Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 * Micrel KS8695 (Centaur) Ethernet.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public License as
   6 * published by the Free Software Foundation; either version 2 of the
   7 * License, or (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful, but
  10 * WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
  12 * General Public License for more details.
  13 *
  14 * Copyright 2008 Simtec Electronics
  15 *		  Daniel Silverstone <dsilvers@simtec.co.uk>
  16 *		  Vincent Sanders <vince@simtec.co.uk>
  17 */
  18
  19#include <linux/dma-mapping.h>
  20#include <linux/module.h>
  21#include <linux/ioport.h>
  22#include <linux/netdevice.h>
  23#include <linux/etherdevice.h>
  24#include <linux/init.h>
  25#include <linux/interrupt.h>
  26#include <linux/skbuff.h>
  27#include <linux/spinlock.h>
  28#include <linux/crc32.h>
  29#include <linux/mii.h>
  30#include <linux/ethtool.h>
  31#include <linux/delay.h>
  32#include <linux/platform_device.h>
  33#include <linux/irq.h>
  34#include <linux/io.h>
  35#include <linux/slab.h>
  36
  37#include <asm/irq.h>
  38
  39#include <mach/regs-switch.h>
  40#include <mach/regs-misc.h>
  41#include <asm/mach/irq.h>
  42#include <mach/regs-irq.h>
  43
  44#include "ks8695net.h"
  45
  46#define MODULENAME	"ks8695_ether"
  47#define MODULEVERSION	"1.02"
  48
  49/*
  50 * Transmit and device reset timeout, default 5 seconds.
  51 */
  52static int watchdog = 5000;
  53
  54/* Hardware structures */
  55
  56/**
  57 *	struct rx_ring_desc - Receive descriptor ring element
  58 *	@status: The status of the descriptor element (E.g. who owns it)
  59 *	@length: The number of bytes in the block pointed to by data_ptr
  60 *	@data_ptr: The physical address of the data block to receive into
  61 *	@next_desc: The physical address of the next descriptor element.
  62 */
  63struct rx_ring_desc {
  64	__le32	status;
  65	__le32	length;
  66	__le32	data_ptr;
  67	__le32	next_desc;
  68};
  69
  70/**
  71 *	struct tx_ring_desc - Transmit descriptor ring element
  72 *	@owner: Who owns the descriptor
  73 *	@status: The number of bytes in the block pointed to by data_ptr
  74 *	@data_ptr: The physical address of the data block to receive into
  75 *	@next_desc: The physical address of the next descriptor element.
  76 */
  77struct tx_ring_desc {
  78	__le32	owner;
  79	__le32	status;
  80	__le32	data_ptr;
  81	__le32	next_desc;
  82};
  83
  84/**
  85 *	struct ks8695_skbuff - sk_buff wrapper for rx/tx rings.
  86 *	@skb: The buffer in the ring
  87 *	@dma_ptr: The mapped DMA pointer of the buffer
  88 *	@length: The number of bytes mapped to dma_ptr
  89 */
  90struct ks8695_skbuff {
  91	struct sk_buff	*skb;
  92	dma_addr_t	dma_ptr;
  93	u32		length;
  94};
  95
  96/* Private device structure */
  97
  98#define MAX_TX_DESC 8
  99#define MAX_TX_DESC_MASK 0x7
 100#define MAX_RX_DESC 16
 101#define MAX_RX_DESC_MASK 0xf
 102
 103/*napi_weight have better more than rx DMA buffers*/
 104#define NAPI_WEIGHT   64
 105
 106#define MAX_RXBUF_SIZE 0x700
 107
 108#define TX_RING_DMA_SIZE (sizeof(struct tx_ring_desc) * MAX_TX_DESC)
 109#define RX_RING_DMA_SIZE (sizeof(struct rx_ring_desc) * MAX_RX_DESC)
 110#define RING_DMA_SIZE (TX_RING_DMA_SIZE + RX_RING_DMA_SIZE)
 111
 112/**
 113 *	enum ks8695_dtype - Device type
 114 *	@KS8695_DTYPE_WAN: This device is a WAN interface
 115 *	@KS8695_DTYPE_LAN: This device is a LAN interface
 116 *	@KS8695_DTYPE_HPNA: This device is an HPNA interface
 117 */
 118enum ks8695_dtype {
 119	KS8695_DTYPE_WAN,
 120	KS8695_DTYPE_LAN,
 121	KS8695_DTYPE_HPNA,
 122};
 123
 124/**
 125 *	struct ks8695_priv - Private data for the KS8695 Ethernet
 126 *	@in_suspend: Flag to indicate if we're suspending/resuming
 127 *	@ndev: The net_device for this interface
 128 *	@dev: The platform device object for this interface
 129 *	@dtype: The type of this device
 130 *	@io_regs: The ioremapped registers for this interface
 131 *      @napi : Add support NAPI for Rx
 132 *	@rx_irq_name: The textual name of the RX IRQ from the platform data
 133 *	@tx_irq_name: The textual name of the TX IRQ from the platform data
 134 *	@link_irq_name: The textual name of the link IRQ from the
 135 *			platform data if available
 136 *	@rx_irq: The IRQ number for the RX IRQ
 137 *	@tx_irq: The IRQ number for the TX IRQ
 138 *	@link_irq: The IRQ number for the link IRQ if available
 139 *	@regs_req: The resource request for the registers region
 140 *	@phyiface_req: The resource request for the phy/switch region
 141 *		       if available
 142 *	@phyiface_regs: The ioremapped registers for the phy/switch if available
 143 *	@ring_base: The base pointer of the dma coherent memory for the rings
 144 *	@ring_base_dma: The DMA mapped equivalent of ring_base
 145 *	@tx_ring: The pointer in ring_base of the TX ring
 146 *	@tx_ring_used: The number of slots in the TX ring which are occupied
 147 *	@tx_ring_next_slot: The next slot to fill in the TX ring
 148 *	@tx_ring_dma: The DMA mapped equivalent of tx_ring
 149 *	@tx_buffers: The sk_buff mappings for the TX ring
 150 *	@txq_lock: A lock to protect the tx_buffers tx_ring_used etc variables
 151 *	@rx_ring: The pointer in ring_base of the RX ring
 152 *	@rx_ring_dma: The DMA mapped equivalent of rx_ring
 153 *	@rx_buffers: The sk_buff mappings for the RX ring
 154 *	@next_rx_desc_read: The next RX descriptor to read from on IRQ
 155 *      @rx_lock: A lock to protect Rx irq function
 156 *	@msg_enable: The flags for which messages to emit
 157 */
 158struct ks8695_priv {
 159	int in_suspend;
 160	struct net_device *ndev;
 161	struct device *dev;
 162	enum ks8695_dtype dtype;
 163	void __iomem *io_regs;
 164
 165	struct napi_struct	napi;
 166
 167	const char *rx_irq_name, *tx_irq_name, *link_irq_name;
 168	int rx_irq, tx_irq, link_irq;
 169
 170	struct resource *regs_req, *phyiface_req;
 171	void __iomem *phyiface_regs;
 172
 173	void *ring_base;
 174	dma_addr_t ring_base_dma;
 175
 176	struct tx_ring_desc *tx_ring;
 177	int tx_ring_used;
 178	int tx_ring_next_slot;
 179	dma_addr_t tx_ring_dma;
 180	struct ks8695_skbuff tx_buffers[MAX_TX_DESC];
 181	spinlock_t txq_lock;
 182
 183	struct rx_ring_desc *rx_ring;
 184	dma_addr_t rx_ring_dma;
 185	struct ks8695_skbuff rx_buffers[MAX_RX_DESC];
 186	int next_rx_desc_read;
 187	spinlock_t rx_lock;
 188
 189	int msg_enable;
 190};
 191
 192/* Register access */
 193
 194/**
 195 *	ks8695_readreg - Read from a KS8695 ethernet register
 196 *	@ksp: The device to read from
 197 *	@reg: The register to read
 198 */
 199static inline u32
 200ks8695_readreg(struct ks8695_priv *ksp, int reg)
 201{
 202	return readl(ksp->io_regs + reg);
 203}
 204
 205/**
 206 *	ks8695_writereg - Write to a KS8695 ethernet register
 207 *	@ksp: The device to write to
 208 *	@reg: The register to write
 209 *	@value: The value to write to the register
 210 */
 211static inline void
 212ks8695_writereg(struct ks8695_priv *ksp, int reg, u32 value)
 213{
 214	writel(value, ksp->io_regs + reg);
 215}
 216
 217/* Utility functions */
 218
 219/**
 220 *	ks8695_port_type - Retrieve port-type as user-friendly string
 221 *	@ksp: The device to return the type for
 222 *
 223 *	Returns a string indicating which of the WAN, LAN or HPNA
 224 *	ports this device is likely to represent.
 225 */
 226static const char *
 227ks8695_port_type(struct ks8695_priv *ksp)
 228{
 229	switch (ksp->dtype) {
 230	case KS8695_DTYPE_LAN:
 231		return "LAN";
 232	case KS8695_DTYPE_WAN:
 233		return "WAN";
 234	case KS8695_DTYPE_HPNA:
 235		return "HPNA";
 236	}
 237
 238	return "UNKNOWN";
 239}
 240
 241/**
 242 *	ks8695_update_mac - Update the MAC registers in the device
 243 *	@ksp: The device to update
 244 *
 245 *	Updates the MAC registers in the KS8695 device from the address in the
 246 *	net_device structure associated with this interface.
 247 */
 248static void
 249ks8695_update_mac(struct ks8695_priv *ksp)
 250{
 251	/* Update the HW with the MAC from the net_device */
 252	struct net_device *ndev = ksp->ndev;
 253	u32 machigh, maclow;
 254
 255	maclow	= ((ndev->dev_addr[2] << 24) | (ndev->dev_addr[3] << 16) |
 256		   (ndev->dev_addr[4] <<  8) | (ndev->dev_addr[5] <<  0));
 257	machigh = ((ndev->dev_addr[0] <<  8) | (ndev->dev_addr[1] <<  0));
 258
 259	ks8695_writereg(ksp, KS8695_MAL, maclow);
 260	ks8695_writereg(ksp, KS8695_MAH, machigh);
 261
 262}
 263
 264/**
 265 *	ks8695_refill_rxbuffers - Re-fill the RX buffer ring
 266 *	@ksp: The device to refill
 267 *
 268 *	Iterates the RX ring of the device looking for empty slots.
 269 *	For each empty slot, we allocate and map a new SKB and give it
 270 *	to the hardware.
 271 *	This can be called from interrupt context safely.
 272 */
 273static void
 274ks8695_refill_rxbuffers(struct ks8695_priv *ksp)
 275{
 276	/* Run around the RX ring, filling in any missing sk_buff's */
 277	int buff_n;
 278
 279	for (buff_n = 0; buff_n < MAX_RX_DESC; ++buff_n) {
 280		if (!ksp->rx_buffers[buff_n].skb) {
 281			struct sk_buff *skb = dev_alloc_skb(MAX_RXBUF_SIZE);
 282			dma_addr_t mapping;
 283
 284			ksp->rx_buffers[buff_n].skb = skb;
 285			if (skb == NULL) {
 286				/* Failed to allocate one, perhaps
 287				 * we'll try again later.
 288				 */
 289				break;
 290			}
 291
 292			mapping = dma_map_single(ksp->dev, skb->data,
 293						 MAX_RXBUF_SIZE,
 294						 DMA_FROM_DEVICE);
 295			if (unlikely(dma_mapping_error(ksp->dev, mapping))) {
 296				/* Failed to DMA map this SKB, try later */
 297				dev_kfree_skb_irq(skb);
 298				ksp->rx_buffers[buff_n].skb = NULL;
 299				break;
 300			}
 301			ksp->rx_buffers[buff_n].dma_ptr = mapping;
 302			skb->dev = ksp->ndev;
 303			ksp->rx_buffers[buff_n].length = MAX_RXBUF_SIZE;
 304
 305			/* Record this into the DMA ring */
 306			ksp->rx_ring[buff_n].data_ptr = cpu_to_le32(mapping);
 307			ksp->rx_ring[buff_n].length =
 308				cpu_to_le32(MAX_RXBUF_SIZE);
 309
 310			wmb();
 311
 312			/* And give ownership over to the hardware */
 313			ksp->rx_ring[buff_n].status = cpu_to_le32(RDES_OWN);
 314		}
 315	}
 316}
 317
 318/* Maximum number of multicast addresses which the KS8695 HW supports */
 319#define KS8695_NR_ADDRESSES	16
 320
 321/**
 322 *	ks8695_init_partial_multicast - Init the mcast addr registers
 323 *	@ksp: The device to initialise
 324 *	@addr: The multicast address list to use
 325 *	@nr_addr: The number of addresses in the list
 326 *
 327 *	This routine is a helper for ks8695_set_multicast - it writes
 328 *	the additional-address registers in the KS8695 ethernet device
 329 *	and cleans up any others left behind.
 330 */
 331static void
 332ks8695_init_partial_multicast(struct ks8695_priv *ksp,
 333			      struct net_device *ndev)
 334{
 335	u32 low, high;
 336	int i;
 337	struct netdev_hw_addr *ha;
 338
 339	i = 0;
 340	netdev_for_each_mc_addr(ha, ndev) {
 341		/* Ran out of space in chip? */
 342		BUG_ON(i == KS8695_NR_ADDRESSES);
 343
 344		low = (ha->addr[2] << 24) | (ha->addr[3] << 16) |
 345		      (ha->addr[4] << 8) | (ha->addr[5]);
 346		high = (ha->addr[0] << 8) | (ha->addr[1]);
 347
 348		ks8695_writereg(ksp, KS8695_AAL_(i), low);
 349		ks8695_writereg(ksp, KS8695_AAH_(i), AAH_E | high);
 350		i++;
 351	}
 352
 353	/* Clear the remaining Additional Station Addresses */
 354	for (; i < KS8695_NR_ADDRESSES; i++) {
 355		ks8695_writereg(ksp, KS8695_AAL_(i), 0);
 356		ks8695_writereg(ksp, KS8695_AAH_(i), 0);
 357	}
 358}
 359
 360/* Interrupt handling */
 361
 362/**
 363 *	ks8695_tx_irq - Transmit IRQ handler
 364 *	@irq: The IRQ which went off (ignored)
 365 *	@dev_id: The net_device for the interrupt
 366 *
 367 *	Process the TX ring, clearing out any transmitted slots.
 368 *	Allows the net_device to pass us new packets once slots are
 369 *	freed.
 370 */
 371static irqreturn_t
 372ks8695_tx_irq(int irq, void *dev_id)
 373{
 374	struct net_device *ndev = (struct net_device *)dev_id;
 375	struct ks8695_priv *ksp = netdev_priv(ndev);
 376	int buff_n;
 377
 378	for (buff_n = 0; buff_n < MAX_TX_DESC; ++buff_n) {
 379		if (ksp->tx_buffers[buff_n].skb &&
 380		    !(ksp->tx_ring[buff_n].owner & cpu_to_le32(TDES_OWN))) {
 381			rmb();
 382			/* An SKB which is not owned by HW is present */
 383			/* Update the stats for the net_device */
 384			ndev->stats.tx_packets++;
 385			ndev->stats.tx_bytes += ksp->tx_buffers[buff_n].length;
 386
 387			/* Free the packet from the ring */
 388			ksp->tx_ring[buff_n].data_ptr = 0;
 389
 390			/* Free the sk_buff */
 391			dma_unmap_single(ksp->dev,
 392					 ksp->tx_buffers[buff_n].dma_ptr,
 393					 ksp->tx_buffers[buff_n].length,
 394					 DMA_TO_DEVICE);
 395			dev_kfree_skb_irq(ksp->tx_buffers[buff_n].skb);
 396			ksp->tx_buffers[buff_n].skb = NULL;
 397			ksp->tx_ring_used--;
 398		}
 399	}
 400
 401	netif_wake_queue(ndev);
 402
 403	return IRQ_HANDLED;
 404}
 405
 406/**
 407 *	ks8695_get_rx_enable_bit - Get rx interrupt enable/status bit
 408 *	@ksp: Private data for the KS8695 Ethernet
 409 *
 410 *    For KS8695 document:
 411 *    Interrupt Enable Register (offset 0xE204)
 412 *        Bit29 : WAN MAC Receive Interrupt Enable
 413 *        Bit16 : LAN MAC Receive Interrupt Enable
 414 *    Interrupt Status Register (Offset 0xF208)
 415 *        Bit29: WAN MAC Receive Status
 416 *        Bit16: LAN MAC Receive Status
 417 *    So, this Rx interrrupt enable/status bit number is equal
 418 *    as Rx IRQ number.
 419 */
 420static inline u32 ks8695_get_rx_enable_bit(struct ks8695_priv *ksp)
 421{
 422	return ksp->rx_irq;
 423}
 424
 425/**
 426 *	ks8695_rx_irq - Receive IRQ handler
 427 *	@irq: The IRQ which went off (ignored)
 428 *	@dev_id: The net_device for the interrupt
 429 *
 430 *	Inform NAPI that packet reception needs to be scheduled
 431 */
 432
 433static irqreturn_t
 434ks8695_rx_irq(int irq, void *dev_id)
 435{
 436	struct net_device *ndev = (struct net_device *)dev_id;
 437	struct ks8695_priv *ksp = netdev_priv(ndev);
 438
 439	spin_lock(&ksp->rx_lock);
 440
 441	if (napi_schedule_prep(&ksp->napi)) {
 442		unsigned long status = readl(KS8695_IRQ_VA + KS8695_INTEN);
 443		unsigned long mask_bit = 1 << ks8695_get_rx_enable_bit(ksp);
 444		/*disable rx interrupt*/
 445		status &= ~mask_bit;
 446		writel(status , KS8695_IRQ_VA + KS8695_INTEN);
 447		__napi_schedule(&ksp->napi);
 448	}
 449
 450	spin_unlock(&ksp->rx_lock);
 451	return IRQ_HANDLED;
 452}
 453
 454/**
 455 *	ks8695_rx - Receive packets called by NAPI poll method
 456 *	@ksp: Private data for the KS8695 Ethernet
 457 *	@budget: Number of packets allowed to process
 458 */
 459static int ks8695_rx(struct ks8695_priv *ksp, int budget)
 460{
 461	struct net_device *ndev = ksp->ndev;
 462	struct sk_buff *skb;
 463	int buff_n;
 464	u32 flags;
 465	int pktlen;
 466	int received = 0;
 467
 468	buff_n = ksp->next_rx_desc_read;
 469	while (received < budget
 470			&& ksp->rx_buffers[buff_n].skb
 471			&& (!(ksp->rx_ring[buff_n].status &
 472					cpu_to_le32(RDES_OWN)))) {
 473			rmb();
 474			flags = le32_to_cpu(ksp->rx_ring[buff_n].status);
 475
 476			/* Found an SKB which we own, this means we
 477			 * received a packet
 478			 */
 479			if ((flags & (RDES_FS | RDES_LS)) !=
 480			    (RDES_FS | RDES_LS)) {
 481				/* This packet is not the first and
 482				 * the last segment.  Therefore it is
 483				 * a "spanning" packet and we can't
 484				 * handle it
 485				 */
 486				goto rx_failure;
 487			}
 488
 489			if (flags & (RDES_ES | RDES_RE)) {
 490				/* It's an error packet */
 491				ndev->stats.rx_errors++;
 492				if (flags & RDES_TL)
 493					ndev->stats.rx_length_errors++;
 494				if (flags & RDES_RF)
 495					ndev->stats.rx_length_errors++;
 496				if (flags & RDES_CE)
 497					ndev->stats.rx_crc_errors++;
 498				if (flags & RDES_RE)
 499					ndev->stats.rx_missed_errors++;
 500
 501				goto rx_failure;
 502			}
 503
 504			pktlen = flags & RDES_FLEN;
 505			pktlen -= 4; /* Drop the CRC */
 506
 507			/* Retrieve the sk_buff */
 508			skb = ksp->rx_buffers[buff_n].skb;
 509
 510			/* Clear it from the ring */
 511			ksp->rx_buffers[buff_n].skb = NULL;
 512			ksp->rx_ring[buff_n].data_ptr = 0;
 513
 514			/* Unmap the SKB */
 515			dma_unmap_single(ksp->dev,
 516					 ksp->rx_buffers[buff_n].dma_ptr,
 517					 ksp->rx_buffers[buff_n].length,
 518					 DMA_FROM_DEVICE);
 519
 520			/* Relinquish the SKB to the network layer */
 521			skb_put(skb, pktlen);
 522			skb->protocol = eth_type_trans(skb, ndev);
 523			netif_receive_skb(skb);
 524
 525			/* Record stats */
 526			ndev->stats.rx_packets++;
 527			ndev->stats.rx_bytes += pktlen;
 528			goto rx_finished;
 529
 530rx_failure:
 531			/* This ring entry is an error, but we can
 532			 * re-use the skb
 533			 */
 534			/* Give the ring entry back to the hardware */
 535			ksp->rx_ring[buff_n].status = cpu_to_le32(RDES_OWN);
 536rx_finished:
 537			received++;
 538			buff_n = (buff_n + 1) & MAX_RX_DESC_MASK;
 539	}
 540
 541	/* And note which RX descriptor we last did */
 542	ksp->next_rx_desc_read = buff_n;
 543
 544	/* And refill the buffers */
 545	ks8695_refill_rxbuffers(ksp);
 546
 547	/* Kick the RX DMA engine, in case it became suspended */
 548	ks8695_writereg(ksp, KS8695_DRSC, 0);
 549
 550	return received;
 551}
 552
 553
 554/**
 555 *	ks8695_poll - Receive packet by NAPI poll method
 556 *	@ksp: Private data for the KS8695 Ethernet
 557 *	@budget: The remaining number packets for network subsystem
 558 *
 559 *     Invoked by the network core when it requests for new
 560 *     packets from the driver
 561 */
 562static int ks8695_poll(struct napi_struct *napi, int budget)
 563{
 564	struct ks8695_priv *ksp = container_of(napi, struct ks8695_priv, napi);
 565	unsigned long  work_done;
 566
 567	unsigned long isr = readl(KS8695_IRQ_VA + KS8695_INTEN);
 568	unsigned long mask_bit = 1 << ks8695_get_rx_enable_bit(ksp);
 569
 570	work_done = ks8695_rx(ksp, budget);
 571
 572	if (work_done < budget) {
 573		unsigned long flags;
 574		spin_lock_irqsave(&ksp->rx_lock, flags);
 575		__napi_complete(napi);
 576		/*enable rx interrupt*/
 577		writel(isr | mask_bit, KS8695_IRQ_VA + KS8695_INTEN);
 578		spin_unlock_irqrestore(&ksp->rx_lock, flags);
 579	}
 580	return work_done;
 581}
 582
 583/**
 584 *	ks8695_link_irq - Link change IRQ handler
 585 *	@irq: The IRQ which went off (ignored)
 586 *	@dev_id: The net_device for the interrupt
 587 *
 588 *	The WAN interface can generate an IRQ when the link changes,
 589 *	report this to the net layer and the user.
 590 */
 591static irqreturn_t
 592ks8695_link_irq(int irq, void *dev_id)
 593{
 594	struct net_device *ndev = (struct net_device *)dev_id;
 595	struct ks8695_priv *ksp = netdev_priv(ndev);
 596	u32 ctrl;
 597
 598	ctrl = readl(ksp->phyiface_regs + KS8695_WMC);
 599	if (ctrl & WMC_WLS) {
 600		netif_carrier_on(ndev);
 601		if (netif_msg_link(ksp))
 602			dev_info(ksp->dev,
 603				 "%s: Link is now up (10%sMbps/%s-duplex)\n",
 604				 ndev->name,
 605				 (ctrl & WMC_WSS) ? "0" : "",
 606				 (ctrl & WMC_WDS) ? "Full" : "Half");
 607	} else {
 608		netif_carrier_off(ndev);
 609		if (netif_msg_link(ksp))
 610			dev_info(ksp->dev, "%s: Link is now down.\n",
 611				 ndev->name);
 612	}
 613
 614	return IRQ_HANDLED;
 615}
 616
 617
 618/* KS8695 Device functions */
 619
 620/**
 621 *	ks8695_reset - Reset a KS8695 ethernet interface
 622 *	@ksp: The interface to reset
 623 *
 624 *	Perform an engine reset of the interface and re-program it
 625 *	with sensible defaults.
 626 */
 627static void
 628ks8695_reset(struct ks8695_priv *ksp)
 629{
 630	int reset_timeout = watchdog;
 631	/* Issue the reset via the TX DMA control register */
 632	ks8695_writereg(ksp, KS8695_DTXC, DTXC_TRST);
 633	while (reset_timeout--) {
 634		if (!(ks8695_readreg(ksp, KS8695_DTXC) & DTXC_TRST))
 635			break;
 636		msleep(1);
 637	}
 638
 639	if (reset_timeout < 0) {
 640		dev_crit(ksp->dev,
 641			 "Timeout waiting for DMA engines to reset\n");
 642		/* And blithely carry on */
 643	}
 644
 645	/* Definitely wait long enough before attempting to program
 646	 * the engines
 647	 */
 648	msleep(10);
 649
 650	/* RX: unicast and broadcast */
 651	ks8695_writereg(ksp, KS8695_DRXC, DRXC_RU | DRXC_RB);
 652	/* TX: pad and add CRC */
 653	ks8695_writereg(ksp, KS8695_DTXC, DTXC_TEP | DTXC_TAC);
 654}
 655
 656/**
 657 *	ks8695_shutdown - Shut down a KS8695 ethernet interface
 658 *	@ksp: The interface to shut down
 659 *
 660 *	This disables packet RX/TX, cleans up IRQs, drains the rings,
 661 *	and basically places the interface into a clean shutdown
 662 *	state.
 663 */
 664static void
 665ks8695_shutdown(struct ks8695_priv *ksp)
 666{
 667	u32 ctrl;
 668	int buff_n;
 669
 670	/* Disable packet transmission */
 671	ctrl = ks8695_readreg(ksp, KS8695_DTXC);
 672	ks8695_writereg(ksp, KS8695_DTXC, ctrl & ~DTXC_TE);
 673
 674	/* Disable packet reception */
 675	ctrl = ks8695_readreg(ksp, KS8695_DRXC);
 676	ks8695_writereg(ksp, KS8695_DRXC, ctrl & ~DRXC_RE);
 677
 678	/* Release the IRQs */
 679	free_irq(ksp->rx_irq, ksp->ndev);
 680	free_irq(ksp->tx_irq, ksp->ndev);
 681	if (ksp->link_irq != -1)
 682		free_irq(ksp->link_irq, ksp->ndev);
 683
 684	/* Throw away any pending TX packets */
 685	for (buff_n = 0; buff_n < MAX_TX_DESC; ++buff_n) {
 686		if (ksp->tx_buffers[buff_n].skb) {
 687			/* Remove this SKB from the TX ring */
 688			ksp->tx_ring[buff_n].owner = 0;
 689			ksp->tx_ring[buff_n].status = 0;
 690			ksp->tx_ring[buff_n].data_ptr = 0;
 691
 692			/* Unmap and bin this SKB */
 693			dma_unmap_single(ksp->dev,
 694					 ksp->tx_buffers[buff_n].dma_ptr,
 695					 ksp->tx_buffers[buff_n].length,
 696					 DMA_TO_DEVICE);
 697			dev_kfree_skb_irq(ksp->tx_buffers[buff_n].skb);
 698			ksp->tx_buffers[buff_n].skb = NULL;
 699		}
 700	}
 701
 702	/* Purge the RX buffers */
 703	for (buff_n = 0; buff_n < MAX_RX_DESC; ++buff_n) {
 704		if (ksp->rx_buffers[buff_n].skb) {
 705			/* Remove the SKB from the RX ring */
 706			ksp->rx_ring[buff_n].status = 0;
 707			ksp->rx_ring[buff_n].data_ptr = 0;
 708
 709			/* Unmap and bin the SKB */
 710			dma_unmap_single(ksp->dev,
 711					 ksp->rx_buffers[buff_n].dma_ptr,
 712					 ksp->rx_buffers[buff_n].length,
 713					 DMA_FROM_DEVICE);
 714			dev_kfree_skb_irq(ksp->rx_buffers[buff_n].skb);
 715			ksp->rx_buffers[buff_n].skb = NULL;
 716		}
 717	}
 718}
 719
 720
 721/**
 722 *	ks8695_setup_irq - IRQ setup helper function
 723 *	@irq: The IRQ number to claim
 724 *	@irq_name: The name to give the IRQ claimant
 725 *	@handler: The function to call to handle the IRQ
 726 *	@ndev: The net_device to pass in as the dev_id argument to the handler
 727 *
 728 *	Return 0 on success.
 729 */
 730static int
 731ks8695_setup_irq(int irq, const char *irq_name,
 732		 irq_handler_t handler, struct net_device *ndev)
 733{
 734	int ret;
 735
 736	ret = request_irq(irq, handler, IRQF_SHARED, irq_name, ndev);
 737
 738	if (ret) {
 739		dev_err(&ndev->dev, "failure to request IRQ %d\n", irq);
 740		return ret;
 741	}
 742
 743	return 0;
 744}
 745
 746/**
 747 *	ks8695_init_net - Initialise a KS8695 ethernet interface
 748 *	@ksp: The interface to initialise
 749 *
 750 *	This routine fills the RX ring, initialises the DMA engines,
 751 *	allocates the IRQs and then starts the packet TX and RX
 752 *	engines.
 753 */
 754static int
 755ks8695_init_net(struct ks8695_priv *ksp)
 756{
 757	int ret;
 758	u32 ctrl;
 759
 760	ks8695_refill_rxbuffers(ksp);
 761
 762	/* Initialise the DMA engines */
 763	ks8695_writereg(ksp, KS8695_RDLB, (u32) ksp->rx_ring_dma);
 764	ks8695_writereg(ksp, KS8695_TDLB, (u32) ksp->tx_ring_dma);
 765
 766	/* Request the IRQs */
 767	ret = ks8695_setup_irq(ksp->rx_irq, ksp->rx_irq_name,
 768			       ks8695_rx_irq, ksp->ndev);
 769	if (ret)
 770		return ret;
 771	ret = ks8695_setup_irq(ksp->tx_irq, ksp->tx_irq_name,
 772			       ks8695_tx_irq, ksp->ndev);
 773	if (ret)
 774		return ret;
 775	if (ksp->link_irq != -1) {
 776		ret = ks8695_setup_irq(ksp->link_irq, ksp->link_irq_name,
 777				       ks8695_link_irq, ksp->ndev);
 778		if (ret)
 779			return ret;
 780	}
 781
 782	/* Set up the ring indices */
 783	ksp->next_rx_desc_read = 0;
 784	ksp->tx_ring_next_slot = 0;
 785	ksp->tx_ring_used = 0;
 786
 787	/* Bring up transmission */
 788	ctrl = ks8695_readreg(ksp, KS8695_DTXC);
 789	/* Enable packet transmission */
 790	ks8695_writereg(ksp, KS8695_DTXC, ctrl | DTXC_TE);
 791
 792	/* Bring up the reception */
 793	ctrl = ks8695_readreg(ksp, KS8695_DRXC);
 794	/* Enable packet reception */
 795	ks8695_writereg(ksp, KS8695_DRXC, ctrl | DRXC_RE);
 796	/* And start the DMA engine */
 797	ks8695_writereg(ksp, KS8695_DRSC, 0);
 798
 799	/* All done */
 800	return 0;
 801}
 802
 803/**
 804 *	ks8695_release_device - HW resource release for KS8695 e-net
 805 *	@ksp: The device to be freed
 806 *
 807 *	This unallocates io memory regions, dma-coherent regions etc
 808 *	which were allocated in ks8695_probe.
 809 */
 810static void
 811ks8695_release_device(struct ks8695_priv *ksp)
 812{
 813	/* Unmap the registers */
 814	iounmap(ksp->io_regs);
 815	if (ksp->phyiface_regs)
 816		iounmap(ksp->phyiface_regs);
 817
 818	/* And release the request */
 819	release_resource(ksp->regs_req);
 820	kfree(ksp->regs_req);
 821	if (ksp->phyiface_req) {
 822		release_resource(ksp->phyiface_req);
 823		kfree(ksp->phyiface_req);
 824	}
 825
 826	/* Free the ring buffers */
 827	dma_free_coherent(ksp->dev, RING_DMA_SIZE,
 828			  ksp->ring_base, ksp->ring_base_dma);
 829}
 830
 831/* Ethtool support */
 832
 833/**
 834 *	ks8695_get_msglevel - Get the messages enabled for emission
 835 *	@ndev: The network device to read from
 836 */
 837static u32
 838ks8695_get_msglevel(struct net_device *ndev)
 839{
 840	struct ks8695_priv *ksp = netdev_priv(ndev);
 841
 842	return ksp->msg_enable;
 843}
 844
 845/**
 846 *	ks8695_set_msglevel - Set the messages enabled for emission
 847 *	@ndev: The network device to configure
 848 *	@value: The messages to set for emission
 849 */
 850static void
 851ks8695_set_msglevel(struct net_device *ndev, u32 value)
 852{
 853	struct ks8695_priv *ksp = netdev_priv(ndev);
 854
 855	ksp->msg_enable = value;
 856}
 857
 858/**
 859 *	ks8695_wan_get_settings - Get device-specific settings.
 860 *	@ndev: The network device to read settings from
 861 *	@cmd: The ethtool structure to read into
 862 */
 863static int
 864ks8695_wan_get_settings(struct net_device *ndev, struct ethtool_cmd *cmd)
 865{
 866	struct ks8695_priv *ksp = netdev_priv(ndev);
 867	u32 ctrl;
 868
 869	/* All ports on the KS8695 support these... */
 870	cmd->supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
 871			  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
 872			  SUPPORTED_TP | SUPPORTED_MII);
 873	cmd->transceiver = XCVR_INTERNAL;
 874
 875	cmd->advertising = ADVERTISED_TP | ADVERTISED_MII;
 876	cmd->port = PORT_MII;
 877	cmd->supported |= (SUPPORTED_Autoneg | SUPPORTED_Pause);
 878	cmd->phy_address = 0;
 879
 880	ctrl = readl(ksp->phyiface_regs + KS8695_WMC);
 881	if ((ctrl & WMC_WAND) == 0) {
 882		/* auto-negotiation is enabled */
 883		cmd->advertising |= ADVERTISED_Autoneg;
 884		if (ctrl & WMC_WANA100F)
 885			cmd->advertising |= ADVERTISED_100baseT_Full;
 886		if (ctrl & WMC_WANA100H)
 887			cmd->advertising |= ADVERTISED_100baseT_Half;
 888		if (ctrl & WMC_WANA10F)
 889			cmd->advertising |= ADVERTISED_10baseT_Full;
 890		if (ctrl & WMC_WANA10H)
 891			cmd->advertising |= ADVERTISED_10baseT_Half;
 892		if (ctrl & WMC_WANAP)
 893			cmd->advertising |= ADVERTISED_Pause;
 894		cmd->autoneg = AUTONEG_ENABLE;
 895
 896		ethtool_cmd_speed_set(cmd,
 897				      (ctrl & WMC_WSS) ? SPEED_100 : SPEED_10);
 898		cmd->duplex = (ctrl & WMC_WDS) ?
 899			DUPLEX_FULL : DUPLEX_HALF;
 900	} else {
 901		/* auto-negotiation is disabled */
 902		cmd->autoneg = AUTONEG_DISABLE;
 903
 904		ethtool_cmd_speed_set(cmd, ((ctrl & WMC_WANF100) ?
 905					    SPEED_100 : SPEED_10));
 906		cmd->duplex = (ctrl & WMC_WANFF) ?
 907			DUPLEX_FULL : DUPLEX_HALF;
 908	}
 909
 910	return 0;
 911}
 912
 913/**
 914 *	ks8695_wan_set_settings - Set device-specific settings.
 915 *	@ndev: The network device to configure
 916 *	@cmd: The settings to configure
 917 */
 918static int
 919ks8695_wan_set_settings(struct net_device *ndev, struct ethtool_cmd *cmd)
 920{
 921	struct ks8695_priv *ksp = netdev_priv(ndev);
 922	u32 ctrl;
 923
 924	if ((cmd->speed != SPEED_10) && (cmd->speed != SPEED_100))
 925		return -EINVAL;
 926	if ((cmd->duplex != DUPLEX_HALF) && (cmd->duplex != DUPLEX_FULL))
 927		return -EINVAL;
 928	if (cmd->port != PORT_MII)
 929		return -EINVAL;
 930	if (cmd->transceiver != XCVR_INTERNAL)
 931		return -EINVAL;
 932	if ((cmd->autoneg != AUTONEG_DISABLE) &&
 933	    (cmd->autoneg != AUTONEG_ENABLE))
 934		return -EINVAL;
 935
 936	if (cmd->autoneg == AUTONEG_ENABLE) {
 937		if ((cmd->advertising & (ADVERTISED_10baseT_Half |
 938				ADVERTISED_10baseT_Full |
 939				ADVERTISED_100baseT_Half |
 940				ADVERTISED_100baseT_Full)) == 0)
 941			return -EINVAL;
 942
 943		ctrl = readl(ksp->phyiface_regs + KS8695_WMC);
 944
 945		ctrl &= ~(WMC_WAND | WMC_WANA100F | WMC_WANA100H |
 946			  WMC_WANA10F | WMC_WANA10H);
 947		if (cmd->advertising & ADVERTISED_100baseT_Full)
 948			ctrl |= WMC_WANA100F;
 949		if (cmd->advertising & ADVERTISED_100baseT_Half)
 950			ctrl |= WMC_WANA100H;
 951		if (cmd->advertising & ADVERTISED_10baseT_Full)
 952			ctrl |= WMC_WANA10F;
 953		if (cmd->advertising & ADVERTISED_10baseT_Half)
 954			ctrl |= WMC_WANA10H;
 955
 956		/* force a re-negotiation */
 957		ctrl |= WMC_WANR;
 958		writel(ctrl, ksp->phyiface_regs + KS8695_WMC);
 959	} else {
 960		ctrl = readl(ksp->phyiface_regs + KS8695_WMC);
 961
 962		/* disable auto-negotiation */
 963		ctrl |= WMC_WAND;
 964		ctrl &= ~(WMC_WANF100 | WMC_WANFF);
 965
 966		if (cmd->speed == SPEED_100)
 967			ctrl |= WMC_WANF100;
 968		if (cmd->duplex == DUPLEX_FULL)
 969			ctrl |= WMC_WANFF;
 970
 971		writel(ctrl, ksp->phyiface_regs + KS8695_WMC);
 972	}
 973
 974	return 0;
 975}
 976
 977/**
 978 *	ks8695_wan_nwayreset - Restart the autonegotiation on the port.
 979 *	@ndev: The network device to restart autoneotiation on
 980 */
 981static int
 982ks8695_wan_nwayreset(struct net_device *ndev)
 983{
 984	struct ks8695_priv *ksp = netdev_priv(ndev);
 985	u32 ctrl;
 986
 987	ctrl = readl(ksp->phyiface_regs + KS8695_WMC);
 988
 989	if ((ctrl & WMC_WAND) == 0)
 990		writel(ctrl | WMC_WANR,
 991		       ksp->phyiface_regs + KS8695_WMC);
 992	else
 993		/* auto-negotiation not enabled */
 994		return -EINVAL;
 995
 996	return 0;
 997}
 998
 999/**
1000 *	ks8695_wan_get_pause - Retrieve network pause/flow-control advertising
1001 *	@ndev: The device to retrieve settings from
1002 *	@param: The structure to fill out with the information
1003 */
1004static void
1005ks8695_wan_get_pause(struct net_device *ndev, struct ethtool_pauseparam *param)
1006{
1007	struct ks8695_priv *ksp = netdev_priv(ndev);
1008	u32 ctrl;
1009
1010	ctrl = readl(ksp->phyiface_regs + KS8695_WMC);
1011
1012	/* advertise Pause */
1013	param->autoneg = (ctrl & WMC_WANAP);
1014
1015	/* current Rx Flow-control */
1016	ctrl = ks8695_readreg(ksp, KS8695_DRXC);
1017	param->rx_pause = (ctrl & DRXC_RFCE);
1018
1019	/* current Tx Flow-control */
1020	ctrl = ks8695_readreg(ksp, KS8695_DTXC);
1021	param->tx_pause = (ctrl & DTXC_TFCE);
1022}
1023
1024/**
1025 *	ks8695_get_drvinfo - Retrieve driver information
1026 *	@ndev: The network device to retrieve info about
1027 *	@info: The info structure to fill out.
1028 */
1029static void
1030ks8695_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1031{
1032	strlcpy(info->driver, MODULENAME, sizeof(info->driver));
1033	strlcpy(info->version, MODULEVERSION, sizeof(info->version));
1034	strlcpy(info->bus_info, dev_name(ndev->dev.parent),
1035		sizeof(info->bus_info));
1036}
1037
1038static const struct ethtool_ops ks8695_ethtool_ops = {
1039	.get_msglevel	= ks8695_get_msglevel,
1040	.set_msglevel	= ks8695_set_msglevel,
1041	.get_drvinfo	= ks8695_get_drvinfo,
1042};
1043
1044static const struct ethtool_ops ks8695_wan_ethtool_ops = {
1045	.get_msglevel	= ks8695_get_msglevel,
1046	.set_msglevel	= ks8695_set_msglevel,
1047	.get_settings	= ks8695_wan_get_settings,
1048	.set_settings	= ks8695_wan_set_settings,
1049	.nway_reset	= ks8695_wan_nwayreset,
1050	.get_link	= ethtool_op_get_link,
1051	.get_pauseparam = ks8695_wan_get_pause,
1052	.get_drvinfo	= ks8695_get_drvinfo,
1053};
1054
1055/* Network device interface functions */
1056
1057/**
1058 *	ks8695_set_mac - Update MAC in net dev and HW
1059 *	@ndev: The network device to update
1060 *	@addr: The new MAC address to set
1061 */
1062static int
1063ks8695_set_mac(struct net_device *ndev, void *addr)
1064{
1065	struct ks8695_priv *ksp = netdev_priv(ndev);
1066	struct sockaddr *address = addr;
1067
1068	if (!is_valid_ether_addr(address->sa_data))
1069		return -EADDRNOTAVAIL;
1070
1071	memcpy(ndev->dev_addr, address->sa_data, ndev->addr_len);
1072
1073	ks8695_update_mac(ksp);
1074
1075	dev_dbg(ksp->dev, "%s: Updated MAC address to %pM\n",
1076		ndev->name, ndev->dev_addr);
1077
1078	return 0;
1079}
1080
1081/**
1082 *	ks8695_set_multicast - Set up the multicast behaviour of the interface
1083 *	@ndev: The net_device to configure
1084 *
1085 *	This routine, called by the net layer, configures promiscuity
1086 *	and multicast reception behaviour for the interface.
1087 */
1088static void
1089ks8695_set_multicast(struct net_device *ndev)
1090{
1091	struct ks8695_priv *ksp = netdev_priv(ndev);
1092	u32 ctrl;
1093
1094	ctrl = ks8695_readreg(ksp, KS8695_DRXC);
1095
1096	if (ndev->flags & IFF_PROMISC) {
1097		/* enable promiscuous mode */
1098		ctrl |= DRXC_RA;
1099	} else if (ndev->flags & ~IFF_PROMISC) {
1100		/* disable promiscuous mode */
1101		ctrl &= ~DRXC_RA;
1102	}
1103
1104	if (ndev->flags & IFF_ALLMULTI) {
1105		/* enable all multicast mode */
1106		ctrl |= DRXC_RM;
1107	} else if (netdev_mc_count(ndev) > KS8695_NR_ADDRESSES) {
1108		/* more specific multicast addresses than can be
1109		 * handled in hardware
1110		 */
1111		ctrl |= DRXC_RM;
1112	} else {
1113		/* enable specific multicasts */
1114		ctrl &= ~DRXC_RM;
1115		ks8695_init_partial_multicast(ksp, ndev);
1116	}
1117
1118	ks8695_writereg(ksp, KS8695_DRXC, ctrl);
1119}
1120
1121/**
1122 *	ks8695_timeout - Handle a network tx/rx timeout.
1123 *	@ndev: The net_device which timed out.
1124 *
1125 *	A network transaction timed out, reset the device.
1126 */
1127static void
1128ks8695_timeout(struct net_device *ndev)
1129{
1130	struct ks8695_priv *ksp = netdev_priv(ndev);
1131
1132	netif_stop_queue(ndev);
1133	ks8695_shutdown(ksp);
1134
1135	ks8695_reset(ksp);
1136
1137	ks8695_update_mac(ksp);
1138
1139	/* We ignore the return from this since it managed to init
1140	 * before it probably will be okay to init again.
1141	 */
1142	ks8695_init_net(ksp);
1143
1144	/* Reconfigure promiscuity etc */
1145	ks8695_set_multicast(ndev);
1146
1147	/* And start the TX queue once more */
1148	netif_start_queue(ndev);
1149}
1150
1151/**
1152 *	ks8695_start_xmit - Start a packet transmission
1153 *	@skb: The packet to transmit
1154 *	@ndev: The network device to send the packet on
1155 *
1156 *	This routine, called by the net layer, takes ownership of the
1157 *	sk_buff and adds it to the TX ring. It then kicks the TX DMA
1158 *	engine to ensure transmission begins.
1159 */
1160static int
1161ks8695_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1162{
1163	struct ks8695_priv *ksp = netdev_priv(ndev);
1164	int buff_n;
1165	dma_addr_t dmap;
1166
1167	spin_lock_irq(&ksp->txq_lock);
1168
1169	if (ksp->tx_ring_used == MAX_TX_DESC) {
1170		/* Somehow we got entered when we have no room */
1171		spin_unlock_irq(&ksp->txq_lock);
1172		return NETDEV_TX_BUSY;
1173	}
1174
1175	buff_n = ksp->tx_ring_next_slot;
1176
1177	BUG_ON(ksp->tx_buffers[buff_n].skb);
1178
1179	dmap = dma_map_single(ksp->dev, skb->data, skb->len, DMA_TO_DEVICE);
1180	if (unlikely(dma_mapping_error(ksp->dev, dmap))) {
1181		/* Failed to DMA map this SKB, give it back for now */
1182		spin_unlock_irq(&ksp->txq_lock);
1183		dev_dbg(ksp->dev, "%s: Could not map DMA memory for "\
1184			"transmission, trying later\n", ndev->name);
1185		return NETDEV_TX_BUSY;
1186	}
1187
1188	ksp->tx_buffers[buff_n].dma_ptr = dmap;
1189	/* Mapped okay, store the buffer pointer and length for later */
1190	ksp->tx_buffers[buff_n].skb = skb;
1191	ksp->tx_buffers[buff_n].length = skb->len;
1192
1193	/* Fill out the TX descriptor */
1194	ksp->tx_ring[buff_n].data_ptr =
1195		cpu_to_le32(ksp->tx_buffers[buff_n].dma_ptr);
1196	ksp->tx_ring[buff_n].status =
1197		cpu_to_le32(TDES_IC | TDES_FS | TDES_LS |
1198			    (skb->len & TDES_TBS));
1199
1200	wmb();
1201
1202	/* Hand it over to the hardware */
1203	ksp->tx_ring[buff_n].owner = cpu_to_le32(TDES_OWN);
1204
1205	if (++ksp->tx_ring_used == MAX_TX_DESC)
1206		netif_stop_queue(ndev);
1207
1208	/* Kick the TX DMA in case it decided to go IDLE */
1209	ks8695_writereg(ksp, KS8695_DTSC, 0);
1210
1211	/* And update the next ring slot */
1212	ksp->tx_ring_next_slot = (buff_n + 1) & MAX_TX_DESC_MASK;
1213
1214	spin_unlock_irq(&ksp->txq_lock);
1215	return NETDEV_TX_OK;
1216}
1217
1218/**
1219 *	ks8695_stop - Stop (shutdown) a KS8695 ethernet interface
1220 *	@ndev: The net_device to stop
1221 *
1222 *	This disables the TX queue and cleans up a KS8695 ethernet
1223 *	device.
1224 */
1225static int
1226ks8695_stop(struct net_device *ndev)
1227{
1228	struct ks8695_priv *ksp = netdev_priv(ndev);
1229
1230	netif_stop_queue(ndev);
1231	napi_disable(&ksp->napi);
1232
1233	ks8695_shutdown(ksp);
1234
1235	return 0;
1236}
1237
1238/**
1239 *	ks8695_open - Open (bring up) a KS8695 ethernet interface
1240 *	@ndev: The net_device to open
1241 *
1242 *	This resets, configures the MAC, initialises the RX ring and
1243 *	DMA engines and starts the TX queue for a KS8695 ethernet
1244 *	device.
1245 */
1246static int
1247ks8695_open(struct net_device *ndev)
1248{
1249	struct ks8695_priv *ksp = netdev_priv(ndev);
1250	int ret;
1251
1252	if (!is_valid_ether_addr(ndev->dev_addr))
1253		return -EADDRNOTAVAIL;
1254
1255	ks8695_reset(ksp);
1256
1257	ks8695_update_mac(ksp);
1258
1259	ret = ks8695_init_net(ksp);
1260	if (ret) {
1261		ks8695_shutdown(ksp);
1262		return ret;
1263	}
1264
1265	napi_enable(&ksp->napi);
1266	netif_start_queue(ndev);
1267
1268	return 0;
1269}
1270
1271/* Platform device driver */
1272
1273/**
1274 *	ks8695_init_switch - Init LAN switch to known good defaults.
1275 *	@ksp: The device to initialise
1276 *
1277 *	This initialises the LAN switch in the KS8695 to a known-good
1278 *	set of defaults.
1279 */
1280static void __devinit
1281ks8695_init_switch(struct ks8695_priv *ksp)
1282{
1283	u32 ctrl;
1284
1285	/* Default value for SEC0 according to datasheet */
1286	ctrl = 0x40819e00;
1287
1288	/* LED0 = Speed	 LED1 = Link/Activity */
1289	ctrl &= ~(SEC0_LLED1S | SEC0_LLED0S);
1290	ctrl |= (LLED0S_LINK | LLED1S_LINK_ACTIVITY);
1291
1292	/* Enable Switch */
1293	ctrl |= SEC0_ENABLE;
1294
1295	writel(ctrl, ksp->phyiface_regs + KS8695_SEC0);
1296
1297	/* Defaults for SEC1 */
1298	writel(0x9400100, ksp->phyiface_regs + KS8695_SEC1);
1299}
1300
1301/**
1302 *	ks8695_init_wan_phy - Initialise the WAN PHY to sensible defaults
1303 *	@ksp: The device to initialise
1304 *
1305 *	This initialises a KS8695's WAN phy to sensible values for
1306 *	autonegotiation etc.
1307 */
1308static void __devinit
1309ks8695_init_wan_phy(struct ks8695_priv *ksp)
1310{
1311	u32 ctrl;
1312
1313	/* Support auto-negotiation */
1314	ctrl = (WMC_WANAP | WMC_WANA100F | WMC_WANA100H |
1315		WMC_WANA10F | WMC_WANA10H);
1316
1317	/* LED0 = Activity , LED1 = Link */
1318	ctrl |= (WLED0S_ACTIVITY | WLED1S_LINK);
1319
1320	/* Restart Auto-negotiation */
1321	ctrl |= WMC_WANR;
1322
1323	writel(ctrl, ksp->phyiface_regs + KS8695_WMC);
1324
1325	writel(0, ksp->phyiface_regs + KS8695_WPPM);
1326	writel(0, ksp->phyiface_regs + KS8695_PPS);
1327}
1328
1329static const struct net_device_ops ks8695_netdev_ops = {
1330	.ndo_open		= ks8695_open,
1331	.ndo_stop		= ks8695_stop,
1332	.ndo_start_xmit		= ks8695_start_xmit,
1333	.ndo_tx_timeout		= ks8695_timeout,
1334	.ndo_set_mac_address	= ks8695_set_mac,
1335	.ndo_validate_addr	= eth_validate_addr,
1336	.ndo_set_multicast_list	= ks8695_set_multicast,
1337};
1338
1339/**
1340 *	ks8695_probe - Probe and initialise a KS8695 ethernet interface
1341 *	@pdev: The platform device to probe
1342 *
1343 *	Initialise a KS8695 ethernet device from platform data.
1344 *
1345 *	This driver requires at least one IORESOURCE_MEM for the
1346 *	registers and two IORESOURCE_IRQ for the RX and TX IRQs
1347 *	respectively. It can optionally take an additional
1348 *	IORESOURCE_MEM for the switch or phy in the case of the lan or
1349 *	wan ports, and an IORESOURCE_IRQ for the link IRQ for the wan
1350 *	port.
1351 */
1352static int __devinit
1353ks8695_probe(struct platform_device *pdev)
1354{
1355	struct ks8695_priv *ksp;
1356	struct net_device *ndev;
1357	struct resource *regs_res, *phyiface_res;
1358	struct resource *rxirq_res, *txirq_res, *linkirq_res;
1359	int ret = 0;
1360	int buff_n;
1361	u32 machigh, maclow;
1362
1363	/* Initialise a net_device */
1364	ndev = alloc_etherdev(sizeof(struct ks8695_priv));
1365	if (!ndev) {
1366		dev_err(&pdev->dev, "could not allocate device.\n");
1367		return -ENOMEM;
1368	}
1369
1370	SET_NETDEV_DEV(ndev, &pdev->dev);
1371
1372	dev_dbg(&pdev->dev, "ks8695_probe() called\n");
1373
1374	/* Configure our private structure a little */
1375	ksp = netdev_priv(ndev);
1376
1377	ksp->dev = &pdev->dev;
1378	ksp->ndev = ndev;
1379	ksp->msg_enable = NETIF_MSG_LINK;
1380
1381	/* Retrieve resources */
1382	regs_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1383	phyiface_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1384
1385	rxirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1386	txirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1387	linkirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1388
1389	if (!(regs_res && rxirq_res && txirq_res)) {
1390		dev_err(ksp->dev, "insufficient resources\n");
1391		ret = -ENOENT;
1392		goto failure;
1393	}
1394
1395	ksp->regs_req = request_mem_region(regs_res->start,
1396					   resource_size(regs_res),
1397					   pdev->name);
1398
1399	if (!ksp->regs_req) {
1400		dev_err(ksp->dev, "cannot claim register space\n");
1401		ret = -EIO;
1402		goto failure;
1403	}
1404
1405	ksp->io_regs = ioremap(regs_res->start, resource_size(regs_res));
1406
1407	if (!ksp->io_regs) {
1408		dev_err(ksp->dev, "failed to ioremap registers\n");
1409		ret = -EINVAL;
1410		goto failure;
1411	}
1412
1413	if (phyiface_res) {
1414		ksp->phyiface_req =
1415			request_mem_region(phyiface_res->start,
1416					   resource_size(phyiface_res),
1417					   phyiface_res->name);
1418
1419		if (!ksp->phyiface_req) {
1420			dev_err(ksp->dev,
1421				"cannot claim switch register space\n");
1422			ret = -EIO;
1423			goto failure;
1424		}
1425
1426		ksp->phyiface_regs = ioremap(phyiface_res->start,
1427					     resource_size(phyiface_res));
1428
1429		if (!ksp->phyiface_regs) {
1430			dev_err(ksp->dev,
1431				"failed to ioremap switch registers\n");
1432			ret = -EINVAL;
1433			goto failure;
1434		}
1435	}
1436
1437	ksp->rx_irq = rxirq_res->start;
1438	ksp->rx_irq_name = rxirq_res->name ? rxirq_res->name : "Ethernet RX";
1439	ksp->tx_irq = txirq_res->start;
1440	ksp->tx_irq_name = txirq_res->name ? txirq_res->name : "Ethernet TX";
1441	ksp->link_irq = (linkirq_res ? linkirq_res->start : -1);
1442	ksp->link_irq_name = (linkirq_res && linkirq_res->name) ?
1443		linkirq_res->name : "Ethernet Link";
1444
1445	/* driver system setup */
1446	ndev->netdev_ops = &ks8695_netdev_ops;
1447	ndev->watchdog_timeo	 = msecs_to_jiffies(watchdog);
1448
1449	netif_napi_add(ndev, &ksp->napi, ks8695_poll, NAPI_WEIGHT);
1450
1451	/* Retrieve the default MAC addr from the chip. */
1452	/* The bootloader should have left it in there for us. */
1453
1454	machigh = ks8695_readreg(ksp, KS8695_MAH);
1455	maclow = ks8695_readreg(ksp, KS8695_MAL);
1456
1457	ndev->dev_addr[0] = (machigh >> 8) & 0xFF;
1458	ndev->dev_addr[1] = machigh & 0xFF;
1459	ndev->dev_addr[2] = (maclow >> 24) & 0xFF;
1460	ndev->dev_addr[3] = (maclow >> 16) & 0xFF;
1461	ndev->dev_addr[4] = (maclow >> 8) & 0xFF;
1462	ndev->dev_addr[5] = maclow & 0xFF;
1463
1464	if (!is_valid_ether_addr(ndev->dev_addr))
1465		dev_warn(ksp->dev, "%s: Invalid ethernet MAC address. Please "
1466			 "set using ifconfig\n", ndev->name);
1467
1468	/* In order to be efficient memory-wise, we allocate both
1469	 * rings in one go.
1470	 */
1471	ksp->ring_base = dma_alloc_coherent(&pdev->dev, RING_DMA_SIZE,
1472					    &ksp->ring_base_dma, GFP_KERNEL);
1473	if (!ksp->ring_base) {
1474		ret = -ENOMEM;
1475		goto failure;
1476	}
1477
1478	/* Specify the TX DMA ring buffer */
1479	ksp->tx_ring = ksp->ring_base;
1480	ksp->tx_ring_dma = ksp->ring_base_dma;
1481
1482	/* And initialise the queue's lock */
1483	spin_lock_init(&ksp->txq_lock);
1484	spin_lock_init(&ksp->rx_lock);
1485
1486	/* Specify the RX DMA ring buffer */
1487	ksp->rx_ring = ksp->ring_base + TX_RING_DMA_SIZE;
1488	ksp->rx_ring_dma = ksp->ring_base_dma + TX_RING_DMA_SIZE;
1489
1490	/* Zero the descriptor rings */
1491	memset(ksp->tx_ring, 0, TX_RING_DMA_SIZE);
1492	memset(ksp->rx_ring, 0, RX_RING_DMA_SIZE);
1493
1494	/* Build the rings */
1495	for (buff_n = 0; buff_n < MAX_TX_DESC; ++buff_n) {
1496		ksp->tx_ring[buff_n].next_desc =
1497			cpu_to_le32(ksp->tx_ring_dma +
1498				    (sizeof(struct tx_ring_desc) *
1499				     ((buff_n + 1) & MAX_TX_DESC_MASK)));
1500	}
1501
1502	for (buff_n = 0; buff_n < MAX_RX_DESC; ++buff_n) {
1503		ksp->rx_ring[buff_n].next_desc =
1504			cpu_to_le32(ksp->rx_ring_dma +
1505				    (sizeof(struct rx_ring_desc) *
1506				     ((buff_n + 1) & MAX_RX_DESC_MASK)));
1507	}
1508
1509	/* Initialise the port (physically) */
1510	if (ksp->phyiface_regs && ksp->link_irq == -1) {
1511		ks8695_init_switch(ksp);
1512		ksp->dtype = KS8695_DTYPE_LAN;
1513		SET_ETHTOOL_OPS(ndev, &ks8695_ethtool_ops);
1514	} else if (ksp->phyiface_regs && ksp->link_irq != -1) {
1515		ks8695_init_wan_phy(ksp);
1516		ksp->dtype = KS8695_DTYPE_WAN;
1517		SET_ETHTOOL_OPS(ndev, &ks8695_wan_ethtool_ops);
1518	} else {
1519		/* No initialisation since HPNA does not have a PHY */
1520		ksp->dtype = KS8695_DTYPE_HPNA;
1521		SET_ETHTOOL_OPS(ndev, &ks8695_ethtool_ops);
1522	}
1523
1524	/* And bring up the net_device with the net core */
1525	platform_set_drvdata(pdev, ndev);
1526	ret = register_netdev(ndev);
1527
1528	if (ret == 0) {
1529		dev_info(ksp->dev, "ks8695 ethernet (%s) MAC: %pM\n",
1530			 ks8695_port_type(ksp), ndev->dev_addr);
1531	} else {
1532		/* Report the failure to register the net_device */
1533		dev_err(ksp->dev, "ks8695net: failed to register netdev.\n");
1534		goto failure;
1535	}
1536
1537	/* All is well */
1538	return 0;
1539
1540	/* Error exit path */
1541failure:
1542	ks8695_release_device(ksp);
1543	free_netdev(ndev);
1544
1545	return ret;
1546}
1547
1548/**
1549 *	ks8695_drv_suspend - Suspend a KS8695 ethernet platform device.
1550 *	@pdev: The device to suspend
1551 *	@state: The suspend state
1552 *
1553 *	This routine detaches and shuts down a KS8695 ethernet device.
1554 */
1555static int
1556ks8695_drv_suspend(struct platform_device *pdev, pm_message_t state)
1557{
1558	struct net_device *ndev = platform_get_drvdata(pdev);
1559	struct ks8695_priv *ksp = netdev_priv(ndev);
1560
1561	ksp->in_suspend = 1;
1562
1563	if (netif_running(ndev)) {
1564		netif_device_detach(ndev);
1565		ks8695_shutdown(ksp);
1566	}
1567
1568	return 0;
1569}
1570
1571/**
1572 *	ks8695_drv_resume - Resume a KS8695 ethernet platform device.
1573 *	@pdev: The device to resume
1574 *
1575 *	This routine re-initialises and re-attaches a KS8695 ethernet
1576 *	device.
1577 */
1578static int
1579ks8695_drv_resume(struct platform_device *pdev)
1580{
1581	struct net_device *ndev = platform_get_drvdata(pdev);
1582	struct ks8695_priv *ksp = netdev_priv(ndev);
1583
1584	if (netif_running(ndev)) {
1585		ks8695_reset(ksp);
1586		ks8695_init_net(ksp);
1587		ks8695_set_multicast(ndev);
1588		netif_device_attach(ndev);
1589	}
1590
1591	ksp->in_suspend = 0;
1592
1593	return 0;
1594}
1595
1596/**
1597 *	ks8695_drv_remove - Remove a KS8695 net device on driver unload.
1598 *	@pdev: The platform device to remove
1599 *
1600 *	This unregisters and releases a KS8695 ethernet device.
1601 */
1602static int __devexit
1603ks8695_drv_remove(struct platform_device *pdev)
1604{
1605	struct net_device *ndev = platform_get_drvdata(pdev);
1606	struct ks8695_priv *ksp = netdev_priv(ndev);
1607
1608	platform_set_drvdata(pdev, NULL);
1609	netif_napi_del(&ksp->napi);
1610
1611	unregister_netdev(ndev);
1612	ks8695_release_device(ksp);
1613	free_netdev(ndev);
1614
1615	dev_dbg(&pdev->dev, "released and freed device\n");
1616	return 0;
1617}
1618
1619static struct platform_driver ks8695_driver = {
1620	.driver = {
1621		.name	= MODULENAME,
1622		.owner	= THIS_MODULE,
1623	},
1624	.probe		= ks8695_probe,
1625	.remove		= __devexit_p(ks8695_drv_remove),
1626	.suspend	= ks8695_drv_suspend,
1627	.resume		= ks8695_drv_resume,
1628};
1629
1630/* Module interface */
1631
1632static int __init
1633ks8695_init(void)
1634{
1635	printk(KERN_INFO "%s Ethernet driver, V%s\n",
1636	       MODULENAME, MODULEVERSION);
1637
1638	return platform_driver_register(&ks8695_driver);
1639}
1640
1641static void __exit
1642ks8695_cleanup(void)
1643{
1644	platform_driver_unregister(&ks8695_driver);
1645}
1646
1647module_init(ks8695_init);
1648module_exit(ks8695_cleanup);
1649
1650MODULE_AUTHOR("Simtec Electronics");
1651MODULE_DESCRIPTION("Micrel KS8695 (Centaur) Ethernet driver");
1652MODULE_LICENSE("GPL");
1653MODULE_ALIAS("platform:" MODULENAME);
1654
1655module_param(watchdog, int, 0400);
1656MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");