_device *dev = qp->happy_meals[i];
2143		struct happy_meal *hp  = netdev_priv(dev);
2144		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
2145
2146		HMD(("quattro_interrupt: status=%08x ", happy_status));
2147
2148		if (!(happy_status & (GREG_STAT_ERRORS |
2149				      GREG_STAT_MIFIRQ |
2150				      GREG_STAT_TXALL |
2151				      GREG_STAT_RXTOHOST)))
2152			continue;
2153
2154		spin_lock(&hp->happy_lock);
2155
2156		if (happy_status & GREG_STAT_ERRORS) {
2157			HMD(("ERRORS "));
2158			if (happy_meal_is_not_so_happy(hp, happy_status))
2159				goto next;
2160		}
2161
2162		if (happy_status & GREG_STAT_MIFIRQ) {
2163			HMD(("MIFIRQ "));
2164			happy_meal_mif_interrupt(hp);
2165		}
2166
2167		if (happy_status & GREG_STAT_TXALL) {
2168			HMD(("TXALL "));
2169			happy_meal_tx(hp);
2170		}
2171
2172		if (happy_status & GREG_STAT_RXTOHOST) {
2173			HMD(("RXTOHOST "));
2174			happy_meal_rx(hp, dev);
2175		}
2176
2177	next:
2178		spin_unlock(&hp->happy_lock);
2179	}
2180	HMD(("done\n"));
2181
2182	return IRQ_HANDLED;
2183}
2184#endif
2185
2186static int happy_meal_open(struct net_device *dev)
2187{
2188	struct happy_meal *hp = netdev_priv(dev);
2189	int res;
2190
2191	HMD(("happy_meal_open: "));
2192
2193	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2194	 * into a single source which we register handling at probe time.
2195	 */
2196	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
2197		res = request_irq(hp->irq, happy_meal_interrupt, IRQF_SHARED,
2198				  dev->name, dev);
2199		if (res) {
2200			HMD(("EAGAIN\n"));
2201			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
2202			       hp->irq);
2203
2204			return -EAGAIN;
2205		}
2206	}
2207
2208	HMD(("to happy_meal_init\n"));
2209
2210	spin_lock_irq(&hp->happy_lock);
2211	res = happy_meal_init(hp);
2212	spin_unlock_irq(&hp->happy_lock);
2213
2214	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
2215		free_irq(hp->irq, dev);
2216	return res;
2217}
2218
2219static int happy_meal_close(struct net_device *dev)
2220{
2221	struct happy_meal *hp = netdev_priv(dev);
2222
2223	spin_lock_irq(&hp->happy_lock);
2224	happy_meal_stop(hp, hp->gregs);
2225	happy_meal_clean_rings(hp);
2226
2227	/* If auto-negotiation timer is running, kill it. */
2228	del_timer(&hp->happy_timer);
2229
2230	spin_unlock_irq(&hp->happy_lock);
2231
2232	/* On Quattro QFE cards, all hme interrupts are concentrated
2233	 * into a single source which we register handling at probe
2234	 * time and never unregister.
2235	 */
2236	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
2237		free_irq(hp->irq, dev);
2238
2239	return 0;
2240}
2241
2242#ifdef SXDEBUG
2243#define SXD(x) printk x
2244#else
2245#define SXD(x)
2246#endif
2247
2248static void happy_meal_tx_timeout(struct net_device *dev, unsigned int txqueue)
2249{
2250	struct happy_meal *hp = netdev_priv(dev);
2251
2252	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
2253	tx_dump_log();
2254	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
2255		hme_read32(hp, hp->gregs + GREG_STAT),
2256		hme_read32(hp, hp->etxregs + ETX_CFG),
2257		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
2258
2259	spin_lock_irq(&hp->happy_lock);
2260	happy_meal_init(hp);
2261	spin_unlock_irq(&hp->happy_lock);
2262
2263	netif_wake_queue(dev);
2264}
2265
2266static void unmap_partial_tx_skb(struct happy_meal *hp, u32 first_mapping,
2267				 u32 first_len, u32 first_entry, u32 entry)
2268{
2269	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
2270
2271	dma_unmap_single(hp->dma_dev, first_mapping, first_len, DMA_TO_DEVICE);
2272
2273	first_entry = NEXT_TX(first_entry);
2274	while (first_entry != entry) {
2275		struct happy_meal_txd *this = &txbase[first_entry];
2276		u32 addr, len;
2277
2278		addr = hme_read_desc32(hp, &this->tx_addr);
2279		len = hme_read_desc32(hp, &this->tx_flags);
2280		len &= TXFLAG_SIZE;
2281		dma_unmap_page(hp->dma_dev, addr, len, DMA_TO_DEVICE);
2282	}
2283}
2284
2285static netdev_tx_t happy_meal_start_xmit(struct sk_buff *skb,
2286					 struct net_device *dev)
2287{
2288	struct happy_meal *hp = netdev_priv(dev);
2289 	int entry;
2290 	u32 tx_flags;
2291
2292	tx_flags = TXFLAG_OWN;
2293	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2294		const u32 csum_start_off = skb_checksum_start_offset(skb);
2295		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
2296
2297		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
2298			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
2299			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
2300	}
2301
2302	spin_lock_irq(&hp->happy_lock);
2303
2304 	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
2305		netif_stop_queue(dev);
2306		spin_unlock_irq(&hp->happy_lock);
2307		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
2308		       dev->name);
2309		return NETDEV_TX_BUSY;
2310	}
2311
2312	entry = hp->tx_new;
2313	SXD(("SX<l[%d]e[%d]>", len, entry));
2314	hp->tx_skbs[entry] = skb;
2315
2316	if (skb_shinfo(skb)->nr_frags == 0) {
2317		u32 mapping, len;
2318
2319		len = skb->len;
2320		mapping = dma_map_single(hp->dma_dev, skb->data, len, DMA_TO_DEVICE);
2321		if (unlikely(dma_mapping_error(hp->dma_dev, mapping)))
2322			goto out_dma_error;
2323		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
2324		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2325			      (tx_flags | (len & TXFLAG_SIZE)),
2326			      mapping);
2327		entry = NEXT_TX(entry);
2328	} else {
2329		u32 first_len, first_mapping;
2330		int frag, first_entry = entry;
2331
2332		/* We must give this initial chunk to the device last.
2333		 * Otherwise we could race with the device.
2334		 */
2335		first_len = skb_headlen(skb);
2336		first_mapping = dma_map_single(hp->dma_dev, skb->data, first_len,
2337					       DMA_TO_DEVICE);
2338		if (unlikely(dma_mapping_error(hp->dma_dev, first_mapping)))
2339			goto out_dma_error;
2340		entry = NEXT_TX(entry);
2341
2342		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
2343			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
2344			u32 len, mapping, this_txflags;
2345
2346			len = skb_frag_size(this_frag);
2347			mapping = skb_frag_dma_map(hp->dma_dev, this_frag,
2348						   0, len, DMA_TO_DEVICE);
2349			if (unlikely(dma_mapping_error(hp->dma_dev, mapping))) {
2350				unmap_partial_tx_skb(hp, first_mapping, first_len,
2351						     first_entry, entry);
2352				goto out_dma_error;
2353			}
2354			this_txflags = tx_flags;
2355			if (frag == skb_shinfo(skb)->nr_frags - 1)
2356				this_txflags |= TXFLAG_EOP;
2357			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
2358				      (this_txflags | (len & TXFLAG_SIZE)),
2359				      mapping);
2360			entry = NEXT_TX(entry);
2361		}
2362		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
2363			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
2364			      first_mapping);
2365	}
2366
2367	hp->tx_new = entry;
2368
2369	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
2370		netif_stop_queue(dev);
2371
2372	/* Get it going. */
2373	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
2374
2375	spin_unlock_irq(&hp->happy_lock);
2376
2377	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
2378	return NETDEV_TX_OK;
2379
2380out_dma_error:
2381	hp->tx_skbs[hp->tx_new] = NULL;
2382	spin_unlock_irq(&hp->happy_lock);
2383
2384	dev_kfree_skb_any(skb);
2385	dev->stats.tx_dropped++;
2386	return NETDEV_TX_OK;
2387}
2388
2389static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
2390{
2391	struct happy_meal *hp = netdev_priv(dev);
2392
2393	spin_lock_irq(&hp->happy_lock);
2394	happy_meal_get_counters(hp, hp->bigmacregs);
2395	spin_unlock_irq(&hp->happy_lock);
2396
2397	return &dev->stats;
2398}
2399
2400static void happy_meal_set_multicast(struct net_device *dev)
2401{
2402	struct happy_meal *hp = netdev_priv(dev);
2403	void __iomem *bregs = hp->bigmacregs;
2404	struct netdev_hw_addr *ha;
2405	u32 crc;
2406
2407	spin_lock_irq(&hp->happy_lock);
2408
2409	if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
2410		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
2411		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
2412		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
2413		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
2414	} else if (dev->flags & IFF_PROMISC) {
2415		hme_write32(hp, bregs + BMAC_RXCFG,
2416			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
2417	} else {
2418		u16 hash_table[4];
2419
2420		memset(hash_table, 0, sizeof(hash_table));
2421		netdev_for_each_mc_addr(ha, dev) {
2422			crc = ether_crc_le(6, ha->addr);
2423			crc >>= 26;
2424			hash_table[crc >> 4] |= 1 << (crc & 0xf);
2425		}
2426		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
2427		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
2428		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
2429		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
2430	}
2431
2432	spin_unlock_irq(&hp->happy_lock);
2433}
2434
2435/* Ethtool support... */
2436static int hme_get_link_ksettings(struct net_device *dev,
2437				  struct ethtool_link_ksettings *cmd)
2438{
2439	struct happy_meal *hp = netdev_priv(dev);
2440	u32 speed;
2441	u32 supported;
2442
2443	supported =
2444		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2445		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2446		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
2447
2448	/* XXX hardcoded stuff for now */
2449	cmd->base.port = PORT_TP; /* XXX no MII support */
2450	cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2451
2452	/* Record PHY settings. */
2453	spin_lock_irq(&hp->happy_lock);
2454	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2455	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
2456	spin_unlock_irq(&hp->happy_lock);
2457
2458	if (hp->sw_bmcr & BMCR_ANENABLE) {
2459		cmd->base.autoneg = AUTONEG_ENABLE;
2460		speed = ((hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
2461			 SPEED_100 : SPEED_10);
2462		if (speed == SPEED_100)
2463			cmd->base.duplex =
2464				(hp->sw_lpa & (LPA_100FULL)) ?
2465				DUPLEX_FULL : DUPLEX_HALF;
2466		else
2467			cmd->base.duplex =
2468				(hp->sw_lpa & (LPA_10FULL)) ?
2469				DUPLEX_FULL : DUPLEX_HALF;
2470	} else {
2471		cmd->base.autoneg = AUTONEG_DISABLE;
2472		speed = (hp->sw_bmcr & BMCR_SPEED100) ? SPEED_100 : SPEED_10;
2473		cmd->base.duplex =
2474			(hp->sw_bmcr & BMCR_FULLDPLX) ?
2475			DUPLEX_FULL : DUPLEX_HALF;
2476	}
2477	cmd->base.speed = speed;
2478	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2479						supported);
2480
2481	return 0;
2482}
2483
2484static int hme_set_link_ksettings(struct net_device *dev,
2485				  const struct ethtool_link_ksettings *cmd)
2486{
2487	struct happy_meal *hp = netdev_priv(dev);
2488
2489	/* Verify the settings we care about. */
2490	if (cmd->base.autoneg != AUTONEG_ENABLE &&
2491	    cmd->base.autoneg != AUTONEG_DISABLE)
2492		return -EINVAL;
2493	if (cmd->base.autoneg == AUTONEG_DISABLE &&
2494	    ((cmd->base.speed != SPEED_100 &&
2495	      cmd->base.speed != SPEED_10) ||
2496	     (cmd->base.duplex != DUPLEX_HALF &&
2497	      cmd->base.duplex != DUPLEX_FULL)))
2498		return -EINVAL;
2499
2500	/* Ok, do it to it. */
2501	spin_lock_irq(&hp->happy_lock);
2502	del_timer(&hp->happy_timer);
2503	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
2504	spin_unlock_irq(&hp->happy_lock);
2505
2506	return 0;
2507}
2508
2509static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2510{
2511	struct happy_meal *hp = netdev_priv(dev);
2512
2513	strlcpy(info->driver, "sunhme", sizeof(info->driver));
2514	strlcpy(info->version, "2.02", sizeof(info->version));
2515	if (hp->happy_flags & HFLAG_PCI) {
2516		struct pci_dev *pdev = hp->happy_dev;
2517		strlcpy(info->bus_info, pci_name(pdev), sizeof(info->bus_info));
2518	}
2519#ifdef CONFIG_SBUS
2520	else {
2521		const struct linux_prom_registers *regs;
2522		struct platform_device *op = hp->happy_dev;
2523		regs = of_get_property(op->dev.of_node, "regs", NULL);
2524		if (regs)
2525			snprintf(info->bus_info, sizeof(info->bus_info),
2526				"SBUS:%d",
2527				regs->which_io);
2528	}
2529#endif
2530}
2531
2532static u32 hme_get_link(struct net_device *dev)
2533{
2534	struct happy_meal *hp = netdev_priv(dev);
2535
2536	spin_lock_irq(&hp->happy_lock);
2537	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
2538	spin_unlock_irq(&hp->happy_lock);
2539
2540	return hp->sw_bmsr & BMSR_LSTATUS;
2541}
2542
2543static const struct ethtool_ops hme_ethtool_ops = {
2544	.get_drvinfo		= hme_get_drvinfo,
2545	.get_link		= hme_get_link,
2546	.get_link_ksettings	= hme_get_link_ksettings,
2547	.set_link_ksettings	= hme_set_link_ksettings,
2548};
2549
2550static int hme_version_printed;
2551
2552#ifdef CONFIG_SBUS
2553/* Given a happy meal sbus device, find it's quattro parent.
2554 * If none exist, allocate and return a new one.
2555 *
2556 * Return NULL on failure.
2557 */
2558static struct quattro *quattro_sbus_find(struct platform_device *child)
2559{
2560	struct device *parent = child->dev.parent;
2561	struct platform_device *op;
2562	struct quattro *qp;
2563
2564	op = to_platform_device(parent);
2565	qp = platform_get_drvdata(op);
2566	if (qp)
2567		return qp;
2568
2569	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2570	if (qp != NULL) {
2571		int i;
2572
2573		for (i = 0; i < 4; i++)
2574			qp->happy_meals[i] = NULL;
2575
2576		qp->quattro_dev = child;
2577		qp->next = qfe_sbus_list;
2578		qfe_sbus_list = qp;
2579
2580		platform_set_drvdata(op, qp);
2581	}
2582	return qp;
2583}
2584
2585/* After all quattro cards have been probed, we call these functions
2586 * to register the IRQ handlers for the cards that have been
2587 * successfully probed and skip the cards that failed to initialize
2588 */
2589static int __init quattro_sbus_register_irqs(void)
2590{
2591	struct quattro *qp;
2592
2593	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2594		struct platform_device *op = qp->quattro_dev;
2595		int err, qfe_slot, skip = 0;
2596
2597		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2598			if (!qp->happy_meals[qfe_slot])
2599				skip = 1;
2600		}
2601		if (skip)
2602			continue;
2603
2604		err = request_irq(op->archdata.irqs[0],
2605				  quattro_sbus_interrupt,
2606				  IRQF_SHARED, "Quattro",
2607				  qp);
2608		if (err != 0) {
2609			printk(KERN_ERR "Quattro HME: IRQ registration "
2610			       "error %d.\n", err);
2611			return err;
2612		}
2613	}
2614
2615	return 0;
2616}
2617
2618static void quattro_sbus_free_irqs(void)
2619{
2620	struct quattro *qp;
2621
2622	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
2623		struct platform_device *op = qp->quattro_dev;
2624		int qfe_slot, skip = 0;
2625
2626		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++) {
2627			if (!qp->happy_meals[qfe_slot])
2628				skip = 1;
2629		}
2630		if (skip)
2631			continue;
2632
2633		free_irq(op->archdata.irqs[0], qp);
2634	}
2635}
2636#endif /* CONFIG_SBUS */
2637
2638#ifdef CONFIG_PCI
2639static struct quattro *quattro_pci_find(struct pci_dev *pdev)
2640{
2641	struct pci_dev *bdev = pdev->bus->self;
2642	struct quattro *qp;
2643
2644	if (!bdev) return NULL;
2645	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
2646		struct pci_dev *qpdev = qp->quattro_dev;
2647
2648		if (qpdev == bdev)
2649			return qp;
2650	}
2651	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
2652	if (qp != NULL) {
2653		int i;
2654
2655		for (i = 0; i < 4; i++)
2656			qp->happy_meals[i] = NULL;
2657
2658		qp->quattro_dev = bdev;
2659		qp->next = qfe_pci_list;
2660		qfe_pci_list = qp;
2661
2662		/* No range tricks necessary on PCI. */
2663		qp->nranges = 0;
2664	}
2665	return qp;
2666}
2667#endif /* CONFIG_PCI */
2668
2669static const struct net_device_ops hme_netdev_ops = {
2670	.ndo_open		= happy_meal_open,
2671	.ndo_stop		= happy_meal_close,
2672	.ndo_start_xmit		= happy_meal_start_xmit,
2673	.ndo_tx_timeout		= happy_meal_tx_timeout,
2674	.ndo_get_stats		= happy_meal_get_stats,
2675	.ndo_set_rx_mode	= happy_meal_set_multicast,
2676	.ndo_set_mac_address 	= eth_mac_addr,
2677	.ndo_validate_addr	= eth_validate_addr,
2678};
2679
2680#ifdef CONFIG_SBUS
2681static int happy_meal_sbus_probe_one(struct platform_device *op, int is_qfe)
2682{
2683	struct device_node *dp = op->dev.of_node, *sbus_dp;
2684	struct quattro *qp = NULL;
2685	struct happy_meal *hp;
2686	struct net_device *dev;
2687	int i, qfe_slot = -1;
2688	int err = -ENODEV;
2689
2690	sbus_dp = op->dev.parent->of_node;
2691
2692	/* We can match PCI devices too, do not accept those here. */
2693	if (!of_node_name_eq(sbus_dp, "sbus") && !of_node_name_eq(sbus_dp, "sbi"))
2694		return err;
2695
2696	if (is_qfe) {
2697		qp = quattro_sbus_find(op);
2698		if (qp == NULL)
2699			goto err_out;
2700		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
2701			if (qp->happy_meals[qfe_slot] == NULL)
2702				break;
2703		if (qfe_slot == 4)
2704			goto err_out;
2705	}
2706
2707	err = -ENOMEM;
2708	dev = alloc_etherdev(sizeof(struct happy_meal));
2709	if (!dev)
2710		goto err_out;
2711	SET_NETDEV_DEV(dev, &op->dev);
2712
2713	if (hme_version_printed++ == 0)
2714		printk(KERN_INFO "%s", version);
2715
2716	/* If user did not specify a MAC address specifically, use
2717	 * the Quattro local-mac-address property...
2718	 */
2719	for (i = 0; i < 6; i++) {
2720		if (macaddr[i] != 0)
2721			break;
2722	}
2723	if (i < 6) { /* a mac address was given */
2724		for (i = 0; i < 6; i++)
2725			dev->dev_addr[i] = macaddr[i];
2726		macaddr[5]++;
2727	} else {
2728		const unsigned char *addr;
2729		int len;
2730
2731		addr = of_get_property(dp, "local-mac-address", &len);
2732
2733		if (qfe_slot != -1 && addr && len == ETH_ALEN)
2734			memcpy(dev->dev_addr, addr, ETH_ALEN);
2735		else
2736			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
2737	}
2738
2739	hp = netdev_priv(dev);
2740
2741	hp->happy_dev = op;
2742	hp->dma_dev = &op->dev;
2743
2744	spin_lock_init(&hp->happy_lock);
2745
2746	err = -ENODEV;
2747	if (qp != NULL) {
2748		hp->qfe_parent = qp;
2749		hp->qfe_ent = qfe_slot;
2750		qp->happy_meals[qfe_slot] = dev;
2751	}
2752
2753	hp->gregs = of_ioremap(&op->resource[0], 0,
2754			       GREG_REG_SIZE, "HME Global Regs");
2755	if (!hp->gregs) {
2756		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
2757		goto err_out_free_netdev;
2758	}
2759
2760	hp->etxregs = of_ioremap(&op->resource[1], 0,
2761				 ETX_REG_SIZE, "HME TX Regs");
2762	if (!hp->etxregs) {
2763		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
2764		goto err_out_iounmap;
2765	}
2766
2767	hp->erxregs = of_ioremap(&op->resource[2], 0,
2768				 ERX_REG_SIZE, "HME RX Regs");
2769	if (!hp->erxregs) {
2770		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
2771		goto err_out_iounmap;
2772	}
2773
2774	hp->bigmacregs = of_ioremap(&op->resource[3], 0,
2775				    BMAC_REG_SIZE, "HME BIGMAC Regs");
2776	if (!hp->bigmacregs) {
2777		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
2778		goto err_out_iounmap;
2779	}
2780
2781	hp->tcvregs = of_ioremap(&op->resource[4], 0,
2782				 TCVR_REG_SIZE, "HME Tranceiver Regs");
2783	if (!hp->tcvregs) {
2784		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
2785		goto err_out_iounmap;
2786	}
2787
2788	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
2789	if (hp->hm_revision == 0xff)
2790		hp->hm_revision = 0xa0;
2791
2792	/* Now enable the feature flags we can. */
2793	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
2794		hp->happy_flags = HFLAG_20_21;
2795	else if (hp->hm_revision != 0xa0)
2796		hp->happy_flags = HFLAG_NOT_A0;
2797
2798	if (qp != NULL)
2799		hp->happy_flags |= HFLAG_QUATTRO;
2800
2801	/* Get the supported DVMA burst sizes from our Happy SBUS. */
2802	hp->happy_bursts = of_getintprop_default(sbus_dp,
2803						 "burst-sizes", 0x00);
2804
2805	hp->happy_block = dma_alloc_coherent(hp->dma_dev,
2806					     PAGE_SIZE,
2807					     &hp->hblock_dvma,
2808					     GFP_ATOMIC);
2809	err = -ENOMEM;
2810	if (!hp->happy_block)
2811		goto err_out_iounmap;
2812
2813	/* Force check of the link first time we are brought up. */
2814	hp->linkcheck = 0;
2815
2816	/* Force timer state to 'asleep' with count of zero. */
2817	hp->timer_state = asleep;
2818	hp->timer_ticks = 0;
2819
2820	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
2821
2822	hp->dev = dev;
2823	dev->netdev_ops = &hme_netdev_ops;
2824	dev->watchdog_timeo = 5*HZ;
2825	dev->ethtool_ops = &hme_ethtool_ops;
2826
2827	/* Happy Meal can do it all... */
2828	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
2829	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
2830
2831	hp->irq = op->archdata.irqs[0];
2832
2833#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2834	/* Hook up SBUS register/descriptor accessors. */
2835	hp->read_desc32 = sbus_hme_read_desc32;
2836	hp->write_txd = sbus_hme_write_txd;
2837	hp->write_rxd = sbus_hme_write_rxd;
2838	hp->read32 = sbus_hme_read32;
2839	hp->write32 = sbus_hme_write32;
2840#endif
2841
2842	/* Grrr, Happy Meal comes up by default not advertising
2843	 * full duplex 100baseT capabilities, fix this.
2844	 */
2845	spin_lock_irq(&hp->happy_lock);
2846	happy_meal_set_initial_advertisement(hp);
2847	spin_unlock_irq(&hp->happy_lock);
2848
2849	err = register_netdev(hp->dev);
2850	if (err) {
2851		printk(KERN_ERR "happymeal: Cannot register net device, "
2852		       "aborting.\n");
2853		goto err_out_free_coherent;
2854	}
2855
2856	platform_set_drvdata(op, hp);
2857
2858	if (qfe_slot != -1)
2859		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2860		       dev->name, qfe_slot);
2861	else
2862		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2863		       dev->name);
2864
2865	printk("%pM\n", dev->dev_addr);
2866
2867	return 0;
2868
2869err_out_free_coherent:
2870	dma_free_coherent(hp->dma_dev,
2871			  PAGE_SIZE,
2872			  hp->happy_block,
2873			  hp->hblock_dvma);
2874
2875err_out_iounmap:
2876	if (hp->gregs)
2877		of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
2878	if (hp->etxregs)
2879		of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
2880	if (hp->erxregs)
2881		of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
2882	if (hp->bigmacregs)
2883		of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
2884	if (hp->tcvregs)
2885		of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
2886
2887	if (qp)
2888		qp->happy_meals[qfe_slot] = NULL;
2889
2890err_out_free_netdev:
2891	free_netdev(dev);
2892
2893err_out:
2894	return err;
2895}
2896#endif
2897
2898#ifdef CONFIG_PCI
2899#ifndef CONFIG_SPARC
2900static int is_quattro_p(struct pci_dev *pdev)
2901{
2902	struct pci_dev *busdev = pdev->bus->self;
2903	struct pci_dev *this_pdev;
2904	int n_hmes;
2905
2906	if (busdev == NULL ||
2907	    busdev->vendor != PCI_VENDOR_ID_DEC ||
2908	    busdev->device != PCI_DEVICE_ID_DEC_21153)
2909		return 0;
2910
2911	n_hmes = 0;
2912	list_for_each_entry(this_pdev, &pdev->bus->devices, bus_list) {
2913		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
2914		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
2915			n_hmes++;
2916	}
2917
2918	if (n_hmes != 4)
2919		return 0;
2920
2921	return 1;
2922}
2923
2924/* Fetch MAC address from vital product data of PCI ROM. */
2925static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
2926{
2927	int this_offset;
2928
2929	for (this_offset = 0x20; this_offset < len; this_offset++) {
2930		void __iomem *p = rom_base + this_offset;
2931
2932		if (readb(p + 0) != 0x90 ||
2933		    readb(p + 1) != 0x00 ||
2934		    readb(p + 2) != 0x09 ||
2935		    readb(p + 3) != 0x4e ||
2936		    readb(p + 4) != 0x41 ||
2937		    readb(p + 5) != 0x06)
2938			continue;
2939
2940		this_offset += 6;
2941		p += 6;
2942
2943		if (index == 0) {
2944			int i;
2945
2946			for (i = 0; i < 6; i++)
2947				dev_addr[i] = readb(p + i);
2948			return 1;
2949		}
2950		index--;
2951	}
2952	return 0;
2953}
2954
2955static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
2956{
2957	size_t size;
2958	void __iomem *p = pci_map_rom(pdev, &size);
2959
2960	if (p) {
2961		int index = 0;
2962		int found;
2963
2964		if (is_quattro_p(pdev))
2965			index = PCI_SLOT(pdev->devfn);
2966
2967		found = readb(p) == 0x55 &&
2968			readb(p + 1) == 0xaa &&
2969			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
2970		pci_unmap_rom(pdev, p);
2971		if (found)
2972			return;
2973	}
2974
2975	/* Sun MAC prefix then 3 random bytes. */
2976	dev_addr[0] = 0x08;
2977	dev_addr[1] = 0x00;
2978	dev_addr[2] = 0x20;
2979	get_random_bytes(&dev_addr[3], 3);
2980}
2981#endif /* !(CONFIG_SPARC) */
2982
2983static int happy_meal_pci_probe(struct pci_dev *pdev,
2984				const struct pci_device_id *ent)
2985{
2986	struct quattro *qp = NULL;
2987#ifdef CONFIG_SPARC
2988	struct device_node *dp;
2989#endif
2990	struct happy_meal *hp;
2991	struct net_device *dev;
2992	void __iomem *hpreg_base;
2993	unsigned long hpreg_res;
2994	int i, qfe_slot = -1;
2995	char prom_name[64];
2996	int err;
2997
2998	/* Now make sure pci_dev cookie is there. */
2999#ifdef CONFIG_SPARC
3000	dp = pci_device_to_OF_node(pdev);
3001	snprintf(prom_name, sizeof(prom_name), "%pOFn", dp);
3002#else
3003	if (is_quattro_p(pdev))
3004		strcpy(prom_name, "SUNW,qfe");
3005	else
3006		strcpy(prom_name, "SUNW,hme");
3007#endif
3008
3009	err = -ENODEV;
3010
3011	if (pci_enable_device(pdev))
3012		goto err_out;
3013	pci_set_master(pdev);
3014
3015	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
3016		qp = quattro_pci_find(pdev);
3017		if (qp == NULL)
3018			goto err_out;
3019		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
3020			if (qp->happy_meals[qfe_slot] == NULL)
3021				break;
3022		if (qfe_slot == 4)
3023			goto err_out;
3024	}
3025
3026	dev = alloc_etherdev(sizeof(struct happy_meal));
3027	err = -ENOMEM;
3028	if (!dev)
3029		goto err_out;
3030	SET_NETDEV_DEV(dev, &pdev->dev);
3031
3032	if (hme_version_printed++ == 0)
3033		printk(KERN_INFO "%s", version);
3034
3035	hp = netdev_priv(dev);
3036
3037	hp->happy_dev = pdev;
3038	hp->dma_dev = &pdev->dev;
3039
3040	spin_lock_init(&hp->happy_lock);
3041
3042	if (qp != NULL) {
3043		hp->qfe_parent = qp;
3044		hp->qfe_ent = qfe_slot;
3045		qp->happy_meals[qfe_slot] = dev;
3046	}
3047
3048	hpreg_res = pci_resource_start(pdev, 0);
3049	err = -ENODEV;
3050	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3051		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
3052		goto err_out_clear_quattro;
3053	}
3054	if (pci_request_regions(pdev, DRV_NAME)) {
3055		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
3056		       "aborting.\n");
3057		goto err_out_clear_quattro;
3058	}
3059
3060	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == NULL) {
3061		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
3062		goto err_out_free_res;
3063	}
3064
3065	for (i = 0; i < 6; i++) {
3066		if (macaddr[i] != 0)
3067			break;
3068	}
3069	if (i < 6) { /* a mac address was given */
3070		for (i = 0; i < 6; i++)
3071			dev->dev_addr[i] = macaddr[i];
3072		macaddr[5]++;
3073	} else {
3074#ifdef CONFIG_SPARC
3075		const unsigned char *addr;
3076		int len;
3077
3078		if (qfe_slot != -1 &&
3079		    (addr = of_get_property(dp, "local-mac-address", &len))
3080			!= NULL &&
3081		    len == 6) {
3082			memcpy(dev->dev_addr, addr, ETH_ALEN);
3083		} else {
3084			memcpy(dev->dev_addr, idprom->id_ethaddr, ETH_ALEN);
3085		}
3086#else
3087		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
3088#endif
3089	}
3090
3091	/* Layout registers. */
3092	hp->gregs      = (hpreg_base + 0x0000UL);
3093	hp->etxregs    = (hpreg_base + 0x2000UL);
3094	hp->erxregs    = (hpreg_base + 0x4000UL);
3095	hp->bigmacregs = (hpreg_base + 0x6000UL);
3096	hp->tcvregs    = (hpreg_base + 0x7000UL);
3097
3098#ifdef CONFIG_SPARC
3099	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
3100	if (hp->hm_revision == 0xff)
3101		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
3102#else
3103	/* works with this on non-sparc hosts */
3104	hp->hm_revision = 0x20;
3105#endif
3106
3107	/* Now enable the feature flags we can. */
3108	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
3109		hp->happy_flags = HFLAG_20_21;
3110	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
3111		hp->happy_flags = HFLAG_NOT_A0;
3112
3113	if (qp != NULL)
3114		hp->happy_flags |= HFLAG_QUATTRO;
3115
3116	/* And of course, indicate this is PCI. */
3117	hp->happy_flags |= HFLAG_PCI;
3118
3119#ifdef CONFIG_SPARC
3120	/* Assume PCI happy meals can handle all burst sizes. */
3121	hp->happy_bursts = DMA_BURSTBITS;
3122#endif
3123
3124	hp->happy_block = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
3125					     &hp->hblock_dvma, GFP_KERNEL);
3126	err = -ENODEV;
3127	if (!hp->happy_block)
3128		goto err_out_iounmap;
3129
3130	hp->linkcheck = 0;
3131	hp->timer_state = asleep;
3132	hp->timer_ticks = 0;
3133
3134	timer_setup(&hp->happy_timer, happy_meal_timer, 0);
3135
3136	hp->irq = pdev->irq;
3137	hp->dev = dev;
3138	dev->netdev_ops = &hme_netdev_ops;
3139	dev->watchdog_timeo = 5*HZ;
3140	dev->ethtool_ops = &hme_ethtool_ops;
3141
3142	/* Happy Meal can do it all... */
3143	dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
3144	dev->features |= dev->hw_features | NETIF_F_RXCSUM;
3145
3146#if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3147	/* Hook up PCI register/descriptor accessors. */
3148	hp->read_desc32 = pci_hme_read_desc32;
3149	hp->write_txd = pci_hme_write_txd;
3150	hp->write_rxd = pci_hme_write_rxd;
3151	hp->read32 = pci_hme_read32;
3152	hp->write32 = pci_hme_write32;
3153#endif
3154
3155	/* Grrr, Happy Meal comes up by default not advertising
3156	 * full duplex 100baseT capabilities, fix this.
3157	 */
3158	spin_lock_irq(&hp->happy_lock);
3159	happy_meal_set_initial_advertisement(hp);
3160	spin_unlock_irq(&hp->happy_lock);
3161
3162	err = register_netdev(hp->dev);
3163	if (err) {
3164		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
3165		       "aborting.\n");
3166		goto err_out_iounmap;
3167	}
3168
3169	pci_set_drvdata(pdev, hp);
3170
3171	if (!qfe_slot) {
3172		struct pci_dev *qpdev = qp->quattro_dev;
3173
3174		prom_name[0] = 0;
3175		if (!strncmp(dev->name, "eth", 3)) {
3176			int i = simple_strtoul(dev->name + 3, NULL, 10);
3177			sprintf(prom_name, "-%d", i + 3);
3178		}
3179		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
3180		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
3181		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
3182			printk("DEC 21153 PCI Bridge\n");
3183		else
3184			printk("unknown bridge %04x.%04x\n",
3185				qpdev->vendor, qpdev->device);
3186	}
3187
3188	if (qfe_slot != -1)
3189		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3190		       dev->name, qfe_slot);
3191	else
3192		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3193		       dev->name);
3194
3195	printk("%pM\n", dev->dev_addr);
3196
3197	return 0;
3198
3199err_out_iounmap:
3200	iounmap(hp->gregs);
3201
3202err_out_free_res:
3203	pci_release_regions(pdev);
3204
3205err_out_clear_quattro:
3206	if (qp != NULL)
3207		qp->happy_meals[qfe_slot] = NULL;
3208
3209	free_netdev(dev);
3210
3211err_out:
3212	return err;
3213}
3214
3215static void happy_meal_pci_remove(struct pci_dev *pdev)
3216{
3217	struct happy_meal *hp = pci_get_drvdata(pdev);
3218	struct net_device *net_dev = hp->dev;
3219
3220	unregister_netdev(net_dev);
3221
3222	dma_free_coherent(hp->dma_dev, PAGE_SIZE,
3223			  hp->happy_block, hp->hblock_dvma);
3224	iounmap(hp->gregs);
3225	pci_release_regions(hp->happy_dev);
3226
3227	free_netdev(net_dev);
3228}
3229
3230static const struct pci_device_id happymeal_pci_ids[] = {
3231	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
3232	{ }			/* Terminating entry */
3233};
3234
3235MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
3236
3237static struct pci_driver hme_pci_driver = {
3238	.name		= "hme",
3239	.id_table	= happymeal_pci_ids,
3240	.probe		= happy_meal_pci_probe,
3241	.remove		= happy_meal_pci_remove,
3242};
3243
3244static int __init happy_meal_pci_init(void)
3245{
3246	return pci_register_driver(&hme_pci_driver);
3247}
3248
3249static void happy_meal_pci_exit(void)
3250{
3251	pci_unregister_driver(&hme_pci_driver);
3252
3253	while (qfe_pci_list) {
3254		struct quattro *qfe = qfe_pci_list;
3255		struct quattro *next = qfe->next;
3256
3257		kfree(qfe);
3258
3259		qfe_pci_list = next;
3260	}
3261}
3262
3263#endif
3264
3265#ifdef CONFIG_SBUS
3266static const struct of_device_id hme_sbus_match[];
3267static int hme_sbus_probe(struct platform_device *op)
3268{
3269	const struct of_device_id *match;
3270	struct device_node *dp = op->dev.of_node;
3271	const char *model = of_get_property(dp, "model", NULL);
3272	int is_qfe;
3273
3274	match = of_match_device(hme_sbus_match, &op->dev);
3275	if (!match)
3276		return -EINVAL;
3277	is_qfe = (match->data != NULL);
3278
3279	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
3280		is_qfe = 1;
3281
3282	return happy_meal_sbus_probe_one(op, is_qfe);
3283}
3284
3285static int hme_sbus_remove(struct platform_device *op)
3286{
3287	struct happy_meal *hp = platform_get_drvdata(op);
3288	struct net_device *net_dev = hp->dev;
3289
3290	unregister_netdev(net_dev);
3291
3292	/* XXX qfe parent interrupt... */
3293
3294	of_iounmap(&op->resource[0], hp->gregs, GREG_REG_SIZE);
3295	of_iounmap(&op->resource[1], hp->etxregs, ETX_REG_SIZE);
3296	of_iounmap(&op->resource[2], hp->erxregs, ERX_REG_SIZE);
3297	of_iounmap(&op->resource[3], hp->bigmacregs, BMAC_REG_SIZE);
3298	of_iounmap(&op->resource[4], hp->tcvregs, TCVR_REG_SIZE);
3299	dma_free_coherent(hp->dma_dev,
3300			  PAGE_SIZE,
3301			  hp->happy_block,
3302			  hp->hblock_dvma);
3303
3304	free_netdev(net_dev);
3305
3306	return 0;
3307}
3308
3309static const struct of_device_id hme_sbus_match[] = {
3310	{
3311		.name = "SUNW,hme",
3312	},
3313	{
3314		.name = "SUNW,qfe",
3315		.data = (void *) 1,
3316	},
3317	{
3318		.name = "qfe",
3319		.data = (void *) 1,
3320	},
3321	{},
3322};
3323
3324MODULE_DEVICE_TABLE(of, hme_sbus_match);
3325
3326static struct platform_driver hme_sbus_driver = {
3327	.driver = {
3328		.name = "hme",
3329		.of_match_table = hme_sbus_match,
3330	},
3331	.probe		= hme_sbus_probe,
3332	.remove		= hme_sbus_remove,
3333};
3334
3335static int __init happy_meal_sbus_init(void)
3336{
3337	int err;
3338
3339	err = platform_driver_register(&hme_sbus_driver);
3340	if (!err)
3341		err = quattro_sbus_register_irqs();
3342
3343	return err;
3344}
3345
3346static void happy_meal_sbus_exit(void)
3347{
3348	platform_driver_unregister(&hme_sbus_driver);
3349	quattro_sbus_free_irqs();
3350
3351	while (qfe_sbus_list) {
3352		struct quattro *qfe = qfe_sbus_list;
3353		struct quattro *next = qfe->next;
3354
3355		kfree(qfe);
3356
3357		qfe_sbus_list = next;
3358	}
3359}
3360#endif
3361
3362static int __init happy_meal_probe(void)
3363{
3364	int err = 0;
3365
3366#ifdef CONFIG_SBUS
3367	err = happy_meal_sbus_init();
3368#endif
3369#ifdef CONFIG_PCI
3370	if (!err) {
3371		err = happy_meal_pci_init();
3372#ifdef CONFIG_SBUS
3373		if (err)
3374			happy_meal_sbus_exit();
3375#endif
3376	}
3377#endif
3378
3379	return err;
3380}
3381
3382
3383static void __exit happy_meal_exit(void)
3384{
3385#ifdef CONFIG_SBUS
3386	happy_meal_sbus_exit();
3387#endif
3388#ifdef CONFIG_PCI
3389	happy_meal_pci_exit();
3390#endif
3391}
3392
3393module_init(happy_meal_probe);
3394module_exit(happy_meal_exit);