Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   3 *
   4 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   5 *  Copyright (C) 2010 ST-Ericsson SA
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/moduleparam.h>
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/device.h>
 
  16#include <linux/interrupt.h>
  17#include <linux/kernel.h>
 
  18#include <linux/delay.h>
  19#include <linux/err.h>
  20#include <linux/highmem.h>
  21#include <linux/log2.h>
 
 
  22#include <linux/mmc/host.h>
  23#include <linux/mmc/card.h>
 
 
  24#include <linux/amba/bus.h>
  25#include <linux/clk.h>
  26#include <linux/scatterlist.h>
  27#include <linux/gpio.h>
  28#include <linux/regulator/consumer.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/amba/mmci.h>
 
 
 
 
  32
  33#include <asm/div64.h>
  34#include <asm/io.h>
  35#include <asm/sizes.h>
  36
  37#include "mmci.h"
  38
  39#define DRIVER_NAME "mmci-pl18x"
  40
  41static unsigned int fmax = 515633;
 
 
  42
  43/**
  44 * struct variant_data - MMCI variant-specific quirks
  45 * @clkreg: default value for MCICLOCK register
  46 * @clkreg_enable: enable value for MMCICLOCK register
  47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
  48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
  49 *	      is asserted (likewise for RX)
  50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
  51 *		  is asserted (likewise for RX)
  52 * @sdio: variant supports SDIO
  53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
  54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
  55 */
  56struct variant_data {
  57	unsigned int		clkreg;
  58	unsigned int		clkreg_enable;
  59	unsigned int		datalength_bits;
  60	unsigned int		fifosize;
  61	unsigned int		fifohalfsize;
  62	bool			sdio;
  63	bool			st_clkdiv;
  64	bool			blksz_datactrl16;
  65};
  66
  67static struct variant_data variant_arm = {
  68	.fifosize		= 16 * 4,
  69	.fifohalfsize		= 8 * 4,
 
 
 
 
  70	.datalength_bits	= 16,
 
 
 
 
 
 
 
 
 
  71};
  72
  73static struct variant_data variant_arm_extended_fifo = {
  74	.fifosize		= 128 * 4,
  75	.fifohalfsize		= 64 * 4,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76	.datalength_bits	= 16,
 
 
 
 
 
 
 
 
  77};
  78
  79static struct variant_data variant_u300 = {
  80	.fifosize		= 16 * 4,
  81	.fifohalfsize		= 8 * 4,
  82	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 
 
 
 
 
  83	.datalength_bits	= 16,
  84	.sdio			= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85};
  86
  87static struct variant_data variant_ux500 = {
  88	.fifosize		= 30 * 4,
  89	.fifohalfsize		= 8 * 4,
  90	.clkreg			= MCI_CLK_ENABLE,
  91	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 
 
 
 
  92	.datalength_bits	= 24,
  93	.sdio			= true,
 
 
 
 
  94	.st_clkdiv		= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95};
  96
  97static struct variant_data variant_ux500v2 = {
  98	.fifosize		= 30 * 4,
  99	.fifohalfsize		= 8 * 4,
 100	.clkreg			= MCI_CLK_ENABLE,
 101	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 
 
 
 
 
 
 
 102	.datalength_bits	= 24,
 103	.sdio			= true,
 
 
 
 
 104	.st_clkdiv		= true,
 105	.blksz_datactrl16	= true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 106};
 107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108/*
 109 * This must be called with host->lock held
 110 */
 111static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 112{
 113	struct variant_data *variant = host->variant;
 114	u32 clk = variant->clkreg;
 115
 
 
 
 116	if (desired) {
 117		if (desired >= host->mclk) {
 
 
 118			clk = MCI_CLK_BYPASS;
 119			if (variant->st_clkdiv)
 120				clk |= MCI_ST_UX500_NEG_EDGE;
 121			host->cclk = host->mclk;
 122		} else if (variant->st_clkdiv) {
 123			/*
 124			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 125			 * => clkdiv = (mclk / f) - 2
 126			 * Round the divider up so we don't exceed the max
 127			 * frequency
 128			 */
 129			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 130			if (clk >= 256)
 131				clk = 255;
 132			host->cclk = host->mclk / (clk + 2);
 133		} else {
 134			/*
 135			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 136			 * => clkdiv = mclk / (2 * f) - 1
 137			 */
 138			clk = host->mclk / (2 * desired) - 1;
 139			if (clk >= 256)
 140				clk = 255;
 141			host->cclk = host->mclk / (2 * (clk + 1));
 142		}
 143
 144		clk |= variant->clkreg_enable;
 145		clk |= MCI_CLK_ENABLE;
 146		/* This hasn't proven to be worthwhile */
 147		/* clk |= MCI_CLK_PWRSAVE; */
 148	}
 149
 
 
 
 150	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 151		clk |= MCI_4BIT_BUS;
 152	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 153		clk |= MCI_ST_8BIT_BUS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154
 155	writel(clk, host->base + MMCICLOCK);
 
 156}
 157
 158static void
 159mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 160{
 161	writel(0, host->base + MMCICOMMAND);
 162
 163	BUG_ON(host->data);
 164
 165	host->mrq = NULL;
 166	host->cmd = NULL;
 167
 168	/*
 169	 * Need to drop the host lock here; mmc_request_done may call
 170	 * back into the driver...
 171	 */
 172	spin_unlock(&host->lock);
 173	mmc_request_done(host->mmc, mrq);
 174	spin_lock(&host->lock);
 175}
 176
 177static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 178{
 179	void __iomem *base = host->base;
 
 180
 181	if (host->singleirq) {
 182		unsigned int mask0 = readl(base + MMCIMASK0);
 183
 184		mask0 &= ~MCI_IRQ1MASK;
 185		mask0 |= mask;
 186
 187		writel(mask0, base + MMCIMASK0);
 188	}
 189
 190	writel(mask, base + MMCIMASK1);
 
 
 
 191}
 192
 193static void mmci_stop_data(struct mmci_host *host)
 194{
 195	writel(0, host->base + MMCIDATACTRL);
 196	mmci_set_mask1(host, 0);
 197	host->data = NULL;
 198}
 199
 200static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 201{
 202	unsigned int flags = SG_MITER_ATOMIC;
 203
 204	if (data->flags & MMC_DATA_READ)
 205		flags |= SG_MITER_TO_SG;
 206	else
 207		flags |= SG_MITER_FROM_SG;
 208
 209	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 210}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212/*
 213 * All the DMA operation mode stuff goes inside this ifdef.
 214 * This assumes that you have a generic DMA device interface,
 215 * no custom DMA interfaces are supported.
 216 */
 217#ifdef CONFIG_DMA_ENGINE
 218static void __devinit mmci_dma_setup(struct mmci_host *host)
 
 
 
 
 
 
 
 
 
 
 
 
 
 219{
 220	struct mmci_platform_data *plat = host->plat;
 221	const char *rxname, *txname;
 222	dma_cap_mask_t mask;
 223
 224	if (!plat || !plat->dma_filter) {
 225		dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
 226		return;
 
 
 
 
 
 
 
 
 227	}
 228
 229	/* initialize pre request cookie */
 230	host->next_data.cookie = 1;
 231
 232	/* Try to acquire a generic DMA engine slave channel */
 233	dma_cap_zero(mask);
 234	dma_cap_set(DMA_SLAVE, mask);
 
 235
 236	/*
 237	 * If only an RX channel is specified, the driver will
 238	 * attempt to use it bidirectionally, however if it is
 239	 * is specified but cannot be located, DMA will be disabled.
 240	 */
 241	if (plat->dma_rx_param) {
 242		host->dma_rx_channel = dma_request_channel(mask,
 243							   plat->dma_filter,
 244							   plat->dma_rx_param);
 245		/* E.g if no DMA hardware is present */
 246		if (!host->dma_rx_channel)
 247			dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
 248	}
 249
 250	if (plat->dma_tx_param) {
 251		host->dma_tx_channel = dma_request_channel(mask,
 252							   plat->dma_filter,
 253							   plat->dma_tx_param);
 254		if (!host->dma_tx_channel)
 255			dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
 256	} else {
 257		host->dma_tx_channel = host->dma_rx_channel;
 258	}
 259
 260	if (host->dma_rx_channel)
 261		rxname = dma_chan_name(host->dma_rx_channel);
 262	else
 263		rxname = "none";
 264
 265	if (host->dma_tx_channel)
 266		txname = dma_chan_name(host->dma_tx_channel);
 267	else
 268		txname = "none";
 269
 270	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 271		 rxname, txname);
 272
 273	/*
 274	 * Limit the maximum segment size in any SG entry according to
 275	 * the parameters of the DMA engine device.
 276	 */
 277	if (host->dma_tx_channel) {
 278		struct device *dev = host->dma_tx_channel->device->dev;
 279		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 280
 281		if (max_seg_size < host->mmc->max_seg_size)
 282			host->mmc->max_seg_size = max_seg_size;
 283	}
 284	if (host->dma_rx_channel) {
 285		struct device *dev = host->dma_rx_channel->device->dev;
 286		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 287
 288		if (max_seg_size < host->mmc->max_seg_size)
 289			host->mmc->max_seg_size = max_seg_size;
 290	}
 
 
 
 
 
 
 
 291}
 292
 293/*
 294 * This is used in __devinit or __devexit so inline it
 295 * so it can be discarded.
 296 */
 297static inline void mmci_dma_release(struct mmci_host *host)
 298{
 299	struct mmci_platform_data *plat = host->plat;
 300
 301	if (host->dma_rx_channel)
 302		dma_release_channel(host->dma_rx_channel);
 303	if (host->dma_tx_channel && plat->dma_tx_param)
 304		dma_release_channel(host->dma_tx_channel);
 305	host->dma_rx_channel = host->dma_tx_channel = NULL;
 306}
 307
 308static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 309{
 310	struct dma_chan *chan = host->dma_current;
 311	enum dma_data_direction dir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312	u32 status;
 313	int i;
 314
 
 
 
 315	/* Wait up to 1ms for the DMA to complete */
 316	for (i = 0; ; i++) {
 317		status = readl(host->base + MMCISTATUS);
 318		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 319			break;
 320		udelay(10);
 321	}
 322
 323	/*
 324	 * Check to see whether we still have some data left in the FIFO -
 325	 * this catches DMA controllers which are unable to monitor the
 326	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 327	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 328	 */
 329	if (status & MCI_RXDATAAVLBLMASK) {
 330		dmaengine_terminate_all(chan);
 331		if (!data->error)
 332			data->error = -EIO;
 
 
 333	}
 334
 335	if (data->flags & MMC_DATA_WRITE) {
 336		dir = DMA_TO_DEVICE;
 337	} else {
 338		dir = DMA_FROM_DEVICE;
 339	}
 340
 341	if (!data->host_cookie)
 342		dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
 343
 344	/*
 345	 * Use of DMA with scatter-gather is impossible.
 346	 * Give up with DMA and switch back to PIO mode.
 347	 */
 348	if (status & MCI_RXDATAAVLBLMASK) {
 349		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 350		mmci_dma_release(host);
 351	}
 352}
 353
 354static void mmci_dma_data_error(struct mmci_host *host)
 355{
 356	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 357	dmaengine_terminate_all(host->dma_current);
 358}
 359
 360static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
 361			      struct mmci_host_next *next)
 
 
 362{
 
 363	struct variant_data *variant = host->variant;
 364	struct dma_slave_config conf = {
 365		.src_addr = host->phybase + MMCIFIFO,
 366		.dst_addr = host->phybase + MMCIFIFO,
 367		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 368		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 369		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 370		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 
 371	};
 372	struct dma_chan *chan;
 373	struct dma_device *device;
 374	struct dma_async_tx_descriptor *desc;
 375	int nr_sg;
 376
 377	/* Check if next job is already prepared */
 378	if (data->host_cookie && !next &&
 379	    host->dma_current && host->dma_desc_current)
 380		return 0;
 381
 382	if (!next) {
 383		host->dma_current = NULL;
 384		host->dma_desc_current = NULL;
 385	}
 386
 387	if (data->flags & MMC_DATA_READ) {
 388		conf.direction = DMA_FROM_DEVICE;
 389		chan = host->dma_rx_channel;
 390	} else {
 391		conf.direction = DMA_TO_DEVICE;
 392		chan = host->dma_tx_channel;
 393	}
 394
 395	/* If there's no DMA channel, fall back to PIO */
 396	if (!chan)
 397		return -EINVAL;
 398
 399	/* If less than or equal to the fifo size, don't bother with DMA */
 400	if (data->blksz * data->blocks <= variant->fifosize)
 401		return -EINVAL;
 402
 
 
 
 
 
 
 
 
 
 
 
 
 403	device = chan->device;
 404	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, conf.direction);
 
 405	if (nr_sg == 0)
 406		return -EINVAL;
 407
 
 
 
 408	dmaengine_slave_config(chan, &conf);
 409	desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
 410					    conf.direction, DMA_CTRL_ACK);
 411	if (!desc)
 412		goto unmap_exit;
 413
 414	if (next) {
 415		next->dma_chan = chan;
 416		next->dma_desc = desc;
 417	} else {
 418		host->dma_current = chan;
 419		host->dma_desc_current = desc;
 420	}
 421
 422	return 0;
 423
 424 unmap_exit:
 425	if (!next)
 426		dmaengine_terminate_all(chan);
 427	dma_unmap_sg(device->dev, data->sg, data->sg_len, conf.direction);
 428	return -ENOMEM;
 429}
 430
 431static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 
 
 432{
 433	int ret;
 434	struct mmc_data *data = host->data;
 435
 436	ret = mmci_dma_prep_data(host, host->data, NULL);
 437	if (ret)
 438		return ret;
 439
 440	/* Okay, go for it. */
 441	dev_vdbg(mmc_dev(host->mmc),
 442		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 443		 data->sg_len, data->blksz, data->blocks, data->flags);
 444	dmaengine_submit(host->dma_desc_current);
 445	dma_async_issue_pending(host->dma_current);
 446
 447	datactrl |= MCI_DPSM_DMAENABLE;
 448
 449	/* Trigger the DMA transfer */
 450	writel(datactrl, host->base + MMCIDATACTRL);
 
 
 
 451
 452	/*
 453	 * Let the MMCI say when the data is ended and it's time
 454	 * to fire next DMA request. When that happens, MMCI will
 455	 * call mmci_data_end()
 456	 */
 457	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 458	       host->base + MMCIMASK0);
 459	return 0;
 460}
 461
 462static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 463{
 464	struct mmci_host_next *next = &host->next_data;
 
 465
 466	if (data->host_cookie && data->host_cookie != next->cookie) {
 467		printk(KERN_WARNING "[%s] invalid cookie: data->host_cookie %d"
 468		       " host->next_data.cookie %d\n",
 469		       __func__, data->host_cookie, host->next_data.cookie);
 470		data->host_cookie = 0;
 471	}
 
 472
 473	if (!data->host_cookie)
 474		return;
 475
 476	host->dma_desc_current = next->dma_desc;
 477	host->dma_current = next->dma_chan;
 478
 479	next->dma_desc = NULL;
 480	next->dma_chan = NULL;
 481}
 482
 483static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
 484			     bool is_first_req)
 485{
 486	struct mmci_host *host = mmc_priv(mmc);
 487	struct mmc_data *data = mrq->data;
 488	struct mmci_host_next *nd = &host->next_data;
 489
 490	if (!data)
 491		return;
 492
 493	if (data->host_cookie) {
 494		data->host_cookie = 0;
 495		return;
 496	}
 497
 498	/* if config for dma */
 499	if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
 500	    ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
 501		if (mmci_dma_prep_data(host, data, nd))
 502			data->host_cookie = 0;
 503		else
 504			data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
 505	}
 506}
 507
 508static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
 509			      int err)
 
 510{
 511	struct mmci_host *host = mmc_priv(mmc);
 512	struct mmc_data *data = mrq->data;
 513	struct dma_chan *chan;
 514	enum dma_data_direction dir;
 515
 516	if (!data)
 517		return;
 518
 519	if (data->flags & MMC_DATA_READ) {
 520		dir = DMA_FROM_DEVICE;
 521		chan = host->dma_rx_channel;
 522	} else {
 523		dir = DMA_TO_DEVICE;
 524		chan = host->dma_tx_channel;
 525	}
 526
 
 
 
 
 
 
 
 
 527
 528	/* if config for dma */
 529	if (chan) {
 530		if (err)
 531			dmaengine_terminate_all(chan);
 532		if (err || data->host_cookie)
 533			dma_unmap_sg(mmc_dev(host->mmc), data->sg,
 534				     data->sg_len, dir);
 535		mrq->data->host_cookie = 0;
 
 
 536	}
 537}
 538
 
 
 
 
 
 
 
 
 
 
 
 539#else
 540/* Blank functions if the DMA engine is not available */
 541static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 542{
 543}
 544static inline void mmci_dma_setup(struct mmci_host *host)
 
 545{
 
 546}
 547
 548static inline void mmci_dma_release(struct mmci_host *host)
 549{
 
 
 550}
 551
 552static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 553{
 
 
 
 554}
 555
 556static inline void mmci_dma_data_error(struct mmci_host *host)
 557{
 
 
 
 
 
 
 
 
 
 
 
 
 558}
 559
 560static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
 
 561{
 562	return -ENOSYS;
 563}
 564
 565#define mmci_pre_request NULL
 566#define mmci_post_request NULL
 567
 568#endif
 
 569
 570static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
 571{
 572	struct variant_data *variant = host->variant;
 573	unsigned int datactrl, timeout, irqmask;
 574	unsigned long long clks;
 575	void __iomem *base;
 576	int blksz_bits;
 577
 578	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
 579		data->blksz, data->blocks, data->flags);
 580
 581	host->data = data;
 582	host->size = data->blksz * data->blocks;
 583	data->bytes_xfered = 0;
 584
 585	clks = (unsigned long long)data->timeout_ns * host->cclk;
 586	do_div(clks, 1000000000UL);
 587
 588	timeout = data->timeout_clks + (unsigned int)clks;
 589
 590	base = host->base;
 591	writel(timeout, base + MMCIDATATIMER);
 592	writel(host->size, base + MMCIDATALENGTH);
 593
 594	blksz_bits = ffs(data->blksz) - 1;
 595	BUG_ON(1 << blksz_bits != data->blksz);
 596
 597	if (variant->blksz_datactrl16)
 598		datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
 599	else
 600		datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
 601
 602	if (data->flags & MMC_DATA_READ)
 603		datactrl |= MCI_DPSM_DIRECTION;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604
 605	/*
 606	 * Attempt to use DMA operation mode, if this
 607	 * should fail, fall back to PIO mode
 608	 */
 609	if (!mmci_dma_start_data(host, datactrl))
 610		return;
 611
 612	/* IRQ mode, map the SG list for CPU reading/writing */
 613	mmci_init_sg(host, data);
 614
 615	if (data->flags & MMC_DATA_READ) {
 616		irqmask = MCI_RXFIFOHALFFULLMASK;
 617
 618		/*
 619		 * If we have less than the fifo 'half-full' threshold to
 620		 * transfer, trigger a PIO interrupt as soon as any data
 621		 * is available.
 622		 */
 623		if (host->size < variant->fifohalfsize)
 624			irqmask |= MCI_RXDATAAVLBLMASK;
 625	} else {
 626		/*
 627		 * We don't actually need to include "FIFO empty" here
 628		 * since its implicit in "FIFO half empty".
 629		 */
 630		irqmask = MCI_TXFIFOHALFEMPTYMASK;
 631	}
 632
 633	/* The ST Micro variants has a special bit to enable SDIO */
 634	if (variant->sdio && host->mmc->card)
 635		if (mmc_card_sdio(host->mmc->card))
 636			datactrl |= MCI_ST_DPSM_SDIOEN;
 637
 638	writel(datactrl, base + MMCIDATACTRL);
 639	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
 640	mmci_set_mask1(host, irqmask);
 641}
 642
 643static void
 644mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
 645{
 646	void __iomem *base = host->base;
 
 647
 648	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
 649	    cmd->opcode, cmd->arg, cmd->flags);
 650
 651	if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
 652		writel(0, base + MMCICOMMAND);
 653		udelay(1);
 654	}
 655
 656	c |= cmd->opcode | MCI_CPSM_ENABLE;
 
 
 
 
 657	if (cmd->flags & MMC_RSP_PRESENT) {
 658		if (cmd->flags & MMC_RSP_136)
 659			c |= MCI_CPSM_LONGRSP;
 660		c |= MCI_CPSM_RESPONSE;
 
 
 
 661	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 662	if (/*interrupt*/0)
 663		c |= MCI_CPSM_INTERRUPT;
 664
 
 
 
 665	host->cmd = cmd;
 666
 667	writel(cmd->arg, base + MMCIARGUMENT);
 668	writel(c, base + MMCICOMMAND);
 669}
 670
 
 
 
 
 
 
 671static void
 672mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
 673	      unsigned int status)
 674{
 
 
 
 
 
 
 675	/* First check for errors */
 676	if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
 
 
 
 
 677		u32 remain, success;
 678
 679		/* Terminate the DMA transfer */
 680		if (dma_inprogress(host))
 681			mmci_dma_data_error(host);
 682
 683		/*
 684		 * Calculate how far we are into the transfer.  Note that
 685		 * the data counter gives the number of bytes transferred
 686		 * on the MMC bus, not on the host side.  On reads, this
 687		 * can be as much as a FIFO-worth of data ahead.  This
 688		 * matters for FIFO overruns only.
 689		 */
 690		remain = readl(host->base + MMCIDATACNT);
 691		success = data->blksz * data->blocks - remain;
 
 
 
 
 692
 693		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
 694			status, success);
 695		if (status & MCI_DATACRCFAIL) {
 696			/* Last block was not successful */
 697			success -= 1;
 698			data->error = -EILSEQ;
 699		} else if (status & MCI_DATATIMEOUT) {
 700			data->error = -ETIMEDOUT;
 701		} else if (status & MCI_STARTBITERR) {
 702			data->error = -ECOMM;
 703		} else if (status & MCI_TXUNDERRUN) {
 704			data->error = -EIO;
 705		} else if (status & MCI_RXOVERRUN) {
 706			if (success > host->variant->fifosize)
 707				success -= host->variant->fifosize;
 708			else
 709				success = 0;
 710			data->error = -EIO;
 711		}
 712		data->bytes_xfered = round_down(success, data->blksz);
 713	}
 714
 715	if (status & MCI_DATABLOCKEND)
 716		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
 717
 718	if (status & MCI_DATAEND || data->error) {
 719		if (dma_inprogress(host))
 720			mmci_dma_unmap(host, data);
 721		mmci_stop_data(host);
 722
 723		if (!data->error)
 724			/* The error clause is handled above, success! */
 725			data->bytes_xfered = data->blksz * data->blocks;
 726
 727		if (!data->stop) {
 
 
 
 
 
 728			mmci_request_end(host, data->mrq);
 729		} else {
 730			mmci_start_command(host, data->stop, 0);
 731		}
 732	}
 733}
 734
 735static void
 736mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
 737	     unsigned int status)
 738{
 
 739	void __iomem *base = host->base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	host->cmd = NULL;
 742
 743	if (status & MCI_CMDTIMEOUT) {
 744		cmd->error = -ETIMEDOUT;
 745	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
 746		cmd->error = -EILSEQ;
 
 
 
 
 747	} else {
 748		cmd->resp[0] = readl(base + MMCIRESPONSE0);
 749		cmd->resp[1] = readl(base + MMCIRESPONSE1);
 750		cmd->resp[2] = readl(base + MMCIRESPONSE2);
 751		cmd->resp[3] = readl(base + MMCIRESPONSE3);
 752	}
 753
 754	if (!cmd->data || cmd->error) {
 755		if (host->data)
 
 
 
 756			mmci_stop_data(host);
 757		mmci_request_end(host, cmd->mrq);
 758	} else if (!(cmd->data->flags & MMC_DATA_READ)) {
 
 
 
 
 
 
 
 
 
 
 
 759		mmci_start_data(host, cmd->data);
 760	}
 761}
 762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
 764{
 765	void __iomem *base = host->base;
 766	char *ptr = buffer;
 767	u32 status;
 768	int host_remain = host->size;
 769
 770	do {
 771		int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
 772
 773		if (count > remain)
 774			count = remain;
 775
 776		if (count <= 0)
 777			break;
 778
 779		readsl(base + MMCIFIFO, ptr, count >> 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780
 781		ptr += count;
 782		remain -= count;
 783		host_remain -= count;
 784
 785		if (remain == 0)
 786			break;
 787
 788		status = readl(base + MMCISTATUS);
 789	} while (status & MCI_RXDATAAVLBL);
 790
 791	return ptr - buffer;
 792}
 793
 794static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
 795{
 796	struct variant_data *variant = host->variant;
 797	void __iomem *base = host->base;
 798	char *ptr = buffer;
 799
 800	do {
 801		unsigned int count, maxcnt;
 802
 803		maxcnt = status & MCI_TXFIFOEMPTY ?
 804			 variant->fifosize : variant->fifohalfsize;
 805		count = min(remain, maxcnt);
 806
 807		/*
 808		 * The ST Micro variant for SDIO transfer sizes
 809		 * less then 8 bytes should have clock H/W flow
 810		 * control disabled.
 811		 */
 812		if (variant->sdio &&
 813		    mmc_card_sdio(host->mmc->card)) {
 814			if (count < 8)
 815				writel(readl(host->base + MMCICLOCK) &
 816					~variant->clkreg_enable,
 817					host->base + MMCICLOCK);
 818			else
 819				writel(readl(host->base + MMCICLOCK) |
 820					variant->clkreg_enable,
 821					host->base + MMCICLOCK);
 822		}
 823
 824		/*
 825		 * SDIO especially may want to send something that is
 826		 * not divisible by 4 (as opposed to card sectors
 827		 * etc), and the FIFO only accept full 32-bit writes.
 828		 * So compensate by adding +3 on the count, a single
 829		 * byte become a 32bit write, 7 bytes will be two
 830		 * 32bit writes etc.
 831		 */
 832		writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
 833
 834		ptr += count;
 835		remain -= count;
 836
 837		if (remain == 0)
 838			break;
 839
 840		status = readl(base + MMCISTATUS);
 841	} while (status & MCI_TXFIFOHALFEMPTY);
 842
 843	return ptr - buffer;
 844}
 845
 846/*
 847 * PIO data transfer IRQ handler.
 848 */
 849static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
 850{
 851	struct mmci_host *host = dev_id;
 852	struct sg_mapping_iter *sg_miter = &host->sg_miter;
 853	struct variant_data *variant = host->variant;
 854	void __iomem *base = host->base;
 855	unsigned long flags;
 856	u32 status;
 857
 858	status = readl(base + MMCISTATUS);
 859
 860	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
 861
 862	local_irq_save(flags);
 863
 864	do {
 865		unsigned int remain, len;
 866		char *buffer;
 867
 868		/*
 869		 * For write, we only need to test the half-empty flag
 870		 * here - if the FIFO is completely empty, then by
 871		 * definition it is more than half empty.
 872		 *
 873		 * For read, check for data available.
 874		 */
 875		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
 876			break;
 877
 878		if (!sg_miter_next(sg_miter))
 879			break;
 880
 881		buffer = sg_miter->addr;
 882		remain = sg_miter->length;
 883
 884		len = 0;
 885		if (status & MCI_RXACTIVE)
 886			len = mmci_pio_read(host, buffer, remain);
 887		if (status & MCI_TXACTIVE)
 888			len = mmci_pio_write(host, buffer, remain, status);
 889
 890		sg_miter->consumed = len;
 891
 892		host->size -= len;
 893		remain -= len;
 894
 895		if (remain)
 896			break;
 897
 898		status = readl(base + MMCISTATUS);
 899	} while (1);
 900
 901	sg_miter_stop(sg_miter);
 902
 903	local_irq_restore(flags);
 904
 905	/*
 906	 * If we have less than the fifo 'half-full' threshold to transfer,
 907	 * trigger a PIO interrupt as soon as any data is available.
 908	 */
 909	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
 910		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
 911
 912	/*
 913	 * If we run out of data, disable the data IRQs; this
 914	 * prevents a race where the FIFO becomes empty before
 915	 * the chip itself has disabled the data path, and
 916	 * stops us racing with our data end IRQ.
 917	 */
 918	if (host->size == 0) {
 919		mmci_set_mask1(host, 0);
 920		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
 921	}
 922
 923	return IRQ_HANDLED;
 924}
 925
 926/*
 927 * Handle completion of command and data transfers.
 928 */
 929static irqreturn_t mmci_irq(int irq, void *dev_id)
 930{
 931	struct mmci_host *host = dev_id;
 932	u32 status;
 933	int ret = 0;
 934
 935	spin_lock(&host->lock);
 
 936
 937	do {
 938		struct mmc_command *cmd;
 939		struct mmc_data *data;
 940
 941		status = readl(host->base + MMCISTATUS);
 942
 943		if (host->singleirq) {
 944			if (status & readl(host->base + MMCIMASK1))
 945				mmci_pio_irq(irq, dev_id);
 946
 947			status &= ~MCI_IRQ1MASK;
 948		}
 949
 
 
 
 
 950		status &= readl(host->base + MMCIMASK0);
 951		writel(status, host->base + MMCICLEAR);
 
 
 
 
 952
 953		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
 954
 955		data = host->data;
 956		if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
 957			      MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
 958			mmci_data_irq(host, data, status);
 959
 960		cmd = host->cmd;
 961		if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
 962			mmci_cmd_irq(host, cmd, status);
 
 
 
 
 
 
 963
 964		ret = 1;
 965	} while (status);
 966
 967	spin_unlock(&host->lock);
 968
 969	return IRQ_RETVAL(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970}
 971
 972static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
 973{
 974	struct mmci_host *host = mmc_priv(mmc);
 975	unsigned long flags;
 976
 977	WARN_ON(host->mrq != NULL);
 978
 979	if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
 980		dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
 981			mrq->data->blksz);
 982		mrq->cmd->error = -EINVAL;
 983		mmc_request_done(mmc, mrq);
 984		return;
 985	}
 986
 987	spin_lock_irqsave(&host->lock, flags);
 988
 989	host->mrq = mrq;
 990
 991	if (mrq->data)
 992		mmci_get_next_data(host, mrq->data);
 993
 994	if (mrq->data && mrq->data->flags & MMC_DATA_READ)
 
 995		mmci_start_data(host, mrq->data);
 996
 997	mmci_start_command(host, mrq->cmd, 0);
 
 
 
 998
 999	spin_unlock_irqrestore(&host->lock, flags);
1000}
1001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1003{
1004	struct mmci_host *host = mmc_priv(mmc);
 
1005	u32 pwr = 0;
1006	unsigned long flags;
1007	int ret;
1008
 
 
 
 
1009	switch (ios->power_mode) {
1010	case MMC_POWER_OFF:
1011		if (host->vcc)
1012			ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
 
 
 
 
 
 
1013		break;
1014	case MMC_POWER_UP:
1015		if (host->vcc) {
1016			ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1017			if (ret) {
1018				dev_err(mmc_dev(mmc), "unable to set OCR\n");
1019				/*
1020				 * The .set_ios() function in the mmc_host_ops
1021				 * struct return void, and failing to set the
1022				 * power should be rare so we print an error
1023				 * and return here.
1024				 */
1025				return;
1026			}
1027		}
1028		if (host->plat->vdd_handler)
1029			pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1030						       ios->power_mode);
1031		/* The ST version does not have this, fall through to POWER_ON */
1032		if (host->hw_designer != AMBA_VENDOR_ST) {
1033			pwr |= MCI_PWR_UP;
1034			break;
1035		}
1036	case MMC_POWER_ON:
 
 
 
 
 
 
 
 
 
1037		pwr |= MCI_PWR_ON;
1038		break;
1039	}
1040
1041	if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1042		if (host->hw_designer != AMBA_VENDOR_ST)
1043			pwr |= MCI_ROD;
1044		else {
1045			/*
1046			 * The ST Micro variant use the ROD bit for something
1047			 * else and only has OD (Open Drain).
1048			 */
1049			pwr |= MCI_OD;
1050		}
 
 
 
 
1051	}
1052
1053	spin_lock_irqsave(&host->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
1054
1055	mmci_set_clkreg(host, ios->clock);
 
 
 
 
 
1056
1057	if (host->pwr != pwr) {
1058		host->pwr = pwr;
1059		writel(pwr, host->base + MMCIPOWER);
 
 
 
 
 
1060	}
 
1061
1062	spin_unlock_irqrestore(&host->lock, flags);
1063}
1064
1065static int mmci_get_ro(struct mmc_host *mmc)
1066{
1067	struct mmci_host *host = mmc_priv(mmc);
 
 
 
1068
1069	if (host->gpio_wp == -ENOSYS)
1070		return -ENOSYS;
 
 
1071
1072	return gpio_get_value_cansleep(host->gpio_wp);
 
 
1073}
1074
1075static int mmci_get_cd(struct mmc_host *mmc)
1076{
1077	struct mmci_host *host = mmc_priv(mmc);
1078	struct mmci_platform_data *plat = host->plat;
1079	unsigned int status;
1080
1081	if (host->gpio_cd == -ENOSYS) {
1082		if (!plat->status)
1083			return 1; /* Assume always present */
1084
1085		status = plat->status(mmc_dev(host->mmc));
1086	} else
1087		status = !!gpio_get_value_cansleep(host->gpio_cd)
1088			^ plat->cd_invert;
1089
1090	/*
1091	 * Use positive logic throughout - status is zero for no card,
1092	 * non-zero for card inserted.
1093	 */
1094	return status;
1095}
1096
1097static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1098{
1099	struct mmci_host *host = dev_id;
 
1100
1101	mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1102
1103	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
1104}
1105
1106static const struct mmc_host_ops mmci_ops = {
1107	.request	= mmci_request,
1108	.pre_req	= mmci_pre_request,
1109	.post_req	= mmci_post_request,
1110	.set_ios	= mmci_set_ios,
1111	.get_ro		= mmci_get_ro,
1112	.get_cd		= mmci_get_cd,
 
1113};
1114
1115static int __devinit mmci_probe(struct amba_device *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116	const struct amba_id *id)
1117{
1118	struct mmci_platform_data *plat = dev->dev.platform_data;
 
1119	struct variant_data *variant = id->data;
1120	struct mmci_host *host;
1121	struct mmc_host *mmc;
1122	int ret;
1123
1124	/* must have platform data */
1125	if (!plat) {
1126		ret = -EINVAL;
1127		goto out;
1128	}
1129
1130	ret = amba_request_regions(dev, DRIVER_NAME);
1131	if (ret)
1132		goto out;
 
 
1133
1134	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1135	if (!mmc) {
1136		ret = -ENOMEM;
1137		goto rel_regions;
1138	}
 
 
1139
1140	host = mmc_priv(mmc);
1141	host->mmc = mmc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142
1143	host->gpio_wp = -ENOSYS;
1144	host->gpio_cd = -ENOSYS;
1145	host->gpio_cd_irq = -1;
 
 
 
 
 
1146
1147	host->hw_designer = amba_manf(dev);
1148	host->hw_revision = amba_rev(dev);
1149	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1150	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1151
1152	host->clk = clk_get(&dev->dev, NULL);
1153	if (IS_ERR(host->clk)) {
1154		ret = PTR_ERR(host->clk);
1155		host->clk = NULL;
1156		goto host_free;
1157	}
1158
1159	ret = clk_enable(host->clk);
1160	if (ret)
1161		goto clk_free;
 
 
 
 
 
1162
1163	host->plat = plat;
1164	host->variant = variant;
1165	host->mclk = clk_get_rate(host->clk);
1166	/*
1167	 * According to the spec, mclk is max 100 MHz,
1168	 * so we try to adjust the clock down to this,
1169	 * (if possible).
1170	 */
1171	if (host->mclk > 100000000) {
1172		ret = clk_set_rate(host->clk, 100000000);
1173		if (ret < 0)
1174			goto clk_disable;
1175		host->mclk = clk_get_rate(host->clk);
1176		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1177			host->mclk);
1178	}
 
1179	host->phybase = dev->res.start;
1180	host->base = ioremap(dev->res.start, resource_size(&dev->res));
1181	if (!host->base) {
1182		ret = -ENOMEM;
1183		goto clk_disable;
1184	}
1185
1186	mmc->ops = &mmci_ops;
 
 
1187	/*
1188	 * The ARM and ST versions of the block have slightly different
1189	 * clock divider equations which means that the minimum divider
1190	 * differs too.
 
1191	 */
1192	if (variant->st_clkdiv)
1193		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
 
 
 
 
1194	else
1195		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1196	/*
1197	 * If the platform data supplies a maximum operating
1198	 * frequency, this takes precedence. Else, we fall back
1199	 * to using the module parameter, which has a (low)
1200	 * default value in case it is not specified. Either
1201	 * value must not exceed the clock rate into the block,
1202	 * of course.
1203	 */
1204	if (plat->f_max)
1205		mmc->f_max = min(host->mclk, plat->f_max);
 
 
1206	else
1207		mmc->f_max = min(host->mclk, fmax);
1208	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1209
1210#ifdef CONFIG_REGULATOR
1211	/* If we're using the regulator framework, try to fetch a regulator */
1212	host->vcc = regulator_get(&dev->dev, "vmmc");
1213	if (IS_ERR(host->vcc))
1214		host->vcc = NULL;
1215	else {
1216		int mask = mmc_regulator_get_ocrmask(host->vcc);
1217
1218		if (mask < 0)
1219			dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1220				mask);
1221		else {
1222			host->mmc->ocr_avail = (u32) mask;
1223			if (plat->ocr_mask)
1224				dev_warn(&dev->dev,
1225				 "Provided ocr_mask/setpower will not be used "
1226				 "(using regulator instead)\n");
1227		}
1228	}
1229#endif
1230	/* Fall back to platform data if no regulator is found */
1231	if (host->vcc == NULL)
 
 
 
 
1232		mmc->ocr_avail = plat->ocr_mask;
1233	mmc->caps = plat->capabilities;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234
1235	/*
1236	 * We can do SGIO
1237	 */
1238	mmc->max_segs = NR_SG;
1239
1240	/*
1241	 * Since only a certain number of bits are valid in the data length
1242	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1243	 * single request.
1244	 */
1245	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1246
1247	/*
1248	 * Set the maximum segment size.  Since we aren't doing DMA
1249	 * (yet) we are only limited by the data length register.
1250	 */
1251	mmc->max_seg_size = mmc->max_req_size;
1252
1253	/*
1254	 * Block size can be up to 2048 bytes, but must be a power of two.
1255	 */
1256	mmc->max_blk_size = 2048;
1257
1258	/*
1259	 * No limit on the number of blocks transferred.
 
1260	 */
1261	mmc->max_blk_count = mmc->max_req_size;
1262
1263	spin_lock_init(&host->lock);
1264
1265	writel(0, host->base + MMCIMASK0);
1266	writel(0, host->base + MMCIMASK1);
 
 
 
1267	writel(0xfff, host->base + MMCICLEAR);
1268
1269	if (gpio_is_valid(plat->gpio_cd)) {
1270		ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1271		if (ret == 0)
1272			ret = gpio_direction_input(plat->gpio_cd);
1273		if (ret == 0)
1274			host->gpio_cd = plat->gpio_cd;
1275		else if (ret != -ENOSYS)
1276			goto err_gpio_cd;
 
 
 
1277
1278		/*
1279		 * A gpio pin that will detect cards when inserted and removed
1280		 * will most likely want to trigger on the edges if it is
1281		 * 0 when ejected and 1 when inserted (or mutatis mutandis
1282		 * for the inverted case) so we request triggers on both
1283		 * edges.
1284		 */
1285		ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1286				mmci_cd_irq,
1287				IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1288				DRIVER_NAME " (cd)", host);
1289		if (ret >= 0)
1290			host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1291	}
1292	if (gpio_is_valid(plat->gpio_wp)) {
1293		ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1294		if (ret == 0)
1295			ret = gpio_direction_input(plat->gpio_wp);
1296		if (ret == 0)
1297			host->gpio_wp = plat->gpio_wp;
1298		else if (ret != -ENOSYS)
1299			goto err_gpio_wp;
1300	}
1301
1302	if ((host->plat->status || host->gpio_cd != -ENOSYS)
1303	    && host->gpio_cd_irq < 0)
1304		mmc->caps |= MMC_CAP_NEEDS_POLL;
1305
1306	ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
 
 
1307	if (ret)
1308		goto unmap;
1309
1310	if (dev->irq[1] == NO_IRQ)
1311		host->singleirq = true;
1312	else {
1313		ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1314				  DRIVER_NAME " (pio)", host);
1315		if (ret)
1316			goto irq0_free;
1317	}
1318
1319	writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1320
1321	amba_set_drvdata(dev, mmc);
1322
1323	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1324		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1325		 amba_rev(dev), (unsigned long long)dev->res.start,
1326		 dev->irq[0], dev->irq[1]);
1327
1328	mmci_dma_setup(host);
1329
 
 
 
1330	mmc_add_host(mmc);
1331
 
1332	return 0;
1333
1334 irq0_free:
1335	free_irq(dev->irq[0], host);
1336 unmap:
1337	if (host->gpio_wp != -ENOSYS)
1338		gpio_free(host->gpio_wp);
1339 err_gpio_wp:
1340	if (host->gpio_cd_irq >= 0)
1341		free_irq(host->gpio_cd_irq, host);
1342	if (host->gpio_cd != -ENOSYS)
1343		gpio_free(host->gpio_cd);
1344 err_gpio_cd:
1345	iounmap(host->base);
1346 clk_disable:
1347	clk_disable(host->clk);
1348 clk_free:
1349	clk_put(host->clk);
1350 host_free:
1351	mmc_free_host(mmc);
1352 rel_regions:
1353	amba_release_regions(dev);
1354 out:
1355	return ret;
1356}
1357
1358static int __devexit mmci_remove(struct amba_device *dev)
1359{
1360	struct mmc_host *mmc = amba_get_drvdata(dev);
1361
1362	amba_set_drvdata(dev, NULL);
1363
1364	if (mmc) {
1365		struct mmci_host *host = mmc_priv(mmc);
 
 
 
 
 
 
 
1366
1367		mmc_remove_host(mmc);
1368
1369		writel(0, host->base + MMCIMASK0);
1370		writel(0, host->base + MMCIMASK1);
 
 
1371
1372		writel(0, host->base + MMCICOMMAND);
1373		writel(0, host->base + MMCIDATACTRL);
1374
1375		mmci_dma_release(host);
1376		free_irq(dev->irq[0], host);
1377		if (!host->singleirq)
1378			free_irq(dev->irq[1], host);
1379
1380		if (host->gpio_wp != -ENOSYS)
1381			gpio_free(host->gpio_wp);
1382		if (host->gpio_cd_irq >= 0)
1383			free_irq(host->gpio_cd_irq, host);
1384		if (host->gpio_cd != -ENOSYS)
1385			gpio_free(host->gpio_cd);
1386
1387		iounmap(host->base);
1388		clk_disable(host->clk);
1389		clk_put(host->clk);
1390
1391		if (host->vcc)
1392			mmc_regulator_set_ocr(mmc, host->vcc, 0);
1393		regulator_put(host->vcc);
1394
1395		mmc_free_host(mmc);
1396
1397		amba_release_regions(dev);
1398	}
1399
1400	return 0;
1401}
1402
1403#ifdef CONFIG_PM
1404static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1405{
1406	struct mmc_host *mmc = amba_get_drvdata(dev);
1407	int ret = 0;
1408
1409	if (mmc) {
1410		struct mmci_host *host = mmc_priv(mmc);
1411
1412		ret = mmc_suspend_host(mmc);
1413		if (ret == 0)
1414			writel(0, host->base + MMCIMASK0);
 
 
1415	}
 
1416
1417	return ret;
1418}
1419
1420static int mmci_resume(struct amba_device *dev)
1421{
1422	struct mmc_host *mmc = amba_get_drvdata(dev);
1423	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424
1425	if (mmc) {
1426		struct mmci_host *host = mmc_priv(mmc);
 
 
 
 
 
 
 
1427
1428		writel(MCI_IRQENABLE, host->base + MMCIMASK0);
 
 
 
1429
1430		ret = mmc_resume_host(mmc);
 
 
 
 
1431	}
1432
1433	return ret;
1434}
1435#else
1436#define mmci_suspend	NULL
1437#define mmci_resume	NULL
1438#endif
1439
1440static struct amba_id mmci_ids[] = {
 
 
 
 
 
 
1441	{
1442		.id	= 0x00041180,
1443		.mask	= 0xff0fffff,
1444		.data	= &variant_arm,
1445	},
1446	{
1447		.id	= 0x01041180,
1448		.mask	= 0xff0fffff,
1449		.data	= &variant_arm_extended_fifo,
1450	},
1451	{
 
 
 
 
 
1452		.id	= 0x00041181,
1453		.mask	= 0x000fffff,
1454		.data	= &variant_arm,
1455	},
1456	/* ST Micro variants */
1457	{
1458		.id     = 0x00180180,
1459		.mask   = 0x00ffffff,
1460		.data	= &variant_u300,
1461	},
1462	{
 
 
 
 
 
1463		.id     = 0x00280180,
1464		.mask   = 0x00ffffff,
1465		.data	= &variant_u300,
1466	},
1467	{
1468		.id     = 0x00480180,
1469		.mask   = 0xf0ffffff,
1470		.data	= &variant_ux500,
1471	},
1472	{
1473		.id     = 0x10480180,
1474		.mask   = 0xf0ffffff,
1475		.data	= &variant_ux500v2,
1476	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1477	{ 0, 0 },
1478};
1479
 
 
1480static struct amba_driver mmci_driver = {
1481	.drv		= {
1482		.name	= DRIVER_NAME,
 
1483	},
1484	.probe		= mmci_probe,
1485	.remove		= __devexit_p(mmci_remove),
1486	.suspend	= mmci_suspend,
1487	.resume		= mmci_resume,
1488	.id_table	= mmci_ids,
1489};
1490
1491static int __init mmci_init(void)
1492{
1493	return amba_driver_register(&mmci_driver);
1494}
1495
1496static void __exit mmci_exit(void)
1497{
1498	amba_driver_unregister(&mmci_driver);
1499}
1500
1501module_init(mmci_init);
1502module_exit(mmci_exit);
1503module_param(fmax, uint, 0444);
1504
1505MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1506MODULE_LICENSE("GPL");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
   4 *
   5 *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
   6 *  Copyright (C) 2010 ST-Ericsson SA
 
 
 
 
   7 */
   8#include <linux/module.h>
   9#include <linux/moduleparam.h>
  10#include <linux/init.h>
  11#include <linux/ioport.h>
  12#include <linux/device.h>
  13#include <linux/io.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/delay.h>
  18#include <linux/err.h>
  19#include <linux/highmem.h>
  20#include <linux/log2.h>
  21#include <linux/mmc/mmc.h>
  22#include <linux/mmc/pm.h>
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/card.h>
  25#include <linux/mmc/sd.h>
  26#include <linux/mmc/slot-gpio.h>
  27#include <linux/amba/bus.h>
  28#include <linux/clk.h>
  29#include <linux/scatterlist.h>
  30#include <linux/of.h>
  31#include <linux/regulator/consumer.h>
  32#include <linux/dmaengine.h>
  33#include <linux/dma-mapping.h>
  34#include <linux/amba/mmci.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/types.h>
  37#include <linux/pinctrl/consumer.h>
  38#include <linux/reset.h>
  39
  40#include <asm/div64.h>
  41#include <asm/io.h>
 
  42
  43#include "mmci.h"
  44
  45#define DRIVER_NAME "mmci-pl18x"
  46
  47static void mmci_variant_init(struct mmci_host *host);
  48static void ux500_variant_init(struct mmci_host *host);
  49static void ux500v2_variant_init(struct mmci_host *host);
  50
  51static unsigned int fmax = 515633;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52
  53static struct variant_data variant_arm = {
  54	.fifosize		= 16 * 4,
  55	.fifohalfsize		= 8 * 4,
  56	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  57	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  58	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  59	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  60	.datalength_bits	= 16,
  61	.datactrl_blocksz	= 11,
  62	.pwrreg_powerup		= MCI_PWR_UP,
  63	.f_max			= 100000000,
  64	.reversed_irq_handling	= true,
  65	.mmcimask1		= true,
  66	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  67	.start_err		= MCI_STARTBITERR,
  68	.opendrain		= MCI_ROD,
  69	.init			= mmci_variant_init,
  70};
  71
  72static struct variant_data variant_arm_extended_fifo = {
  73	.fifosize		= 128 * 4,
  74	.fifohalfsize		= 64 * 4,
  75	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  76	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  77	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  78	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  79	.datalength_bits	= 16,
  80	.datactrl_blocksz	= 11,
  81	.pwrreg_powerup		= MCI_PWR_UP,
  82	.f_max			= 100000000,
  83	.mmcimask1		= true,
  84	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
  85	.start_err		= MCI_STARTBITERR,
  86	.opendrain		= MCI_ROD,
  87	.init			= mmci_variant_init,
  88};
  89
  90static struct variant_data variant_arm_extended_fifo_hwfc = {
  91	.fifosize		= 128 * 4,
  92	.fifohalfsize		= 64 * 4,
  93	.clkreg_enable		= MCI_ARM_HWFCEN,
  94	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
  95	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
  96	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
  97	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
  98	.datalength_bits	= 16,
  99	.datactrl_blocksz	= 11,
 100	.pwrreg_powerup		= MCI_PWR_UP,
 101	.f_max			= 100000000,
 102	.mmcimask1		= true,
 103	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 104	.start_err		= MCI_STARTBITERR,
 105	.opendrain		= MCI_ROD,
 106	.init			= mmci_variant_init,
 107};
 108
 109static struct variant_data variant_u300 = {
 110	.fifosize		= 16 * 4,
 111	.fifohalfsize		= 8 * 4,
 112	.clkreg_enable		= MCI_ST_U300_HWFCEN,
 113	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 114	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 115	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 116	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 117	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 118	.datalength_bits	= 16,
 119	.datactrl_blocksz	= 11,
 120	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 121	.st_sdio			= true,
 122	.pwrreg_powerup		= MCI_PWR_ON,
 123	.f_max			= 100000000,
 124	.signal_direction	= true,
 125	.pwrreg_clkgate		= true,
 126	.pwrreg_nopower		= true,
 127	.mmcimask1		= true,
 128	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 129	.start_err		= MCI_STARTBITERR,
 130	.opendrain		= MCI_OD,
 131	.init			= mmci_variant_init,
 132};
 133
 134static struct variant_data variant_nomadik = {
 135	.fifosize		= 16 * 4,
 136	.fifohalfsize		= 8 * 4,
 137	.clkreg			= MCI_CLK_ENABLE,
 138	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 139	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 140	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 141	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 142	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 143	.datalength_bits	= 24,
 144	.datactrl_blocksz	= 11,
 145	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 146	.st_sdio		= true,
 147	.st_clkdiv		= true,
 148	.pwrreg_powerup		= MCI_PWR_ON,
 149	.f_max			= 100000000,
 150	.signal_direction	= true,
 151	.pwrreg_clkgate		= true,
 152	.pwrreg_nopower		= true,
 153	.mmcimask1		= true,
 154	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 155	.start_err		= MCI_STARTBITERR,
 156	.opendrain		= MCI_OD,
 157	.init			= mmci_variant_init,
 158};
 159
 160static struct variant_data variant_ux500 = {
 161	.fifosize		= 30 * 4,
 162	.fifohalfsize		= 8 * 4,
 163	.clkreg			= MCI_CLK_ENABLE,
 164	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 165	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 166	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 167	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 168	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 169	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 170	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 171	.datalength_bits	= 24,
 172	.datactrl_blocksz	= 11,
 173	.datactrl_any_blocksz	= true,
 174	.dma_power_of_2		= true,
 175	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 176	.st_sdio		= true,
 177	.st_clkdiv		= true,
 178	.pwrreg_powerup		= MCI_PWR_ON,
 179	.f_max			= 100000000,
 180	.signal_direction	= true,
 181	.pwrreg_clkgate		= true,
 182	.busy_detect		= true,
 183	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 184	.busy_detect_flag	= MCI_ST_CARDBUSY,
 185	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 186	.pwrreg_nopower		= true,
 187	.mmcimask1		= true,
 188	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 189	.start_err		= MCI_STARTBITERR,
 190	.opendrain		= MCI_OD,
 191	.init			= ux500_variant_init,
 192};
 193
 194static struct variant_data variant_ux500v2 = {
 195	.fifosize		= 30 * 4,
 196	.fifohalfsize		= 8 * 4,
 197	.clkreg			= MCI_CLK_ENABLE,
 198	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 199	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 200	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 201	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 202	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 203	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 204	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 205	.datactrl_mask_ddrmode	= MCI_DPSM_ST_DDRMODE,
 206	.datalength_bits	= 24,
 207	.datactrl_blocksz	= 11,
 208	.datactrl_any_blocksz	= true,
 209	.dma_power_of_2		= true,
 210	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 211	.st_sdio		= true,
 212	.st_clkdiv		= true,
 213	.pwrreg_powerup		= MCI_PWR_ON,
 214	.f_max			= 100000000,
 215	.signal_direction	= true,
 216	.pwrreg_clkgate		= true,
 217	.busy_detect		= true,
 218	.busy_dpsm_flag		= MCI_DPSM_ST_BUSYMODE,
 219	.busy_detect_flag	= MCI_ST_CARDBUSY,
 220	.busy_detect_mask	= MCI_ST_BUSYENDMASK,
 221	.pwrreg_nopower		= true,
 222	.mmcimask1		= true,
 223	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 224	.start_err		= MCI_STARTBITERR,
 225	.opendrain		= MCI_OD,
 226	.init			= ux500v2_variant_init,
 227};
 228
 229static struct variant_data variant_stm32 = {
 230	.fifosize		= 32 * 4,
 231	.fifohalfsize		= 8 * 4,
 232	.clkreg			= MCI_CLK_ENABLE,
 233	.clkreg_enable		= MCI_ST_UX500_HWFCEN,
 234	.clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
 235	.clkreg_neg_edge_enable	= MCI_ST_UX500_NEG_EDGE,
 236	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 237	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 238	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 239	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 240	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 241	.datalength_bits	= 24,
 242	.datactrl_blocksz	= 11,
 243	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 244	.st_sdio		= true,
 245	.st_clkdiv		= true,
 246	.pwrreg_powerup		= MCI_PWR_ON,
 247	.f_max			= 48000000,
 248	.pwrreg_clkgate		= true,
 249	.pwrreg_nopower		= true,
 250	.init			= mmci_variant_init,
 251};
 252
 253static struct variant_data variant_stm32_sdmmc = {
 254	.fifosize		= 16 * 4,
 255	.fifohalfsize		= 8 * 4,
 256	.f_max			= 208000000,
 257	.stm32_clkdiv		= true,
 258	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 259	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 260	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 261	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 262	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 263	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 264	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 265	.datactrl_first		= true,
 266	.datacnt_useless	= true,
 267	.datalength_bits	= 25,
 268	.datactrl_blocksz	= 14,
 269	.datactrl_any_blocksz	= true,
 270	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 271	.stm32_idmabsize_mask	= GENMASK(12, 5),
 272	.busy_timeout		= true,
 273	.busy_detect		= true,
 274	.busy_detect_flag	= MCI_STM32_BUSYD0,
 275	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 276	.init			= sdmmc_variant_init,
 277};
 278
 279static struct variant_data variant_stm32_sdmmcv2 = {
 280	.fifosize		= 16 * 4,
 281	.fifohalfsize		= 8 * 4,
 282	.f_max			= 208000000,
 283	.stm32_clkdiv		= true,
 284	.cmdreg_cpsm_enable	= MCI_CPSM_STM32_ENABLE,
 285	.cmdreg_lrsp_crc	= MCI_CPSM_STM32_LRSP_CRC,
 286	.cmdreg_srsp_crc	= MCI_CPSM_STM32_SRSP_CRC,
 287	.cmdreg_srsp		= MCI_CPSM_STM32_SRSP,
 288	.cmdreg_stop		= MCI_CPSM_STM32_CMDSTOP,
 289	.data_cmd_enable	= MCI_CPSM_STM32_CMDTRANS,
 290	.irq_pio_mask		= MCI_IRQ_PIO_STM32_MASK,
 291	.datactrl_first		= true,
 292	.datacnt_useless	= true,
 293	.datalength_bits	= 25,
 294	.datactrl_blocksz	= 14,
 295	.datactrl_any_blocksz	= true,
 296	.datactrl_mask_sdio	= MCI_DPSM_ST_SDIOEN,
 297	.stm32_idmabsize_mask	= GENMASK(16, 5),
 298	.dma_lli		= true,
 299	.busy_timeout		= true,
 300	.busy_detect		= true,
 301	.busy_detect_flag	= MCI_STM32_BUSYD0,
 302	.busy_detect_mask	= MCI_STM32_BUSYD0ENDMASK,
 303	.init			= sdmmc_variant_init,
 304};
 305
 306static struct variant_data variant_qcom = {
 307	.fifosize		= 16 * 4,
 308	.fifohalfsize		= 8 * 4,
 309	.clkreg			= MCI_CLK_ENABLE,
 310	.clkreg_enable		= MCI_QCOM_CLK_FLOWENA |
 311				  MCI_QCOM_CLK_SELECT_IN_FBCLK,
 312	.clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
 313	.datactrl_mask_ddrmode	= MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
 314	.cmdreg_cpsm_enable	= MCI_CPSM_ENABLE,
 315	.cmdreg_lrsp_crc	= MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
 316	.cmdreg_srsp_crc	= MCI_CPSM_RESPONSE,
 317	.cmdreg_srsp		= MCI_CPSM_RESPONSE,
 318	.data_cmd_enable	= MCI_CPSM_QCOM_DATCMD,
 319	.datalength_bits	= 24,
 320	.datactrl_blocksz	= 11,
 321	.datactrl_any_blocksz	= true,
 322	.pwrreg_powerup		= MCI_PWR_UP,
 323	.f_max			= 208000000,
 324	.explicit_mclk_control	= true,
 325	.qcom_fifo		= true,
 326	.qcom_dml		= true,
 327	.mmcimask1		= true,
 328	.irq_pio_mask		= MCI_IRQ_PIO_MASK,
 329	.start_err		= MCI_STARTBITERR,
 330	.opendrain		= MCI_ROD,
 331	.init			= qcom_variant_init,
 332};
 333
 334/* Busy detection for the ST Micro variant */
 335static int mmci_card_busy(struct mmc_host *mmc)
 336{
 337	struct mmci_host *host = mmc_priv(mmc);
 338	unsigned long flags;
 339	int busy = 0;
 340
 341	spin_lock_irqsave(&host->lock, flags);
 342	if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
 343		busy = 1;
 344	spin_unlock_irqrestore(&host->lock, flags);
 345
 346	return busy;
 347}
 348
 349static void mmci_reg_delay(struct mmci_host *host)
 350{
 351	/*
 352	 * According to the spec, at least three feedback clock cycles
 353	 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
 354	 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
 355	 * Worst delay time during card init is at 100 kHz => 30 us.
 356	 * Worst delay time when up and running is at 25 MHz => 120 ns.
 357	 */
 358	if (host->cclk < 25000000)
 359		udelay(30);
 360	else
 361		ndelay(120);
 362}
 363
 364/*
 365 * This must be called with host->lock held
 366 */
 367void mmci_write_clkreg(struct mmci_host *host, u32 clk)
 368{
 369	if (host->clk_reg != clk) {
 370		host->clk_reg = clk;
 371		writel(clk, host->base + MMCICLOCK);
 372	}
 373}
 374
 375/*
 376 * This must be called with host->lock held
 377 */
 378void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
 379{
 380	if (host->pwr_reg != pwr) {
 381		host->pwr_reg = pwr;
 382		writel(pwr, host->base + MMCIPOWER);
 383	}
 384}
 385
 386/*
 387 * This must be called with host->lock held
 388 */
 389static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
 390{
 391	/* Keep busy mode in DPSM if enabled */
 392	datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
 393
 394	if (host->datactrl_reg != datactrl) {
 395		host->datactrl_reg = datactrl;
 396		writel(datactrl, host->base + MMCIDATACTRL);
 397	}
 398}
 399
 400/*
 401 * This must be called with host->lock held
 402 */
 403static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
 404{
 405	struct variant_data *variant = host->variant;
 406	u32 clk = variant->clkreg;
 407
 408	/* Make sure cclk reflects the current calculated clock */
 409	host->cclk = 0;
 410
 411	if (desired) {
 412		if (variant->explicit_mclk_control) {
 413			host->cclk = host->mclk;
 414		} else if (desired >= host->mclk) {
 415			clk = MCI_CLK_BYPASS;
 416			if (variant->st_clkdiv)
 417				clk |= MCI_ST_UX500_NEG_EDGE;
 418			host->cclk = host->mclk;
 419		} else if (variant->st_clkdiv) {
 420			/*
 421			 * DB8500 TRM says f = mclk / (clkdiv + 2)
 422			 * => clkdiv = (mclk / f) - 2
 423			 * Round the divider up so we don't exceed the max
 424			 * frequency
 425			 */
 426			clk = DIV_ROUND_UP(host->mclk, desired) - 2;
 427			if (clk >= 256)
 428				clk = 255;
 429			host->cclk = host->mclk / (clk + 2);
 430		} else {
 431			/*
 432			 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
 433			 * => clkdiv = mclk / (2 * f) - 1
 434			 */
 435			clk = host->mclk / (2 * desired) - 1;
 436			if (clk >= 256)
 437				clk = 255;
 438			host->cclk = host->mclk / (2 * (clk + 1));
 439		}
 440
 441		clk |= variant->clkreg_enable;
 442		clk |= MCI_CLK_ENABLE;
 443		/* This hasn't proven to be worthwhile */
 444		/* clk |= MCI_CLK_PWRSAVE; */
 445	}
 446
 447	/* Set actual clock for debug */
 448	host->mmc->actual_clock = host->cclk;
 449
 450	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
 451		clk |= MCI_4BIT_BUS;
 452	if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
 453		clk |= variant->clkreg_8bit_bus_enable;
 454
 455	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
 456	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
 457		clk |= variant->clkreg_neg_edge_enable;
 458
 459	mmci_write_clkreg(host, clk);
 460}
 461
 462static void mmci_dma_release(struct mmci_host *host)
 463{
 464	if (host->ops && host->ops->dma_release)
 465		host->ops->dma_release(host);
 466
 467	host->use_dma = false;
 468}
 469
 470static void mmci_dma_setup(struct mmci_host *host)
 471{
 472	if (!host->ops || !host->ops->dma_setup)
 473		return;
 474
 475	if (host->ops->dma_setup(host))
 476		return;
 477
 478	/* initialize pre request cookie */
 479	host->next_cookie = 1;
 480
 481	host->use_dma = true;
 482}
 483
 484/*
 485 * Validate mmc prerequisites
 486 */
 487static int mmci_validate_data(struct mmci_host *host,
 488			      struct mmc_data *data)
 489{
 490	struct variant_data *variant = host->variant;
 491
 492	if (!data)
 493		return 0;
 494	if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) {
 495		dev_err(mmc_dev(host->mmc),
 496			"unsupported block size (%d bytes)\n", data->blksz);
 497		return -EINVAL;
 498	}
 499
 500	if (host->ops && host->ops->validate_data)
 501		return host->ops->validate_data(host, data);
 502
 503	return 0;
 504}
 505
 506static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
 507{
 508	int err;
 509
 510	if (!host->ops || !host->ops->prep_data)
 511		return 0;
 512
 513	err = host->ops->prep_data(host, data, next);
 514
 515	if (next && !err)
 516		data->host_cookie = ++host->next_cookie < 0 ?
 517			1 : host->next_cookie;
 518
 519	return err;
 520}
 521
 522static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
 523		      int err)
 524{
 525	if (host->ops && host->ops->unprep_data)
 526		host->ops->unprep_data(host, data, err);
 527
 528	data->host_cookie = 0;
 529}
 530
 531static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
 532{
 533	WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
 534
 535	if (host->ops && host->ops->get_next_data)
 536		host->ops->get_next_data(host, data);
 537}
 538
 539static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
 540{
 541	struct mmc_data *data = host->data;
 542	int ret;
 543
 544	if (!host->use_dma)
 545		return -EINVAL;
 546
 547	ret = mmci_prep_data(host, data, false);
 548	if (ret)
 549		return ret;
 550
 551	if (!host->ops || !host->ops->dma_start)
 552		return -EINVAL;
 553
 554	/* Okay, go for it. */
 555	dev_vdbg(mmc_dev(host->mmc),
 556		 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
 557		 data->sg_len, data->blksz, data->blocks, data->flags);
 558
 559	ret = host->ops->dma_start(host, &datactrl);
 560	if (ret)
 561		return ret;
 562
 563	/* Trigger the DMA transfer */
 564	mmci_write_datactrlreg(host, datactrl);
 565
 566	/*
 567	 * Let the MMCI say when the data is ended and it's time
 568	 * to fire next DMA request. When that happens, MMCI will
 569	 * call mmci_data_end()
 570	 */
 571	writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
 572	       host->base + MMCIMASK0);
 573	return 0;
 574}
 575
 576static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
 577{
 578	if (!host->use_dma)
 579		return;
 580
 581	if (host->ops && host->ops->dma_finalize)
 582		host->ops->dma_finalize(host, data);
 583}
 584
 585static void mmci_dma_error(struct mmci_host *host)
 586{
 587	if (!host->use_dma)
 588		return;
 589
 590	if (host->ops && host->ops->dma_error)
 591		host->ops->dma_error(host);
 592}
 593
 594static void
 595mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
 596{
 597	writel(0, host->base + MMCICOMMAND);
 598
 599	BUG_ON(host->data);
 600
 601	host->mrq = NULL;
 602	host->cmd = NULL;
 603
 
 
 
 
 
 604	mmc_request_done(host->mmc, mrq);
 
 605}
 606
 607static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
 608{
 609	void __iomem *base = host->base;
 610	struct variant_data *variant = host->variant;
 611
 612	if (host->singleirq) {
 613		unsigned int mask0 = readl(base + MMCIMASK0);
 614
 615		mask0 &= ~variant->irq_pio_mask;
 616		mask0 |= mask;
 617
 618		writel(mask0, base + MMCIMASK0);
 619	}
 620
 621	if (variant->mmcimask1)
 622		writel(mask, base + MMCIMASK1);
 623
 624	host->mask1_reg = mask;
 625}
 626
 627static void mmci_stop_data(struct mmci_host *host)
 628{
 629	mmci_write_datactrlreg(host, 0);
 630	mmci_set_mask1(host, 0);
 631	host->data = NULL;
 632}
 633
 634static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
 635{
 636	unsigned int flags = SG_MITER_ATOMIC;
 637
 638	if (data->flags & MMC_DATA_READ)
 639		flags |= SG_MITER_TO_SG;
 640	else
 641		flags |= SG_MITER_FROM_SG;
 642
 643	sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
 644}
 645
 646static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
 647{
 648	return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
 649}
 650
 651static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
 652{
 653	return MCI_DPSM_ENABLE | (host->data->blksz << 16);
 654}
 655
 656static bool ux500_busy_complete(struct mmci_host *host, u32 status, u32 err_msk)
 657{
 658	void __iomem *base = host->base;
 659
 660	/*
 661	 * Before unmasking for the busy end IRQ, confirm that the
 662	 * command was sent successfully. To keep track of having a
 663	 * command in-progress, waiting for busy signaling to end,
 664	 * store the status in host->busy_status.
 665	 *
 666	 * Note that, the card may need a couple of clock cycles before
 667	 * it starts signaling busy on DAT0, hence re-read the
 668	 * MMCISTATUS register here, to allow the busy bit to be set.
 669	 * Potentially we may even need to poll the register for a
 670	 * while, to allow it to be set, but tests indicates that it
 671	 * isn't needed.
 672	 */
 673	if (!host->busy_status && !(status & err_msk) &&
 674	    (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
 675		writel(readl(base + MMCIMASK0) |
 676		       host->variant->busy_detect_mask,
 677		       base + MMCIMASK0);
 678
 679		host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND);
 680		return false;
 681	}
 682
 683	/*
 684	 * If there is a command in-progress that has been successfully
 685	 * sent, then bail out if busy status is set and wait for the
 686	 * busy end IRQ.
 687	 *
 688	 * Note that, the HW triggers an IRQ on both edges while
 689	 * monitoring DAT0 for busy completion, but there is only one
 690	 * status bit in MMCISTATUS for the busy state. Therefore
 691	 * both the start and the end interrupts needs to be cleared,
 692	 * one after the other. So, clear the busy start IRQ here.
 693	 */
 694	if (host->busy_status &&
 695	    (status & host->variant->busy_detect_flag)) {
 696		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 697		return false;
 698	}
 699
 700	/*
 701	 * If there is a command in-progress that has been successfully
 702	 * sent and the busy bit isn't set, it means we have received
 703	 * the busy end IRQ. Clear and mask the IRQ, then continue to
 704	 * process the command.
 705	 */
 706	if (host->busy_status) {
 707		writel(host->variant->busy_detect_mask, base + MMCICLEAR);
 708
 709		writel(readl(base + MMCIMASK0) &
 710		       ~host->variant->busy_detect_mask, base + MMCIMASK0);
 711		host->busy_status = 0;
 712	}
 713
 714	return true;
 715}
 716
 717/*
 718 * All the DMA operation mode stuff goes inside this ifdef.
 719 * This assumes that you have a generic DMA device interface,
 720 * no custom DMA interfaces are supported.
 721 */
 722#ifdef CONFIG_DMA_ENGINE
 723struct mmci_dmae_next {
 724	struct dma_async_tx_descriptor *desc;
 725	struct dma_chan	*chan;
 726};
 727
 728struct mmci_dmae_priv {
 729	struct dma_chan	*cur;
 730	struct dma_chan	*rx_channel;
 731	struct dma_chan	*tx_channel;
 732	struct dma_async_tx_descriptor	*desc_current;
 733	struct mmci_dmae_next next_data;
 734};
 735
 736int mmci_dmae_setup(struct mmci_host *host)
 737{
 
 738	const char *rxname, *txname;
 739	struct mmci_dmae_priv *dmae;
 740
 741	dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
 742	if (!dmae)
 743		return -ENOMEM;
 744
 745	host->dma_priv = dmae;
 746
 747	dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx");
 748	if (IS_ERR(dmae->rx_channel)) {
 749		int ret = PTR_ERR(dmae->rx_channel);
 750		dmae->rx_channel = NULL;
 751		return ret;
 752	}
 753
 754	dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx");
 755	if (IS_ERR(dmae->tx_channel)) {
 756		if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER)
 757			dev_warn(mmc_dev(host->mmc),
 758				 "Deferred probe for TX channel ignored\n");
 759		dmae->tx_channel = NULL;
 760	}
 761
 762	/*
 763	 * If only an RX channel is specified, the driver will
 764	 * attempt to use it bidirectionally, however if it is
 765	 * is specified but cannot be located, DMA will be disabled.
 766	 */
 767	if (dmae->rx_channel && !dmae->tx_channel)
 768		dmae->tx_channel = dmae->rx_channel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769
 770	if (dmae->rx_channel)
 771		rxname = dma_chan_name(dmae->rx_channel);
 772	else
 773		rxname = "none";
 774
 775	if (dmae->tx_channel)
 776		txname = dma_chan_name(dmae->tx_channel);
 777	else
 778		txname = "none";
 779
 780	dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
 781		 rxname, txname);
 782
 783	/*
 784	 * Limit the maximum segment size in any SG entry according to
 785	 * the parameters of the DMA engine device.
 786	 */
 787	if (dmae->tx_channel) {
 788		struct device *dev = dmae->tx_channel->device->dev;
 789		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 790
 791		if (max_seg_size < host->mmc->max_seg_size)
 792			host->mmc->max_seg_size = max_seg_size;
 793	}
 794	if (dmae->rx_channel) {
 795		struct device *dev = dmae->rx_channel->device->dev;
 796		unsigned int max_seg_size = dma_get_max_seg_size(dev);
 797
 798		if (max_seg_size < host->mmc->max_seg_size)
 799			host->mmc->max_seg_size = max_seg_size;
 800	}
 801
 802	if (!dmae->tx_channel || !dmae->rx_channel) {
 803		mmci_dmae_release(host);
 804		return -EINVAL;
 805	}
 806
 807	return 0;
 808}
 809
 810/*
 811 * This is used in or so inline it
 812 * so it can be discarded.
 813 */
 814void mmci_dmae_release(struct mmci_host *host)
 815{
 816	struct mmci_dmae_priv *dmae = host->dma_priv;
 817
 818	if (dmae->rx_channel)
 819		dma_release_channel(dmae->rx_channel);
 820	if (dmae->tx_channel)
 821		dma_release_channel(dmae->tx_channel);
 822	dmae->rx_channel = dmae->tx_channel = NULL;
 823}
 824
 825static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
 826{
 827	struct mmci_dmae_priv *dmae = host->dma_priv;
 828	struct dma_chan *chan;
 829
 830	if (data->flags & MMC_DATA_READ)
 831		chan = dmae->rx_channel;
 832	else
 833		chan = dmae->tx_channel;
 834
 835	dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
 836		     mmc_get_dma_dir(data));
 837}
 838
 839void mmci_dmae_error(struct mmci_host *host)
 840{
 841	struct mmci_dmae_priv *dmae = host->dma_priv;
 842
 843	if (!dma_inprogress(host))
 844		return;
 845
 846	dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
 847	dmaengine_terminate_all(dmae->cur);
 848	host->dma_in_progress = false;
 849	dmae->cur = NULL;
 850	dmae->desc_current = NULL;
 851	host->data->host_cookie = 0;
 852
 853	mmci_dma_unmap(host, host->data);
 854}
 855
 856void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
 857{
 858	struct mmci_dmae_priv *dmae = host->dma_priv;
 859	u32 status;
 860	int i;
 861
 862	if (!dma_inprogress(host))
 863		return;
 864
 865	/* Wait up to 1ms for the DMA to complete */
 866	for (i = 0; ; i++) {
 867		status = readl(host->base + MMCISTATUS);
 868		if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
 869			break;
 870		udelay(10);
 871	}
 872
 873	/*
 874	 * Check to see whether we still have some data left in the FIFO -
 875	 * this catches DMA controllers which are unable to monitor the
 876	 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
 877	 * contiguous buffers.  On TX, we'll get a FIFO underrun error.
 878	 */
 879	if (status & MCI_RXDATAAVLBLMASK) {
 880		mmci_dma_error(host);
 881		if (!data->error)
 882			data->error = -EIO;
 883	} else if (!data->host_cookie) {
 884		mmci_dma_unmap(host, data);
 885	}
 886
 
 
 
 
 
 
 
 
 
 887	/*
 888	 * Use of DMA with scatter-gather is impossible.
 889	 * Give up with DMA and switch back to PIO mode.
 890	 */
 891	if (status & MCI_RXDATAAVLBLMASK) {
 892		dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
 893		mmci_dma_release(host);
 894	}
 
 895
 896	host->dma_in_progress = false;
 897	dmae->cur = NULL;
 898	dmae->desc_current = NULL;
 
 899}
 900
 901/* prepares DMA channel and DMA descriptor, returns non-zero on failure */
 902static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
 903				struct dma_chan **dma_chan,
 904				struct dma_async_tx_descriptor **dma_desc)
 905{
 906	struct mmci_dmae_priv *dmae = host->dma_priv;
 907	struct variant_data *variant = host->variant;
 908	struct dma_slave_config conf = {
 909		.src_addr = host->phybase + MMCIFIFO,
 910		.dst_addr = host->phybase + MMCIFIFO,
 911		.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 912		.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 913		.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
 914		.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
 915		.device_fc = false,
 916	};
 917	struct dma_chan *chan;
 918	struct dma_device *device;
 919	struct dma_async_tx_descriptor *desc;
 920	int nr_sg;
 921	unsigned long flags = DMA_CTRL_ACK;
 
 
 
 
 
 
 
 
 
 922
 923	if (data->flags & MMC_DATA_READ) {
 924		conf.direction = DMA_DEV_TO_MEM;
 925		chan = dmae->rx_channel;
 926	} else {
 927		conf.direction = DMA_MEM_TO_DEV;
 928		chan = dmae->tx_channel;
 929	}
 930
 931	/* If there's no DMA channel, fall back to PIO */
 932	if (!chan)
 933		return -EINVAL;
 934
 935	/* If less than or equal to the fifo size, don't bother with DMA */
 936	if (data->blksz * data->blocks <= variant->fifosize)
 937		return -EINVAL;
 938
 939	/*
 940	 * This is necessary to get SDIO working on the Ux500. We do not yet
 941	 * know if this is a bug in:
 942	 * - The Ux500 DMA controller (DMA40)
 943	 * - The MMCI DMA interface on the Ux500
 944	 * some power of two blocks (such as 64 bytes) are sent regularly
 945	 * during SDIO traffic and those work fine so for these we enable DMA
 946	 * transfers.
 947	 */
 948	if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz))
 949		return -EINVAL;
 950
 951	device = chan->device;
 952	nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
 953			   mmc_get_dma_dir(data));
 954	if (nr_sg == 0)
 955		return -EINVAL;
 956
 957	if (host->variant->qcom_dml)
 958		flags |= DMA_PREP_INTERRUPT;
 959
 960	dmaengine_slave_config(chan, &conf);
 961	desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
 962					    conf.direction, flags);
 963	if (!desc)
 964		goto unmap_exit;
 965
 966	*dma_chan = chan;
 967	*dma_desc = desc;
 
 
 
 
 
 968
 969	return 0;
 970
 971 unmap_exit:
 972	dma_unmap_sg(device->dev, data->sg, data->sg_len,
 973		     mmc_get_dma_dir(data));
 
 974	return -ENOMEM;
 975}
 976
 977int mmci_dmae_prep_data(struct mmci_host *host,
 978			struct mmc_data *data,
 979			bool next)
 980{
 981	struct mmci_dmae_priv *dmae = host->dma_priv;
 982	struct mmci_dmae_next *nd = &dmae->next_data;
 
 
 
 
 983
 984	if (!host->use_dma)
 985		return -EINVAL;
 
 
 
 
 
 
 986
 987	if (next)
 988		return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
 989	/* Check if next job is already prepared. */
 990	if (dmae->cur && dmae->desc_current)
 991		return 0;
 992
 993	/* No job were prepared thus do it now. */
 994	return _mmci_dmae_prep_data(host, data, &dmae->cur,
 995				    &dmae->desc_current);
 
 
 
 
 
 996}
 997
 998int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
 999{
1000	struct mmci_dmae_priv *dmae = host->dma_priv;
1001	int ret;
1002
1003	host->dma_in_progress = true;
1004	ret = dma_submit_error(dmaengine_submit(dmae->desc_current));
1005	if (ret < 0) {
1006		host->dma_in_progress = false;
1007		return ret;
1008	}
1009	dma_async_issue_pending(dmae->cur);
1010
1011	*datactrl |= MCI_DPSM_DMAENABLE;
 
1012
1013	return 0;
 
 
 
 
1014}
1015
1016void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
 
1017{
1018	struct mmci_dmae_priv *dmae = host->dma_priv;
1019	struct mmci_dmae_next *next = &dmae->next_data;
 
1020
1021	if (!host->use_dma)
1022		return;
1023
1024	WARN_ON(!data->host_cookie && (next->desc || next->chan));
 
 
 
1025
1026	dmae->desc_current = next->desc;
1027	dmae->cur = next->chan;
1028	next->desc = NULL;
1029	next->chan = NULL;
 
 
 
 
1030}
1031
1032void mmci_dmae_unprep_data(struct mmci_host *host,
1033			   struct mmc_data *data, int err)
1034
1035{
1036	struct mmci_dmae_priv *dmae = host->dma_priv;
 
 
 
1037
1038	if (!host->use_dma)
1039		return;
1040
1041	mmci_dma_unmap(host, data);
 
 
 
 
 
 
1042
1043	if (err) {
1044		struct mmci_dmae_next *next = &dmae->next_data;
1045		struct dma_chan *chan;
1046		if (data->flags & MMC_DATA_READ)
1047			chan = dmae->rx_channel;
1048		else
1049			chan = dmae->tx_channel;
1050		dmaengine_terminate_all(chan);
1051
1052		if (dmae->desc_current == next->desc)
1053			dmae->desc_current = NULL;
1054
1055		if (dmae->cur == next->chan) {
1056			host->dma_in_progress = false;
1057			dmae->cur = NULL;
1058		}
1059
1060		next->desc = NULL;
1061		next->chan = NULL;
1062	}
1063}
1064
1065static struct mmci_host_ops mmci_variant_ops = {
1066	.prep_data = mmci_dmae_prep_data,
1067	.unprep_data = mmci_dmae_unprep_data,
1068	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1069	.get_next_data = mmci_dmae_get_next_data,
1070	.dma_setup = mmci_dmae_setup,
1071	.dma_release = mmci_dmae_release,
1072	.dma_start = mmci_dmae_start,
1073	.dma_finalize = mmci_dmae_finalize,
1074	.dma_error = mmci_dmae_error,
1075};
1076#else
1077static struct mmci_host_ops mmci_variant_ops = {
1078	.get_datactrl_cfg = mmci_get_dctrl_cfg,
1079};
1080#endif
1081
1082static void mmci_variant_init(struct mmci_host *host)
1083{
1084	host->ops = &mmci_variant_ops;
1085}
1086
1087static void ux500_variant_init(struct mmci_host *host)
1088{
1089	host->ops = &mmci_variant_ops;
1090	host->ops->busy_complete = ux500_busy_complete;
1091}
1092
1093static void ux500v2_variant_init(struct mmci_host *host)
1094{
1095	host->ops = &mmci_variant_ops;
1096	host->ops->busy_complete = ux500_busy_complete;
1097	host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
1098}
1099
1100static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
1101{
1102	struct mmci_host *host = mmc_priv(mmc);
1103	struct mmc_data *data = mrq->data;
1104
1105	if (!data)
1106		return;
1107
1108	WARN_ON(data->host_cookie);
1109
1110	if (mmci_validate_data(host, data))
1111		return;
1112
1113	mmci_prep_data(host, data, true);
1114}
1115
1116static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
1117			      int err)
1118{
1119	struct mmci_host *host = mmc_priv(mmc);
1120	struct mmc_data *data = mrq->data;
1121
1122	if (!data || !data->host_cookie)
1123		return;
1124
1125	mmci_unprep_data(host, data, err);
1126}
1127
1128static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
1129{
1130	struct variant_data *variant = host->variant;
1131	unsigned int datactrl, timeout, irqmask;
1132	unsigned long long clks;
1133	void __iomem *base;
 
1134
1135	dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
1136		data->blksz, data->blocks, data->flags);
1137
1138	host->data = data;
1139	host->size = data->blksz * data->blocks;
1140	data->bytes_xfered = 0;
1141
1142	clks = (unsigned long long)data->timeout_ns * host->cclk;
1143	do_div(clks, NSEC_PER_SEC);
1144
1145	timeout = data->timeout_clks + (unsigned int)clks;
1146
1147	base = host->base;
1148	writel(timeout, base + MMCIDATATIMER);
1149	writel(host->size, base + MMCIDATALENGTH);
1150
1151	datactrl = host->ops->get_datactrl_cfg(host);
1152	datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1153
1154	if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1155		u32 clk;
 
 
1156
1157		datactrl |= variant->datactrl_mask_sdio;
1158
1159		/*
1160		 * The ST Micro variant for SDIO small write transfers
1161		 * needs to have clock H/W flow control disabled,
1162		 * otherwise the transfer will not start. The threshold
1163		 * depends on the rate of MCLK.
1164		 */
1165		if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1166		    (host->size < 8 ||
1167		     (host->size <= 8 && host->mclk > 50000000)))
1168			clk = host->clk_reg & ~variant->clkreg_enable;
1169		else
1170			clk = host->clk_reg | variant->clkreg_enable;
1171
1172		mmci_write_clkreg(host, clk);
1173	}
1174
1175	if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1176	    host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1177		datactrl |= variant->datactrl_mask_ddrmode;
1178
1179	/*
1180	 * Attempt to use DMA operation mode, if this
1181	 * should fail, fall back to PIO mode
1182	 */
1183	if (!mmci_dma_start(host, datactrl))
1184		return;
1185
1186	/* IRQ mode, map the SG list for CPU reading/writing */
1187	mmci_init_sg(host, data);
1188
1189	if (data->flags & MMC_DATA_READ) {
1190		irqmask = MCI_RXFIFOHALFFULLMASK;
1191
1192		/*
1193		 * If we have less than the fifo 'half-full' threshold to
1194		 * transfer, trigger a PIO interrupt as soon as any data
1195		 * is available.
1196		 */
1197		if (host->size < variant->fifohalfsize)
1198			irqmask |= MCI_RXDATAAVLBLMASK;
1199	} else {
1200		/*
1201		 * We don't actually need to include "FIFO empty" here
1202		 * since its implicit in "FIFO half empty".
1203		 */
1204		irqmask = MCI_TXFIFOHALFEMPTYMASK;
1205	}
1206
1207	mmci_write_datactrlreg(host, datactrl);
 
 
 
 
 
1208	writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1209	mmci_set_mask1(host, irqmask);
1210}
1211
1212static void
1213mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1214{
1215	void __iomem *base = host->base;
1216	unsigned long long clks;
1217
1218	dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1219	    cmd->opcode, cmd->arg, cmd->flags);
1220
1221	if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1222		writel(0, base + MMCICOMMAND);
1223		mmci_reg_delay(host);
1224	}
1225
1226	if (host->variant->cmdreg_stop &&
1227	    cmd->opcode == MMC_STOP_TRANSMISSION)
1228		c |= host->variant->cmdreg_stop;
1229
1230	c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1231	if (cmd->flags & MMC_RSP_PRESENT) {
1232		if (cmd->flags & MMC_RSP_136)
1233			c |= host->variant->cmdreg_lrsp_crc;
1234		else if (cmd->flags & MMC_RSP_CRC)
1235			c |= host->variant->cmdreg_srsp_crc;
1236		else
1237			c |= host->variant->cmdreg_srsp;
1238	}
1239
1240	if (host->variant->busy_timeout && cmd->flags & MMC_RSP_BUSY) {
1241		if (!cmd->busy_timeout)
1242			cmd->busy_timeout = 10 * MSEC_PER_SEC;
1243
1244		clks = (unsigned long long)cmd->busy_timeout * host->cclk;
1245		do_div(clks, MSEC_PER_SEC);
1246		writel_relaxed(clks, host->base + MMCIDATATIMER);
1247	}
1248
1249	if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE)
1250		host->ops->pre_sig_volt_switch(host);
1251
1252	if (/*interrupt*/0)
1253		c |= MCI_CPSM_INTERRUPT;
1254
1255	if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1256		c |= host->variant->data_cmd_enable;
1257
1258	host->cmd = cmd;
1259
1260	writel(cmd->arg, base + MMCIARGUMENT);
1261	writel(c, base + MMCICOMMAND);
1262}
1263
1264static void mmci_stop_command(struct mmci_host *host)
1265{
1266	host->stop_abort.error = 0;
1267	mmci_start_command(host, &host->stop_abort, 0);
1268}
1269
1270static void
1271mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1272	      unsigned int status)
1273{
1274	unsigned int status_err;
1275
1276	/* Make sure we have data to handle */
1277	if (!data)
1278		return;
1279
1280	/* First check for errors */
1281	status_err = status & (host->variant->start_err |
1282			       MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1283			       MCI_TXUNDERRUN | MCI_RXOVERRUN);
1284
1285	if (status_err) {
1286		u32 remain, success;
1287
1288		/* Terminate the DMA transfer */
1289		mmci_dma_error(host);
 
1290
1291		/*
1292		 * Calculate how far we are into the transfer.  Note that
1293		 * the data counter gives the number of bytes transferred
1294		 * on the MMC bus, not on the host side.  On reads, this
1295		 * can be as much as a FIFO-worth of data ahead.  This
1296		 * matters for FIFO overruns only.
1297		 */
1298		if (!host->variant->datacnt_useless) {
1299			remain = readl(host->base + MMCIDATACNT);
1300			success = data->blksz * data->blocks - remain;
1301		} else {
1302			success = 0;
1303		}
1304
1305		dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1306			status_err, success);
1307		if (status_err & MCI_DATACRCFAIL) {
1308			/* Last block was not successful */
1309			success -= 1;
1310			data->error = -EILSEQ;
1311		} else if (status_err & MCI_DATATIMEOUT) {
1312			data->error = -ETIMEDOUT;
1313		} else if (status_err & MCI_STARTBITERR) {
1314			data->error = -ECOMM;
1315		} else if (status_err & MCI_TXUNDERRUN) {
1316			data->error = -EIO;
1317		} else if (status_err & MCI_RXOVERRUN) {
1318			if (success > host->variant->fifosize)
1319				success -= host->variant->fifosize;
1320			else
1321				success = 0;
1322			data->error = -EIO;
1323		}
1324		data->bytes_xfered = round_down(success, data->blksz);
1325	}
1326
1327	if (status & MCI_DATABLOCKEND)
1328		dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1329
1330	if (status & MCI_DATAEND || data->error) {
1331		mmci_dma_finalize(host, data);
1332
1333		mmci_stop_data(host);
1334
1335		if (!data->error)
1336			/* The error clause is handled above, success! */
1337			data->bytes_xfered = data->blksz * data->blocks;
1338
1339		if (!data->stop) {
1340			if (host->variant->cmdreg_stop && data->error)
1341				mmci_stop_command(host);
1342			else
1343				mmci_request_end(host, data->mrq);
1344		} else if (host->mrq->sbc && !data->error) {
1345			mmci_request_end(host, data->mrq);
1346		} else {
1347			mmci_start_command(host, data->stop, 0);
1348		}
1349	}
1350}
1351
1352static void
1353mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1354	     unsigned int status)
1355{
1356	u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT;
1357	void __iomem *base = host->base;
1358	bool sbc, busy_resp;
1359
1360	if (!cmd)
1361		return;
1362
1363	sbc = (cmd == host->mrq->sbc);
1364	busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1365
1366	/*
1367	 * We need to be one of these interrupts to be considered worth
1368	 * handling. Note that we tag on any latent IRQs postponed
1369	 * due to waiting for busy status.
1370	 */
1371	if (host->variant->busy_timeout && busy_resp)
1372		err_msk |= MCI_DATATIMEOUT;
1373
1374	if (!((status | host->busy_status) &
1375	      (err_msk | MCI_CMDSENT | MCI_CMDRESPEND)))
1376		return;
1377
1378	/* Handle busy detection on DAT0 if the variant supports it. */
1379	if (busy_resp && host->variant->busy_detect)
1380		if (!host->ops->busy_complete(host, status, err_msk))
1381			return;
1382
1383	host->cmd = NULL;
1384
1385	if (status & MCI_CMDTIMEOUT) {
1386		cmd->error = -ETIMEDOUT;
1387	} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1388		cmd->error = -EILSEQ;
1389	} else if (host->variant->busy_timeout && busy_resp &&
1390		   status & MCI_DATATIMEOUT) {
1391		cmd->error = -ETIMEDOUT;
1392		host->irq_action = IRQ_WAKE_THREAD;
1393	} else {
1394		cmd->resp[0] = readl(base + MMCIRESPONSE0);
1395		cmd->resp[1] = readl(base + MMCIRESPONSE1);
1396		cmd->resp[2] = readl(base + MMCIRESPONSE2);
1397		cmd->resp[3] = readl(base + MMCIRESPONSE3);
1398	}
1399
1400	if ((!sbc && !cmd->data) || cmd->error) {
1401		if (host->data) {
1402			/* Terminate the DMA transfer */
1403			mmci_dma_error(host);
1404
1405			mmci_stop_data(host);
1406			if (host->variant->cmdreg_stop && cmd->error) {
1407				mmci_stop_command(host);
1408				return;
1409			}
1410		}
1411
1412		if (host->irq_action != IRQ_WAKE_THREAD)
1413			mmci_request_end(host, host->mrq);
1414
1415	} else if (sbc) {
1416		mmci_start_command(host, host->mrq->cmd, 0);
1417	} else if (!host->variant->datactrl_first &&
1418		   !(cmd->data->flags & MMC_DATA_READ)) {
1419		mmci_start_data(host, cmd->data);
1420	}
1421}
1422
1423static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1424{
1425	return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1426}
1427
1428static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1429{
1430	/*
1431	 * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1432	 * from the fifo range should be used
1433	 */
1434	if (status & MCI_RXFIFOHALFFULL)
1435		return host->variant->fifohalfsize;
1436	else if (status & MCI_RXDATAAVLBL)
1437		return 4;
1438
1439	return 0;
1440}
1441
1442static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1443{
1444	void __iomem *base = host->base;
1445	char *ptr = buffer;
1446	u32 status = readl(host->base + MMCISTATUS);
1447	int host_remain = host->size;
1448
1449	do {
1450		int count = host->get_rx_fifocnt(host, status, host_remain);
1451
1452		if (count > remain)
1453			count = remain;
1454
1455		if (count <= 0)
1456			break;
1457
1458		/*
1459		 * SDIO especially may want to send something that is
1460		 * not divisible by 4 (as opposed to card sectors
1461		 * etc). Therefore make sure to always read the last bytes
1462		 * while only doing full 32-bit reads towards the FIFO.
1463		 */
1464		if (unlikely(count & 0x3)) {
1465			if (count < 4) {
1466				unsigned char buf[4];
1467				ioread32_rep(base + MMCIFIFO, buf, 1);
1468				memcpy(ptr, buf, count);
1469			} else {
1470				ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1471				count &= ~0x3;
1472			}
1473		} else {
1474			ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1475		}
1476
1477		ptr += count;
1478		remain -= count;
1479		host_remain -= count;
1480
1481		if (remain == 0)
1482			break;
1483
1484		status = readl(base + MMCISTATUS);
1485	} while (status & MCI_RXDATAAVLBL);
1486
1487	return ptr - buffer;
1488}
1489
1490static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1491{
1492	struct variant_data *variant = host->variant;
1493	void __iomem *base = host->base;
1494	char *ptr = buffer;
1495
1496	do {
1497		unsigned int count, maxcnt;
1498
1499		maxcnt = status & MCI_TXFIFOEMPTY ?
1500			 variant->fifosize : variant->fifohalfsize;
1501		count = min(remain, maxcnt);
1502
1503		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504		 * SDIO especially may want to send something that is
1505		 * not divisible by 4 (as opposed to card sectors
1506		 * etc), and the FIFO only accept full 32-bit writes.
1507		 * So compensate by adding +3 on the count, a single
1508		 * byte become a 32bit write, 7 bytes will be two
1509		 * 32bit writes etc.
1510		 */
1511		iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1512
1513		ptr += count;
1514		remain -= count;
1515
1516		if (remain == 0)
1517			break;
1518
1519		status = readl(base + MMCISTATUS);
1520	} while (status & MCI_TXFIFOHALFEMPTY);
1521
1522	return ptr - buffer;
1523}
1524
1525/*
1526 * PIO data transfer IRQ handler.
1527 */
1528static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1529{
1530	struct mmci_host *host = dev_id;
1531	struct sg_mapping_iter *sg_miter = &host->sg_miter;
1532	struct variant_data *variant = host->variant;
1533	void __iomem *base = host->base;
 
1534	u32 status;
1535
1536	status = readl(base + MMCISTATUS);
1537
1538	dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1539
 
 
1540	do {
1541		unsigned int remain, len;
1542		char *buffer;
1543
1544		/*
1545		 * For write, we only need to test the half-empty flag
1546		 * here - if the FIFO is completely empty, then by
1547		 * definition it is more than half empty.
1548		 *
1549		 * For read, check for data available.
1550		 */
1551		if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1552			break;
1553
1554		if (!sg_miter_next(sg_miter))
1555			break;
1556
1557		buffer = sg_miter->addr;
1558		remain = sg_miter->length;
1559
1560		len = 0;
1561		if (status & MCI_RXACTIVE)
1562			len = mmci_pio_read(host, buffer, remain);
1563		if (status & MCI_TXACTIVE)
1564			len = mmci_pio_write(host, buffer, remain, status);
1565
1566		sg_miter->consumed = len;
1567
1568		host->size -= len;
1569		remain -= len;
1570
1571		if (remain)
1572			break;
1573
1574		status = readl(base + MMCISTATUS);
1575	} while (1);
1576
1577	sg_miter_stop(sg_miter);
1578
 
 
1579	/*
1580	 * If we have less than the fifo 'half-full' threshold to transfer,
1581	 * trigger a PIO interrupt as soon as any data is available.
1582	 */
1583	if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1584		mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1585
1586	/*
1587	 * If we run out of data, disable the data IRQs; this
1588	 * prevents a race where the FIFO becomes empty before
1589	 * the chip itself has disabled the data path, and
1590	 * stops us racing with our data end IRQ.
1591	 */
1592	if (host->size == 0) {
1593		mmci_set_mask1(host, 0);
1594		writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1595	}
1596
1597	return IRQ_HANDLED;
1598}
1599
1600/*
1601 * Handle completion of command and data transfers.
1602 */
1603static irqreturn_t mmci_irq(int irq, void *dev_id)
1604{
1605	struct mmci_host *host = dev_id;
1606	u32 status;
 
1607
1608	spin_lock(&host->lock);
1609	host->irq_action = IRQ_HANDLED;
1610
1611	do {
 
 
 
1612		status = readl(host->base + MMCISTATUS);
1613
1614		if (host->singleirq) {
1615			if (status & host->mask1_reg)
1616				mmci_pio_irq(irq, dev_id);
1617
1618			status &= ~host->variant->irq_pio_mask;
1619		}
1620
1621		/*
1622		 * Busy detection is managed by mmci_cmd_irq(), including to
1623		 * clear the corresponding IRQ.
1624		 */
1625		status &= readl(host->base + MMCIMASK0);
1626		if (host->variant->busy_detect)
1627			writel(status & ~host->variant->busy_detect_mask,
1628			       host->base + MMCICLEAR);
1629		else
1630			writel(status, host->base + MMCICLEAR);
1631
1632		dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1633
1634		if (host->variant->reversed_irq_handling) {
1635			mmci_data_irq(host, host->data, status);
1636			mmci_cmd_irq(host, host->cmd, status);
1637		} else {
1638			mmci_cmd_irq(host, host->cmd, status);
1639			mmci_data_irq(host, host->data, status);
1640		}
1641
1642		/*
1643		 * Busy detection has been handled by mmci_cmd_irq() above.
1644		 * Clear the status bit to prevent polling in IRQ context.
1645		 */
1646		if (host->variant->busy_detect_flag)
1647			status &= ~host->variant->busy_detect_flag;
1648
 
1649	} while (status);
1650
1651	spin_unlock(&host->lock);
1652
1653	return host->irq_action;
1654}
1655
1656/*
1657 * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW.
1658 *
1659 * A reset is needed for some variants, where a datatimeout for a R1B request
1660 * causes the DPSM to stay busy (non-functional).
1661 */
1662static irqreturn_t mmci_irq_thread(int irq, void *dev_id)
1663{
1664	struct mmci_host *host = dev_id;
1665	unsigned long flags;
1666
1667	if (host->rst) {
1668		reset_control_assert(host->rst);
1669		udelay(2);
1670		reset_control_deassert(host->rst);
1671	}
1672
1673	spin_lock_irqsave(&host->lock, flags);
1674	writel(host->clk_reg, host->base + MMCICLOCK);
1675	writel(host->pwr_reg, host->base + MMCIPOWER);
1676	writel(MCI_IRQENABLE | host->variant->start_err,
1677	       host->base + MMCIMASK0);
1678
1679	host->irq_action = IRQ_HANDLED;
1680	mmci_request_end(host, host->mrq);
1681	spin_unlock_irqrestore(&host->lock, flags);
1682
1683	return host->irq_action;
1684}
1685
1686static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1687{
1688	struct mmci_host *host = mmc_priv(mmc);
1689	unsigned long flags;
1690
1691	WARN_ON(host->mrq != NULL);
1692
1693	mrq->cmd->error = mmci_validate_data(host, mrq->data);
1694	if (mrq->cmd->error) {
 
 
1695		mmc_request_done(mmc, mrq);
1696		return;
1697	}
1698
1699	spin_lock_irqsave(&host->lock, flags);
1700
1701	host->mrq = mrq;
1702
1703	if (mrq->data)
1704		mmci_get_next_data(host, mrq->data);
1705
1706	if (mrq->data &&
1707	    (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1708		mmci_start_data(host, mrq->data);
1709
1710	if (mrq->sbc)
1711		mmci_start_command(host, mrq->sbc, 0);
1712	else
1713		mmci_start_command(host, mrq->cmd, 0);
1714
1715	spin_unlock_irqrestore(&host->lock, flags);
1716}
1717
1718static void mmci_set_max_busy_timeout(struct mmc_host *mmc)
1719{
1720	struct mmci_host *host = mmc_priv(mmc);
1721	u32 max_busy_timeout = 0;
1722
1723	if (!host->variant->busy_detect)
1724		return;
1725
1726	if (host->variant->busy_timeout && mmc->actual_clock)
1727		max_busy_timeout = ~0UL / (mmc->actual_clock / MSEC_PER_SEC);
1728
1729	mmc->max_busy_timeout = max_busy_timeout;
1730}
1731
1732static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1733{
1734	struct mmci_host *host = mmc_priv(mmc);
1735	struct variant_data *variant = host->variant;
1736	u32 pwr = 0;
1737	unsigned long flags;
1738	int ret;
1739
1740	if (host->plat->ios_handler &&
1741		host->plat->ios_handler(mmc_dev(mmc), ios))
1742			dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1743
1744	switch (ios->power_mode) {
1745	case MMC_POWER_OFF:
1746		if (!IS_ERR(mmc->supply.vmmc))
1747			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1748
1749		if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1750			regulator_disable(mmc->supply.vqmmc);
1751			host->vqmmc_enabled = false;
1752		}
1753
1754		break;
1755	case MMC_POWER_UP:
1756		if (!IS_ERR(mmc->supply.vmmc))
1757			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1758
1759		/*
1760		 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1761		 * and instead uses MCI_PWR_ON so apply whatever value is
1762		 * configured in the variant data.
1763		 */
1764		pwr |= variant->pwrreg_powerup;
1765
1766		break;
 
 
 
 
 
 
 
 
 
 
1767	case MMC_POWER_ON:
1768		if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1769			ret = regulator_enable(mmc->supply.vqmmc);
1770			if (ret < 0)
1771				dev_err(mmc_dev(mmc),
1772					"failed to enable vqmmc regulator\n");
1773			else
1774				host->vqmmc_enabled = true;
1775		}
1776
1777		pwr |= MCI_PWR_ON;
1778		break;
1779	}
1780
1781	if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1782		/*
1783		 * The ST Micro variant has some additional bits
1784		 * indicating signal direction for the signals in
1785		 * the SD/MMC bus and feedback-clock usage.
1786		 */
1787		pwr |= host->pwr_reg_add;
1788
1789		if (ios->bus_width == MMC_BUS_WIDTH_4)
1790			pwr &= ~MCI_ST_DATA74DIREN;
1791		else if (ios->bus_width == MMC_BUS_WIDTH_1)
1792			pwr &= (~MCI_ST_DATA74DIREN &
1793				~MCI_ST_DATA31DIREN &
1794				~MCI_ST_DATA2DIREN);
1795	}
1796
1797	if (variant->opendrain) {
1798		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1799			pwr |= variant->opendrain;
1800	} else {
1801		/*
1802		 * If the variant cannot configure the pads by its own, then we
1803		 * expect the pinctrl to be able to do that for us
1804		 */
1805		if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1806			pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1807		else
1808			pinctrl_select_default_state(mmc_dev(mmc));
1809	}
1810
1811	/*
1812	 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1813	 * gating the clock, the MCI_PWR_ON bit is cleared.
1814	 */
1815	if (!ios->clock && variant->pwrreg_clkgate)
1816		pwr &= ~MCI_PWR_ON;
1817
1818	if (host->variant->explicit_mclk_control &&
1819	    ios->clock != host->clock_cache) {
1820		ret = clk_set_rate(host->clk, ios->clock);
1821		if (ret < 0)
1822			dev_err(mmc_dev(host->mmc),
1823				"Error setting clock rate (%d)\n", ret);
1824		else
1825			host->mclk = clk_get_rate(host->clk);
1826	}
1827	host->clock_cache = ios->clock;
1828
1829	spin_lock_irqsave(&host->lock, flags);
 
1830
1831	if (host->ops && host->ops->set_clkreg)
1832		host->ops->set_clkreg(host, ios->clock);
1833	else
1834		mmci_set_clkreg(host, ios->clock);
1835
1836	mmci_set_max_busy_timeout(mmc);
1837
1838	if (host->ops && host->ops->set_pwrreg)
1839		host->ops->set_pwrreg(host, pwr);
1840	else
1841		mmci_write_pwrreg(host, pwr);
1842
1843	mmci_reg_delay(host);
1844
1845	spin_unlock_irqrestore(&host->lock, flags);
1846}
1847
1848static int mmci_get_cd(struct mmc_host *mmc)
1849{
1850	struct mmci_host *host = mmc_priv(mmc);
1851	struct mmci_platform_data *plat = host->plat;
1852	unsigned int status = mmc_gpio_get_cd(mmc);
1853
1854	if (status == -ENOSYS) {
1855		if (!plat->status)
1856			return 1; /* Assume always present */
1857
1858		status = plat->status(mmc_dev(host->mmc));
1859	}
 
 
 
 
 
 
 
1860	return status;
1861}
1862
1863static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1864{
1865	struct mmci_host *host = mmc_priv(mmc);
1866	int ret;
1867
1868	ret = mmc_regulator_set_vqmmc(mmc, ios);
1869
1870	if (!ret && host->ops && host->ops->post_sig_volt_switch)
1871		ret = host->ops->post_sig_volt_switch(host, ios);
1872	else if (ret)
1873		ret = 0;
1874
1875	if (ret < 0)
1876		dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1877
1878	return ret;
1879}
1880
1881static struct mmc_host_ops mmci_ops = {
1882	.request	= mmci_request,
1883	.pre_req	= mmci_pre_request,
1884	.post_req	= mmci_post_request,
1885	.set_ios	= mmci_set_ios,
1886	.get_ro		= mmc_gpio_get_ro,
1887	.get_cd		= mmci_get_cd,
1888	.start_signal_voltage_switch = mmci_sig_volt_switch,
1889};
1890
1891static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1892{
1893	struct mmci_host *host = mmc_priv(mmc);
1894	int ret = mmc_of_parse(mmc);
1895
1896	if (ret)
1897		return ret;
1898
1899	if (of_get_property(np, "st,sig-dir-dat0", NULL))
1900		host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1901	if (of_get_property(np, "st,sig-dir-dat2", NULL))
1902		host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1903	if (of_get_property(np, "st,sig-dir-dat31", NULL))
1904		host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1905	if (of_get_property(np, "st,sig-dir-dat74", NULL))
1906		host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1907	if (of_get_property(np, "st,sig-dir-cmd", NULL))
1908		host->pwr_reg_add |= MCI_ST_CMDDIREN;
1909	if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1910		host->pwr_reg_add |= MCI_ST_FBCLKEN;
1911	if (of_get_property(np, "st,sig-dir", NULL))
1912		host->pwr_reg_add |= MCI_STM32_DIRPOL;
1913	if (of_get_property(np, "st,neg-edge", NULL))
1914		host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1915	if (of_get_property(np, "st,use-ckin", NULL))
1916		host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1917
1918	if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1919		mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1920	if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1921		mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1922
1923	return 0;
1924}
1925
1926static int mmci_probe(struct amba_device *dev,
1927	const struct amba_id *id)
1928{
1929	struct mmci_platform_data *plat = dev->dev.platform_data;
1930	struct device_node *np = dev->dev.of_node;
1931	struct variant_data *variant = id->data;
1932	struct mmci_host *host;
1933	struct mmc_host *mmc;
1934	int ret;
1935
1936	/* Must have platform data or Device Tree. */
1937	if (!plat && !np) {
1938		dev_err(&dev->dev, "No plat data or DT found\n");
1939		return -EINVAL;
1940	}
1941
1942	if (!plat) {
1943		plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1944		if (!plat)
1945			return -ENOMEM;
1946	}
1947
1948	mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1949	if (!mmc)
1950		return -ENOMEM;
1951
1952	ret = mmci_of_parse(np, mmc);
1953	if (ret)
1954		goto host_free;
1955
1956	host = mmc_priv(mmc);
1957	host->mmc = mmc;
1958	host->mmc_ops = &mmci_ops;
1959	mmc->ops = &mmci_ops;
1960
1961	/*
1962	 * Some variant (STM32) doesn't have opendrain bit, nevertheless
1963	 * pins can be set accordingly using pinctrl
1964	 */
1965	if (!variant->opendrain) {
1966		host->pinctrl = devm_pinctrl_get(&dev->dev);
1967		if (IS_ERR(host->pinctrl)) {
1968			dev_err(&dev->dev, "failed to get pinctrl");
1969			ret = PTR_ERR(host->pinctrl);
1970			goto host_free;
1971		}
1972
1973		host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1974							    MMCI_PINCTRL_STATE_OPENDRAIN);
1975		if (IS_ERR(host->pins_opendrain)) {
1976			dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1977			ret = PTR_ERR(host->pins_opendrain);
1978			goto host_free;
1979		}
1980	}
1981
1982	host->hw_designer = amba_manf(dev);
1983	host->hw_revision = amba_rev(dev);
1984	dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1985	dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1986
1987	host->clk = devm_clk_get(&dev->dev, NULL);
1988	if (IS_ERR(host->clk)) {
1989		ret = PTR_ERR(host->clk);
 
1990		goto host_free;
1991	}
1992
1993	ret = clk_prepare_enable(host->clk);
1994	if (ret)
1995		goto host_free;
1996
1997	if (variant->qcom_fifo)
1998		host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1999	else
2000		host->get_rx_fifocnt = mmci_get_rx_fifocnt;
2001
2002	host->plat = plat;
2003	host->variant = variant;
2004	host->mclk = clk_get_rate(host->clk);
2005	/*
2006	 * According to the spec, mclk is max 100 MHz,
2007	 * so we try to adjust the clock down to this,
2008	 * (if possible).
2009	 */
2010	if (host->mclk > variant->f_max) {
2011		ret = clk_set_rate(host->clk, variant->f_max);
2012		if (ret < 0)
2013			goto clk_disable;
2014		host->mclk = clk_get_rate(host->clk);
2015		dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
2016			host->mclk);
2017	}
2018
2019	host->phybase = dev->res.start;
2020	host->base = devm_ioremap_resource(&dev->dev, &dev->res);
2021	if (IS_ERR(host->base)) {
2022		ret = PTR_ERR(host->base);
2023		goto clk_disable;
2024	}
2025
2026	if (variant->init)
2027		variant->init(host);
2028
2029	/*
2030	 * The ARM and ST versions of the block have slightly different
2031	 * clock divider equations which means that the minimum divider
2032	 * differs too.
2033	 * on Qualcomm like controllers get the nearest minimum clock to 100Khz
2034	 */
2035	if (variant->st_clkdiv)
2036		mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
2037	else if (variant->stm32_clkdiv)
2038		mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
2039	else if (variant->explicit_mclk_control)
2040		mmc->f_min = clk_round_rate(host->clk, 100000);
2041	else
2042		mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
2043	/*
2044	 * If no maximum operating frequency is supplied, fall back to use
2045	 * the module parameter, which has a (low) default value in case it
2046	 * is not specified. Either value must not exceed the clock rate into
2047	 * the block, of course.
 
 
2048	 */
2049	if (mmc->f_max)
2050		mmc->f_max = variant->explicit_mclk_control ?
2051				min(variant->f_max, mmc->f_max) :
2052				min(host->mclk, mmc->f_max);
2053	else
2054		mmc->f_max = variant->explicit_mclk_control ?
2055				fmax : min(host->mclk, fmax);
2056
 
 
 
 
 
 
 
2057
2058	dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
2059
2060	host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
2061	if (IS_ERR(host->rst)) {
2062		ret = PTR_ERR(host->rst);
2063		goto clk_disable;
 
 
 
 
2064	}
2065
2066	/* Get regulators and the supported OCR mask */
2067	ret = mmc_regulator_get_supply(mmc);
2068	if (ret)
2069		goto clk_disable;
2070
2071	if (!mmc->ocr_avail)
2072		mmc->ocr_avail = plat->ocr_mask;
2073	else if (plat->ocr_mask)
2074		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
2075
2076	/* We support these capabilities. */
2077	mmc->caps |= MMC_CAP_CMD23;
2078
2079	/*
2080	 * Enable busy detection.
2081	 */
2082	if (variant->busy_detect) {
2083		mmci_ops.card_busy = mmci_card_busy;
2084		/*
2085		 * Not all variants have a flag to enable busy detection
2086		 * in the DPSM, but if they do, set it here.
2087		 */
2088		if (variant->busy_dpsm_flag)
2089			mmci_write_datactrlreg(host,
2090					       host->variant->busy_dpsm_flag);
2091		mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
2092	}
2093
2094	/* Prepare a CMD12 - needed to clear the DPSM on some variants. */
2095	host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
2096	host->stop_abort.arg = 0;
2097	host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
2098
2099	/* We support these PM capabilities. */
2100	mmc->pm_caps |= MMC_PM_KEEP_POWER;
2101
2102	/*
2103	 * We can do SGIO
2104	 */
2105	mmc->max_segs = NR_SG;
2106
2107	/*
2108	 * Since only a certain number of bits are valid in the data length
2109	 * register, we must ensure that we don't exceed 2^num-1 bytes in a
2110	 * single request.
2111	 */
2112	mmc->max_req_size = (1 << variant->datalength_bits) - 1;
2113
2114	/*
2115	 * Set the maximum segment size.  Since we aren't doing DMA
2116	 * (yet) we are only limited by the data length register.
2117	 */
2118	mmc->max_seg_size = mmc->max_req_size;
2119
2120	/*
2121	 * Block size can be up to 2048 bytes, but must be a power of two.
2122	 */
2123	mmc->max_blk_size = 1 << variant->datactrl_blocksz;
2124
2125	/*
2126	 * Limit the number of blocks transferred so that we don't overflow
2127	 * the maximum request size.
2128	 */
2129	mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2130
2131	spin_lock_init(&host->lock);
2132
2133	writel(0, host->base + MMCIMASK0);
2134
2135	if (variant->mmcimask1)
2136		writel(0, host->base + MMCIMASK1);
2137
2138	writel(0xfff, host->base + MMCICLEAR);
2139
2140	/*
2141	 * If:
2142	 * - not using DT but using a descriptor table, or
2143	 * - using a table of descriptors ALONGSIDE DT, or
2144	 * look up these descriptors named "cd" and "wp" right here, fail
2145	 * silently of these do not exist
2146	 */
2147	if (!np) {
2148		ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0);
2149		if (ret == -EPROBE_DEFER)
2150			goto clk_disable;
2151
2152		ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0);
2153		if (ret == -EPROBE_DEFER)
2154			goto clk_disable;
2155	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156
2157	ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq,
2158					mmci_irq_thread, IRQF_SHARED,
2159					DRIVER_NAME " (cmd)", host);
2160	if (ret)
2161		goto clk_disable;
2162
2163	if (!dev->irq[1])
2164		host->singleirq = true;
2165	else {
2166		ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2167				IRQF_SHARED, DRIVER_NAME " (pio)", host);
2168		if (ret)
2169			goto clk_disable;
2170	}
2171
2172	writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2173
2174	amba_set_drvdata(dev, mmc);
2175
2176	dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2177		 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2178		 amba_rev(dev), (unsigned long long)dev->res.start,
2179		 dev->irq[0], dev->irq[1]);
2180
2181	mmci_dma_setup(host);
2182
2183	pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2184	pm_runtime_use_autosuspend(&dev->dev);
2185
2186	mmc_add_host(mmc);
2187
2188	pm_runtime_put(&dev->dev);
2189	return 0;
2190
 
 
 
 
 
 
 
 
 
 
 
 
2191 clk_disable:
2192	clk_disable_unprepare(host->clk);
 
 
2193 host_free:
2194	mmc_free_host(mmc);
 
 
 
2195	return ret;
2196}
2197
2198static int mmci_remove(struct amba_device *dev)
2199{
2200	struct mmc_host *mmc = amba_get_drvdata(dev);
2201
 
 
2202	if (mmc) {
2203		struct mmci_host *host = mmc_priv(mmc);
2204		struct variant_data *variant = host->variant;
2205
2206		/*
2207		 * Undo pm_runtime_put() in probe.  We use the _sync
2208		 * version here so that we can access the primecell.
2209		 */
2210		pm_runtime_get_sync(&dev->dev);
2211
2212		mmc_remove_host(mmc);
2213
2214		writel(0, host->base + MMCIMASK0);
2215
2216		if (variant->mmcimask1)
2217			writel(0, host->base + MMCIMASK1);
2218
2219		writel(0, host->base + MMCICOMMAND);
2220		writel(0, host->base + MMCIDATACTRL);
2221
2222		mmci_dma_release(host);
2223		clk_disable_unprepare(host->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2224		mmc_free_host(mmc);
 
 
2225	}
2226
2227	return 0;
2228}
2229
2230#ifdef CONFIG_PM
2231static void mmci_save(struct mmci_host *host)
2232{
2233	unsigned long flags;
 
2234
2235	spin_lock_irqsave(&host->lock, flags);
 
2236
2237	writel(0, host->base + MMCIMASK0);
2238	if (host->variant->pwrreg_nopower) {
2239		writel(0, host->base + MMCIDATACTRL);
2240		writel(0, host->base + MMCIPOWER);
2241		writel(0, host->base + MMCICLOCK);
2242	}
2243	mmci_reg_delay(host);
2244
2245	spin_unlock_irqrestore(&host->lock, flags);
2246}
2247
2248static void mmci_restore(struct mmci_host *host)
2249{
2250	unsigned long flags;
2251
2252	spin_lock_irqsave(&host->lock, flags);
2253
2254	if (host->variant->pwrreg_nopower) {
2255		writel(host->clk_reg, host->base + MMCICLOCK);
2256		writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2257		writel(host->pwr_reg, host->base + MMCIPOWER);
2258	}
2259	writel(MCI_IRQENABLE | host->variant->start_err,
2260	       host->base + MMCIMASK0);
2261	mmci_reg_delay(host);
2262
2263	spin_unlock_irqrestore(&host->lock, flags);
2264}
2265
2266static int mmci_runtime_suspend(struct device *dev)
2267{
2268	struct amba_device *adev = to_amba_device(dev);
2269	struct mmc_host *mmc = amba_get_drvdata(adev);
2270
2271	if (mmc) {
2272		struct mmci_host *host = mmc_priv(mmc);
2273		pinctrl_pm_select_sleep_state(dev);
2274		mmci_save(host);
2275		clk_disable_unprepare(host->clk);
2276	}
2277
2278	return 0;
2279}
2280
2281static int mmci_runtime_resume(struct device *dev)
2282{
2283	struct amba_device *adev = to_amba_device(dev);
2284	struct mmc_host *mmc = amba_get_drvdata(adev);
2285
2286	if (mmc) {
2287		struct mmci_host *host = mmc_priv(mmc);
2288		clk_prepare_enable(host->clk);
2289		mmci_restore(host);
2290		pinctrl_select_default_state(dev);
2291	}
2292
2293	return 0;
2294}
 
 
 
2295#endif
2296
2297static const struct dev_pm_ops mmci_dev_pm_ops = {
2298	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2299				pm_runtime_force_resume)
2300	SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2301};
2302
2303static const struct amba_id mmci_ids[] = {
2304	{
2305		.id	= 0x00041180,
2306		.mask	= 0xff0fffff,
2307		.data	= &variant_arm,
2308	},
2309	{
2310		.id	= 0x01041180,
2311		.mask	= 0xff0fffff,
2312		.data	= &variant_arm_extended_fifo,
2313	},
2314	{
2315		.id	= 0x02041180,
2316		.mask	= 0xff0fffff,
2317		.data	= &variant_arm_extended_fifo_hwfc,
2318	},
2319	{
2320		.id	= 0x00041181,
2321		.mask	= 0x000fffff,
2322		.data	= &variant_arm,
2323	},
2324	/* ST Micro variants */
2325	{
2326		.id     = 0x00180180,
2327		.mask   = 0x00ffffff,
2328		.data	= &variant_u300,
2329	},
2330	{
2331		.id     = 0x10180180,
2332		.mask   = 0xf0ffffff,
2333		.data	= &variant_nomadik,
2334	},
2335	{
2336		.id     = 0x00280180,
2337		.mask   = 0x00ffffff,
2338		.data	= &variant_nomadik,
2339	},
2340	{
2341		.id     = 0x00480180,
2342		.mask   = 0xf0ffffff,
2343		.data	= &variant_ux500,
2344	},
2345	{
2346		.id     = 0x10480180,
2347		.mask   = 0xf0ffffff,
2348		.data	= &variant_ux500v2,
2349	},
2350	{
2351		.id     = 0x00880180,
2352		.mask   = 0x00ffffff,
2353		.data	= &variant_stm32,
2354	},
2355	{
2356		.id     = 0x10153180,
2357		.mask	= 0xf0ffffff,
2358		.data	= &variant_stm32_sdmmc,
2359	},
2360	{
2361		.id     = 0x00253180,
2362		.mask	= 0xf0ffffff,
2363		.data	= &variant_stm32_sdmmcv2,
2364	},
2365	/* Qualcomm variants */
2366	{
2367		.id     = 0x00051180,
2368		.mask	= 0x000fffff,
2369		.data	= &variant_qcom,
2370	},
2371	{ 0, 0 },
2372};
2373
2374MODULE_DEVICE_TABLE(amba, mmci_ids);
2375
2376static struct amba_driver mmci_driver = {
2377	.drv		= {
2378		.name	= DRIVER_NAME,
2379		.pm	= &mmci_dev_pm_ops,
2380	},
2381	.probe		= mmci_probe,
2382	.remove		= mmci_remove,
 
 
2383	.id_table	= mmci_ids,
2384};
2385
2386module_amba_driver(mmci_driver);
 
 
 
 
 
 
 
 
2387
 
 
2388module_param(fmax, uint, 0444);
2389
2390MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2391MODULE_LICENSE("GPL");