Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_sched.h"
   5
   6/**
   7 * ice_sched_add_root_node - Insert the Tx scheduler root node in SW DB
   8 * @pi: port information structure
   9 * @info: Scheduler element information from firmware
  10 *
  11 * This function inserts the root node of the scheduling tree topology
  12 * to the SW DB.
  13 */
  14static enum ice_status
  15ice_sched_add_root_node(struct ice_port_info *pi,
  16			struct ice_aqc_txsched_elem_data *info)
  17{
  18	struct ice_sched_node *root;
  19	struct ice_hw *hw;
  20
  21	if (!pi)
  22		return ICE_ERR_PARAM;
  23
  24	hw = pi->hw;
  25
  26	root = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*root), GFP_KERNEL);
  27	if (!root)
  28		return ICE_ERR_NO_MEMORY;
  29
  30	/* coverity[suspicious_sizeof] */
  31	root->children = devm_kcalloc(ice_hw_to_dev(hw), hw->max_children[0],
  32				      sizeof(*root), GFP_KERNEL);
  33	if (!root->children) {
  34		devm_kfree(ice_hw_to_dev(hw), root);
  35		return ICE_ERR_NO_MEMORY;
  36	}
  37
  38	memcpy(&root->info, info, sizeof(*info));
  39	pi->root = root;
  40	return 0;
  41}
  42
  43/**
  44 * ice_sched_find_node_by_teid - Find the Tx scheduler node in SW DB
  45 * @start_node: pointer to the starting ice_sched_node struct in a sub-tree
  46 * @teid: node TEID to search
  47 *
  48 * This function searches for a node matching the TEID in the scheduling tree
  49 * from the SW DB. The search is recursive and is restricted by the number of
  50 * layers it has searched through; stopping at the max supported layer.
  51 *
  52 * This function needs to be called when holding the port_info->sched_lock
  53 */
  54struct ice_sched_node *
  55ice_sched_find_node_by_teid(struct ice_sched_node *start_node, u32 teid)
  56{
  57	u16 i;
  58
  59	/* The TEID is same as that of the start_node */
  60	if (ICE_TXSCHED_GET_NODE_TEID(start_node) == teid)
  61		return start_node;
  62
  63	/* The node has no children or is at the max layer */
  64	if (!start_node->num_children ||
  65	    start_node->tx_sched_layer >= ICE_AQC_TOPO_MAX_LEVEL_NUM ||
  66	    start_node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF)
  67		return NULL;
  68
  69	/* Check if TEID matches to any of the children nodes */
  70	for (i = 0; i < start_node->num_children; i++)
  71		if (ICE_TXSCHED_GET_NODE_TEID(start_node->children[i]) == teid)
  72			return start_node->children[i];
  73
  74	/* Search within each child's sub-tree */
  75	for (i = 0; i < start_node->num_children; i++) {
  76		struct ice_sched_node *tmp;
  77
  78		tmp = ice_sched_find_node_by_teid(start_node->children[i],
  79						  teid);
  80		if (tmp)
  81			return tmp;
  82	}
  83
  84	return NULL;
  85}
  86
  87/**
  88 * ice_aqc_send_sched_elem_cmd - send scheduling elements cmd
  89 * @hw: pointer to the HW struct
  90 * @cmd_opc: cmd opcode
  91 * @elems_req: number of elements to request
  92 * @buf: pointer to buffer
  93 * @buf_size: buffer size in bytes
  94 * @elems_resp: returns total number of elements response
  95 * @cd: pointer to command details structure or NULL
  96 *
  97 * This function sends a scheduling elements cmd (cmd_opc)
  98 */
  99static enum ice_status
 100ice_aqc_send_sched_elem_cmd(struct ice_hw *hw, enum ice_adminq_opc cmd_opc,
 101			    u16 elems_req, void *buf, u16 buf_size,
 102			    u16 *elems_resp, struct ice_sq_cd *cd)
 103{
 104	struct ice_aqc_sched_elem_cmd *cmd;
 105	struct ice_aq_desc desc;
 106	enum ice_status status;
 107
 108	cmd = &desc.params.sched_elem_cmd;
 109	ice_fill_dflt_direct_cmd_desc(&desc, cmd_opc);
 110	cmd->num_elem_req = cpu_to_le16(elems_req);
 111	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 112	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 113	if (!status && elems_resp)
 114		*elems_resp = le16_to_cpu(cmd->num_elem_resp);
 115
 116	return status;
 117}
 118
 119/**
 120 * ice_aq_query_sched_elems - query scheduler elements
 121 * @hw: pointer to the HW struct
 122 * @elems_req: number of elements to query
 123 * @buf: pointer to buffer
 124 * @buf_size: buffer size in bytes
 125 * @elems_ret: returns total number of elements returned
 126 * @cd: pointer to command details structure or NULL
 127 *
 128 * Query scheduling elements (0x0404)
 129 */
 130enum ice_status
 131ice_aq_query_sched_elems(struct ice_hw *hw, u16 elems_req,
 132			 struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 133			 u16 *elems_ret, struct ice_sq_cd *cd)
 134{
 135	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_get_sched_elems,
 136					   elems_req, (void *)buf, buf_size,
 137					   elems_ret, cd);
 138}
 139
 140/**
 141 * ice_sched_add_node - Insert the Tx scheduler node in SW DB
 142 * @pi: port information structure
 143 * @layer: Scheduler layer of the node
 144 * @info: Scheduler element information from firmware
 145 *
 146 * This function inserts a scheduler node to the SW DB.
 147 */
 148enum ice_status
 149ice_sched_add_node(struct ice_port_info *pi, u8 layer,
 150		   struct ice_aqc_txsched_elem_data *info)
 151{
 152	struct ice_aqc_txsched_elem_data elem;
 153	struct ice_sched_node *parent;
 154	struct ice_sched_node *node;
 155	enum ice_status status;
 156	struct ice_hw *hw;
 157
 158	if (!pi)
 159		return ICE_ERR_PARAM;
 160
 161	hw = pi->hw;
 162
 163	/* A valid parent node should be there */
 164	parent = ice_sched_find_node_by_teid(pi->root,
 165					     le32_to_cpu(info->parent_teid));
 166	if (!parent) {
 167		ice_debug(hw, ICE_DBG_SCHED,
 168			  "Parent Node not found for parent_teid=0x%x\n",
 169			  le32_to_cpu(info->parent_teid));
 170		return ICE_ERR_PARAM;
 171	}
 172
 173	/* query the current node information from FW before adding it
 174	 * to the SW DB
 175	 */
 176	status = ice_sched_query_elem(hw, le32_to_cpu(info->node_teid), &elem);
 177	if (status)
 178		return status;
 179
 180	node = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*node), GFP_KERNEL);
 181	if (!node)
 182		return ICE_ERR_NO_MEMORY;
 183	if (hw->max_children[layer]) {
 184		/* coverity[suspicious_sizeof] */
 185		node->children = devm_kcalloc(ice_hw_to_dev(hw),
 186					      hw->max_children[layer],
 187					      sizeof(*node), GFP_KERNEL);
 188		if (!node->children) {
 189			devm_kfree(ice_hw_to_dev(hw), node);
 190			return ICE_ERR_NO_MEMORY;
 191		}
 192	}
 193
 194	node->in_use = true;
 195	node->parent = parent;
 196	node->tx_sched_layer = layer;
 197	parent->children[parent->num_children++] = node;
 198	node->info = elem;
 199	return 0;
 200}
 201
 202/**
 203 * ice_aq_delete_sched_elems - delete scheduler elements
 204 * @hw: pointer to the HW struct
 205 * @grps_req: number of groups to delete
 206 * @buf: pointer to buffer
 207 * @buf_size: buffer size in bytes
 208 * @grps_del: returns total number of elements deleted
 209 * @cd: pointer to command details structure or NULL
 210 *
 211 * Delete scheduling elements (0x040F)
 212 */
 213static enum ice_status
 214ice_aq_delete_sched_elems(struct ice_hw *hw, u16 grps_req,
 215			  struct ice_aqc_delete_elem *buf, u16 buf_size,
 216			  u16 *grps_del, struct ice_sq_cd *cd)
 217{
 218	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_delete_sched_elems,
 219					   grps_req, (void *)buf, buf_size,
 220					   grps_del, cd);
 221}
 222
 223/**
 224 * ice_sched_remove_elems - remove nodes from HW
 225 * @hw: pointer to the HW struct
 226 * @parent: pointer to the parent node
 227 * @num_nodes: number of nodes
 228 * @node_teids: array of node teids to be deleted
 229 *
 230 * This function remove nodes from HW
 231 */
 232static enum ice_status
 233ice_sched_remove_elems(struct ice_hw *hw, struct ice_sched_node *parent,
 234		       u16 num_nodes, u32 *node_teids)
 235{
 236	struct ice_aqc_delete_elem *buf;
 237	u16 i, num_groups_removed = 0;
 238	enum ice_status status;
 239	u16 buf_size;
 240
 241	buf_size = struct_size(buf, teid, num_nodes);
 242	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 243	if (!buf)
 244		return ICE_ERR_NO_MEMORY;
 245
 246	buf->hdr.parent_teid = parent->info.node_teid;
 247	buf->hdr.num_elems = cpu_to_le16(num_nodes);
 248	for (i = 0; i < num_nodes; i++)
 249		buf->teid[i] = cpu_to_le32(node_teids[i]);
 250
 251	status = ice_aq_delete_sched_elems(hw, 1, buf, buf_size,
 252					   &num_groups_removed, NULL);
 253	if (status || num_groups_removed != 1)
 254		ice_debug(hw, ICE_DBG_SCHED, "remove node failed FW error %d\n",
 255			  hw->adminq.sq_last_status);
 256
 257	devm_kfree(ice_hw_to_dev(hw), buf);
 258	return status;
 259}
 260
 261/**
 262 * ice_sched_get_first_node - get the first node of the given layer
 263 * @pi: port information structure
 264 * @parent: pointer the base node of the subtree
 265 * @layer: layer number
 266 *
 267 * This function retrieves the first node of the given layer from the subtree
 268 */
 269static struct ice_sched_node *
 270ice_sched_get_first_node(struct ice_port_info *pi,
 271			 struct ice_sched_node *parent, u8 layer)
 272{
 273	return pi->sib_head[parent->tc_num][layer];
 274}
 275
 276/**
 277 * ice_sched_get_tc_node - get pointer to TC node
 278 * @pi: port information structure
 279 * @tc: TC number
 280 *
 281 * This function returns the TC node pointer
 282 */
 283struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc)
 284{
 285	u8 i;
 286
 287	if (!pi || !pi->root)
 288		return NULL;
 289	for (i = 0; i < pi->root->num_children; i++)
 290		if (pi->root->children[i]->tc_num == tc)
 291			return pi->root->children[i];
 292	return NULL;
 293}
 294
 295/**
 296 * ice_free_sched_node - Free a Tx scheduler node from SW DB
 297 * @pi: port information structure
 298 * @node: pointer to the ice_sched_node struct
 299 *
 300 * This function frees up a node from SW DB as well as from HW
 301 *
 302 * This function needs to be called with the port_info->sched_lock held
 303 */
 304void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node)
 305{
 306	struct ice_sched_node *parent;
 307	struct ice_hw *hw = pi->hw;
 308	u8 i, j;
 309
 310	/* Free the children before freeing up the parent node
 311	 * The parent array is updated below and that shifts the nodes
 312	 * in the array. So always pick the first child if num children > 0
 313	 */
 314	while (node->num_children)
 315		ice_free_sched_node(pi, node->children[0]);
 316
 317	/* Leaf, TC and root nodes can't be deleted by SW */
 318	if (node->tx_sched_layer >= hw->sw_entry_point_layer &&
 319	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
 320	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT &&
 321	    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF) {
 322		u32 teid = le32_to_cpu(node->info.node_teid);
 323
 324		ice_sched_remove_elems(hw, node->parent, 1, &teid);
 325	}
 326	parent = node->parent;
 327	/* root has no parent */
 328	if (parent) {
 329		struct ice_sched_node *p;
 330
 331		/* update the parent */
 332		for (i = 0; i < parent->num_children; i++)
 333			if (parent->children[i] == node) {
 334				for (j = i + 1; j < parent->num_children; j++)
 335					parent->children[j - 1] =
 336						parent->children[j];
 337				parent->num_children--;
 338				break;
 339			}
 340
 341		p = ice_sched_get_first_node(pi, node, node->tx_sched_layer);
 342		while (p) {
 343			if (p->sibling == node) {
 344				p->sibling = node->sibling;
 345				break;
 346			}
 347			p = p->sibling;
 348		}
 349
 350		/* update the sibling head if head is getting removed */
 351		if (pi->sib_head[node->tc_num][node->tx_sched_layer] == node)
 352			pi->sib_head[node->tc_num][node->tx_sched_layer] =
 353				node->sibling;
 354	}
 355
 356	/* leaf nodes have no children */
 357	if (node->children)
 358		devm_kfree(ice_hw_to_dev(hw), node->children);
 359	devm_kfree(ice_hw_to_dev(hw), node);
 360}
 361
 362/**
 363 * ice_aq_get_dflt_topo - gets default scheduler topology
 364 * @hw: pointer to the HW struct
 365 * @lport: logical port number
 366 * @buf: pointer to buffer
 367 * @buf_size: buffer size in bytes
 368 * @num_branches: returns total number of queue to port branches
 369 * @cd: pointer to command details structure or NULL
 370 *
 371 * Get default scheduler topology (0x400)
 372 */
 373static enum ice_status
 374ice_aq_get_dflt_topo(struct ice_hw *hw, u8 lport,
 375		     struct ice_aqc_get_topo_elem *buf, u16 buf_size,
 376		     u8 *num_branches, struct ice_sq_cd *cd)
 377{
 378	struct ice_aqc_get_topo *cmd;
 379	struct ice_aq_desc desc;
 380	enum ice_status status;
 381
 382	cmd = &desc.params.get_topo;
 383	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_dflt_topo);
 384	cmd->port_num = lport;
 385	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 386	if (!status && num_branches)
 387		*num_branches = cmd->num_branches;
 388
 389	return status;
 390}
 391
 392/**
 393 * ice_aq_add_sched_elems - adds scheduling element
 394 * @hw: pointer to the HW struct
 395 * @grps_req: the number of groups that are requested to be added
 396 * @buf: pointer to buffer
 397 * @buf_size: buffer size in bytes
 398 * @grps_added: returns total number of groups added
 399 * @cd: pointer to command details structure or NULL
 400 *
 401 * Add scheduling elements (0x0401)
 402 */
 403static enum ice_status
 404ice_aq_add_sched_elems(struct ice_hw *hw, u16 grps_req,
 405		       struct ice_aqc_add_elem *buf, u16 buf_size,
 406		       u16 *grps_added, struct ice_sq_cd *cd)
 407{
 408	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_add_sched_elems,
 409					   grps_req, (void *)buf, buf_size,
 410					   grps_added, cd);
 411}
 412
 413/**
 414 * ice_aq_cfg_sched_elems - configures scheduler elements
 415 * @hw: pointer to the HW struct
 416 * @elems_req: number of elements to configure
 417 * @buf: pointer to buffer
 418 * @buf_size: buffer size in bytes
 419 * @elems_cfgd: returns total number of elements configured
 420 * @cd: pointer to command details structure or NULL
 421 *
 422 * Configure scheduling elements (0x0403)
 423 */
 424static enum ice_status
 425ice_aq_cfg_sched_elems(struct ice_hw *hw, u16 elems_req,
 426		       struct ice_aqc_txsched_elem_data *buf, u16 buf_size,
 427		       u16 *elems_cfgd, struct ice_sq_cd *cd)
 428{
 429	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_cfg_sched_elems,
 430					   elems_req, (void *)buf, buf_size,
 431					   elems_cfgd, cd);
 432}
 433
 434/**
 435 * ice_aq_suspend_sched_elems - suspend scheduler elements
 436 * @hw: pointer to the HW struct
 437 * @elems_req: number of elements to suspend
 438 * @buf: pointer to buffer
 439 * @buf_size: buffer size in bytes
 440 * @elems_ret: returns total number of elements suspended
 441 * @cd: pointer to command details structure or NULL
 442 *
 443 * Suspend scheduling elements (0x0409)
 444 */
 445static enum ice_status
 446ice_aq_suspend_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 447			   u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 448{
 449	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_suspend_sched_elems,
 450					   elems_req, (void *)buf, buf_size,
 451					   elems_ret, cd);
 452}
 453
 454/**
 455 * ice_aq_resume_sched_elems - resume scheduler elements
 456 * @hw: pointer to the HW struct
 457 * @elems_req: number of elements to resume
 458 * @buf: pointer to buffer
 459 * @buf_size: buffer size in bytes
 460 * @elems_ret: returns total number of elements resumed
 461 * @cd: pointer to command details structure or NULL
 462 *
 463 * resume scheduling elements (0x040A)
 464 */
 465static enum ice_status
 466ice_aq_resume_sched_elems(struct ice_hw *hw, u16 elems_req, __le32 *buf,
 467			  u16 buf_size, u16 *elems_ret, struct ice_sq_cd *cd)
 468{
 469	return ice_aqc_send_sched_elem_cmd(hw, ice_aqc_opc_resume_sched_elems,
 470					   elems_req, (void *)buf, buf_size,
 471					   elems_ret, cd);
 472}
 473
 474/**
 475 * ice_aq_query_sched_res - query scheduler resource
 476 * @hw: pointer to the HW struct
 477 * @buf_size: buffer size in bytes
 478 * @buf: pointer to buffer
 479 * @cd: pointer to command details structure or NULL
 480 *
 481 * Query scheduler resource allocation (0x0412)
 482 */
 483static enum ice_status
 484ice_aq_query_sched_res(struct ice_hw *hw, u16 buf_size,
 485		       struct ice_aqc_query_txsched_res_resp *buf,
 486		       struct ice_sq_cd *cd)
 487{
 488	struct ice_aq_desc desc;
 489
 490	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_query_sched_res);
 491	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 492}
 493
 494/**
 495 * ice_sched_suspend_resume_elems - suspend or resume HW nodes
 496 * @hw: pointer to the HW struct
 497 * @num_nodes: number of nodes
 498 * @node_teids: array of node teids to be suspended or resumed
 499 * @suspend: true means suspend / false means resume
 500 *
 501 * This function suspends or resumes HW nodes
 502 */
 503static enum ice_status
 504ice_sched_suspend_resume_elems(struct ice_hw *hw, u8 num_nodes, u32 *node_teids,
 505			       bool suspend)
 506{
 507	u16 i, buf_size, num_elem_ret = 0;
 508	enum ice_status status;
 509	__le32 *buf;
 510
 511	buf_size = sizeof(*buf) * num_nodes;
 512	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 513	if (!buf)
 514		return ICE_ERR_NO_MEMORY;
 515
 516	for (i = 0; i < num_nodes; i++)
 517		buf[i] = cpu_to_le32(node_teids[i]);
 518
 519	if (suspend)
 520		status = ice_aq_suspend_sched_elems(hw, num_nodes, buf,
 521						    buf_size, &num_elem_ret,
 522						    NULL);
 523	else
 524		status = ice_aq_resume_sched_elems(hw, num_nodes, buf,
 525						   buf_size, &num_elem_ret,
 526						   NULL);
 527	if (status || num_elem_ret != num_nodes)
 528		ice_debug(hw, ICE_DBG_SCHED, "suspend/resume failed\n");
 529
 530	devm_kfree(ice_hw_to_dev(hw), buf);
 531	return status;
 532}
 533
 534/**
 535 * ice_alloc_lan_q_ctx - allocate LAN queue contexts for the given VSI and TC
 536 * @hw: pointer to the HW struct
 537 * @vsi_handle: VSI handle
 538 * @tc: TC number
 539 * @new_numqs: number of queues
 540 */
 541static enum ice_status
 542ice_alloc_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 new_numqs)
 543{
 544	struct ice_vsi_ctx *vsi_ctx;
 545	struct ice_q_ctx *q_ctx;
 546
 547	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
 548	if (!vsi_ctx)
 549		return ICE_ERR_PARAM;
 550	/* allocate LAN queue contexts */
 551	if (!vsi_ctx->lan_q_ctx[tc]) {
 552		vsi_ctx->lan_q_ctx[tc] = devm_kcalloc(ice_hw_to_dev(hw),
 553						      new_numqs,
 554						      sizeof(*q_ctx),
 555						      GFP_KERNEL);
 556		if (!vsi_ctx->lan_q_ctx[tc])
 557			return ICE_ERR_NO_MEMORY;
 558		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 559		return 0;
 560	}
 561	/* num queues are increased, update the queue contexts */
 562	if (new_numqs > vsi_ctx->num_lan_q_entries[tc]) {
 563		u16 prev_num = vsi_ctx->num_lan_q_entries[tc];
 564
 565		q_ctx = devm_kcalloc(ice_hw_to_dev(hw), new_numqs,
 566				     sizeof(*q_ctx), GFP_KERNEL);
 567		if (!q_ctx)
 568			return ICE_ERR_NO_MEMORY;
 569		memcpy(q_ctx, vsi_ctx->lan_q_ctx[tc],
 570		       prev_num * sizeof(*q_ctx));
 571		devm_kfree(ice_hw_to_dev(hw), vsi_ctx->lan_q_ctx[tc]);
 572		vsi_ctx->lan_q_ctx[tc] = q_ctx;
 573		vsi_ctx->num_lan_q_entries[tc] = new_numqs;
 574	}
 575	return 0;
 576}
 577
 578/**
 579 * ice_aq_rl_profile - performs a rate limiting task
 580 * @hw: pointer to the HW struct
 581 * @opcode: opcode for add, query, or remove profile(s)
 582 * @num_profiles: the number of profiles
 583 * @buf: pointer to buffer
 584 * @buf_size: buffer size in bytes
 585 * @num_processed: number of processed add or remove profile(s) to return
 586 * @cd: pointer to command details structure
 587 *
 588 * RL profile function to add, query, or remove profile(s)
 589 */
 590static enum ice_status
 591ice_aq_rl_profile(struct ice_hw *hw, enum ice_adminq_opc opcode,
 592		  u16 num_profiles, struct ice_aqc_rl_profile_elem *buf,
 593		  u16 buf_size, u16 *num_processed, struct ice_sq_cd *cd)
 594{
 595	struct ice_aqc_rl_profile *cmd;
 596	struct ice_aq_desc desc;
 597	enum ice_status status;
 598
 599	cmd = &desc.params.rl_profile;
 600
 601	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
 602	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 603	cmd->num_profiles = cpu_to_le16(num_profiles);
 604	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 605	if (!status && num_processed)
 606		*num_processed = le16_to_cpu(cmd->num_processed);
 607	return status;
 608}
 609
 610/**
 611 * ice_aq_add_rl_profile - adds rate limiting profile(s)
 612 * @hw: pointer to the HW struct
 613 * @num_profiles: the number of profile(s) to be add
 614 * @buf: pointer to buffer
 615 * @buf_size: buffer size in bytes
 616 * @num_profiles_added: total number of profiles added to return
 617 * @cd: pointer to command details structure
 618 *
 619 * Add RL profile (0x0410)
 620 */
 621static enum ice_status
 622ice_aq_add_rl_profile(struct ice_hw *hw, u16 num_profiles,
 623		      struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 624		      u16 *num_profiles_added, struct ice_sq_cd *cd)
 625{
 626	return ice_aq_rl_profile(hw, ice_aqc_opc_add_rl_profiles, num_profiles,
 627				 buf, buf_size, num_profiles_added, cd);
 628}
 629
 630/**
 631 * ice_aq_remove_rl_profile - removes RL profile(s)
 632 * @hw: pointer to the HW struct
 633 * @num_profiles: the number of profile(s) to remove
 634 * @buf: pointer to buffer
 635 * @buf_size: buffer size in bytes
 636 * @num_profiles_removed: total number of profiles removed to return
 637 * @cd: pointer to command details structure or NULL
 638 *
 639 * Remove RL profile (0x0415)
 640 */
 641static enum ice_status
 642ice_aq_remove_rl_profile(struct ice_hw *hw, u16 num_profiles,
 643			 struct ice_aqc_rl_profile_elem *buf, u16 buf_size,
 644			 u16 *num_profiles_removed, struct ice_sq_cd *cd)
 645{
 646	return ice_aq_rl_profile(hw, ice_aqc_opc_remove_rl_profiles,
 647				 num_profiles, buf, buf_size,
 648				 num_profiles_removed, cd);
 649}
 650
 651/**
 652 * ice_sched_del_rl_profile - remove RL profile
 653 * @hw: pointer to the HW struct
 654 * @rl_info: rate limit profile information
 655 *
 656 * If the profile ID is not referenced anymore, it removes profile ID with
 657 * its associated parameters from HW DB,and locally. The caller needs to
 658 * hold scheduler lock.
 659 */
 660static enum ice_status
 661ice_sched_del_rl_profile(struct ice_hw *hw,
 662			 struct ice_aqc_rl_profile_info *rl_info)
 663{
 664	struct ice_aqc_rl_profile_elem *buf;
 665	u16 num_profiles_removed;
 666	enum ice_status status;
 667	u16 num_profiles = 1;
 668
 669	if (rl_info->prof_id_ref != 0)
 670		return ICE_ERR_IN_USE;
 671
 672	/* Safe to remove profile ID */
 673	buf = &rl_info->profile;
 674	status = ice_aq_remove_rl_profile(hw, num_profiles, buf, sizeof(*buf),
 675					  &num_profiles_removed, NULL);
 676	if (status || num_profiles_removed != num_profiles)
 677		return ICE_ERR_CFG;
 678
 679	/* Delete stale entry now */
 680	list_del(&rl_info->list_entry);
 681	devm_kfree(ice_hw_to_dev(hw), rl_info);
 682	return status;
 683}
 684
 685/**
 686 * ice_sched_clear_rl_prof - clears RL prof entries
 687 * @pi: port information structure
 688 *
 689 * This function removes all RL profile from HW as well as from SW DB.
 690 */
 691static void ice_sched_clear_rl_prof(struct ice_port_info *pi)
 692{
 693	u16 ln;
 694
 695	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
 696		struct ice_aqc_rl_profile_info *rl_prof_elem;
 697		struct ice_aqc_rl_profile_info *rl_prof_tmp;
 698
 699		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
 700					 &pi->rl_prof_list[ln], list_entry) {
 701			struct ice_hw *hw = pi->hw;
 702			enum ice_status status;
 703
 704			rl_prof_elem->prof_id_ref = 0;
 705			status = ice_sched_del_rl_profile(hw, rl_prof_elem);
 706			if (status) {
 707				ice_debug(hw, ICE_DBG_SCHED,
 708					  "Remove rl profile failed\n");
 709				/* On error, free mem required */
 710				list_del(&rl_prof_elem->list_entry);
 711				devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
 712			}
 713		}
 714	}
 715}
 716
 717/**
 718 * ice_sched_clear_agg - clears the aggregator related information
 719 * @hw: pointer to the hardware structure
 720 *
 721 * This function removes aggregator list and free up aggregator related memory
 722 * previously allocated.
 723 */
 724void ice_sched_clear_agg(struct ice_hw *hw)
 725{
 726	struct ice_sched_agg_info *agg_info;
 727	struct ice_sched_agg_info *atmp;
 728
 729	list_for_each_entry_safe(agg_info, atmp, &hw->agg_list, list_entry) {
 730		struct ice_sched_agg_vsi_info *agg_vsi_info;
 731		struct ice_sched_agg_vsi_info *vtmp;
 732
 733		list_for_each_entry_safe(agg_vsi_info, vtmp,
 734					 &agg_info->agg_vsi_list, list_entry) {
 735			list_del(&agg_vsi_info->list_entry);
 736			devm_kfree(ice_hw_to_dev(hw), agg_vsi_info);
 737		}
 738		list_del(&agg_info->list_entry);
 739		devm_kfree(ice_hw_to_dev(hw), agg_info);
 740	}
 741}
 742
 743/**
 744 * ice_sched_clear_tx_topo - clears the scheduler tree nodes
 745 * @pi: port information structure
 746 *
 747 * This function removes all the nodes from HW as well as from SW DB.
 748 */
 749static void ice_sched_clear_tx_topo(struct ice_port_info *pi)
 750{
 751	if (!pi)
 752		return;
 753	/* remove RL profiles related lists */
 754	ice_sched_clear_rl_prof(pi);
 755	if (pi->root) {
 756		ice_free_sched_node(pi, pi->root);
 757		pi->root = NULL;
 758	}
 759}
 760
 761/**
 762 * ice_sched_clear_port - clear the scheduler elements from SW DB for a port
 763 * @pi: port information structure
 764 *
 765 * Cleanup scheduling elements from SW DB
 766 */
 767void ice_sched_clear_port(struct ice_port_info *pi)
 768{
 769	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
 770		return;
 771
 772	pi->port_state = ICE_SCHED_PORT_STATE_INIT;
 773	mutex_lock(&pi->sched_lock);
 774	ice_sched_clear_tx_topo(pi);
 775	mutex_unlock(&pi->sched_lock);
 776	mutex_destroy(&pi->sched_lock);
 777}
 778
 779/**
 780 * ice_sched_cleanup_all - cleanup scheduler elements from SW DB for all ports
 781 * @hw: pointer to the HW struct
 782 *
 783 * Cleanup scheduling elements from SW DB for all the ports
 784 */
 785void ice_sched_cleanup_all(struct ice_hw *hw)
 786{
 787	if (!hw)
 788		return;
 789
 790	if (hw->layer_info) {
 791		devm_kfree(ice_hw_to_dev(hw), hw->layer_info);
 792		hw->layer_info = NULL;
 793	}
 794
 795	ice_sched_clear_port(hw->port_info);
 796
 797	hw->num_tx_sched_layers = 0;
 798	hw->num_tx_sched_phys_layers = 0;
 799	hw->flattened_layers = 0;
 800	hw->max_cgds = 0;
 801}
 802
 803/**
 804 * ice_sched_add_elems - add nodes to HW and SW DB
 805 * @pi: port information structure
 806 * @tc_node: pointer to the branch node
 807 * @parent: pointer to the parent node
 808 * @layer: layer number to add nodes
 809 * @num_nodes: number of nodes
 810 * @num_nodes_added: pointer to num nodes added
 811 * @first_node_teid: if new nodes are added then return the TEID of first node
 812 *
 813 * This function add nodes to HW as well as to SW DB for a given layer
 814 */
 815static enum ice_status
 816ice_sched_add_elems(struct ice_port_info *pi, struct ice_sched_node *tc_node,
 817		    struct ice_sched_node *parent, u8 layer, u16 num_nodes,
 818		    u16 *num_nodes_added, u32 *first_node_teid)
 819{
 820	struct ice_sched_node *prev, *new_node;
 821	struct ice_aqc_add_elem *buf;
 822	u16 i, num_groups_added = 0;
 823	enum ice_status status = 0;
 824	struct ice_hw *hw = pi->hw;
 825	size_t buf_size;
 826	u32 teid;
 827
 828	buf_size = struct_size(buf, generic, num_nodes);
 829	buf = devm_kzalloc(ice_hw_to_dev(hw), buf_size, GFP_KERNEL);
 830	if (!buf)
 831		return ICE_ERR_NO_MEMORY;
 832
 833	buf->hdr.parent_teid = parent->info.node_teid;
 834	buf->hdr.num_elems = cpu_to_le16(num_nodes);
 835	for (i = 0; i < num_nodes; i++) {
 836		buf->generic[i].parent_teid = parent->info.node_teid;
 837		buf->generic[i].data.elem_type = ICE_AQC_ELEM_TYPE_SE_GENERIC;
 838		buf->generic[i].data.valid_sections =
 839			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
 840			ICE_AQC_ELEM_VALID_EIR;
 841		buf->generic[i].data.generic = 0;
 842		buf->generic[i].data.cir_bw.bw_profile_idx =
 843			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
 844		buf->generic[i].data.cir_bw.bw_alloc =
 845			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
 846		buf->generic[i].data.eir_bw.bw_profile_idx =
 847			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
 848		buf->generic[i].data.eir_bw.bw_alloc =
 849			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
 850	}
 851
 852	status = ice_aq_add_sched_elems(hw, 1, buf, buf_size,
 853					&num_groups_added, NULL);
 854	if (status || num_groups_added != 1) {
 855		ice_debug(hw, ICE_DBG_SCHED, "add node failed FW Error %d\n",
 856			  hw->adminq.sq_last_status);
 857		devm_kfree(ice_hw_to_dev(hw), buf);
 858		return ICE_ERR_CFG;
 859	}
 860
 861	*num_nodes_added = num_nodes;
 862	/* add nodes to the SW DB */
 863	for (i = 0; i < num_nodes; i++) {
 864		status = ice_sched_add_node(pi, layer, &buf->generic[i]);
 865		if (status) {
 866			ice_debug(hw, ICE_DBG_SCHED,
 867				  "add nodes in SW DB failed status =%d\n",
 868				  status);
 869			break;
 870		}
 871
 872		teid = le32_to_cpu(buf->generic[i].node_teid);
 873		new_node = ice_sched_find_node_by_teid(parent, teid);
 874		if (!new_node) {
 875			ice_debug(hw, ICE_DBG_SCHED,
 876				  "Node is missing for teid =%d\n", teid);
 877			break;
 878		}
 879
 880		new_node->sibling = NULL;
 881		new_node->tc_num = tc_node->tc_num;
 882
 883		/* add it to previous node sibling pointer */
 884		/* Note: siblings are not linked across branches */
 885		prev = ice_sched_get_first_node(pi, tc_node, layer);
 886		if (prev && prev != new_node) {
 887			while (prev->sibling)
 888				prev = prev->sibling;
 889			prev->sibling = new_node;
 890		}
 891
 892		/* initialize the sibling head */
 893		if (!pi->sib_head[tc_node->tc_num][layer])
 894			pi->sib_head[tc_node->tc_num][layer] = new_node;
 895
 896		if (i == 0)
 897			*first_node_teid = teid;
 898	}
 899
 900	devm_kfree(ice_hw_to_dev(hw), buf);
 901	return status;
 902}
 903
 904/**
 905 * ice_sched_add_nodes_to_layer - Add nodes to a given layer
 906 * @pi: port information structure
 907 * @tc_node: pointer to TC node
 908 * @parent: pointer to parent node
 909 * @layer: layer number to add nodes
 910 * @num_nodes: number of nodes to be added
 911 * @first_node_teid: pointer to the first node TEID
 912 * @num_nodes_added: pointer to number of nodes added
 913 *
 914 * This function add nodes to a given layer.
 915 */
 916static enum ice_status
 917ice_sched_add_nodes_to_layer(struct ice_port_info *pi,
 918			     struct ice_sched_node *tc_node,
 919			     struct ice_sched_node *parent, u8 layer,
 920			     u16 num_nodes, u32 *first_node_teid,
 921			     u16 *num_nodes_added)
 922{
 923	u32 *first_teid_ptr = first_node_teid;
 924	u16 new_num_nodes, max_child_nodes;
 925	enum ice_status status = 0;
 926	struct ice_hw *hw = pi->hw;
 927	u16 num_added = 0;
 928	u32 temp;
 929
 930	*num_nodes_added = 0;
 931
 932	if (!num_nodes)
 933		return status;
 934
 935	if (!parent || layer < hw->sw_entry_point_layer)
 936		return ICE_ERR_PARAM;
 937
 938	/* max children per node per layer */
 939	max_child_nodes = hw->max_children[parent->tx_sched_layer];
 940
 941	/* current number of children + required nodes exceed max children ? */
 942	if ((parent->num_children + num_nodes) > max_child_nodes) {
 943		/* Fail if the parent is a TC node */
 944		if (parent == tc_node)
 945			return ICE_ERR_CFG;
 946
 947		/* utilize all the spaces if the parent is not full */
 948		if (parent->num_children < max_child_nodes) {
 949			new_num_nodes = max_child_nodes - parent->num_children;
 950			/* this recursion is intentional, and wouldn't
 951			 * go more than 2 calls
 952			 */
 953			status = ice_sched_add_nodes_to_layer(pi, tc_node,
 954							      parent, layer,
 955							      new_num_nodes,
 956							      first_node_teid,
 957							      &num_added);
 958			if (status)
 959				return status;
 960
 961			*num_nodes_added += num_added;
 962		}
 963		/* Don't modify the first node TEID memory if the first node was
 964		 * added already in the above call. Instead send some temp
 965		 * memory for all other recursive calls.
 966		 */
 967		if (num_added)
 968			first_teid_ptr = &temp;
 969
 970		new_num_nodes = num_nodes - num_added;
 971
 972		/* This parent is full, try the next sibling */
 973		parent = parent->sibling;
 974
 975		/* this recursion is intentional, for 1024 queues
 976		 * per VSI, it goes max of 16 iterations.
 977		 * 1024 / 8 = 128 layer 8 nodes
 978		 * 128 /8 = 16 (add 8 nodes per iteration)
 979		 */
 980		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
 981						      layer, new_num_nodes,
 982						      first_teid_ptr,
 983						      &num_added);
 984		*num_nodes_added += num_added;
 985		return status;
 986	}
 987
 988	status = ice_sched_add_elems(pi, tc_node, parent, layer, num_nodes,
 989				     num_nodes_added, first_node_teid);
 990	return status;
 991}
 992
 993/**
 994 * ice_sched_get_qgrp_layer - get the current queue group layer number
 995 * @hw: pointer to the HW struct
 996 *
 997 * This function returns the current queue group layer number
 998 */
 999static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
1000{
1001	/* It's always total layers - 1, the array is 0 relative so -2 */
1002	return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
1003}
1004
1005/**
1006 * ice_sched_get_vsi_layer - get the current VSI layer number
1007 * @hw: pointer to the HW struct
1008 *
1009 * This function returns the current VSI layer number
1010 */
1011static u8 ice_sched_get_vsi_layer(struct ice_hw *hw)
1012{
1013	/* Num Layers       VSI layer
1014	 *     9               6
1015	 *     7               4
1016	 *     5 or less       sw_entry_point_layer
1017	 */
1018	/* calculate the VSI layer based on number of layers. */
1019	if (hw->num_tx_sched_layers > ICE_VSI_LAYER_OFFSET + 1) {
1020		u8 layer = hw->num_tx_sched_layers - ICE_VSI_LAYER_OFFSET;
1021
1022		if (layer > hw->sw_entry_point_layer)
1023			return layer;
1024	}
1025	return hw->sw_entry_point_layer;
1026}
1027
1028/**
1029 * ice_rm_dflt_leaf_node - remove the default leaf node in the tree
1030 * @pi: port information structure
1031 *
1032 * This function removes the leaf node that was created by the FW
1033 * during initialization
1034 */
1035static void ice_rm_dflt_leaf_node(struct ice_port_info *pi)
1036{
1037	struct ice_sched_node *node;
1038
1039	node = pi->root;
1040	while (node) {
1041		if (!node->num_children)
1042			break;
1043		node = node->children[0];
1044	}
1045	if (node && node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF) {
1046		u32 teid = le32_to_cpu(node->info.node_teid);
1047		enum ice_status status;
1048
1049		/* remove the default leaf node */
1050		status = ice_sched_remove_elems(pi->hw, node->parent, 1, &teid);
1051		if (!status)
1052			ice_free_sched_node(pi, node);
1053	}
1054}
1055
1056/**
1057 * ice_sched_rm_dflt_nodes - free the default nodes in the tree
1058 * @pi: port information structure
1059 *
1060 * This function frees all the nodes except root and TC that were created by
1061 * the FW during initialization
1062 */
1063static void ice_sched_rm_dflt_nodes(struct ice_port_info *pi)
1064{
1065	struct ice_sched_node *node;
1066
1067	ice_rm_dflt_leaf_node(pi);
1068
1069	/* remove the default nodes except TC and root nodes */
1070	node = pi->root;
1071	while (node) {
1072		if (node->tx_sched_layer >= pi->hw->sw_entry_point_layer &&
1073		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_TC &&
1074		    node->info.data.elem_type != ICE_AQC_ELEM_TYPE_ROOT_PORT) {
1075			ice_free_sched_node(pi, node);
1076			break;
1077		}
1078
1079		if (!node->num_children)
1080			break;
1081		node = node->children[0];
1082	}
1083}
1084
1085/**
1086 * ice_sched_init_port - Initialize scheduler by querying information from FW
1087 * @pi: port info structure for the tree to cleanup
1088 *
1089 * This function is the initial call to find the total number of Tx scheduler
1090 * resources, default topology created by firmware and storing the information
1091 * in SW DB.
1092 */
1093enum ice_status ice_sched_init_port(struct ice_port_info *pi)
1094{
1095	struct ice_aqc_get_topo_elem *buf;
1096	enum ice_status status;
1097	struct ice_hw *hw;
1098	u8 num_branches;
1099	u16 num_elems;
1100	u8 i, j;
1101
1102	if (!pi)
1103		return ICE_ERR_PARAM;
1104	hw = pi->hw;
1105
1106	/* Query the Default Topology from FW */
1107	buf = devm_kzalloc(ice_hw_to_dev(hw), ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
1108	if (!buf)
1109		return ICE_ERR_NO_MEMORY;
1110
1111	/* Query default scheduling tree topology */
1112	status = ice_aq_get_dflt_topo(hw, pi->lport, buf, ICE_AQ_MAX_BUF_LEN,
1113				      &num_branches, NULL);
1114	if (status)
1115		goto err_init_port;
1116
1117	/* num_branches should be between 1-8 */
1118	if (num_branches < 1 || num_branches > ICE_TXSCHED_MAX_BRANCHES) {
1119		ice_debug(hw, ICE_DBG_SCHED, "num_branches unexpected %d\n",
1120			  num_branches);
1121		status = ICE_ERR_PARAM;
1122		goto err_init_port;
1123	}
1124
1125	/* get the number of elements on the default/first branch */
1126	num_elems = le16_to_cpu(buf[0].hdr.num_elems);
1127
1128	/* num_elems should always be between 1-9 */
1129	if (num_elems < 1 || num_elems > ICE_AQC_TOPO_MAX_LEVEL_NUM) {
1130		ice_debug(hw, ICE_DBG_SCHED, "num_elems unexpected %d\n",
1131			  num_elems);
1132		status = ICE_ERR_PARAM;
1133		goto err_init_port;
1134	}
1135
1136	/* If the last node is a leaf node then the index of the queue group
1137	 * layer is two less than the number of elements.
1138	 */
1139	if (num_elems > 2 && buf[0].generic[num_elems - 1].data.elem_type ==
1140	    ICE_AQC_ELEM_TYPE_LEAF)
1141		pi->last_node_teid =
1142			le32_to_cpu(buf[0].generic[num_elems - 2].node_teid);
1143	else
1144		pi->last_node_teid =
1145			le32_to_cpu(buf[0].generic[num_elems - 1].node_teid);
1146
1147	/* Insert the Tx Sched root node */
1148	status = ice_sched_add_root_node(pi, &buf[0].generic[0]);
1149	if (status)
1150		goto err_init_port;
1151
1152	/* Parse the default tree and cache the information */
1153	for (i = 0; i < num_branches; i++) {
1154		num_elems = le16_to_cpu(buf[i].hdr.num_elems);
1155
1156		/* Skip root element as already inserted */
1157		for (j = 1; j < num_elems; j++) {
1158			/* update the sw entry point */
1159			if (buf[0].generic[j].data.elem_type ==
1160			    ICE_AQC_ELEM_TYPE_ENTRY_POINT)
1161				hw->sw_entry_point_layer = j;
1162
1163			status = ice_sched_add_node(pi, j, &buf[i].generic[j]);
1164			if (status)
1165				goto err_init_port;
1166		}
1167	}
1168
1169	/* Remove the default nodes. */
1170	if (pi->root)
1171		ice_sched_rm_dflt_nodes(pi);
1172
1173	/* initialize the port for handling the scheduler tree */
1174	pi->port_state = ICE_SCHED_PORT_STATE_READY;
1175	mutex_init(&pi->sched_lock);
1176	for (i = 0; i < ICE_AQC_TOPO_MAX_LEVEL_NUM; i++)
1177		INIT_LIST_HEAD(&pi->rl_prof_list[i]);
1178
1179err_init_port:
1180	if (status && pi->root) {
1181		ice_free_sched_node(pi, pi->root);
1182		pi->root = NULL;
1183	}
1184
1185	devm_kfree(ice_hw_to_dev(hw), buf);
1186	return status;
1187}
1188
1189/**
1190 * ice_sched_query_res_alloc - query the FW for num of logical sched layers
1191 * @hw: pointer to the HW struct
1192 *
1193 * query FW for allocated scheduler resources and store in HW struct
1194 */
1195enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
1196{
1197	struct ice_aqc_query_txsched_res_resp *buf;
1198	enum ice_status status = 0;
1199	__le16 max_sibl;
1200	u16 i;
1201
1202	if (hw->layer_info)
1203		return status;
1204
1205	buf = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*buf), GFP_KERNEL);
1206	if (!buf)
1207		return ICE_ERR_NO_MEMORY;
1208
1209	status = ice_aq_query_sched_res(hw, sizeof(*buf), buf, NULL);
1210	if (status)
1211		goto sched_query_out;
1212
1213	hw->num_tx_sched_layers = le16_to_cpu(buf->sched_props.logical_levels);
1214	hw->num_tx_sched_phys_layers =
1215		le16_to_cpu(buf->sched_props.phys_levels);
1216	hw->flattened_layers = buf->sched_props.flattening_bitmap;
1217	hw->max_cgds = buf->sched_props.max_pf_cgds;
1218
1219	/* max sibling group size of current layer refers to the max children
1220	 * of the below layer node.
1221	 * layer 1 node max children will be layer 2 max sibling group size
1222	 * layer 2 node max children will be layer 3 max sibling group size
1223	 * and so on. This array will be populated from root (index 0) to
1224	 * qgroup layer 7. Leaf node has no children.
1225	 */
1226	for (i = 0; i < hw->num_tx_sched_layers - 1; i++) {
1227		max_sibl = buf->layer_props[i + 1].max_sibl_grp_sz;
1228		hw->max_children[i] = le16_to_cpu(max_sibl);
1229	}
1230
1231	hw->layer_info = devm_kmemdup(ice_hw_to_dev(hw), buf->layer_props,
1232				      (hw->num_tx_sched_layers *
1233				       sizeof(*hw->layer_info)),
1234				      GFP_KERNEL);
1235	if (!hw->layer_info) {
1236		status = ICE_ERR_NO_MEMORY;
1237		goto sched_query_out;
1238	}
1239
1240sched_query_out:
1241	devm_kfree(ice_hw_to_dev(hw), buf);
1242	return status;
1243}
1244
1245/**
1246 * ice_sched_find_node_in_subtree - Find node in part of base node subtree
1247 * @hw: pointer to the HW struct
1248 * @base: pointer to the base node
1249 * @node: pointer to the node to search
1250 *
1251 * This function checks whether a given node is part of the base node
1252 * subtree or not
1253 */
1254static bool
1255ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
1256			       struct ice_sched_node *node)
1257{
1258	u8 i;
1259
1260	for (i = 0; i < base->num_children; i++) {
1261		struct ice_sched_node *child = base->children[i];
1262
1263		if (node == child)
1264			return true;
1265
1266		if (child->tx_sched_layer > node->tx_sched_layer)
1267			return false;
1268
1269		/* this recursion is intentional, and wouldn't
1270		 * go more than 8 calls
1271		 */
1272		if (ice_sched_find_node_in_subtree(hw, child, node))
1273			return true;
1274	}
1275	return false;
1276}
1277
1278/**
1279 * ice_sched_get_free_qgrp - Scan all queue group siblings and find a free node
1280 * @pi: port information structure
1281 * @vsi_node: software VSI handle
1282 * @qgrp_node: first queue group node identified for scanning
1283 * @owner: LAN or RDMA
1284 *
1285 * This function retrieves a free LAN or RDMA queue group node by scanning
1286 * qgrp_node and its siblings for the queue group with the fewest number
1287 * of queues currently assigned.
1288 */
1289static struct ice_sched_node *
1290ice_sched_get_free_qgrp(struct ice_port_info *pi,
1291			struct ice_sched_node *vsi_node,
1292			struct ice_sched_node *qgrp_node, u8 owner)
1293{
1294	struct ice_sched_node *min_qgrp;
1295	u8 min_children;
1296
1297	if (!qgrp_node)
1298		return qgrp_node;
1299	min_children = qgrp_node->num_children;
1300	if (!min_children)
1301		return qgrp_node;
1302	min_qgrp = qgrp_node;
1303	/* scan all queue groups until find a node which has less than the
1304	 * minimum number of children. This way all queue group nodes get
1305	 * equal number of shares and active. The bandwidth will be equally
1306	 * distributed across all queues.
1307	 */
1308	while (qgrp_node) {
1309		/* make sure the qgroup node is part of the VSI subtree */
1310		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1311			if (qgrp_node->num_children < min_children &&
1312			    qgrp_node->owner == owner) {
1313				/* replace the new min queue group node */
1314				min_qgrp = qgrp_node;
1315				min_children = min_qgrp->num_children;
1316				/* break if it has no children, */
1317				if (!min_children)
1318					break;
1319			}
1320		qgrp_node = qgrp_node->sibling;
1321	}
1322	return min_qgrp;
1323}
1324
1325/**
1326 * ice_sched_get_free_qparent - Get a free LAN or RDMA queue group node
1327 * @pi: port information structure
1328 * @vsi_handle: software VSI handle
1329 * @tc: branch number
1330 * @owner: LAN or RDMA
1331 *
1332 * This function retrieves a free LAN or RDMA queue group node
1333 */
1334struct ice_sched_node *
1335ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
1336			   u8 owner)
1337{
1338	struct ice_sched_node *vsi_node, *qgrp_node;
1339	struct ice_vsi_ctx *vsi_ctx;
1340	u16 max_children;
1341	u8 qgrp_layer;
1342
1343	qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
1344	max_children = pi->hw->max_children[qgrp_layer];
1345
1346	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1347	if (!vsi_ctx)
1348		return NULL;
1349	vsi_node = vsi_ctx->sched.vsi_node[tc];
1350	/* validate invalid VSI ID */
1351	if (!vsi_node)
1352		return NULL;
1353
1354	/* get the first queue group node from VSI sub-tree */
1355	qgrp_node = ice_sched_get_first_node(pi, vsi_node, qgrp_layer);
1356	while (qgrp_node) {
1357		/* make sure the qgroup node is part of the VSI subtree */
1358		if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
1359			if (qgrp_node->num_children < max_children &&
1360			    qgrp_node->owner == owner)
1361				break;
1362		qgrp_node = qgrp_node->sibling;
1363	}
1364
1365	/* Select the best queue group */
1366	return ice_sched_get_free_qgrp(pi, vsi_node, qgrp_node, owner);
1367}
1368
1369/**
1370 * ice_sched_get_vsi_node - Get a VSI node based on VSI ID
1371 * @hw: pointer to the HW struct
1372 * @tc_node: pointer to the TC node
1373 * @vsi_handle: software VSI handle
1374 *
1375 * This function retrieves a VSI node for a given VSI ID from a given
1376 * TC branch
1377 */
1378static struct ice_sched_node *
1379ice_sched_get_vsi_node(struct ice_hw *hw, struct ice_sched_node *tc_node,
1380		       u16 vsi_handle)
1381{
1382	struct ice_sched_node *node;
1383	u8 vsi_layer;
1384
1385	vsi_layer = ice_sched_get_vsi_layer(hw);
1386	node = ice_sched_get_first_node(hw->port_info, tc_node, vsi_layer);
1387
1388	/* Check whether it already exists */
1389	while (node) {
1390		if (node->vsi_handle == vsi_handle)
1391			return node;
1392		node = node->sibling;
1393	}
1394
1395	return node;
1396}
1397
1398/**
1399 * ice_sched_calc_vsi_child_nodes - calculate number of VSI child nodes
1400 * @hw: pointer to the HW struct
1401 * @num_qs: number of queues
1402 * @num_nodes: num nodes array
1403 *
1404 * This function calculates the number of VSI child nodes based on the
1405 * number of queues.
1406 */
1407static void
1408ice_sched_calc_vsi_child_nodes(struct ice_hw *hw, u16 num_qs, u16 *num_nodes)
1409{
1410	u16 num = num_qs;
1411	u8 i, qgl, vsil;
1412
1413	qgl = ice_sched_get_qgrp_layer(hw);
1414	vsil = ice_sched_get_vsi_layer(hw);
1415
1416	/* calculate num nodes from queue group to VSI layer */
1417	for (i = qgl; i > vsil; i--) {
1418		/* round to the next integer if there is a remainder */
1419		num = DIV_ROUND_UP(num, hw->max_children[i]);
1420
1421		/* need at least one node */
1422		num_nodes[i] = num ? num : 1;
1423	}
1424}
1425
1426/**
1427 * ice_sched_add_vsi_child_nodes - add VSI child nodes to tree
1428 * @pi: port information structure
1429 * @vsi_handle: software VSI handle
1430 * @tc_node: pointer to the TC node
1431 * @num_nodes: pointer to the num nodes that needs to be added per layer
1432 * @owner: node owner (LAN or RDMA)
1433 *
1434 * This function adds the VSI child nodes to tree. It gets called for
1435 * LAN and RDMA separately.
1436 */
1437static enum ice_status
1438ice_sched_add_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1439			      struct ice_sched_node *tc_node, u16 *num_nodes,
1440			      u8 owner)
1441{
1442	struct ice_sched_node *parent, *node;
1443	struct ice_hw *hw = pi->hw;
1444	enum ice_status status;
1445	u32 first_node_teid;
1446	u16 num_added = 0;
1447	u8 i, qgl, vsil;
1448
1449	qgl = ice_sched_get_qgrp_layer(hw);
1450	vsil = ice_sched_get_vsi_layer(hw);
1451	parent = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1452	for (i = vsil + 1; i <= qgl; i++) {
1453		if (!parent)
1454			return ICE_ERR_CFG;
1455
1456		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent, i,
1457						      num_nodes[i],
1458						      &first_node_teid,
1459						      &num_added);
1460		if (status || num_nodes[i] != num_added)
1461			return ICE_ERR_CFG;
1462
1463		/* The newly added node can be a new parent for the next
1464		 * layer nodes
1465		 */
1466		if (num_added) {
1467			parent = ice_sched_find_node_by_teid(tc_node,
1468							     first_node_teid);
1469			node = parent;
1470			while (node) {
1471				node->owner = owner;
1472				node = node->sibling;
1473			}
1474		} else {
1475			parent = parent->children[0];
1476		}
1477	}
1478
1479	return 0;
1480}
1481
1482/**
1483 * ice_sched_calc_vsi_support_nodes - calculate number of VSI support nodes
1484 * @hw: pointer to the HW struct
1485 * @tc_node: pointer to TC node
1486 * @num_nodes: pointer to num nodes array
1487 *
1488 * This function calculates the number of supported nodes needed to add this
1489 * VSI into Tx tree including the VSI, parent and intermediate nodes in below
1490 * layers
1491 */
1492static void
1493ice_sched_calc_vsi_support_nodes(struct ice_hw *hw,
1494				 struct ice_sched_node *tc_node, u16 *num_nodes)
1495{
1496	struct ice_sched_node *node;
1497	u8 vsil;
1498	int i;
1499
1500	vsil = ice_sched_get_vsi_layer(hw);
1501	for (i = vsil; i >= hw->sw_entry_point_layer; i--)
1502		/* Add intermediate nodes if TC has no children and
1503		 * need at least one node for VSI
1504		 */
1505		if (!tc_node->num_children || i == vsil) {
1506			num_nodes[i]++;
1507		} else {
1508			/* If intermediate nodes are reached max children
1509			 * then add a new one.
1510			 */
1511			node = ice_sched_get_first_node(hw->port_info, tc_node,
1512							(u8)i);
1513			/* scan all the siblings */
1514			while (node) {
1515				if (node->num_children < hw->max_children[i])
1516					break;
1517				node = node->sibling;
1518			}
1519
1520			/* tree has one intermediate node to add this new VSI.
1521			 * So no need to calculate supported nodes for below
1522			 * layers.
1523			 */
1524			if (node)
1525				break;
1526			/* all the nodes are full, allocate a new one */
1527			num_nodes[i]++;
1528		}
1529}
1530
1531/**
1532 * ice_sched_add_vsi_support_nodes - add VSI supported nodes into Tx tree
1533 * @pi: port information structure
1534 * @vsi_handle: software VSI handle
1535 * @tc_node: pointer to TC node
1536 * @num_nodes: pointer to num nodes array
1537 *
1538 * This function adds the VSI supported nodes into Tx tree including the
1539 * VSI, its parent and intermediate nodes in below layers
1540 */
1541static enum ice_status
1542ice_sched_add_vsi_support_nodes(struct ice_port_info *pi, u16 vsi_handle,
1543				struct ice_sched_node *tc_node, u16 *num_nodes)
1544{
1545	struct ice_sched_node *parent = tc_node;
1546	enum ice_status status;
1547	u32 first_node_teid;
1548	u16 num_added = 0;
1549	u8 i, vsil;
1550
1551	if (!pi)
1552		return ICE_ERR_PARAM;
1553
1554	vsil = ice_sched_get_vsi_layer(pi->hw);
1555	for (i = pi->hw->sw_entry_point_layer; i <= vsil; i++) {
1556		status = ice_sched_add_nodes_to_layer(pi, tc_node, parent,
1557						      i, num_nodes[i],
1558						      &first_node_teid,
1559						      &num_added);
1560		if (status || num_nodes[i] != num_added)
1561			return ICE_ERR_CFG;
1562
1563		/* The newly added node can be a new parent for the next
1564		 * layer nodes
1565		 */
1566		if (num_added)
1567			parent = ice_sched_find_node_by_teid(tc_node,
1568							     first_node_teid);
1569		else
1570			parent = parent->children[0];
1571
1572		if (!parent)
1573			return ICE_ERR_CFG;
1574
1575		if (i == vsil)
1576			parent->vsi_handle = vsi_handle;
1577	}
1578
1579	return 0;
1580}
1581
1582/**
1583 * ice_sched_add_vsi_to_topo - add a new VSI into tree
1584 * @pi: port information structure
1585 * @vsi_handle: software VSI handle
1586 * @tc: TC number
1587 *
1588 * This function adds a new VSI into scheduler tree
1589 */
1590static enum ice_status
1591ice_sched_add_vsi_to_topo(struct ice_port_info *pi, u16 vsi_handle, u8 tc)
1592{
1593	u16 num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1594	struct ice_sched_node *tc_node;
1595	struct ice_hw *hw = pi->hw;
1596
1597	tc_node = ice_sched_get_tc_node(pi, tc);
1598	if (!tc_node)
1599		return ICE_ERR_PARAM;
1600
1601	/* calculate number of supported nodes needed for this VSI */
1602	ice_sched_calc_vsi_support_nodes(hw, tc_node, num_nodes);
1603
1604	/* add VSI supported nodes to TC subtree */
1605	return ice_sched_add_vsi_support_nodes(pi, vsi_handle, tc_node,
1606					       num_nodes);
1607}
1608
1609/**
1610 * ice_sched_update_vsi_child_nodes - update VSI child nodes
1611 * @pi: port information structure
1612 * @vsi_handle: software VSI handle
1613 * @tc: TC number
1614 * @new_numqs: new number of max queues
1615 * @owner: owner of this subtree
1616 *
1617 * This function updates the VSI child nodes based on the number of queues
1618 */
1619static enum ice_status
1620ice_sched_update_vsi_child_nodes(struct ice_port_info *pi, u16 vsi_handle,
1621				 u8 tc, u16 new_numqs, u8 owner)
1622{
1623	u16 new_num_nodes[ICE_AQC_TOPO_MAX_LEVEL_NUM] = { 0 };
1624	struct ice_sched_node *vsi_node;
1625	struct ice_sched_node *tc_node;
1626	struct ice_vsi_ctx *vsi_ctx;
1627	enum ice_status status = 0;
1628	struct ice_hw *hw = pi->hw;
1629	u16 prev_numqs;
1630
1631	tc_node = ice_sched_get_tc_node(pi, tc);
1632	if (!tc_node)
1633		return ICE_ERR_CFG;
1634
1635	vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1636	if (!vsi_node)
1637		return ICE_ERR_CFG;
1638
1639	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1640	if (!vsi_ctx)
1641		return ICE_ERR_PARAM;
1642
1643	prev_numqs = vsi_ctx->sched.max_lanq[tc];
1644	/* num queues are not changed or less than the previous number */
1645	if (new_numqs <= prev_numqs)
1646		return status;
1647	status = ice_alloc_lan_q_ctx(hw, vsi_handle, tc, new_numqs);
1648	if (status)
1649		return status;
1650
1651	if (new_numqs)
1652		ice_sched_calc_vsi_child_nodes(hw, new_numqs, new_num_nodes);
1653	/* Keep the max number of queue configuration all the time. Update the
1654	 * tree only if number of queues > previous number of queues. This may
1655	 * leave some extra nodes in the tree if number of queues < previous
1656	 * number but that wouldn't harm anything. Removing those extra nodes
1657	 * may complicate the code if those nodes are part of SRL or
1658	 * individually rate limited.
1659	 */
1660	status = ice_sched_add_vsi_child_nodes(pi, vsi_handle, tc_node,
1661					       new_num_nodes, owner);
1662	if (status)
1663		return status;
1664	vsi_ctx->sched.max_lanq[tc] = new_numqs;
1665
1666	return 0;
1667}
1668
1669/**
1670 * ice_sched_cfg_vsi - configure the new/existing VSI
1671 * @pi: port information structure
1672 * @vsi_handle: software VSI handle
1673 * @tc: TC number
1674 * @maxqs: max number of queues
1675 * @owner: LAN or RDMA
1676 * @enable: TC enabled or disabled
1677 *
1678 * This function adds/updates VSI nodes based on the number of queues. If TC is
1679 * enabled and VSI is in suspended state then resume the VSI back. If TC is
1680 * disabled then suspend the VSI if it is not already.
1681 */
1682enum ice_status
1683ice_sched_cfg_vsi(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 maxqs,
1684		  u8 owner, bool enable)
1685{
1686	struct ice_sched_node *vsi_node, *tc_node;
1687	struct ice_vsi_ctx *vsi_ctx;
1688	enum ice_status status = 0;
1689	struct ice_hw *hw = pi->hw;
1690
1691	ice_debug(pi->hw, ICE_DBG_SCHED, "add/config VSI %d\n", vsi_handle);
1692	tc_node = ice_sched_get_tc_node(pi, tc);
1693	if (!tc_node)
1694		return ICE_ERR_PARAM;
1695	vsi_ctx = ice_get_vsi_ctx(hw, vsi_handle);
1696	if (!vsi_ctx)
1697		return ICE_ERR_PARAM;
1698	vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1699
1700	/* suspend the VSI if TC is not enabled */
1701	if (!enable) {
1702		if (vsi_node && vsi_node->in_use) {
1703			u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1704
1705			status = ice_sched_suspend_resume_elems(hw, 1, &teid,
1706								true);
1707			if (!status)
1708				vsi_node->in_use = false;
1709		}
1710		return status;
1711	}
1712
1713	/* TC is enabled, if it is a new VSI then add it to the tree */
1714	if (!vsi_node) {
1715		status = ice_sched_add_vsi_to_topo(pi, vsi_handle, tc);
1716		if (status)
1717			return status;
1718
1719		vsi_node = ice_sched_get_vsi_node(hw, tc_node, vsi_handle);
1720		if (!vsi_node)
1721			return ICE_ERR_CFG;
1722
1723		vsi_ctx->sched.vsi_node[tc] = vsi_node;
1724		vsi_node->in_use = true;
1725		/* invalidate the max queues whenever VSI gets added first time
1726		 * into the scheduler tree (boot or after reset). We need to
1727		 * recreate the child nodes all the time in these cases.
1728		 */
1729		vsi_ctx->sched.max_lanq[tc] = 0;
1730	}
1731
1732	/* update the VSI child nodes */
1733	status = ice_sched_update_vsi_child_nodes(pi, vsi_handle, tc, maxqs,
1734						  owner);
1735	if (status)
1736		return status;
1737
1738	/* TC is enabled, resume the VSI if it is in the suspend state */
1739	if (!vsi_node->in_use) {
1740		u32 teid = le32_to_cpu(vsi_node->info.node_teid);
1741
1742		status = ice_sched_suspend_resume_elems(hw, 1, &teid, false);
1743		if (!status)
1744			vsi_node->in_use = true;
1745	}
1746
1747	return status;
1748}
1749
1750/**
1751 * ice_sched_rm_agg_vsi_entry - remove aggregator related VSI info entry
1752 * @pi: port information structure
1753 * @vsi_handle: software VSI handle
1754 *
1755 * This function removes single aggregator VSI info entry from
1756 * aggregator list.
1757 */
1758static void ice_sched_rm_agg_vsi_info(struct ice_port_info *pi, u16 vsi_handle)
1759{
1760	struct ice_sched_agg_info *agg_info;
1761	struct ice_sched_agg_info *atmp;
1762
1763	list_for_each_entry_safe(agg_info, atmp, &pi->hw->agg_list,
1764				 list_entry) {
1765		struct ice_sched_agg_vsi_info *agg_vsi_info;
1766		struct ice_sched_agg_vsi_info *vtmp;
1767
1768		list_for_each_entry_safe(agg_vsi_info, vtmp,
1769					 &agg_info->agg_vsi_list, list_entry)
1770			if (agg_vsi_info->vsi_handle == vsi_handle) {
1771				list_del(&agg_vsi_info->list_entry);
1772				devm_kfree(ice_hw_to_dev(pi->hw),
1773					   agg_vsi_info);
1774				return;
1775			}
1776	}
1777}
1778
1779/**
1780 * ice_sched_is_leaf_node_present - check for a leaf node in the sub-tree
1781 * @node: pointer to the sub-tree node
1782 *
1783 * This function checks for a leaf node presence in a given sub-tree node.
1784 */
1785static bool ice_sched_is_leaf_node_present(struct ice_sched_node *node)
1786{
1787	u8 i;
1788
1789	for (i = 0; i < node->num_children; i++)
1790		if (ice_sched_is_leaf_node_present(node->children[i]))
1791			return true;
1792	/* check for a leaf node */
1793	return (node->info.data.elem_type == ICE_AQC_ELEM_TYPE_LEAF);
1794}
1795
1796/**
1797 * ice_sched_rm_vsi_cfg - remove the VSI and its children nodes
1798 * @pi: port information structure
1799 * @vsi_handle: software VSI handle
1800 * @owner: LAN or RDMA
1801 *
1802 * This function removes the VSI and its LAN or RDMA children nodes from the
1803 * scheduler tree.
1804 */
1805static enum ice_status
1806ice_sched_rm_vsi_cfg(struct ice_port_info *pi, u16 vsi_handle, u8 owner)
1807{
1808	enum ice_status status = ICE_ERR_PARAM;
1809	struct ice_vsi_ctx *vsi_ctx;
1810	u8 i;
1811
1812	ice_debug(pi->hw, ICE_DBG_SCHED, "removing VSI %d\n", vsi_handle);
1813	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
1814		return status;
1815	mutex_lock(&pi->sched_lock);
1816	vsi_ctx = ice_get_vsi_ctx(pi->hw, vsi_handle);
1817	if (!vsi_ctx)
1818		goto exit_sched_rm_vsi_cfg;
1819
1820	ice_for_each_traffic_class(i) {
1821		struct ice_sched_node *vsi_node, *tc_node;
1822		u8 j = 0;
1823
1824		tc_node = ice_sched_get_tc_node(pi, i);
1825		if (!tc_node)
1826			continue;
1827
1828		vsi_node = ice_sched_get_vsi_node(pi->hw, tc_node, vsi_handle);
1829		if (!vsi_node)
1830			continue;
1831
1832		if (ice_sched_is_leaf_node_present(vsi_node)) {
1833			ice_debug(pi->hw, ICE_DBG_SCHED,
1834				  "VSI has leaf nodes in TC %d\n", i);
1835			status = ICE_ERR_IN_USE;
1836			goto exit_sched_rm_vsi_cfg;
1837		}
1838		while (j < vsi_node->num_children) {
1839			if (vsi_node->children[j]->owner == owner) {
1840				ice_free_sched_node(pi, vsi_node->children[j]);
1841
1842				/* reset the counter again since the num
1843				 * children will be updated after node removal
1844				 */
1845				j = 0;
1846			} else {
1847				j++;
1848			}
1849		}
1850		/* remove the VSI if it has no children */
1851		if (!vsi_node->num_children) {
1852			ice_free_sched_node(pi, vsi_node);
1853			vsi_ctx->sched.vsi_node[i] = NULL;
1854
1855			/* clean up aggregator related VSI info if any */
1856			ice_sched_rm_agg_vsi_info(pi, vsi_handle);
1857		}
1858		if (owner == ICE_SCHED_NODE_OWNER_LAN)
1859			vsi_ctx->sched.max_lanq[i] = 0;
1860	}
1861	status = 0;
1862
1863exit_sched_rm_vsi_cfg:
1864	mutex_unlock(&pi->sched_lock);
1865	return status;
1866}
1867
1868/**
1869 * ice_rm_vsi_lan_cfg - remove VSI and its LAN children nodes
1870 * @pi: port information structure
1871 * @vsi_handle: software VSI handle
1872 *
1873 * This function clears the VSI and its LAN children nodes from scheduler tree
1874 * for all TCs.
1875 */
1876enum ice_status ice_rm_vsi_lan_cfg(struct ice_port_info *pi, u16 vsi_handle)
1877{
1878	return ice_sched_rm_vsi_cfg(pi, vsi_handle, ICE_SCHED_NODE_OWNER_LAN);
1879}
1880
1881/**
1882 * ice_sched_rm_unused_rl_prof - remove unused RL profile
1883 * @pi: port information structure
1884 *
1885 * This function removes unused rate limit profiles from the HW and
1886 * SW DB. The caller needs to hold scheduler lock.
1887 */
1888static void ice_sched_rm_unused_rl_prof(struct ice_port_info *pi)
1889{
1890	u16 ln;
1891
1892	for (ln = 0; ln < pi->hw->num_tx_sched_layers; ln++) {
1893		struct ice_aqc_rl_profile_info *rl_prof_elem;
1894		struct ice_aqc_rl_profile_info *rl_prof_tmp;
1895
1896		list_for_each_entry_safe(rl_prof_elem, rl_prof_tmp,
1897					 &pi->rl_prof_list[ln], list_entry) {
1898			if (!ice_sched_del_rl_profile(pi->hw, rl_prof_elem))
1899				ice_debug(pi->hw, ICE_DBG_SCHED,
1900					  "Removed rl profile\n");
1901		}
1902	}
1903}
1904
1905/**
1906 * ice_sched_update_elem - update element
1907 * @hw: pointer to the HW struct
1908 * @node: pointer to node
1909 * @info: node info to update
1910 *
1911 * Update the HW DB, and local SW DB of node. Update the scheduling
1912 * parameters of node from argument info data buffer (Info->data buf) and
1913 * returns success or error on config sched element failure. The caller
1914 * needs to hold scheduler lock.
1915 */
1916static enum ice_status
1917ice_sched_update_elem(struct ice_hw *hw, struct ice_sched_node *node,
1918		      struct ice_aqc_txsched_elem_data *info)
1919{
1920	struct ice_aqc_txsched_elem_data buf;
1921	enum ice_status status;
1922	u16 elem_cfgd = 0;
1923	u16 num_elems = 1;
1924
1925	buf = *info;
1926	/* Parent TEID is reserved field in this aq call */
1927	buf.parent_teid = 0;
1928	/* Element type is reserved field in this aq call */
1929	buf.data.elem_type = 0;
1930	/* Flags is reserved field in this aq call */
1931	buf.data.flags = 0;
1932
1933	/* Update HW DB */
1934	/* Configure element node */
1935	status = ice_aq_cfg_sched_elems(hw, num_elems, &buf, sizeof(buf),
1936					&elem_cfgd, NULL);
1937	if (status || elem_cfgd != num_elems) {
1938		ice_debug(hw, ICE_DBG_SCHED, "Config sched elem error\n");
1939		return ICE_ERR_CFG;
1940	}
1941
1942	/* Config success case */
1943	/* Now update local SW DB */
1944	/* Only copy the data portion of info buffer */
1945	node->info.data = info->data;
1946	return status;
1947}
1948
1949/**
1950 * ice_sched_cfg_node_bw_alloc - configure node BW weight/alloc params
1951 * @hw: pointer to the HW struct
1952 * @node: sched node to configure
1953 * @rl_type: rate limit type CIR, EIR, or shared
1954 * @bw_alloc: BW weight/allocation
1955 *
1956 * This function configures node element's BW allocation.
1957 */
1958static enum ice_status
1959ice_sched_cfg_node_bw_alloc(struct ice_hw *hw, struct ice_sched_node *node,
1960			    enum ice_rl_type rl_type, u16 bw_alloc)
1961{
1962	struct ice_aqc_txsched_elem_data buf;
1963	struct ice_aqc_txsched_elem *data;
1964	enum ice_status status;
1965
1966	buf = node->info;
1967	data = &buf.data;
1968	if (rl_type == ICE_MIN_BW) {
1969		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
1970		data->cir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1971	} else if (rl_type == ICE_MAX_BW) {
1972		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
1973		data->eir_bw.bw_alloc = cpu_to_le16(bw_alloc);
1974	} else {
1975		return ICE_ERR_PARAM;
1976	}
1977
1978	/* Configure element */
1979	status = ice_sched_update_elem(hw, node, &buf);
1980	return status;
1981}
1982
1983/**
1984 * ice_set_clear_cir_bw - set or clear CIR BW
1985 * @bw_t_info: bandwidth type information structure
1986 * @bw: bandwidth in Kbps - Kilo bits per sec
1987 *
1988 * Save or clear CIR bandwidth (BW) in the passed param bw_t_info.
1989 */
1990static void ice_set_clear_cir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
1991{
1992	if (bw == ICE_SCHED_DFLT_BW) {
1993		clear_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1994		bw_t_info->cir_bw.bw = 0;
1995	} else {
1996		/* Save type of BW information */
1997		set_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap);
1998		bw_t_info->cir_bw.bw = bw;
1999	}
2000}
2001
2002/**
2003 * ice_set_clear_eir_bw - set or clear EIR BW
2004 * @bw_t_info: bandwidth type information structure
2005 * @bw: bandwidth in Kbps - Kilo bits per sec
2006 *
2007 * Save or clear EIR bandwidth (BW) in the passed param bw_t_info.
2008 */
2009static void ice_set_clear_eir_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2010{
2011	if (bw == ICE_SCHED_DFLT_BW) {
2012		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2013		bw_t_info->eir_bw.bw = 0;
2014	} else {
2015		/* EIR BW and Shared BW profiles are mutually exclusive and
2016		 * hence only one of them may be set for any given element.
2017		 * First clear earlier saved shared BW information.
2018		 */
2019		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2020		bw_t_info->shared_bw = 0;
2021		/* save EIR BW information */
2022		set_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2023		bw_t_info->eir_bw.bw = bw;
2024	}
2025}
2026
2027/**
2028 * ice_set_clear_shared_bw - set or clear shared BW
2029 * @bw_t_info: bandwidth type information structure
2030 * @bw: bandwidth in Kbps - Kilo bits per sec
2031 *
2032 * Save or clear shared bandwidth (BW) in the passed param bw_t_info.
2033 */
2034static void ice_set_clear_shared_bw(struct ice_bw_type_info *bw_t_info, u32 bw)
2035{
2036	if (bw == ICE_SCHED_DFLT_BW) {
2037		clear_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2038		bw_t_info->shared_bw = 0;
2039	} else {
2040		/* EIR BW and Shared BW profiles are mutually exclusive and
2041		 * hence only one of them may be set for any given element.
2042		 * First clear earlier saved EIR BW information.
2043		 */
2044		clear_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap);
2045		bw_t_info->eir_bw.bw = 0;
2046		/* save shared BW information */
2047		set_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap);
2048		bw_t_info->shared_bw = bw;
2049	}
2050}
2051
2052/**
2053 * ice_sched_calc_wakeup - calculate RL profile wakeup parameter
2054 * @bw: bandwidth in Kbps
2055 *
2056 * This function calculates the wakeup parameter of RL profile.
2057 */
2058static u16 ice_sched_calc_wakeup(s32 bw)
2059{
2060	s64 bytes_per_sec, wakeup_int, wakeup_a, wakeup_b, wakeup_f;
2061	s32 wakeup_f_int;
2062	u16 wakeup = 0;
2063
2064	/* Get the wakeup integer value */
2065	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2066	wakeup_int = div64_long(ICE_RL_PROF_FREQUENCY, bytes_per_sec);
2067	if (wakeup_int > 63) {
2068		wakeup = (u16)((1 << 15) | wakeup_int);
2069	} else {
2070		/* Calculate fraction value up to 4 decimals
2071		 * Convert Integer value to a constant multiplier
2072		 */
2073		wakeup_b = (s64)ICE_RL_PROF_MULTIPLIER * wakeup_int;
2074		wakeup_a = div64_long((s64)ICE_RL_PROF_MULTIPLIER *
2075					   ICE_RL_PROF_FREQUENCY,
2076				      bytes_per_sec);
2077
2078		/* Get Fraction value */
2079		wakeup_f = wakeup_a - wakeup_b;
2080
2081		/* Round up the Fractional value via Ceil(Fractional value) */
2082		if (wakeup_f > div64_long(ICE_RL_PROF_MULTIPLIER, 2))
2083			wakeup_f += 1;
2084
2085		wakeup_f_int = (s32)div64_long(wakeup_f * ICE_RL_PROF_FRACTION,
2086					       ICE_RL_PROF_MULTIPLIER);
2087		wakeup |= (u16)(wakeup_int << 9);
2088		wakeup |= (u16)(0x1ff & wakeup_f_int);
2089	}
2090
2091	return wakeup;
2092}
2093
2094/**
2095 * ice_sched_bw_to_rl_profile - convert BW to profile parameters
2096 * @bw: bandwidth in Kbps
2097 * @profile: profile parameters to return
2098 *
2099 * This function converts the BW to profile structure format.
2100 */
2101static enum ice_status
2102ice_sched_bw_to_rl_profile(u32 bw, struct ice_aqc_rl_profile_elem *profile)
2103{
2104	enum ice_status status = ICE_ERR_PARAM;
2105	s64 bytes_per_sec, ts_rate, mv_tmp;
2106	bool found = false;
2107	s32 encode = 0;
2108	s64 mv = 0;
2109	s32 i;
2110
2111	/* Bw settings range is from 0.5Mb/sec to 100Gb/sec */
2112	if (bw < ICE_SCHED_MIN_BW || bw > ICE_SCHED_MAX_BW)
2113		return status;
2114
2115	/* Bytes per second from Kbps */
2116	bytes_per_sec = div64_long(((s64)bw * 1000), BITS_PER_BYTE);
2117
2118	/* encode is 6 bits but really useful are 5 bits */
2119	for (i = 0; i < 64; i++) {
2120		u64 pow_result = BIT_ULL(i);
2121
2122		ts_rate = div64_long((s64)ICE_RL_PROF_FREQUENCY,
2123				     pow_result * ICE_RL_PROF_TS_MULTIPLIER);
2124		if (ts_rate <= 0)
2125			continue;
2126
2127		/* Multiplier value */
2128		mv_tmp = div64_long(bytes_per_sec * ICE_RL_PROF_MULTIPLIER,
2129				    ts_rate);
2130
2131		/* Round to the nearest ICE_RL_PROF_MULTIPLIER */
2132		mv = round_up_64bit(mv_tmp, ICE_RL_PROF_MULTIPLIER);
2133
2134		/* First multiplier value greater than the given
2135		 * accuracy bytes
2136		 */
2137		if (mv > ICE_RL_PROF_ACCURACY_BYTES) {
2138			encode = i;
2139			found = true;
2140			break;
2141		}
2142	}
2143	if (found) {
2144		u16 wm;
2145
2146		wm = ice_sched_calc_wakeup(bw);
2147		profile->rl_multiply = cpu_to_le16(mv);
2148		profile->wake_up_calc = cpu_to_le16(wm);
2149		profile->rl_encode = cpu_to_le16(encode);
2150		status = 0;
2151	} else {
2152		status = ICE_ERR_DOES_NOT_EXIST;
2153	}
2154
2155	return status;
2156}
2157
2158/**
2159 * ice_sched_add_rl_profile - add RL profile
2160 * @pi: port information structure
2161 * @rl_type: type of rate limit BW - min, max, or shared
2162 * @bw: bandwidth in Kbps - Kilo bits per sec
2163 * @layer_num: specifies in which layer to create profile
2164 *
2165 * This function first checks the existing list for corresponding BW
2166 * parameter. If it exists, it returns the associated profile otherwise
2167 * it creates a new rate limit profile for requested BW, and adds it to
2168 * the HW DB and local list. It returns the new profile or null on error.
2169 * The caller needs to hold the scheduler lock.
2170 */
2171static struct ice_aqc_rl_profile_info *
2172ice_sched_add_rl_profile(struct ice_port_info *pi,
2173			 enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2174{
2175	struct ice_aqc_rl_profile_info *rl_prof_elem;
2176	u16 profiles_added = 0, num_profiles = 1;
2177	struct ice_aqc_rl_profile_elem *buf;
2178	enum ice_status status;
2179	struct ice_hw *hw;
2180	u8 profile_type;
2181
2182	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2183		return NULL;
2184	switch (rl_type) {
2185	case ICE_MIN_BW:
2186		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2187		break;
2188	case ICE_MAX_BW:
2189		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2190		break;
2191	case ICE_SHARED_BW:
2192		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2193		break;
2194	default:
2195		return NULL;
2196	}
2197
2198	if (!pi)
2199		return NULL;
2200	hw = pi->hw;
2201	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2202			    list_entry)
2203		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2204		    profile_type && rl_prof_elem->bw == bw)
2205			/* Return existing profile ID info */
2206			return rl_prof_elem;
2207
2208	/* Create new profile ID */
2209	rl_prof_elem = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*rl_prof_elem),
2210				    GFP_KERNEL);
2211
2212	if (!rl_prof_elem)
2213		return NULL;
2214
2215	status = ice_sched_bw_to_rl_profile(bw, &rl_prof_elem->profile);
2216	if (status)
2217		goto exit_add_rl_prof;
2218
2219	rl_prof_elem->bw = bw;
2220	/* layer_num is zero relative, and fw expects level from 1 to 9 */
2221	rl_prof_elem->profile.level = layer_num + 1;
2222	rl_prof_elem->profile.flags = profile_type;
2223	rl_prof_elem->profile.max_burst_size = cpu_to_le16(hw->max_burst_size);
2224
2225	/* Create new entry in HW DB */
2226	buf = &rl_prof_elem->profile;
2227	status = ice_aq_add_rl_profile(hw, num_profiles, buf, sizeof(*buf),
2228				       &profiles_added, NULL);
2229	if (status || profiles_added != num_profiles)
2230		goto exit_add_rl_prof;
2231
2232	/* Good entry - add in the list */
2233	rl_prof_elem->prof_id_ref = 0;
2234	list_add(&rl_prof_elem->list_entry, &pi->rl_prof_list[layer_num]);
2235	return rl_prof_elem;
2236
2237exit_add_rl_prof:
2238	devm_kfree(ice_hw_to_dev(hw), rl_prof_elem);
2239	return NULL;
2240}
2241
2242/**
2243 * ice_sched_cfg_node_bw_lmt - configure node sched params
2244 * @hw: pointer to the HW struct
2245 * @node: sched node to configure
2246 * @rl_type: rate limit type CIR, EIR, or shared
2247 * @rl_prof_id: rate limit profile ID
2248 *
2249 * This function configures node element's BW limit.
2250 */
2251static enum ice_status
2252ice_sched_cfg_node_bw_lmt(struct ice_hw *hw, struct ice_sched_node *node,
2253			  enum ice_rl_type rl_type, u16 rl_prof_id)
2254{
2255	struct ice_aqc_txsched_elem_data buf;
2256	struct ice_aqc_txsched_elem *data;
2257
2258	buf = node->info;
2259	data = &buf.data;
2260	switch (rl_type) {
2261	case ICE_MIN_BW:
2262		data->valid_sections |= ICE_AQC_ELEM_VALID_CIR;
2263		data->cir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2264		break;
2265	case ICE_MAX_BW:
2266		/* EIR BW and Shared BW profiles are mutually exclusive and
2267		 * hence only one of them may be set for any given element
2268		 */
2269		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2270			return ICE_ERR_CFG;
2271		data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2272		data->eir_bw.bw_profile_idx = cpu_to_le16(rl_prof_id);
2273		break;
2274	case ICE_SHARED_BW:
2275		/* Check for removing shared BW */
2276		if (rl_prof_id == ICE_SCHED_NO_SHARED_RL_PROF_ID) {
2277			/* remove shared profile */
2278			data->valid_sections &= ~ICE_AQC_ELEM_VALID_SHARED;
2279			data->srl_id = 0; /* clear SRL field */
2280
2281			/* enable back EIR to default profile */
2282			data->valid_sections |= ICE_AQC_ELEM_VALID_EIR;
2283			data->eir_bw.bw_profile_idx =
2284				cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
2285			break;
2286		}
2287		/* EIR BW and Shared BW profiles are mutually exclusive and
2288		 * hence only one of them may be set for any given element
2289		 */
2290		if ((data->valid_sections & ICE_AQC_ELEM_VALID_EIR) &&
2291		    (le16_to_cpu(data->eir_bw.bw_profile_idx) !=
2292			    ICE_SCHED_DFLT_RL_PROF_ID))
2293			return ICE_ERR_CFG;
2294		/* EIR BW is set to default, disable it */
2295		data->valid_sections &= ~ICE_AQC_ELEM_VALID_EIR;
2296		/* Okay to enable shared BW now */
2297		data->valid_sections |= ICE_AQC_ELEM_VALID_SHARED;
2298		data->srl_id = cpu_to_le16(rl_prof_id);
2299		break;
2300	default:
2301		/* Unknown rate limit type */
2302		return ICE_ERR_PARAM;
2303	}
2304
2305	/* Configure element */
2306	return ice_sched_update_elem(hw, node, &buf);
2307}
2308
2309/**
2310 * ice_sched_get_node_rl_prof_id - get node's rate limit profile ID
2311 * @node: sched node
2312 * @rl_type: rate limit type
2313 *
2314 * If existing profile matches, it returns the corresponding rate
2315 * limit profile ID, otherwise it returns an invalid ID as error.
2316 */
2317static u16
2318ice_sched_get_node_rl_prof_id(struct ice_sched_node *node,
2319			      enum ice_rl_type rl_type)
2320{
2321	u16 rl_prof_id = ICE_SCHED_INVAL_PROF_ID;
2322	struct ice_aqc_txsched_elem *data;
2323
2324	data = &node->info.data;
2325	switch (rl_type) {
2326	case ICE_MIN_BW:
2327		if (data->valid_sections & ICE_AQC_ELEM_VALID_CIR)
2328			rl_prof_id = le16_to_cpu(data->cir_bw.bw_profile_idx);
2329		break;
2330	case ICE_MAX_BW:
2331		if (data->valid_sections & ICE_AQC_ELEM_VALID_EIR)
2332			rl_prof_id = le16_to_cpu(data->eir_bw.bw_profile_idx);
2333		break;
2334	case ICE_SHARED_BW:
2335		if (data->valid_sections & ICE_AQC_ELEM_VALID_SHARED)
2336			rl_prof_id = le16_to_cpu(data->srl_id);
2337		break;
2338	default:
2339		break;
2340	}
2341
2342	return rl_prof_id;
2343}
2344
2345/**
2346 * ice_sched_get_rl_prof_layer - selects rate limit profile creation layer
2347 * @pi: port information structure
2348 * @rl_type: type of rate limit BW - min, max, or shared
2349 * @layer_index: layer index
2350 *
2351 * This function returns requested profile creation layer.
2352 */
2353static u8
2354ice_sched_get_rl_prof_layer(struct ice_port_info *pi, enum ice_rl_type rl_type,
2355			    u8 layer_index)
2356{
2357	struct ice_hw *hw = pi->hw;
2358
2359	if (layer_index >= hw->num_tx_sched_layers)
2360		return ICE_SCHED_INVAL_LAYER_NUM;
2361	switch (rl_type) {
2362	case ICE_MIN_BW:
2363		if (hw->layer_info[layer_index].max_cir_rl_profiles)
2364			return layer_index;
2365		break;
2366	case ICE_MAX_BW:
2367		if (hw->layer_info[layer_index].max_eir_rl_profiles)
2368			return layer_index;
2369		break;
2370	case ICE_SHARED_BW:
2371		/* if current layer doesn't support SRL profile creation
2372		 * then try a layer up or down.
2373		 */
2374		if (hw->layer_info[layer_index].max_srl_profiles)
2375			return layer_index;
2376		else if (layer_index < hw->num_tx_sched_layers - 1 &&
2377			 hw->layer_info[layer_index + 1].max_srl_profiles)
2378			return layer_index + 1;
2379		else if (layer_index > 0 &&
2380			 hw->layer_info[layer_index - 1].max_srl_profiles)
2381			return layer_index - 1;
2382		break;
2383	default:
2384		break;
2385	}
2386	return ICE_SCHED_INVAL_LAYER_NUM;
2387}
2388
2389/**
2390 * ice_sched_get_srl_node - get shared rate limit node
2391 * @node: tree node
2392 * @srl_layer: shared rate limit layer
2393 *
2394 * This function returns SRL node to be used for shared rate limit purpose.
2395 * The caller needs to hold scheduler lock.
2396 */
2397static struct ice_sched_node *
2398ice_sched_get_srl_node(struct ice_sched_node *node, u8 srl_layer)
2399{
2400	if (srl_layer > node->tx_sched_layer)
2401		return node->children[0];
2402	else if (srl_layer < node->tx_sched_layer)
2403		/* Node can't be created without a parent. It will always
2404		 * have a valid parent except root node.
2405		 */
2406		return node->parent;
2407	else
2408		return node;
2409}
2410
2411/**
2412 * ice_sched_rm_rl_profile - remove RL profile ID
2413 * @pi: port information structure
2414 * @layer_num: layer number where profiles are saved
2415 * @profile_type: profile type like EIR, CIR, or SRL
2416 * @profile_id: profile ID to remove
2417 *
2418 * This function removes rate limit profile from layer 'layer_num' of type
2419 * 'profile_type' and profile ID as 'profile_id'. The caller needs to hold
2420 * scheduler lock.
2421 */
2422static enum ice_status
2423ice_sched_rm_rl_profile(struct ice_port_info *pi, u8 layer_num, u8 profile_type,
2424			u16 profile_id)
2425{
2426	struct ice_aqc_rl_profile_info *rl_prof_elem;
2427	enum ice_status status = 0;
2428
2429	if (layer_num >= ICE_AQC_TOPO_MAX_LEVEL_NUM)
2430		return ICE_ERR_PARAM;
2431	/* Check the existing list for RL profile */
2432	list_for_each_entry(rl_prof_elem, &pi->rl_prof_list[layer_num],
2433			    list_entry)
2434		if ((rl_prof_elem->profile.flags & ICE_AQC_RL_PROFILE_TYPE_M) ==
2435		    profile_type &&
2436		    le16_to_cpu(rl_prof_elem->profile.profile_id) ==
2437		    profile_id) {
2438			if (rl_prof_elem->prof_id_ref)
2439				rl_prof_elem->prof_id_ref--;
2440
2441			/* Remove old profile ID from database */
2442			status = ice_sched_del_rl_profile(pi->hw, rl_prof_elem);
2443			if (status && status != ICE_ERR_IN_USE)
2444				ice_debug(pi->hw, ICE_DBG_SCHED,
2445					  "Remove rl profile failed\n");
2446			break;
2447		}
2448	if (status == ICE_ERR_IN_USE)
2449		status = 0;
2450	return status;
2451}
2452
2453/**
2454 * ice_sched_set_node_bw_dflt - set node's bandwidth limit to default
2455 * @pi: port information structure
2456 * @node: pointer to node structure
2457 * @rl_type: rate limit type min, max, or shared
2458 * @layer_num: layer number where RL profiles are saved
2459 *
2460 * This function configures node element's BW rate limit profile ID of
2461 * type CIR, EIR, or SRL to default. This function needs to be called
2462 * with the scheduler lock held.
2463 */
2464static enum ice_status
2465ice_sched_set_node_bw_dflt(struct ice_port_info *pi,
2466			   struct ice_sched_node *node,
2467			   enum ice_rl_type rl_type, u8 layer_num)
2468{
2469	enum ice_status status;
2470	struct ice_hw *hw;
2471	u8 profile_type;
2472	u16 rl_prof_id;
2473	u16 old_id;
2474
2475	hw = pi->hw;
2476	switch (rl_type) {
2477	case ICE_MIN_BW:
2478		profile_type = ICE_AQC_RL_PROFILE_TYPE_CIR;
2479		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2480		break;
2481	case ICE_MAX_BW:
2482		profile_type = ICE_AQC_RL_PROFILE_TYPE_EIR;
2483		rl_prof_id = ICE_SCHED_DFLT_RL_PROF_ID;
2484		break;
2485	case ICE_SHARED_BW:
2486		profile_type = ICE_AQC_RL_PROFILE_TYPE_SRL;
2487		/* No SRL is configured for default case */
2488		rl_prof_id = ICE_SCHED_NO_SHARED_RL_PROF_ID;
2489		break;
2490	default:
2491		return ICE_ERR_PARAM;
2492	}
2493	/* Save existing RL prof ID for later clean up */
2494	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2495	/* Configure BW scheduling parameters */
2496	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2497	if (status)
2498		return status;
2499
2500	/* Remove stale RL profile ID */
2501	if (old_id == ICE_SCHED_DFLT_RL_PROF_ID ||
2502	    old_id == ICE_SCHED_INVAL_PROF_ID)
2503		return 0;
2504
2505	return ice_sched_rm_rl_profile(pi, layer_num, profile_type, old_id);
2506}
2507
2508/**
2509 * ice_sched_set_eir_srl_excl - set EIR/SRL exclusiveness
2510 * @pi: port information structure
2511 * @node: pointer to node structure
2512 * @layer_num: layer number where rate limit profiles are saved
2513 * @rl_type: rate limit type min, max, or shared
2514 * @bw: bandwidth value
2515 *
2516 * This function prepares node element's bandwidth to SRL or EIR exclusively.
2517 * EIR BW and Shared BW profiles are mutually exclusive and hence only one of
2518 * them may be set for any given element. This function needs to be called
2519 * with the scheduler lock held.
2520 */
2521static enum ice_status
2522ice_sched_set_eir_srl_excl(struct ice_port_info *pi,
2523			   struct ice_sched_node *node,
2524			   u8 layer_num, enum ice_rl_type rl_type, u32 bw)
2525{
2526	if (rl_type == ICE_SHARED_BW) {
2527		/* SRL node passed in this case, it may be different node */
2528		if (bw == ICE_SCHED_DFLT_BW)
2529			/* SRL being removed, ice_sched_cfg_node_bw_lmt()
2530			 * enables EIR to default. EIR is not set in this
2531			 * case, so no additional action is required.
2532			 */
2533			return 0;
2534
2535		/* SRL being configured, set EIR to default here.
2536		 * ice_sched_cfg_node_bw_lmt() disables EIR when it
2537		 * configures SRL
2538		 */
2539		return ice_sched_set_node_bw_dflt(pi, node, ICE_MAX_BW,
2540						  layer_num);
2541	} else if (rl_type == ICE_MAX_BW &&
2542		   node->info.data.valid_sections & ICE_AQC_ELEM_VALID_SHARED) {
2543		/* Remove Shared profile. Set default shared BW call
2544		 * removes shared profile for a node.
2545		 */
2546		return ice_sched_set_node_bw_dflt(pi, node,
2547						  ICE_SHARED_BW,
2548						  layer_num);
2549	}
2550	return 0;
2551}
2552
2553/**
2554 * ice_sched_set_node_bw - set node's bandwidth
2555 * @pi: port information structure
2556 * @node: tree node
2557 * @rl_type: rate limit type min, max, or shared
2558 * @bw: bandwidth in Kbps - Kilo bits per sec
2559 * @layer_num: layer number
2560 *
2561 * This function adds new profile corresponding to requested BW, configures
2562 * node's RL profile ID of type CIR, EIR, or SRL, and removes old profile
2563 * ID from local database. The caller needs to hold scheduler lock.
2564 */
2565static enum ice_status
2566ice_sched_set_node_bw(struct ice_port_info *pi, struct ice_sched_node *node,
2567		      enum ice_rl_type rl_type, u32 bw, u8 layer_num)
2568{
2569	struct ice_aqc_rl_profile_info *rl_prof_info;
2570	enum ice_status status = ICE_ERR_PARAM;
2571	struct ice_hw *hw = pi->hw;
2572	u16 old_id, rl_prof_id;
2573
2574	rl_prof_info = ice_sched_add_rl_profile(pi, rl_type, bw, layer_num);
2575	if (!rl_prof_info)
2576		return status;
2577
2578	rl_prof_id = le16_to_cpu(rl_prof_info->profile.profile_id);
2579
2580	/* Save existing RL prof ID for later clean up */
2581	old_id = ice_sched_get_node_rl_prof_id(node, rl_type);
2582	/* Configure BW scheduling parameters */
2583	status = ice_sched_cfg_node_bw_lmt(hw, node, rl_type, rl_prof_id);
2584	if (status)
2585		return status;
2586
2587	/* New changes has been applied */
2588	/* Increment the profile ID reference count */
2589	rl_prof_info->prof_id_ref++;
2590
2591	/* Check for old ID removal */
2592	if ((old_id == ICE_SCHED_DFLT_RL_PROF_ID && rl_type != ICE_SHARED_BW) ||
2593	    old_id == ICE_SCHED_INVAL_PROF_ID || old_id == rl_prof_id)
2594		return 0;
2595
2596	return ice_sched_rm_rl_profile(pi, layer_num,
2597				       rl_prof_info->profile.flags &
2598				       ICE_AQC_RL_PROFILE_TYPE_M, old_id);
2599}
2600
2601/**
2602 * ice_sched_set_node_bw_lmt - set node's BW limit
2603 * @pi: port information structure
2604 * @node: tree node
2605 * @rl_type: rate limit type min, max, or shared
2606 * @bw: bandwidth in Kbps - Kilo bits per sec
2607 *
2608 * It updates node's BW limit parameters like BW RL profile ID of type CIR,
2609 * EIR, or SRL. The caller needs to hold scheduler lock.
2610 */
2611static enum ice_status
2612ice_sched_set_node_bw_lmt(struct ice_port_info *pi, struct ice_sched_node *node,
2613			  enum ice_rl_type rl_type, u32 bw)
2614{
2615	struct ice_sched_node *cfg_node = node;
2616	enum ice_status status;
2617
2618	struct ice_hw *hw;
2619	u8 layer_num;
2620
2621	if (!pi)
2622		return ICE_ERR_PARAM;
2623	hw = pi->hw;
2624	/* Remove unused RL profile IDs from HW and SW DB */
2625	ice_sched_rm_unused_rl_prof(pi);
2626	layer_num = ice_sched_get_rl_prof_layer(pi, rl_type,
2627						node->tx_sched_layer);
2628	if (layer_num >= hw->num_tx_sched_layers)
2629		return ICE_ERR_PARAM;
2630
2631	if (rl_type == ICE_SHARED_BW) {
2632		/* SRL node may be different */
2633		cfg_node = ice_sched_get_srl_node(node, layer_num);
2634		if (!cfg_node)
2635			return ICE_ERR_CFG;
2636	}
2637	/* EIR BW and Shared BW profiles are mutually exclusive and
2638	 * hence only one of them may be set for any given element
2639	 */
2640	status = ice_sched_set_eir_srl_excl(pi, cfg_node, layer_num, rl_type,
2641					    bw);
2642	if (status)
2643		return status;
2644	if (bw == ICE_SCHED_DFLT_BW)
2645		return ice_sched_set_node_bw_dflt(pi, cfg_node, rl_type,
2646						  layer_num);
2647	return ice_sched_set_node_bw(pi, cfg_node, rl_type, bw, layer_num);
2648}
2649
2650/**
2651 * ice_sched_set_node_bw_dflt_lmt - set node's BW limit to default
2652 * @pi: port information structure
2653 * @node: pointer to node structure
2654 * @rl_type: rate limit type min, max, or shared
2655 *
2656 * This function configures node element's BW rate limit profile ID of
2657 * type CIR, EIR, or SRL to default. This function needs to be called
2658 * with the scheduler lock held.
2659 */
2660static enum ice_status
2661ice_sched_set_node_bw_dflt_lmt(struct ice_port_info *pi,
2662			       struct ice_sched_node *node,
2663			       enum ice_rl_type rl_type)
2664{
2665	return ice_sched_set_node_bw_lmt(pi, node, rl_type,
2666					 ICE_SCHED_DFLT_BW);
2667}
2668
2669/**
2670 * ice_sched_validate_srl_node - Check node for SRL applicability
2671 * @node: sched node to configure
2672 * @sel_layer: selected SRL layer
2673 *
2674 * This function checks if the SRL can be applied to a selected layer node on
2675 * behalf of the requested node (first argument). This function needs to be
2676 * called with scheduler lock held.
2677 */
2678static enum ice_status
2679ice_sched_validate_srl_node(struct ice_sched_node *node, u8 sel_layer)
2680{
2681	/* SRL profiles are not available on all layers. Check if the
2682	 * SRL profile can be applied to a node above or below the
2683	 * requested node. SRL configuration is possible only if the
2684	 * selected layer's node has single child.
2685	 */
2686	if (sel_layer == node->tx_sched_layer ||
2687	    ((sel_layer == node->tx_sched_layer + 1) &&
2688	    node->num_children == 1) ||
2689	    ((sel_layer == node->tx_sched_layer - 1) &&
2690	    (node->parent && node->parent->num_children == 1)))
2691		return 0;
2692
2693	return ICE_ERR_CFG;
2694}
2695
2696/**
2697 * ice_sched_save_q_bw - save queue node's BW information
2698 * @q_ctx: queue context structure
2699 * @rl_type: rate limit type min, max, or shared
2700 * @bw: bandwidth in Kbps - Kilo bits per sec
2701 *
2702 * Save BW information of queue type node for post replay use.
2703 */
2704static enum ice_status
2705ice_sched_save_q_bw(struct ice_q_ctx *q_ctx, enum ice_rl_type rl_type, u32 bw)
2706{
2707	switch (rl_type) {
2708	case ICE_MIN_BW:
2709		ice_set_clear_cir_bw(&q_ctx->bw_t_info, bw);
2710		break;
2711	case ICE_MAX_BW:
2712		ice_set_clear_eir_bw(&q_ctx->bw_t_info, bw);
2713		break;
2714	case ICE_SHARED_BW:
2715		ice_set_clear_shared_bw(&q_ctx->bw_t_info, bw);
2716		break;
2717	default:
2718		return ICE_ERR_PARAM;
2719	}
2720	return 0;
2721}
2722
2723/**
2724 * ice_sched_set_q_bw_lmt - sets queue BW limit
2725 * @pi: port information structure
2726 * @vsi_handle: sw VSI handle
2727 * @tc: traffic class
2728 * @q_handle: software queue handle
2729 * @rl_type: min, max, or shared
2730 * @bw: bandwidth in Kbps
2731 *
2732 * This function sets BW limit of queue scheduling node.
2733 */
2734static enum ice_status
2735ice_sched_set_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2736		       u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2737{
2738	enum ice_status status = ICE_ERR_PARAM;
2739	struct ice_sched_node *node;
2740	struct ice_q_ctx *q_ctx;
2741
2742	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
2743		return ICE_ERR_PARAM;
2744	mutex_lock(&pi->sched_lock);
2745	q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handle);
2746	if (!q_ctx)
2747		goto exit_q_bw_lmt;
2748	node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2749	if (!node) {
2750		ice_debug(pi->hw, ICE_DBG_SCHED, "Wrong q_teid\n");
2751		goto exit_q_bw_lmt;
2752	}
2753
2754	/* Return error if it is not a leaf node */
2755	if (node->info.data.elem_type != ICE_AQC_ELEM_TYPE_LEAF)
2756		goto exit_q_bw_lmt;
2757
2758	/* SRL bandwidth layer selection */
2759	if (rl_type == ICE_SHARED_BW) {
2760		u8 sel_layer; /* selected layer */
2761
2762		sel_layer = ice_sched_get_rl_prof_layer(pi, rl_type,
2763							node->tx_sched_layer);
2764		if (sel_layer >= pi->hw->num_tx_sched_layers) {
2765			status = ICE_ERR_PARAM;
2766			goto exit_q_bw_lmt;
2767		}
2768		status = ice_sched_validate_srl_node(node, sel_layer);
2769		if (status)
2770			goto exit_q_bw_lmt;
2771	}
2772
2773	if (bw == ICE_SCHED_DFLT_BW)
2774		status = ice_sched_set_node_bw_dflt_lmt(pi, node, rl_type);
2775	else
2776		status = ice_sched_set_node_bw_lmt(pi, node, rl_type, bw);
2777
2778	if (!status)
2779		status = ice_sched_save_q_bw(q_ctx, rl_type, bw);
2780
2781exit_q_bw_lmt:
2782	mutex_unlock(&pi->sched_lock);
2783	return status;
2784}
2785
2786/**
2787 * ice_cfg_q_bw_lmt - configure queue BW limit
2788 * @pi: port information structure
2789 * @vsi_handle: sw VSI handle
2790 * @tc: traffic class
2791 * @q_handle: software queue handle
2792 * @rl_type: min, max, or shared
2793 * @bw: bandwidth in Kbps
2794 *
2795 * This function configures BW limit of queue scheduling node.
2796 */
2797enum ice_status
2798ice_cfg_q_bw_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2799		 u16 q_handle, enum ice_rl_type rl_type, u32 bw)
2800{
2801	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2802				      bw);
2803}
2804
2805/**
2806 * ice_cfg_q_bw_dflt_lmt - configure queue BW default limit
2807 * @pi: port information structure
2808 * @vsi_handle: sw VSI handle
2809 * @tc: traffic class
2810 * @q_handle: software queue handle
2811 * @rl_type: min, max, or shared
2812 *
2813 * This function configures BW default limit of queue scheduling node.
2814 */
2815enum ice_status
2816ice_cfg_q_bw_dflt_lmt(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
2817		      u16 q_handle, enum ice_rl_type rl_type)
2818{
2819	return ice_sched_set_q_bw_lmt(pi, vsi_handle, tc, q_handle, rl_type,
2820				      ICE_SCHED_DFLT_BW);
2821}
2822
2823/**
2824 * ice_cfg_rl_burst_size - Set burst size value
2825 * @hw: pointer to the HW struct
2826 * @bytes: burst size in bytes
2827 *
2828 * This function configures/set the burst size to requested new value. The new
2829 * burst size value is used for future rate limit calls. It doesn't change the
2830 * existing or previously created RL profiles.
2831 */
2832enum ice_status ice_cfg_rl_burst_size(struct ice_hw *hw, u32 bytes)
2833{
2834	u16 burst_size_to_prog;
2835
2836	if (bytes < ICE_MIN_BURST_SIZE_ALLOWED ||
2837	    bytes > ICE_MAX_BURST_SIZE_ALLOWED)
2838		return ICE_ERR_PARAM;
2839	if (ice_round_to_num(bytes, 64) <=
2840	    ICE_MAX_BURST_SIZE_64_BYTE_GRANULARITY) {
2841		/* 64 byte granularity case */
2842		/* Disable MSB granularity bit */
2843		burst_size_to_prog = ICE_64_BYTE_GRANULARITY;
2844		/* round number to nearest 64 byte granularity */
2845		bytes = ice_round_to_num(bytes, 64);
2846		/* The value is in 64 byte chunks */
2847		burst_size_to_prog |= (u16)(bytes / 64);
2848	} else {
2849		/* k bytes granularity case */
2850		/* Enable MSB granularity bit */
2851		burst_size_to_prog = ICE_KBYTE_GRANULARITY;
2852		/* round number to nearest 1024 granularity */
2853		bytes = ice_round_to_num(bytes, 1024);
2854		/* check rounding doesn't go beyond allowed */
2855		if (bytes > ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY)
2856			bytes = ICE_MAX_BURST_SIZE_KBYTE_GRANULARITY;
2857		/* The value is in k bytes */
2858		burst_size_to_prog |= (u16)(bytes / 1024);
2859	}
2860	hw->max_burst_size = burst_size_to_prog;
2861	return 0;
2862}
2863
2864/**
2865 * ice_sched_replay_node_prio - re-configure node priority
2866 * @hw: pointer to the HW struct
2867 * @node: sched node to configure
2868 * @priority: priority value
2869 *
2870 * This function configures node element's priority value. It
2871 * needs to be called with scheduler lock held.
2872 */
2873static enum ice_status
2874ice_sched_replay_node_prio(struct ice_hw *hw, struct ice_sched_node *node,
2875			   u8 priority)
2876{
2877	struct ice_aqc_txsched_elem_data buf;
2878	struct ice_aqc_txsched_elem *data;
2879	enum ice_status status;
2880
2881	buf = node->info;
2882	data = &buf.data;
2883	data->valid_sections |= ICE_AQC_ELEM_VALID_GENERIC;
2884	data->generic = priority;
2885
2886	/* Configure element */
2887	status = ice_sched_update_elem(hw, node, &buf);
2888	return status;
2889}
2890
2891/**
2892 * ice_sched_replay_node_bw - replay node(s) BW
2893 * @hw: pointer to the HW struct
2894 * @node: sched node to configure
2895 * @bw_t_info: BW type information
2896 *
2897 * This function restores node's BW from bw_t_info. The caller needs
2898 * to hold the scheduler lock.
2899 */
2900static enum ice_status
2901ice_sched_replay_node_bw(struct ice_hw *hw, struct ice_sched_node *node,
2902			 struct ice_bw_type_info *bw_t_info)
2903{
2904	struct ice_port_info *pi = hw->port_info;
2905	enum ice_status status = ICE_ERR_PARAM;
2906	u16 bw_alloc;
2907
2908	if (!node)
2909		return status;
2910	if (bitmap_empty(bw_t_info->bw_t_bitmap, ICE_BW_TYPE_CNT))
2911		return 0;
2912	if (test_bit(ICE_BW_TYPE_PRIO, bw_t_info->bw_t_bitmap)) {
2913		status = ice_sched_replay_node_prio(hw, node,
2914						    bw_t_info->generic);
2915		if (status)
2916			return status;
2917	}
2918	if (test_bit(ICE_BW_TYPE_CIR, bw_t_info->bw_t_bitmap)) {
2919		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MIN_BW,
2920						   bw_t_info->cir_bw.bw);
2921		if (status)
2922			return status;
2923	}
2924	if (test_bit(ICE_BW_TYPE_CIR_WT, bw_t_info->bw_t_bitmap)) {
2925		bw_alloc = bw_t_info->cir_bw.bw_alloc;
2926		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MIN_BW,
2927						     bw_alloc);
2928		if (status)
2929			return status;
2930	}
2931	if (test_bit(ICE_BW_TYPE_EIR, bw_t_info->bw_t_bitmap)) {
2932		status = ice_sched_set_node_bw_lmt(pi, node, ICE_MAX_BW,
2933						   bw_t_info->eir_bw.bw);
2934		if (status)
2935			return status;
2936	}
2937	if (test_bit(ICE_BW_TYPE_EIR_WT, bw_t_info->bw_t_bitmap)) {
2938		bw_alloc = bw_t_info->eir_bw.bw_alloc;
2939		status = ice_sched_cfg_node_bw_alloc(hw, node, ICE_MAX_BW,
2940						     bw_alloc);
2941		if (status)
2942			return status;
2943	}
2944	if (test_bit(ICE_BW_TYPE_SHARED, bw_t_info->bw_t_bitmap))
2945		status = ice_sched_set_node_bw_lmt(pi, node, ICE_SHARED_BW,
2946						   bw_t_info->shared_bw);
2947	return status;
2948}
2949
2950/**
2951 * ice_sched_replay_q_bw - replay queue type node BW
2952 * @pi: port information structure
2953 * @q_ctx: queue context structure
2954 *
2955 * This function replays queue type node bandwidth. This function needs to be
2956 * called with scheduler lock held.
2957 */
2958enum ice_status
2959ice_sched_replay_q_bw(struct ice_port_info *pi, struct ice_q_ctx *q_ctx)
2960{
2961	struct ice_sched_node *q_node;
2962
2963	/* Following also checks the presence of node in tree */
2964	q_node = ice_sched_find_node_by_teid(pi->root, q_ctx->q_teid);
2965	if (!q_node)
2966		return ICE_ERR_PARAM;
2967	return ice_sched_replay_node_bw(pi->hw, q_node, &q_ctx->bw_t_info);
2968}