Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      Davicom DM9000 Fast Ethernet driver for Linux.
   4 * 	Copyright (C) 1997  Sten Wang
   5 *
   6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
   7 *
   8 * Additional updates, Copyright:
   9 *	Ben Dooks <ben@simtec.co.uk>
  10 *	Sascha Hauer <s.hauer@pengutronix.de>
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/ioport.h>
  15#include <linux/netdevice.h>
  16#include <linux/etherdevice.h>
  17#include <linux/interrupt.h>
  18#include <linux/skbuff.h>
  19#include <linux/spinlock.h>
  20#include <linux/crc32.h>
  21#include <linux/mii.h>
  22#include <linux/of.h>
  23#include <linux/of_net.h>
  24#include <linux/ethtool.h>
  25#include <linux/dm9000.h>
  26#include <linux/delay.h>
  27#include <linux/platform_device.h>
  28#include <linux/irq.h>
  29#include <linux/slab.h>
  30#include <linux/regulator/consumer.h>
  31#include <linux/gpio.h>
  32#include <linux/of_gpio.h>
  33
  34#include <asm/delay.h>
  35#include <asm/irq.h>
  36#include <asm/io.h>
  37
  38#include "dm9000.h"
  39
  40/* Board/System/Debug information/definition ---------------- */
  41
  42#define DM9000_PHY		0x40	/* PHY address 0x01 */
  43
  44#define CARDNAME	"dm9000"
  45
  46/*
  47 * Transmit timeout, default 5 seconds.
  48 */
  49static int watchdog = 5000;
  50module_param(watchdog, int, 0400);
  51MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  52
  53/*
  54 * Debug messages level
  55 */
  56static int debug;
  57module_param(debug, int, 0644);
  58MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
  59
  60/* DM9000 register address locking.
  61 *
  62 * The DM9000 uses an address register to control where data written
  63 * to the data register goes. This means that the address register
  64 * must be preserved over interrupts or similar calls.
  65 *
  66 * During interrupt and other critical calls, a spinlock is used to
  67 * protect the system, but the calls themselves save the address
  68 * in the address register in case they are interrupting another
  69 * access to the device.
  70 *
  71 * For general accesses a lock is provided so that calls which are
  72 * allowed to sleep are serialised so that the address register does
  73 * not need to be saved. This lock also serves to serialise access
  74 * to the EEPROM and PHY access registers which are shared between
  75 * these two devices.
  76 */
  77
  78/* The driver supports the original DM9000E, and now the two newer
  79 * devices, DM9000A and DM9000B.
  80 */
  81
  82enum dm9000_type {
  83	TYPE_DM9000E,	/* original DM9000 */
  84	TYPE_DM9000A,
  85	TYPE_DM9000B
  86};
  87
  88/* Structure/enum declaration ------------------------------- */
  89struct board_info {
  90
  91	void __iomem	*io_addr;	/* Register I/O base address */
  92	void __iomem	*io_data;	/* Data I/O address */
  93	u16		 irq;		/* IRQ */
  94
  95	u16		tx_pkt_cnt;
  96	u16		queue_pkt_len;
  97	u16		queue_start_addr;
  98	u16		queue_ip_summed;
  99	u16		dbug_cnt;
 100	u8		io_mode;		/* 0:word, 2:byte */
 101	u8		phy_addr;
 102	u8		imr_all;
 103
 104	unsigned int	flags;
 105	unsigned int	in_timeout:1;
 106	unsigned int	in_suspend:1;
 107	unsigned int	wake_supported:1;
 108
 109	enum dm9000_type type;
 110
 111	void (*inblk)(void __iomem *port, void *data, int length);
 112	void (*outblk)(void __iomem *port, void *data, int length);
 113	void (*dumpblk)(void __iomem *port, int length);
 114
 115	struct device	*dev;	     /* parent device */
 116
 117	struct resource	*addr_res;   /* resources found */
 118	struct resource *data_res;
 119	struct resource	*addr_req;   /* resources requested */
 120	struct resource *data_req;
 121
 122	int		 irq_wake;
 123
 124	struct mutex	 addr_lock;	/* phy and eeprom access lock */
 125
 126	struct delayed_work phy_poll;
 127	struct net_device  *ndev;
 128
 129	spinlock_t	lock;
 130
 131	struct mii_if_info mii;
 132	u32		msg_enable;
 133	u32		wake_state;
 134
 135	int		ip_summed;
 136};
 137
 138/* debug code */
 139
 140#define dm9000_dbg(db, lev, msg...) do {		\
 141	if ((lev) < debug) {				\
 142		dev_dbg(db->dev, msg);			\
 143	}						\
 144} while (0)
 145
 146static inline struct board_info *to_dm9000_board(struct net_device *dev)
 147{
 148	return netdev_priv(dev);
 149}
 150
 151/* DM9000 network board routine ---------------------------- */
 152
 153/*
 154 *   Read a byte from I/O port
 155 */
 156static u8
 157ior(struct board_info *db, int reg)
 158{
 159	writeb(reg, db->io_addr);
 160	return readb(db->io_data);
 161}
 162
 163/*
 164 *   Write a byte to I/O port
 165 */
 166
 167static void
 168iow(struct board_info *db, int reg, int value)
 169{
 170	writeb(reg, db->io_addr);
 171	writeb(value, db->io_data);
 172}
 173
 174static void
 175dm9000_reset(struct board_info *db)
 176{
 177	dev_dbg(db->dev, "resetting device\n");
 178
 179	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
 180	 * The essential point is that we have to do a double reset, and the
 181	 * instruction is to set LBK into MAC internal loopback mode.
 182	 */
 183	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 184	udelay(100); /* Application note says at least 20 us */
 185	if (ior(db, DM9000_NCR) & 1)
 186		dev_err(db->dev, "dm9000 did not respond to first reset\n");
 187
 188	iow(db, DM9000_NCR, 0);
 189	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
 190	udelay(100);
 191	if (ior(db, DM9000_NCR) & 1)
 192		dev_err(db->dev, "dm9000 did not respond to second reset\n");
 193}
 194
 195/* routines for sending block to chip */
 196
 197static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 198{
 199	iowrite8_rep(reg, data, count);
 200}
 201
 202static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 203{
 204	iowrite16_rep(reg, data, (count+1) >> 1);
 205}
 206
 207static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 208{
 209	iowrite32_rep(reg, data, (count+3) >> 2);
 210}
 211
 212/* input block from chip to memory */
 213
 214static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 215{
 216	ioread8_rep(reg, data, count);
 217}
 218
 219
 220static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 221{
 222	ioread16_rep(reg, data, (count+1) >> 1);
 223}
 224
 225static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 226{
 227	ioread32_rep(reg, data, (count+3) >> 2);
 228}
 229
 230/* dump block from chip to null */
 231
 232static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 233{
 234	int i;
 235	int tmp;
 236
 237	for (i = 0; i < count; i++)
 238		tmp = readb(reg);
 239}
 240
 241static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 242{
 243	int i;
 244	int tmp;
 245
 246	count = (count + 1) >> 1;
 247
 248	for (i = 0; i < count; i++)
 249		tmp = readw(reg);
 250}
 251
 252static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 253{
 254	int i;
 255	int tmp;
 256
 257	count = (count + 3) >> 2;
 258
 259	for (i = 0; i < count; i++)
 260		tmp = readl(reg);
 261}
 262
 263/*
 264 * Sleep, either by using msleep() or if we are suspending, then
 265 * use mdelay() to sleep.
 266 */
 267static void dm9000_msleep(struct board_info *db, unsigned int ms)
 268{
 269	if (db->in_suspend || db->in_timeout)
 270		mdelay(ms);
 271	else
 272		msleep(ms);
 273}
 274
 275/* Read a word from phyxcer */
 276static int
 277dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
 278{
 279	struct board_info *db = netdev_priv(dev);
 280	unsigned long flags;
 281	unsigned int reg_save;
 282	int ret;
 283
 284	mutex_lock(&db->addr_lock);
 285
 286	spin_lock_irqsave(&db->lock, flags);
 287
 288	/* Save previous register address */
 289	reg_save = readb(db->io_addr);
 290
 291	/* Fill the phyxcer register into REG_0C */
 292	iow(db, DM9000_EPAR, DM9000_PHY | reg);
 293
 294	/* Issue phyxcer read command */
 295	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
 296
 297	writeb(reg_save, db->io_addr);
 298	spin_unlock_irqrestore(&db->lock, flags);
 299
 300	dm9000_msleep(db, 1);		/* Wait read complete */
 301
 302	spin_lock_irqsave(&db->lock, flags);
 303	reg_save = readb(db->io_addr);
 304
 305	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
 306
 307	/* The read data keeps on REG_0D & REG_0E */
 308	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
 309
 310	/* restore the previous address */
 311	writeb(reg_save, db->io_addr);
 312	spin_unlock_irqrestore(&db->lock, flags);
 313
 314	mutex_unlock(&db->addr_lock);
 315
 316	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
 317	return ret;
 318}
 319
 320/* Write a word to phyxcer */
 321static void
 322dm9000_phy_write(struct net_device *dev,
 323		 int phyaddr_unused, int reg, int value)
 324{
 325	struct board_info *db = netdev_priv(dev);
 326	unsigned long flags;
 327	unsigned long reg_save;
 328
 329	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
 330	if (!db->in_timeout)
 331		mutex_lock(&db->addr_lock);
 332
 333	spin_lock_irqsave(&db->lock, flags);
 334
 335	/* Save previous register address */
 336	reg_save = readb(db->io_addr);
 337
 338	/* Fill the phyxcer register into REG_0C */
 339	iow(db, DM9000_EPAR, DM9000_PHY | reg);
 340
 341	/* Fill the written data into REG_0D & REG_0E */
 342	iow(db, DM9000_EPDRL, value);
 343	iow(db, DM9000_EPDRH, value >> 8);
 344
 345	/* Issue phyxcer write command */
 346	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
 347
 348	writeb(reg_save, db->io_addr);
 349	spin_unlock_irqrestore(&db->lock, flags);
 350
 351	dm9000_msleep(db, 1);		/* Wait write complete */
 352
 353	spin_lock_irqsave(&db->lock, flags);
 354	reg_save = readb(db->io_addr);
 355
 356	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
 357
 358	/* restore the previous address */
 359	writeb(reg_save, db->io_addr);
 360
 361	spin_unlock_irqrestore(&db->lock, flags);
 362	if (!db->in_timeout)
 363		mutex_unlock(&db->addr_lock);
 364}
 365
 366/* dm9000_set_io
 367 *
 368 * select the specified set of io routines to use with the
 369 * device
 370 */
 371
 372static void dm9000_set_io(struct board_info *db, int byte_width)
 373{
 374	/* use the size of the data resource to work out what IO
 375	 * routines we want to use
 376	 */
 377
 378	switch (byte_width) {
 379	case 1:
 380		db->dumpblk = dm9000_dumpblk_8bit;
 381		db->outblk  = dm9000_outblk_8bit;
 382		db->inblk   = dm9000_inblk_8bit;
 383		break;
 384
 385
 386	case 3:
 387		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 388		fallthrough;
 389	case 2:
 390		db->dumpblk = dm9000_dumpblk_16bit;
 391		db->outblk  = dm9000_outblk_16bit;
 392		db->inblk   = dm9000_inblk_16bit;
 393		break;
 394
 395	case 4:
 396	default:
 397		db->dumpblk = dm9000_dumpblk_32bit;
 398		db->outblk  = dm9000_outblk_32bit;
 399		db->inblk   = dm9000_inblk_32bit;
 400		break;
 401	}
 402}
 403
 404static void dm9000_schedule_poll(struct board_info *db)
 405{
 406	if (db->type == TYPE_DM9000E)
 407		schedule_delayed_work(&db->phy_poll, HZ * 2);
 408}
 409
 410static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 411{
 412	struct board_info *dm = to_dm9000_board(dev);
 413
 414	if (!netif_running(dev))
 415		return -EINVAL;
 416
 417	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 418}
 419
 420static unsigned int
 421dm9000_read_locked(struct board_info *db, int reg)
 422{
 423	unsigned long flags;
 424	unsigned int ret;
 425
 426	spin_lock_irqsave(&db->lock, flags);
 427	ret = ior(db, reg);
 428	spin_unlock_irqrestore(&db->lock, flags);
 429
 430	return ret;
 431}
 432
 433static int dm9000_wait_eeprom(struct board_info *db)
 434{
 435	unsigned int status;
 436	int timeout = 8;	/* wait max 8msec */
 437
 438	/* The DM9000 data sheets say we should be able to
 439	 * poll the ERRE bit in EPCR to wait for the EEPROM
 440	 * operation. From testing several chips, this bit
 441	 * does not seem to work.
 442	 *
 443	 * We attempt to use the bit, but fall back to the
 444	 * timeout (which is why we do not return an error
 445	 * on expiry) to say that the EEPROM operation has
 446	 * completed.
 447	 */
 448
 449	while (1) {
 450		status = dm9000_read_locked(db, DM9000_EPCR);
 451
 452		if ((status & EPCR_ERRE) == 0)
 453			break;
 454
 455		msleep(1);
 456
 457		if (timeout-- < 0) {
 458			dev_dbg(db->dev, "timeout waiting EEPROM\n");
 459			break;
 460		}
 461	}
 462
 463	return 0;
 464}
 465
 466/*
 467 *  Read a word data from EEPROM
 468 */
 469static void
 470dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
 471{
 472	unsigned long flags;
 473
 474	if (db->flags & DM9000_PLATF_NO_EEPROM) {
 475		to[0] = 0xff;
 476		to[1] = 0xff;
 477		return;
 478	}
 479
 480	mutex_lock(&db->addr_lock);
 481
 482	spin_lock_irqsave(&db->lock, flags);
 483
 484	iow(db, DM9000_EPAR, offset);
 485	iow(db, DM9000_EPCR, EPCR_ERPRR);
 486
 487	spin_unlock_irqrestore(&db->lock, flags);
 488
 489	dm9000_wait_eeprom(db);
 490
 491	/* delay for at-least 150uS */
 492	msleep(1);
 493
 494	spin_lock_irqsave(&db->lock, flags);
 495
 496	iow(db, DM9000_EPCR, 0x0);
 497
 498	to[0] = ior(db, DM9000_EPDRL);
 499	to[1] = ior(db, DM9000_EPDRH);
 500
 501	spin_unlock_irqrestore(&db->lock, flags);
 502
 503	mutex_unlock(&db->addr_lock);
 504}
 505
 506/*
 507 * Write a word data to SROM
 508 */
 509static void
 510dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
 511{
 512	unsigned long flags;
 513
 514	if (db->flags & DM9000_PLATF_NO_EEPROM)
 515		return;
 516
 517	mutex_lock(&db->addr_lock);
 518
 519	spin_lock_irqsave(&db->lock, flags);
 520	iow(db, DM9000_EPAR, offset);
 521	iow(db, DM9000_EPDRH, data[1]);
 522	iow(db, DM9000_EPDRL, data[0]);
 523	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 524	spin_unlock_irqrestore(&db->lock, flags);
 525
 526	dm9000_wait_eeprom(db);
 527
 528	mdelay(1);	/* wait at least 150uS to clear */
 529
 530	spin_lock_irqsave(&db->lock, flags);
 531	iow(db, DM9000_EPCR, 0);
 532	spin_unlock_irqrestore(&db->lock, flags);
 533
 534	mutex_unlock(&db->addr_lock);
 535}
 536
 537/* ethtool ops */
 538
 539static void dm9000_get_drvinfo(struct net_device *dev,
 540			       struct ethtool_drvinfo *info)
 541{
 542	struct board_info *dm = to_dm9000_board(dev);
 543
 544	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
 545	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
 546		sizeof(info->bus_info));
 547}
 548
 549static u32 dm9000_get_msglevel(struct net_device *dev)
 550{
 551	struct board_info *dm = to_dm9000_board(dev);
 552
 553	return dm->msg_enable;
 554}
 555
 556static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 557{
 558	struct board_info *dm = to_dm9000_board(dev);
 559
 560	dm->msg_enable = value;
 561}
 562
 563static int dm9000_get_link_ksettings(struct net_device *dev,
 564				     struct ethtool_link_ksettings *cmd)
 565{
 566	struct board_info *dm = to_dm9000_board(dev);
 567
 568	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
 569	return 0;
 570}
 571
 572static int dm9000_set_link_ksettings(struct net_device *dev,
 573				     const struct ethtool_link_ksettings *cmd)
 574{
 575	struct board_info *dm = to_dm9000_board(dev);
 576
 577	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
 578}
 579
 580static int dm9000_nway_reset(struct net_device *dev)
 581{
 582	struct board_info *dm = to_dm9000_board(dev);
 583	return mii_nway_restart(&dm->mii);
 584}
 585
 586static int dm9000_set_features(struct net_device *dev,
 587	netdev_features_t features)
 588{
 589	struct board_info *dm = to_dm9000_board(dev);
 590	netdev_features_t changed = dev->features ^ features;
 591	unsigned long flags;
 592
 593	if (!(changed & NETIF_F_RXCSUM))
 594		return 0;
 595
 596	spin_lock_irqsave(&dm->lock, flags);
 597	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 598	spin_unlock_irqrestore(&dm->lock, flags);
 599
 600	return 0;
 601}
 602
 603static u32 dm9000_get_link(struct net_device *dev)
 604{
 605	struct board_info *dm = to_dm9000_board(dev);
 606	u32 ret;
 607
 608	if (dm->flags & DM9000_PLATF_EXT_PHY)
 609		ret = mii_link_ok(&dm->mii);
 610	else
 611		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 612
 613	return ret;
 614}
 615
 616#define DM_EEPROM_MAGIC		(0x444D394B)
 617
 618static int dm9000_get_eeprom_len(struct net_device *dev)
 619{
 620	return 128;
 621}
 622
 623static int dm9000_get_eeprom(struct net_device *dev,
 624			     struct ethtool_eeprom *ee, u8 *data)
 625{
 626	struct board_info *dm = to_dm9000_board(dev);
 627	int offset = ee->offset;
 628	int len = ee->len;
 629	int i;
 630
 631	/* EEPROM access is aligned to two bytes */
 632
 633	if ((len & 1) != 0 || (offset & 1) != 0)
 634		return -EINVAL;
 635
 636	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 637		return -ENOENT;
 638
 639	ee->magic = DM_EEPROM_MAGIC;
 640
 641	for (i = 0; i < len; i += 2)
 642		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 643
 644	return 0;
 645}
 646
 647static int dm9000_set_eeprom(struct net_device *dev,
 648			     struct ethtool_eeprom *ee, u8 *data)
 649{
 650	struct board_info *dm = to_dm9000_board(dev);
 651	int offset = ee->offset;
 652	int len = ee->len;
 653	int done;
 654
 655	/* EEPROM access is aligned to two bytes */
 656
 657	if (dm->flags & DM9000_PLATF_NO_EEPROM)
 658		return -ENOENT;
 659
 660	if (ee->magic != DM_EEPROM_MAGIC)
 661		return -EINVAL;
 662
 663	while (len > 0) {
 664		if (len & 1 || offset & 1) {
 665			int which = offset & 1;
 666			u8 tmp[2];
 667
 668			dm9000_read_eeprom(dm, offset / 2, tmp);
 669			tmp[which] = *data;
 670			dm9000_write_eeprom(dm, offset / 2, tmp);
 671
 672			done = 1;
 673		} else {
 674			dm9000_write_eeprom(dm, offset / 2, data);
 675			done = 2;
 676		}
 677
 678		data += done;
 679		offset += done;
 680		len -= done;
 681	}
 682
 683	return 0;
 684}
 685
 686static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 687{
 688	struct board_info *dm = to_dm9000_board(dev);
 689
 690	memset(w, 0, sizeof(struct ethtool_wolinfo));
 691
 692	/* note, we could probably support wake-phy too */
 693	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 694	w->wolopts = dm->wake_state;
 695}
 696
 697static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 698{
 699	struct board_info *dm = to_dm9000_board(dev);
 700	unsigned long flags;
 701	u32 opts = w->wolopts;
 702	u32 wcr = 0;
 703
 704	if (!dm->wake_supported)
 705		return -EOPNOTSUPP;
 706
 707	if (opts & ~WAKE_MAGIC)
 708		return -EINVAL;
 709
 710	if (opts & WAKE_MAGIC)
 711		wcr |= WCR_MAGICEN;
 712
 713	mutex_lock(&dm->addr_lock);
 714
 715	spin_lock_irqsave(&dm->lock, flags);
 716	iow(dm, DM9000_WCR, wcr);
 717	spin_unlock_irqrestore(&dm->lock, flags);
 718
 719	mutex_unlock(&dm->addr_lock);
 720
 721	if (dm->wake_state != opts) {
 722		/* change in wol state, update IRQ state */
 723
 724		if (!dm->wake_state)
 725			irq_set_irq_wake(dm->irq_wake, 1);
 726		else if (dm->wake_state && !opts)
 727			irq_set_irq_wake(dm->irq_wake, 0);
 728	}
 729
 730	dm->wake_state = opts;
 731	return 0;
 732}
 733
 734static const struct ethtool_ops dm9000_ethtool_ops = {
 735	.get_drvinfo		= dm9000_get_drvinfo,
 736	.get_msglevel		= dm9000_get_msglevel,
 737	.set_msglevel		= dm9000_set_msglevel,
 738	.nway_reset		= dm9000_nway_reset,
 739	.get_link		= dm9000_get_link,
 740	.get_wol		= dm9000_get_wol,
 741	.set_wol		= dm9000_set_wol,
 742	.get_eeprom_len		= dm9000_get_eeprom_len,
 743	.get_eeprom		= dm9000_get_eeprom,
 744	.set_eeprom		= dm9000_set_eeprom,
 745	.get_link_ksettings	= dm9000_get_link_ksettings,
 746	.set_link_ksettings	= dm9000_set_link_ksettings,
 747};
 748
 749static void dm9000_show_carrier(struct board_info *db,
 750				unsigned carrier, unsigned nsr)
 751{
 752	int lpa;
 753	struct net_device *ndev = db->ndev;
 754	struct mii_if_info *mii = &db->mii;
 755	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 756
 757	if (carrier) {
 758		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
 759		dev_info(db->dev,
 760			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
 761			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 762			 (ncr & NCR_FDX) ? "full" : "half", lpa);
 763	} else {
 764		dev_info(db->dev, "%s: link down\n", ndev->name);
 765	}
 766}
 767
 768static void
 769dm9000_poll_work(struct work_struct *w)
 770{
 771	struct delayed_work *dw = to_delayed_work(w);
 772	struct board_info *db = container_of(dw, struct board_info, phy_poll);
 773	struct net_device *ndev = db->ndev;
 774
 775	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 776	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
 777		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 778		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 779		unsigned new_carrier;
 780
 781		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 782
 783		if (old_carrier != new_carrier) {
 784			if (netif_msg_link(db))
 785				dm9000_show_carrier(db, new_carrier, nsr);
 786
 787			if (!new_carrier)
 788				netif_carrier_off(ndev);
 789			else
 790				netif_carrier_on(ndev);
 791		}
 792	} else
 793		mii_check_media(&db->mii, netif_msg_link(db), 0);
 794
 795	if (netif_running(ndev))
 796		dm9000_schedule_poll(db);
 797}
 798
 799/* dm9000_release_board
 800 *
 801 * release a board, and any mapped resources
 802 */
 803
 804static void
 805dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 806{
 807	/* unmap our resources */
 808
 809	iounmap(db->io_addr);
 810	iounmap(db->io_data);
 811
 812	/* release the resources */
 813
 814	if (db->data_req)
 815		release_resource(db->data_req);
 816	kfree(db->data_req);
 817
 818	if (db->addr_req)
 819		release_resource(db->addr_req);
 820	kfree(db->addr_req);
 821}
 822
 823static unsigned char dm9000_type_to_char(enum dm9000_type type)
 824{
 825	switch (type) {
 826	case TYPE_DM9000E: return 'e';
 827	case TYPE_DM9000A: return 'a';
 828	case TYPE_DM9000B: return 'b';
 829	}
 830
 831	return '?';
 832}
 833
 834/*
 835 *  Set DM9000 multicast address
 836 */
 837static void
 838dm9000_hash_table_unlocked(struct net_device *dev)
 839{
 840	struct board_info *db = netdev_priv(dev);
 841	struct netdev_hw_addr *ha;
 842	int i, oft;
 843	u32 hash_val;
 844	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
 845	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 846
 847	dm9000_dbg(db, 1, "entering %s\n", __func__);
 848
 849	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 850		iow(db, oft, dev->dev_addr[i]);
 851
 852	if (dev->flags & IFF_PROMISC)
 853		rcr |= RCR_PRMSC;
 854
 855	if (dev->flags & IFF_ALLMULTI)
 856		rcr |= RCR_ALL;
 857
 858	/* the multicast address in Hash Table : 64 bits */
 859	netdev_for_each_mc_addr(ha, dev) {
 860		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 861		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 862	}
 863
 864	/* Write the hash table to MAC MD table */
 865	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 866		iow(db, oft++, hash_table[i]);
 867		iow(db, oft++, hash_table[i] >> 8);
 868	}
 869
 870	iow(db, DM9000_RCR, rcr);
 871}
 872
 873static void
 874dm9000_hash_table(struct net_device *dev)
 875{
 876	struct board_info *db = netdev_priv(dev);
 877	unsigned long flags;
 878
 879	spin_lock_irqsave(&db->lock, flags);
 880	dm9000_hash_table_unlocked(dev);
 881	spin_unlock_irqrestore(&db->lock, flags);
 882}
 883
 884static void
 885dm9000_mask_interrupts(struct board_info *db)
 886{
 887	iow(db, DM9000_IMR, IMR_PAR);
 888}
 889
 890static void
 891dm9000_unmask_interrupts(struct board_info *db)
 892{
 893	iow(db, DM9000_IMR, db->imr_all);
 894}
 895
 896/*
 897 * Initialize dm9000 board
 898 */
 899static void
 900dm9000_init_dm9000(struct net_device *dev)
 901{
 902	struct board_info *db = netdev_priv(dev);
 903	unsigned int imr;
 904	unsigned int ncr;
 905
 906	dm9000_dbg(db, 1, "entering %s\n", __func__);
 907
 908	dm9000_reset(db);
 909	dm9000_mask_interrupts(db);
 910
 911	/* I/O mode */
 912	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
 913
 914	/* Checksum mode */
 915	if (dev->hw_features & NETIF_F_RXCSUM)
 916		iow(db, DM9000_RCSR,
 917			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 918
 919	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
 920	iow(db, DM9000_GPR, 0);
 921
 922	/* If we are dealing with DM9000B, some extra steps are required: a
 923	 * manual phy reset, and setting init params.
 924	 */
 925	if (db->type == TYPE_DM9000B) {
 926		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
 927		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
 928	}
 929
 930	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 931
 932	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
 933	 * up dumping the wake events if we disable this. There is already
 934	 * a wake-mask in DM9000_WCR */
 935	if (db->wake_supported)
 936		ncr |= NCR_WAKEEN;
 937
 938	iow(db, DM9000_NCR, ncr);
 939
 940	/* Program operating register */
 941	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
 942	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
 943	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
 944	iow(db, DM9000_SMCR, 0);        /* Special Mode */
 945	/* clear TX status */
 946	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 947	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 948
 949	/* Set address filter table */
 950	dm9000_hash_table_unlocked(dev);
 951
 952	imr = IMR_PAR | IMR_PTM | IMR_PRM;
 953	if (db->type != TYPE_DM9000E)
 954		imr |= IMR_LNKCHNG;
 955
 956	db->imr_all = imr;
 957
 958	/* Init Driver variable */
 959	db->tx_pkt_cnt = 0;
 960	db->queue_pkt_len = 0;
 961	netif_trans_update(dev);
 962}
 963
 964/* Our watchdog timed out. Called by the networking layer */
 965static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
 966{
 967	struct board_info *db = netdev_priv(dev);
 968	u8 reg_save;
 969	unsigned long flags;
 970
 971	/* Save previous register address */
 972	spin_lock_irqsave(&db->lock, flags);
 973	db->in_timeout = 1;
 974	reg_save = readb(db->io_addr);
 975
 976	netif_stop_queue(dev);
 977	dm9000_init_dm9000(dev);
 978	dm9000_unmask_interrupts(db);
 979	/* We can accept TX packets again */
 980	netif_trans_update(dev); /* prevent tx timeout */
 981	netif_wake_queue(dev);
 982
 983	/* Restore previous register address */
 984	writeb(reg_save, db->io_addr);
 985	db->in_timeout = 0;
 986	spin_unlock_irqrestore(&db->lock, flags);
 987}
 988
 989static void dm9000_send_packet(struct net_device *dev,
 990			       int ip_summed,
 991			       u16 pkt_len)
 992{
 993	struct board_info *dm = to_dm9000_board(dev);
 994
 995	/* The DM9000 is not smart enough to leave fragmented packets alone. */
 996	if (dm->ip_summed != ip_summed) {
 997		if (ip_summed == CHECKSUM_NONE)
 998			iow(dm, DM9000_TCCR, 0);
 999		else
1000			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1001		dm->ip_summed = ip_summed;
1002	}
1003
1004	/* Set TX length to DM9000 */
1005	iow(dm, DM9000_TXPLL, pkt_len);
1006	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1007
1008	/* Issue TX polling command */
1009	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1010}
1011
1012/*
1013 *  Hardware start transmission.
1014 *  Send a packet to media from the upper layer.
1015 */
1016static int
1017dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1018{
1019	unsigned long flags;
1020	struct board_info *db = netdev_priv(dev);
1021
1022	dm9000_dbg(db, 3, "%s:\n", __func__);
1023
1024	if (db->tx_pkt_cnt > 1)
1025		return NETDEV_TX_BUSY;
1026
1027	spin_lock_irqsave(&db->lock, flags);
1028
1029	/* Move data to DM9000 TX RAM */
1030	writeb(DM9000_MWCMD, db->io_addr);
1031
1032	(db->outblk)(db->io_data, skb->data, skb->len);
1033	dev->stats.tx_bytes += skb->len;
1034
1035	db->tx_pkt_cnt++;
1036	/* TX control: First packet immediately send, second packet queue */
1037	if (db->tx_pkt_cnt == 1) {
1038		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1039	} else {
1040		/* Second packet */
1041		db->queue_pkt_len = skb->len;
1042		db->queue_ip_summed = skb->ip_summed;
1043		netif_stop_queue(dev);
1044	}
1045
1046	spin_unlock_irqrestore(&db->lock, flags);
1047
1048	/* free this SKB */
1049	dev_consume_skb_any(skb);
1050
1051	return NETDEV_TX_OK;
1052}
1053
1054/*
1055 * DM9000 interrupt handler
1056 * receive the packet to upper layer, free the transmitted packet
1057 */
1058
1059static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1060{
1061	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1062
1063	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1064		/* One packet sent complete */
1065		db->tx_pkt_cnt--;
1066		dev->stats.tx_packets++;
1067
1068		if (netif_msg_tx_done(db))
1069			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1070
1071		/* Queue packet check & send */
1072		if (db->tx_pkt_cnt > 0)
1073			dm9000_send_packet(dev, db->queue_ip_summed,
1074					   db->queue_pkt_len);
1075		netif_wake_queue(dev);
1076	}
1077}
1078
1079struct dm9000_rxhdr {
1080	u8	RxPktReady;
1081	u8	RxStatus;
1082	__le16	RxLen;
1083} __packed;
1084
1085/*
1086 *  Received a packet and pass to upper layer
1087 */
1088static void
1089dm9000_rx(struct net_device *dev)
1090{
1091	struct board_info *db = netdev_priv(dev);
1092	struct dm9000_rxhdr rxhdr;
1093	struct sk_buff *skb;
1094	u8 rxbyte, *rdptr;
1095	bool GoodPacket;
1096	int RxLen;
1097
1098	/* Check packet ready or not */
1099	do {
1100		ior(db, DM9000_MRCMDX);	/* Dummy read */
1101
1102		/* Get most updated data */
1103		rxbyte = readb(db->io_data);
1104
1105		/* Status check: this byte must be 0 or 1 */
1106		if (rxbyte & DM9000_PKT_ERR) {
1107			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1108			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1109			return;
1110		}
1111
1112		if (!(rxbyte & DM9000_PKT_RDY))
1113			return;
1114
1115		/* A packet ready now  & Get status/length */
1116		GoodPacket = true;
1117		writeb(DM9000_MRCMD, db->io_addr);
1118
1119		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1120
1121		RxLen = le16_to_cpu(rxhdr.RxLen);
1122
1123		if (netif_msg_rx_status(db))
1124			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1125				rxhdr.RxStatus, RxLen);
1126
1127		/* Packet Status check */
1128		if (RxLen < 0x40) {
1129			GoodPacket = false;
1130			if (netif_msg_rx_err(db))
1131				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1132		}
1133
1134		if (RxLen > DM9000_PKT_MAX) {
1135			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1136		}
1137
1138		/* rxhdr.RxStatus is identical to RSR register. */
1139		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1140				      RSR_PLE | RSR_RWTO |
1141				      RSR_LCS | RSR_RF)) {
1142			GoodPacket = false;
1143			if (rxhdr.RxStatus & RSR_FOE) {
1144				if (netif_msg_rx_err(db))
1145					dev_dbg(db->dev, "fifo error\n");
1146				dev->stats.rx_fifo_errors++;
1147			}
1148			if (rxhdr.RxStatus & RSR_CE) {
1149				if (netif_msg_rx_err(db))
1150					dev_dbg(db->dev, "crc error\n");
1151				dev->stats.rx_crc_errors++;
1152			}
1153			if (rxhdr.RxStatus & RSR_RF) {
1154				if (netif_msg_rx_err(db))
1155					dev_dbg(db->dev, "length error\n");
1156				dev->stats.rx_length_errors++;
1157			}
1158		}
1159
1160		/* Move data from DM9000 */
1161		if (GoodPacket &&
1162		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1163			skb_reserve(skb, 2);
1164			rdptr = skb_put(skb, RxLen - 4);
1165
1166			/* Read received packet from RX SRAM */
1167
1168			(db->inblk)(db->io_data, rdptr, RxLen);
1169			dev->stats.rx_bytes += RxLen;
1170
1171			/* Pass to upper layer */
1172			skb->protocol = eth_type_trans(skb, dev);
1173			if (dev->features & NETIF_F_RXCSUM) {
1174				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1175					skb->ip_summed = CHECKSUM_UNNECESSARY;
1176				else
1177					skb_checksum_none_assert(skb);
1178			}
1179			netif_rx(skb);
1180			dev->stats.rx_packets++;
1181
1182		} else {
1183			/* need to dump the packet's data */
1184
1185			(db->dumpblk)(db->io_data, RxLen);
1186		}
1187	} while (rxbyte & DM9000_PKT_RDY);
1188}
1189
1190static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1191{
1192	struct net_device *dev = dev_id;
1193	struct board_info *db = netdev_priv(dev);
1194	int int_status;
1195	unsigned long flags;
1196	u8 reg_save;
1197
1198	dm9000_dbg(db, 3, "entering %s\n", __func__);
1199
1200	/* A real interrupt coming */
1201
1202	/* holders of db->lock must always block IRQs */
1203	spin_lock_irqsave(&db->lock, flags);
1204
1205	/* Save previous register address */
1206	reg_save = readb(db->io_addr);
1207
1208	dm9000_mask_interrupts(db);
1209	/* Got DM9000 interrupt status */
1210	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1211	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1212
1213	if (netif_msg_intr(db))
1214		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1215
1216	/* Received the coming packet */
1217	if (int_status & ISR_PRS)
1218		dm9000_rx(dev);
1219
1220	/* Transmit Interrupt check */
1221	if (int_status & ISR_PTS)
1222		dm9000_tx_done(dev, db);
1223
1224	if (db->type != TYPE_DM9000E) {
1225		if (int_status & ISR_LNKCHNG) {
1226			/* fire a link-change request */
1227			schedule_delayed_work(&db->phy_poll, 1);
1228		}
1229	}
1230
1231	dm9000_unmask_interrupts(db);
1232	/* Restore previous register address */
1233	writeb(reg_save, db->io_addr);
1234
1235	spin_unlock_irqrestore(&db->lock, flags);
1236
1237	return IRQ_HANDLED;
1238}
1239
1240static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1241{
1242	struct net_device *dev = dev_id;
1243	struct board_info *db = netdev_priv(dev);
1244	unsigned long flags;
1245	unsigned nsr, wcr;
1246
1247	spin_lock_irqsave(&db->lock, flags);
1248
1249	nsr = ior(db, DM9000_NSR);
1250	wcr = ior(db, DM9000_WCR);
1251
1252	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1253
1254	if (nsr & NSR_WAKEST) {
1255		/* clear, so we can avoid */
1256		iow(db, DM9000_NSR, NSR_WAKEST);
1257
1258		if (wcr & WCR_LINKST)
1259			dev_info(db->dev, "wake by link status change\n");
1260		if (wcr & WCR_SAMPLEST)
1261			dev_info(db->dev, "wake by sample packet\n");
1262		if (wcr & WCR_MAGICST)
1263			dev_info(db->dev, "wake by magic packet\n");
1264		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1265			dev_err(db->dev, "wake signalled with no reason? "
1266				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1267	}
1268
1269	spin_unlock_irqrestore(&db->lock, flags);
1270
1271	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1272}
1273
1274#ifdef CONFIG_NET_POLL_CONTROLLER
1275/*
1276 *Used by netconsole
1277 */
1278static void dm9000_poll_controller(struct net_device *dev)
1279{
1280	disable_irq(dev->irq);
1281	dm9000_interrupt(dev->irq, dev);
1282	enable_irq(dev->irq);
1283}
1284#endif
1285
1286/*
1287 *  Open the interface.
1288 *  The interface is opened whenever "ifconfig" actives it.
1289 */
1290static int
1291dm9000_open(struct net_device *dev)
1292{
1293	struct board_info *db = netdev_priv(dev);
1294	unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1295
1296	if (netif_msg_ifup(db))
1297		dev_dbg(db->dev, "enabling %s\n", dev->name);
1298
1299	/* If there is no IRQ type specified, tell the user that this is a
1300	 * problem
1301	 */
1302	if (irq_flags == IRQF_TRIGGER_NONE)
1303		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1304
1305	irq_flags |= IRQF_SHARED;
1306
1307	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1308	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1309	mdelay(1); /* delay needs by DM9000B */
1310
1311	/* Initialize DM9000 board */
1312	dm9000_init_dm9000(dev);
1313
1314	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1315		return -EAGAIN;
1316	/* Now that we have an interrupt handler hooked up we can unmask
1317	 * our interrupts
1318	 */
1319	dm9000_unmask_interrupts(db);
1320
1321	/* Init driver variable */
1322	db->dbug_cnt = 0;
1323
1324	mii_check_media(&db->mii, netif_msg_link(db), 1);
1325	netif_start_queue(dev);
1326
1327	/* Poll initial link status */
1328	schedule_delayed_work(&db->phy_poll, 1);
1329
1330	return 0;
1331}
1332
1333static void
1334dm9000_shutdown(struct net_device *dev)
1335{
1336	struct board_info *db = netdev_priv(dev);
1337
1338	/* RESET device */
1339	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1340	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1341	dm9000_mask_interrupts(db);
1342	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1343}
1344
1345/*
1346 * Stop the interface.
1347 * The interface is stopped when it is brought.
1348 */
1349static int
1350dm9000_stop(struct net_device *ndev)
1351{
1352	struct board_info *db = netdev_priv(ndev);
1353
1354	if (netif_msg_ifdown(db))
1355		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1356
1357	cancel_delayed_work_sync(&db->phy_poll);
1358
1359	netif_stop_queue(ndev);
1360	netif_carrier_off(ndev);
1361
1362	/* free interrupt */
1363	free_irq(ndev->irq, ndev);
1364
1365	dm9000_shutdown(ndev);
1366
1367	return 0;
1368}
1369
1370static const struct net_device_ops dm9000_netdev_ops = {
1371	.ndo_open		= dm9000_open,
1372	.ndo_stop		= dm9000_stop,
1373	.ndo_start_xmit		= dm9000_start_xmit,
1374	.ndo_tx_timeout		= dm9000_timeout,
1375	.ndo_set_rx_mode	= dm9000_hash_table,
1376	.ndo_do_ioctl		= dm9000_ioctl,
1377	.ndo_set_features	= dm9000_set_features,
1378	.ndo_validate_addr	= eth_validate_addr,
1379	.ndo_set_mac_address	= eth_mac_addr,
1380#ifdef CONFIG_NET_POLL_CONTROLLER
1381	.ndo_poll_controller	= dm9000_poll_controller,
1382#endif
1383};
1384
1385static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1386{
1387	struct dm9000_plat_data *pdata;
1388	struct device_node *np = dev->of_node;
1389	const void *mac_addr;
1390
1391	if (!IS_ENABLED(CONFIG_OF) || !np)
1392		return ERR_PTR(-ENXIO);
1393
1394	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1395	if (!pdata)
1396		return ERR_PTR(-ENOMEM);
1397
1398	if (of_find_property(np, "davicom,ext-phy", NULL))
1399		pdata->flags |= DM9000_PLATF_EXT_PHY;
1400	if (of_find_property(np, "davicom,no-eeprom", NULL))
1401		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1402
1403	mac_addr = of_get_mac_address(np);
1404	if (!IS_ERR(mac_addr))
1405		ether_addr_copy(pdata->dev_addr, mac_addr);
1406	else if (PTR_ERR(mac_addr) == -EPROBE_DEFER)
1407		return ERR_CAST(mac_addr);
1408
1409	return pdata;
1410}
1411
1412/*
1413 * Search DM9000 board, allocate space and register it
1414 */
1415static int
1416dm9000_probe(struct platform_device *pdev)
1417{
1418	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1419	struct board_info *db;	/* Point a board information structure */
1420	struct net_device *ndev;
1421	struct device *dev = &pdev->dev;
1422	const unsigned char *mac_src;
1423	int ret = 0;
1424	int iosize;
1425	int i;
1426	u32 id_val;
1427	int reset_gpios;
1428	enum of_gpio_flags flags;
1429	struct regulator *power;
1430	bool inv_mac_addr = false;
1431
1432	power = devm_regulator_get(dev, "vcc");
1433	if (IS_ERR(power)) {
1434		if (PTR_ERR(power) == -EPROBE_DEFER)
1435			return -EPROBE_DEFER;
1436		dev_dbg(dev, "no regulator provided\n");
1437	} else {
1438		ret = regulator_enable(power);
1439		if (ret != 0) {
1440			dev_err(dev,
1441				"Failed to enable power regulator: %d\n", ret);
1442			return ret;
1443		}
1444		dev_dbg(dev, "regulator enabled\n");
1445	}
1446
1447	reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1448					      &flags);
1449	if (gpio_is_valid(reset_gpios)) {
1450		ret = devm_gpio_request_one(dev, reset_gpios, flags,
1451					    "dm9000_reset");
1452		if (ret) {
1453			dev_err(dev, "failed to request reset gpio %d: %d\n",
1454				reset_gpios, ret);
1455			return -ENODEV;
1456		}
1457
1458		/* According to manual PWRST# Low Period Min 1ms */
1459		msleep(2);
1460		gpio_set_value(reset_gpios, 1);
1461		/* Needs 3ms to read eeprom when PWRST is deasserted */
1462		msleep(4);
1463	}
1464
1465	if (!pdata) {
1466		pdata = dm9000_parse_dt(&pdev->dev);
1467		if (IS_ERR(pdata))
1468			return PTR_ERR(pdata);
1469	}
1470
1471	/* Init network device */
1472	ndev = alloc_etherdev(sizeof(struct board_info));
1473	if (!ndev)
1474		return -ENOMEM;
1475
1476	SET_NETDEV_DEV(ndev, &pdev->dev);
1477
1478	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1479
1480	/* setup board info structure */
1481	db = netdev_priv(ndev);
1482
1483	db->dev = &pdev->dev;
1484	db->ndev = ndev;
1485
1486	spin_lock_init(&db->lock);
1487	mutex_init(&db->addr_lock);
1488
1489	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1490
1491	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1492	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1493
1494	if (!db->addr_res || !db->data_res) {
1495		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1496			db->addr_res, db->data_res);
1497		ret = -ENOENT;
1498		goto out;
1499	}
1500
1501	ndev->irq = platform_get_irq(pdev, 0);
1502	if (ndev->irq < 0) {
1503		ret = ndev->irq;
1504		goto out;
1505	}
1506
1507	db->irq_wake = platform_get_irq(pdev, 1);
1508	if (db->irq_wake >= 0) {
1509		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1510
1511		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1512				  IRQF_SHARED, dev_name(db->dev), ndev);
1513		if (ret) {
1514			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1515		} else {
1516
1517			/* test to see if irq is really wakeup capable */
1518			ret = irq_set_irq_wake(db->irq_wake, 1);
1519			if (ret) {
1520				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1521					db->irq_wake, ret);
1522				ret = 0;
1523			} else {
1524				irq_set_irq_wake(db->irq_wake, 0);
1525				db->wake_supported = 1;
1526			}
1527		}
1528	}
1529
1530	iosize = resource_size(db->addr_res);
1531	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1532					  pdev->name);
1533
1534	if (db->addr_req == NULL) {
1535		dev_err(db->dev, "cannot claim address reg area\n");
1536		ret = -EIO;
1537		goto out;
1538	}
1539
1540	db->io_addr = ioremap(db->addr_res->start, iosize);
1541
1542	if (db->io_addr == NULL) {
1543		dev_err(db->dev, "failed to ioremap address reg\n");
1544		ret = -EINVAL;
1545		goto out;
1546	}
1547
1548	iosize = resource_size(db->data_res);
1549	db->data_req = request_mem_region(db->data_res->start, iosize,
1550					  pdev->name);
1551
1552	if (db->data_req == NULL) {
1553		dev_err(db->dev, "cannot claim data reg area\n");
1554		ret = -EIO;
1555		goto out;
1556	}
1557
1558	db->io_data = ioremap(db->data_res->start, iosize);
1559
1560	if (db->io_data == NULL) {
1561		dev_err(db->dev, "failed to ioremap data reg\n");
1562		ret = -EINVAL;
1563		goto out;
1564	}
1565
1566	/* fill in parameters for net-dev structure */
1567	ndev->base_addr = (unsigned long)db->io_addr;
1568
1569	/* ensure at least we have a default set of IO routines */
1570	dm9000_set_io(db, iosize);
1571
1572	/* check to see if anything is being over-ridden */
1573	if (pdata != NULL) {
1574		/* check to see if the driver wants to over-ride the
1575		 * default IO width */
1576
1577		if (pdata->flags & DM9000_PLATF_8BITONLY)
1578			dm9000_set_io(db, 1);
1579
1580		if (pdata->flags & DM9000_PLATF_16BITONLY)
1581			dm9000_set_io(db, 2);
1582
1583		if (pdata->flags & DM9000_PLATF_32BITONLY)
1584			dm9000_set_io(db, 4);
1585
1586		/* check to see if there are any IO routine
1587		 * over-rides */
1588
1589		if (pdata->inblk != NULL)
1590			db->inblk = pdata->inblk;
1591
1592		if (pdata->outblk != NULL)
1593			db->outblk = pdata->outblk;
1594
1595		if (pdata->dumpblk != NULL)
1596			db->dumpblk = pdata->dumpblk;
1597
1598		db->flags = pdata->flags;
1599	}
1600
1601#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1602	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1603#endif
1604
1605	dm9000_reset(db);
1606
1607	/* try multiple times, DM9000 sometimes gets the read wrong */
1608	for (i = 0; i < 8; i++) {
1609		id_val  = ior(db, DM9000_VIDL);
1610		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1611		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1612		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1613
1614		if (id_val == DM9000_ID)
1615			break;
1616		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1617	}
1618
1619	if (id_val != DM9000_ID) {
1620		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1621		ret = -ENODEV;
1622		goto out;
1623	}
1624
1625	/* Identify what type of DM9000 we are working on */
1626
1627	id_val = ior(db, DM9000_CHIPR);
1628	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1629
1630	switch (id_val) {
1631	case CHIPR_DM9000A:
1632		db->type = TYPE_DM9000A;
1633		break;
1634	case CHIPR_DM9000B:
1635		db->type = TYPE_DM9000B;
1636		break;
1637	default:
1638		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1639		db->type = TYPE_DM9000E;
1640	}
1641
1642	/* dm9000a/b are capable of hardware checksum offload */
1643	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1644		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1645		ndev->features |= ndev->hw_features;
1646	}
1647
1648	/* from this point we assume that we have found a DM9000 */
1649
1650	ndev->netdev_ops	= &dm9000_netdev_ops;
1651	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1652	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1653
1654	db->msg_enable       = NETIF_MSG_LINK;
1655	db->mii.phy_id_mask  = 0x1f;
1656	db->mii.reg_num_mask = 0x1f;
1657	db->mii.force_media  = 0;
1658	db->mii.full_duplex  = 0;
1659	db->mii.dev	     = ndev;
1660	db->mii.mdio_read    = dm9000_phy_read;
1661	db->mii.mdio_write   = dm9000_phy_write;
1662
1663	mac_src = "eeprom";
1664
1665	/* try reading the node address from the attached EEPROM */
1666	for (i = 0; i < 6; i += 2)
1667		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1668
1669	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1670		mac_src = "platform data";
1671		memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1672	}
1673
1674	if (!is_valid_ether_addr(ndev->dev_addr)) {
1675		/* try reading from mac */
1676
1677		mac_src = "chip";
1678		for (i = 0; i < 6; i++)
1679			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1680	}
1681
1682	if (!is_valid_ether_addr(ndev->dev_addr)) {
1683		inv_mac_addr = true;
1684		eth_hw_addr_random(ndev);
1685		mac_src = "random";
1686	}
1687
1688
1689	platform_set_drvdata(pdev, ndev);
1690	ret = register_netdev(ndev);
1691
1692	if (ret == 0) {
1693		if (inv_mac_addr)
1694			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1695				 ndev->name);
1696		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1697		       ndev->name, dm9000_type_to_char(db->type),
1698		       db->io_addr, db->io_data, ndev->irq,
1699		       ndev->dev_addr, mac_src);
1700	}
1701	return 0;
1702
1703out:
1704	dev_err(db->dev, "not found (%d).\n", ret);
1705
1706	dm9000_release_board(pdev, db);
1707	free_netdev(ndev);
1708
1709	return ret;
1710}
1711
1712static int
1713dm9000_drv_suspend(struct device *dev)
1714{
1715	struct net_device *ndev = dev_get_drvdata(dev);
1716	struct board_info *db;
1717
1718	if (ndev) {
1719		db = netdev_priv(ndev);
1720		db->in_suspend = 1;
1721
1722		if (!netif_running(ndev))
1723			return 0;
1724
1725		netif_device_detach(ndev);
1726
1727		/* only shutdown if not using WoL */
1728		if (!db->wake_state)
1729			dm9000_shutdown(ndev);
1730	}
1731	return 0;
1732}
1733
1734static int
1735dm9000_drv_resume(struct device *dev)
1736{
1737	struct net_device *ndev = dev_get_drvdata(dev);
1738	struct board_info *db = netdev_priv(ndev);
1739
1740	if (ndev) {
1741		if (netif_running(ndev)) {
1742			/* reset if we were not in wake mode to ensure if
1743			 * the device was powered off it is in a known state */
1744			if (!db->wake_state) {
1745				dm9000_init_dm9000(ndev);
1746				dm9000_unmask_interrupts(db);
1747			}
1748
1749			netif_device_attach(ndev);
1750		}
1751
1752		db->in_suspend = 0;
1753	}
1754	return 0;
1755}
1756
1757static const struct dev_pm_ops dm9000_drv_pm_ops = {
1758	.suspend	= dm9000_drv_suspend,
1759	.resume		= dm9000_drv_resume,
1760};
1761
1762static int
1763dm9000_drv_remove(struct platform_device *pdev)
1764{
1765	struct net_device *ndev = platform_get_drvdata(pdev);
1766
1767	unregister_netdev(ndev);
1768	dm9000_release_board(pdev, netdev_priv(ndev));
1769	free_netdev(ndev);		/* free device structure */
1770
1771	dev_dbg(&pdev->dev, "released and freed device\n");
1772	return 0;
1773}
1774
1775#ifdef CONFIG_OF
1776static const struct of_device_id dm9000_of_matches[] = {
1777	{ .compatible = "davicom,dm9000", },
1778	{ /* sentinel */ }
1779};
1780MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1781#endif
1782
1783static struct platform_driver dm9000_driver = {
1784	.driver	= {
1785		.name    = "dm9000",
1786		.pm	 = &dm9000_drv_pm_ops,
1787		.of_match_table = of_match_ptr(dm9000_of_matches),
1788	},
1789	.probe   = dm9000_probe,
1790	.remove  = dm9000_drv_remove,
1791};
1792
1793module_platform_driver(dm9000_driver);
1794
1795MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1796MODULE_DESCRIPTION("Davicom DM9000 network driver");
1797MODULE_LICENSE("GPL");
1798MODULE_ALIAS("platform:dm9000");