Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel MIC Platform Software Stack (MPSS)
   4 *
   5 * Copyright(c) 2015 Intel Corporation.
   6 *
   7 * Intel SCIF driver.
   8 */
   9#include "scif_main.h"
  10#include "scif_map.h"
  11
  12/*
  13 * struct scif_dma_comp_cb - SCIF DMA completion callback
  14 *
  15 * @dma_completion_func: DMA completion callback
  16 * @cb_cookie: DMA completion callback cookie
  17 * @temp_buf: Temporary buffer
  18 * @temp_buf_to_free: Temporary buffer to be freed
  19 * @is_cache: Is a kmem_cache allocated buffer
  20 * @dst_offset: Destination registration offset
  21 * @dst_window: Destination registration window
  22 * @len: Length of the temp buffer
  23 * @temp_phys: DMA address of the temp buffer
  24 * @sdev: The SCIF device
  25 * @header_padding: padding for cache line alignment
  26 */
  27struct scif_dma_comp_cb {
  28	void (*dma_completion_func)(void *cookie);
  29	void *cb_cookie;
  30	u8 *temp_buf;
  31	u8 *temp_buf_to_free;
  32	bool is_cache;
  33	s64 dst_offset;
  34	struct scif_window *dst_window;
  35	size_t len;
  36	dma_addr_t temp_phys;
  37	struct scif_dev *sdev;
  38	int header_padding;
  39};
  40
  41/**
  42 * struct scif_copy_work - Work for DMA copy
  43 *
  44 * @src_offset: Starting source offset
  45 * @dst_offset: Starting destination offset
  46 * @src_window: Starting src registered window
  47 * @dst_window: Starting dst registered window
  48 * @loopback: true if this is a loopback DMA transfer
  49 * @len: Length of the transfer
  50 * @comp_cb: DMA copy completion callback
  51 * @remote_dev: The remote SCIF peer device
  52 * @fence_type: polling or interrupt based
  53 * @ordered: is this a tail byte ordered DMA transfer
  54 */
  55struct scif_copy_work {
  56	s64 src_offset;
  57	s64 dst_offset;
  58	struct scif_window *src_window;
  59	struct scif_window *dst_window;
  60	int loopback;
  61	size_t len;
  62	struct scif_dma_comp_cb   *comp_cb;
  63	struct scif_dev	*remote_dev;
  64	int fence_type;
  65	bool ordered;
  66};
  67
  68/**
  69 * scif_reserve_dma_chan:
  70 * @ep: Endpoint Descriptor.
  71 *
  72 * This routine reserves a DMA channel for a particular
  73 * endpoint. All DMA transfers for an endpoint are always
  74 * programmed on the same DMA channel.
  75 */
  76int scif_reserve_dma_chan(struct scif_endpt *ep)
  77{
  78	int err = 0;
  79	struct scif_dev *scifdev;
  80	struct scif_hw_dev *sdev;
  81	struct dma_chan *chan;
  82
  83	/* Loopback DMAs are not supported on the management node */
  84	if (!scif_info.nodeid && scifdev_self(ep->remote_dev))
  85		return 0;
  86	if (scif_info.nodeid)
  87		scifdev = &scif_dev[0];
  88	else
  89		scifdev = ep->remote_dev;
  90	sdev = scifdev->sdev;
  91	if (!sdev->num_dma_ch)
  92		return -ENODEV;
  93	chan = sdev->dma_ch[scifdev->dma_ch_idx];
  94	scifdev->dma_ch_idx = (scifdev->dma_ch_idx + 1) % sdev->num_dma_ch;
  95	mutex_lock(&ep->rma_info.rma_lock);
  96	ep->rma_info.dma_chan = chan;
  97	mutex_unlock(&ep->rma_info.rma_lock);
  98	return err;
  99}
 100
 101#ifdef CONFIG_MMU_NOTIFIER
 102/*
 103 * scif_rma_destroy_tcw:
 104 *
 105 * This routine destroys temporary cached windows
 106 */
 107static
 108void __scif_rma_destroy_tcw(struct scif_mmu_notif *mmn,
 109			    u64 start, u64 len)
 110{
 111	struct list_head *item, *tmp;
 112	struct scif_window *window;
 113	u64 start_va, end_va;
 114	u64 end = start + len;
 115
 116	if (end <= start)
 117		return;
 118
 119	list_for_each_safe(item, tmp, &mmn->tc_reg_list) {
 120		window = list_entry(item, struct scif_window, list);
 121		if (!len)
 122			break;
 123		start_va = window->va_for_temp;
 124		end_va = start_va + (window->nr_pages << PAGE_SHIFT);
 125		if (start < start_va && end <= start_va)
 126			break;
 127		if (start >= end_va)
 128			continue;
 129		__scif_rma_destroy_tcw_helper(window);
 130	}
 131}
 132
 133static void scif_rma_destroy_tcw(struct scif_mmu_notif *mmn, u64 start, u64 len)
 134{
 135	struct scif_endpt *ep = mmn->ep;
 136
 137	spin_lock(&ep->rma_info.tc_lock);
 138	__scif_rma_destroy_tcw(mmn, start, len);
 139	spin_unlock(&ep->rma_info.tc_lock);
 140}
 141
 142static void scif_rma_destroy_tcw_ep(struct scif_endpt *ep)
 143{
 144	struct list_head *item, *tmp;
 145	struct scif_mmu_notif *mmn;
 146
 147	list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) {
 148		mmn = list_entry(item, struct scif_mmu_notif, list);
 149		scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
 150	}
 151}
 152
 153static void __scif_rma_destroy_tcw_ep(struct scif_endpt *ep)
 154{
 155	struct list_head *item, *tmp;
 156	struct scif_mmu_notif *mmn;
 157
 158	spin_lock(&ep->rma_info.tc_lock);
 159	list_for_each_safe(item, tmp, &ep->rma_info.mmn_list) {
 160		mmn = list_entry(item, struct scif_mmu_notif, list);
 161		__scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
 162	}
 163	spin_unlock(&ep->rma_info.tc_lock);
 164}
 165
 166static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes)
 167{
 168	if ((cur_bytes >> PAGE_SHIFT) > scif_info.rma_tc_limit)
 169		return false;
 170	if ((atomic_read(&ep->rma_info.tcw_total_pages)
 171			+ (cur_bytes >> PAGE_SHIFT)) >
 172			scif_info.rma_tc_limit) {
 173		dev_info(scif_info.mdev.this_device,
 174			 "%s %d total=%d, current=%zu reached max\n",
 175			 __func__, __LINE__,
 176			 atomic_read(&ep->rma_info.tcw_total_pages),
 177			 (1 + (cur_bytes >> PAGE_SHIFT)));
 178		scif_rma_destroy_tcw_invalid();
 179		__scif_rma_destroy_tcw_ep(ep);
 180	}
 181	return true;
 182}
 183
 184static void scif_mmu_notifier_release(struct mmu_notifier *mn,
 185				      struct mm_struct *mm)
 186{
 187	struct scif_mmu_notif	*mmn;
 188
 189	mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
 190	scif_rma_destroy_tcw(mmn, 0, ULONG_MAX);
 191	schedule_work(&scif_info.misc_work);
 192}
 193
 194static int scif_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 195					const struct mmu_notifier_range *range)
 196{
 197	struct scif_mmu_notif	*mmn;
 198
 199	mmn = container_of(mn, struct scif_mmu_notif, ep_mmu_notifier);
 200	scif_rma_destroy_tcw(mmn, range->start, range->end - range->start);
 201
 202	return 0;
 203}
 204
 205static void scif_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 206			const struct mmu_notifier_range *range)
 207{
 208	/*
 209	 * Nothing to do here, everything needed was done in
 210	 * invalidate_range_start.
 211	 */
 212}
 213
 214static const struct mmu_notifier_ops scif_mmu_notifier_ops = {
 215	.release = scif_mmu_notifier_release,
 216	.clear_flush_young = NULL,
 217	.invalidate_range_start = scif_mmu_notifier_invalidate_range_start,
 218	.invalidate_range_end = scif_mmu_notifier_invalidate_range_end};
 219
 220static void scif_ep_unregister_mmu_notifier(struct scif_endpt *ep)
 221{
 222	struct scif_endpt_rma_info *rma = &ep->rma_info;
 223	struct scif_mmu_notif *mmn = NULL;
 224	struct list_head *item, *tmp;
 225
 226	mutex_lock(&ep->rma_info.mmn_lock);
 227	list_for_each_safe(item, tmp, &rma->mmn_list) {
 228		mmn = list_entry(item, struct scif_mmu_notif, list);
 229		mmu_notifier_unregister(&mmn->ep_mmu_notifier, mmn->mm);
 230		list_del(item);
 231		kfree(mmn);
 232	}
 233	mutex_unlock(&ep->rma_info.mmn_lock);
 234}
 235
 236static void scif_init_mmu_notifier(struct scif_mmu_notif *mmn,
 237				   struct mm_struct *mm, struct scif_endpt *ep)
 238{
 239	mmn->ep = ep;
 240	mmn->mm = mm;
 241	mmn->ep_mmu_notifier.ops = &scif_mmu_notifier_ops;
 242	INIT_LIST_HEAD(&mmn->list);
 243	INIT_LIST_HEAD(&mmn->tc_reg_list);
 244}
 245
 246static struct scif_mmu_notif *
 247scif_find_mmu_notifier(struct mm_struct *mm, struct scif_endpt_rma_info *rma)
 248{
 249	struct scif_mmu_notif *mmn;
 250
 251	list_for_each_entry(mmn, &rma->mmn_list, list)
 252		if (mmn->mm == mm)
 253			return mmn;
 254	return NULL;
 255}
 256
 257static struct scif_mmu_notif *
 258scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep)
 259{
 260	struct scif_mmu_notif *mmn
 261		 = kzalloc(sizeof(*mmn), GFP_KERNEL);
 262
 263	if (!mmn)
 264		return ERR_PTR(-ENOMEM);
 265
 266	scif_init_mmu_notifier(mmn, current->mm, ep);
 267	if (mmu_notifier_register(&mmn->ep_mmu_notifier, current->mm)) {
 268		kfree(mmn);
 269		return ERR_PTR(-EBUSY);
 270	}
 271	list_add(&mmn->list, &ep->rma_info.mmn_list);
 272	return mmn;
 273}
 274
 275/*
 276 * Called from the misc thread to destroy temporary cached windows and
 277 * unregister the MMU notifier for the SCIF endpoint.
 278 */
 279void scif_mmu_notif_handler(struct work_struct *work)
 280{
 281	struct list_head *pos, *tmpq;
 282	struct scif_endpt *ep;
 283restart:
 284	scif_rma_destroy_tcw_invalid();
 285	spin_lock(&scif_info.rmalock);
 286	list_for_each_safe(pos, tmpq, &scif_info.mmu_notif_cleanup) {
 287		ep = list_entry(pos, struct scif_endpt, mmu_list);
 288		list_del(&ep->mmu_list);
 289		spin_unlock(&scif_info.rmalock);
 290		scif_rma_destroy_tcw_ep(ep);
 291		scif_ep_unregister_mmu_notifier(ep);
 292		goto restart;
 293	}
 294	spin_unlock(&scif_info.rmalock);
 295}
 296
 297static bool scif_is_set_reg_cache(int flags)
 298{
 299	return !!(flags & SCIF_RMA_USECACHE);
 300}
 301#else
 302static struct scif_mmu_notif *
 303scif_find_mmu_notifier(struct mm_struct *mm,
 304		       struct scif_endpt_rma_info *rma)
 305{
 306	return NULL;
 307}
 308
 309static struct scif_mmu_notif *
 310scif_add_mmu_notifier(struct mm_struct *mm, struct scif_endpt *ep)
 311{
 312	return NULL;
 313}
 314
 315void scif_mmu_notif_handler(struct work_struct *work)
 316{
 317}
 318
 319static bool scif_is_set_reg_cache(int flags)
 320{
 321	return false;
 322}
 323
 324static bool scif_rma_tc_can_cache(struct scif_endpt *ep, size_t cur_bytes)
 325{
 326	return false;
 327}
 328#endif
 329
 330/**
 331 * scif_register_temp:
 332 * @epd: End Point Descriptor.
 333 * @addr: virtual address to/from which to copy
 334 * @len: length of range to copy
 335 * @prot: read/write protection
 336 * @out_offset: computed offset returned by reference.
 337 * @out_window: allocated registered window returned by reference.
 338 *
 339 * Create a temporary registered window. The peer will not know about this
 340 * window. This API is used for scif_vreadfrom()/scif_vwriteto() API's.
 341 */
 342static int
 343scif_register_temp(scif_epd_t epd, unsigned long addr, size_t len, int prot,
 344		   off_t *out_offset, struct scif_window **out_window)
 345{
 346	struct scif_endpt *ep = (struct scif_endpt *)epd;
 347	int err;
 348	scif_pinned_pages_t pinned_pages;
 349	size_t aligned_len;
 350
 351	aligned_len = ALIGN(len, PAGE_SIZE);
 352
 353	err = __scif_pin_pages((void *)(addr & PAGE_MASK),
 354			       aligned_len, &prot, 0, &pinned_pages);
 355	if (err)
 356		return err;
 357
 358	pinned_pages->prot = prot;
 359
 360	/* Compute the offset for this registration */
 361	err = scif_get_window_offset(ep, 0, 0,
 362				     aligned_len >> PAGE_SHIFT,
 363				     (s64 *)out_offset);
 364	if (err)
 365		goto error_unpin;
 366
 367	/* Allocate and prepare self registration window */
 368	*out_window = scif_create_window(ep, aligned_len >> PAGE_SHIFT,
 369					*out_offset, true);
 370	if (!*out_window) {
 371		scif_free_window_offset(ep, NULL, *out_offset);
 372		err = -ENOMEM;
 373		goto error_unpin;
 374	}
 375
 376	(*out_window)->pinned_pages = pinned_pages;
 377	(*out_window)->nr_pages = pinned_pages->nr_pages;
 378	(*out_window)->prot = pinned_pages->prot;
 379
 380	(*out_window)->va_for_temp = addr & PAGE_MASK;
 381	err = scif_map_window(ep->remote_dev, *out_window);
 382	if (err) {
 383		/* Something went wrong! Rollback */
 384		scif_destroy_window(ep, *out_window);
 385		*out_window = NULL;
 386	} else {
 387		*out_offset |= (addr - (*out_window)->va_for_temp);
 388	}
 389	return err;
 390error_unpin:
 391	if (err)
 392		dev_err(&ep->remote_dev->sdev->dev,
 393			"%s %d err %d\n", __func__, __LINE__, err);
 394	scif_unpin_pages(pinned_pages);
 395	return err;
 396}
 397
 398#define SCIF_DMA_TO (3 * HZ)
 399
 400/*
 401 * scif_sync_dma - Program a DMA without an interrupt descriptor
 402 *
 403 * @dev - The address of the pointer to the device instance used
 404 * for DMA registration.
 405 * @chan - DMA channel to be used.
 406 * @sync_wait: Wait for DMA to complete?
 407 *
 408 * Return 0 on success and -errno on error.
 409 */
 410static int scif_sync_dma(struct scif_hw_dev *sdev, struct dma_chan *chan,
 411			 bool sync_wait)
 412{
 413	int err = 0;
 414	struct dma_async_tx_descriptor *tx = NULL;
 415	enum dma_ctrl_flags flags = DMA_PREP_FENCE;
 416	dma_cookie_t cookie;
 417	struct dma_device *ddev;
 418
 419	if (!chan) {
 420		err = -EIO;
 421		dev_err(&sdev->dev, "%s %d err %d\n",
 422			__func__, __LINE__, err);
 423		return err;
 424	}
 425	ddev = chan->device;
 426
 427	tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags);
 428	if (!tx) {
 429		err = -ENOMEM;
 430		dev_err(&sdev->dev, "%s %d err %d\n",
 431			__func__, __LINE__, err);
 432		goto release;
 433	}
 434	cookie = tx->tx_submit(tx);
 435
 436	if (dma_submit_error(cookie)) {
 437		err = -ENOMEM;
 438		dev_err(&sdev->dev, "%s %d err %d\n",
 439			__func__, __LINE__, err);
 440		goto release;
 441	}
 442	if (!sync_wait) {
 443		dma_async_issue_pending(chan);
 444	} else {
 445		if (dma_sync_wait(chan, cookie) == DMA_COMPLETE) {
 446			err = 0;
 447		} else {
 448			err = -EIO;
 449			dev_err(&sdev->dev, "%s %d err %d\n",
 450				__func__, __LINE__, err);
 451		}
 452	}
 453release:
 454	return err;
 455}
 456
 457static void scif_dma_callback(void *arg)
 458{
 459	struct completion *done = (struct completion *)arg;
 460
 461	complete(done);
 462}
 463
 464#define SCIF_DMA_SYNC_WAIT true
 465#define SCIF_DMA_POLL BIT(0)
 466#define SCIF_DMA_INTR BIT(1)
 467
 468/*
 469 * scif_async_dma - Program a DMA with an interrupt descriptor
 470 *
 471 * @dev - The address of the pointer to the device instance used
 472 * for DMA registration.
 473 * @chan - DMA channel to be used.
 474 * Return 0 on success and -errno on error.
 475 */
 476static int scif_async_dma(struct scif_hw_dev *sdev, struct dma_chan *chan)
 477{
 478	int err = 0;
 479	struct dma_device *ddev;
 480	struct dma_async_tx_descriptor *tx = NULL;
 481	enum dma_ctrl_flags flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE;
 482	DECLARE_COMPLETION_ONSTACK(done_wait);
 483	dma_cookie_t cookie;
 484	enum dma_status status;
 485
 486	if (!chan) {
 487		err = -EIO;
 488		dev_err(&sdev->dev, "%s %d err %d\n",
 489			__func__, __LINE__, err);
 490		return err;
 491	}
 492	ddev = chan->device;
 493
 494	tx = ddev->device_prep_dma_memcpy(chan, 0, 0, 0, flags);
 495	if (!tx) {
 496		err = -ENOMEM;
 497		dev_err(&sdev->dev, "%s %d err %d\n",
 498			__func__, __LINE__, err);
 499		goto release;
 500	}
 501	reinit_completion(&done_wait);
 502	tx->callback = scif_dma_callback;
 503	tx->callback_param = &done_wait;
 504	cookie = tx->tx_submit(tx);
 505
 506	if (dma_submit_error(cookie)) {
 507		err = -ENOMEM;
 508		dev_err(&sdev->dev, "%s %d err %d\n",
 509			__func__, __LINE__, err);
 510		goto release;
 511	}
 512	dma_async_issue_pending(chan);
 513
 514	err = wait_for_completion_timeout(&done_wait, SCIF_DMA_TO);
 515	if (!err) {
 516		err = -EIO;
 517		dev_err(&sdev->dev, "%s %d err %d\n",
 518			__func__, __LINE__, err);
 519		goto release;
 520	}
 521	err = 0;
 522	status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
 523	if (status != DMA_COMPLETE) {
 524		err = -EIO;
 525		dev_err(&sdev->dev, "%s %d err %d\n",
 526			__func__, __LINE__, err);
 527		goto release;
 528	}
 529release:
 530	return err;
 531}
 532
 533/*
 534 * scif_drain_dma_poll - Drain all outstanding DMA operations for a particular
 535 * DMA channel via polling.
 536 *
 537 * @sdev - The SCIF device
 538 * @chan - DMA channel
 539 * Return 0 on success and -errno on error.
 540 */
 541static int scif_drain_dma_poll(struct scif_hw_dev *sdev, struct dma_chan *chan)
 542{
 543	if (!chan)
 544		return -EINVAL;
 545	return scif_sync_dma(sdev, chan, SCIF_DMA_SYNC_WAIT);
 546}
 547
 548/*
 549 * scif_drain_dma_intr - Drain all outstanding DMA operations for a particular
 550 * DMA channel via interrupt based blocking wait.
 551 *
 552 * @sdev - The SCIF device
 553 * @chan - DMA channel
 554 * Return 0 on success and -errno on error.
 555 */
 556int scif_drain_dma_intr(struct scif_hw_dev *sdev, struct dma_chan *chan)
 557{
 558	if (!chan)
 559		return -EINVAL;
 560	return scif_async_dma(sdev, chan);
 561}
 562
 563/**
 564 * scif_rma_destroy_windows:
 565 *
 566 * This routine destroys all windows queued for cleanup
 567 */
 568void scif_rma_destroy_windows(void)
 569{
 570	struct list_head *item, *tmp;
 571	struct scif_window *window;
 572	struct scif_endpt *ep;
 573	struct dma_chan *chan;
 574
 575	might_sleep();
 576restart:
 577	spin_lock(&scif_info.rmalock);
 578	list_for_each_safe(item, tmp, &scif_info.rma) {
 579		window = list_entry(item, struct scif_window,
 580				    list);
 581		ep = (struct scif_endpt *)window->ep;
 582		chan = ep->rma_info.dma_chan;
 583
 584		list_del_init(&window->list);
 585		spin_unlock(&scif_info.rmalock);
 586		if (!chan || !scifdev_alive(ep) ||
 587		    !scif_drain_dma_intr(ep->remote_dev->sdev,
 588					 ep->rma_info.dma_chan))
 589			/* Remove window from global list */
 590			window->unreg_state = OP_COMPLETED;
 591		else
 592			dev_warn(&ep->remote_dev->sdev->dev,
 593				 "DMA engine hung?\n");
 594		if (window->unreg_state == OP_COMPLETED) {
 595			if (window->type == SCIF_WINDOW_SELF)
 596				scif_destroy_window(ep, window);
 597			else
 598				scif_destroy_remote_window(window);
 599			atomic_dec(&ep->rma_info.tw_refcount);
 600		}
 601		goto restart;
 602	}
 603	spin_unlock(&scif_info.rmalock);
 604}
 605
 606/**
 607 * scif_rma_destroy_tcw:
 608 *
 609 * This routine destroys temporary cached registered windows
 610 * which have been queued for cleanup.
 611 */
 612void scif_rma_destroy_tcw_invalid(void)
 613{
 614	struct list_head *item, *tmp;
 615	struct scif_window *window;
 616	struct scif_endpt *ep;
 617	struct dma_chan *chan;
 618
 619	might_sleep();
 620restart:
 621	spin_lock(&scif_info.rmalock);
 622	list_for_each_safe(item, tmp, &scif_info.rma_tc) {
 623		window = list_entry(item, struct scif_window, list);
 624		ep = (struct scif_endpt *)window->ep;
 625		chan = ep->rma_info.dma_chan;
 626		list_del_init(&window->list);
 627		spin_unlock(&scif_info.rmalock);
 628		mutex_lock(&ep->rma_info.rma_lock);
 629		if (!chan || !scifdev_alive(ep) ||
 630		    !scif_drain_dma_intr(ep->remote_dev->sdev,
 631					 ep->rma_info.dma_chan)) {
 632			atomic_sub(window->nr_pages,
 633				   &ep->rma_info.tcw_total_pages);
 634			scif_destroy_window(ep, window);
 635			atomic_dec(&ep->rma_info.tcw_refcount);
 636		} else {
 637			dev_warn(&ep->remote_dev->sdev->dev,
 638				 "DMA engine hung?\n");
 639		}
 640		mutex_unlock(&ep->rma_info.rma_lock);
 641		goto restart;
 642	}
 643	spin_unlock(&scif_info.rmalock);
 644}
 645
 646static inline
 647void *_get_local_va(off_t off, struct scif_window *window, size_t len)
 648{
 649	int page_nr = (off - window->offset) >> PAGE_SHIFT;
 650	off_t page_off = off & ~PAGE_MASK;
 651	void *va = NULL;
 652
 653	if (window->type == SCIF_WINDOW_SELF) {
 654		struct page **pages = window->pinned_pages->pages;
 655
 656		va = page_address(pages[page_nr]) + page_off;
 657	}
 658	return va;
 659}
 660
 661static inline
 662void *ioremap_remote(off_t off, struct scif_window *window,
 663		     size_t len, struct scif_dev *dev,
 664		     struct scif_window_iter *iter)
 665{
 666	dma_addr_t phys = scif_off_to_dma_addr(window, off, NULL, iter);
 667
 668	/*
 669	 * If the DMA address is not card relative then we need the DMA
 670	 * addresses to be an offset into the bar. The aperture base was already
 671	 * added so subtract it here since scif_ioremap is going to add it again
 672	 */
 673	if (!scifdev_self(dev) && window->type == SCIF_WINDOW_PEER &&
 674	    dev->sdev->aper && !dev->sdev->card_rel_da)
 675		phys = phys - dev->sdev->aper->pa;
 676	return scif_ioremap(phys, len, dev);
 677}
 678
 679static inline void
 680iounmap_remote(void *virt, size_t size, struct scif_copy_work *work)
 681{
 682	scif_iounmap(virt, size, work->remote_dev);
 683}
 684
 685/*
 686 * Takes care of ordering issue caused by
 687 * 1. Hardware:  Only in the case of cpu copy from mgmt node to card
 688 * because of WC memory.
 689 * 2. Software: If memcpy reorders copy instructions for optimization.
 690 * This could happen at both mgmt node and card.
 691 */
 692static inline void
 693scif_ordered_memcpy_toio(char *dst, const char *src, size_t count)
 694{
 695	if (!count)
 696		return;
 697
 698	memcpy_toio((void __iomem __force *)dst, src, --count);
 699	/* Order the last byte with the previous stores */
 700	wmb();
 701	*(dst + count) = *(src + count);
 702}
 703
 704static inline void scif_unaligned_cpy_toio(char *dst, const char *src,
 705					   size_t count, bool ordered)
 706{
 707	if (ordered)
 708		scif_ordered_memcpy_toio(dst, src, count);
 709	else
 710		memcpy_toio((void __iomem __force *)dst, src, count);
 711}
 712
 713static inline
 714void scif_ordered_memcpy_fromio(char *dst, const char *src, size_t count)
 715{
 716	if (!count)
 717		return;
 718
 719	memcpy_fromio(dst, (void __iomem __force *)src, --count);
 720	/* Order the last byte with the previous loads */
 721	rmb();
 722	*(dst + count) = *(src + count);
 723}
 724
 725static inline void scif_unaligned_cpy_fromio(char *dst, const char *src,
 726					     size_t count, bool ordered)
 727{
 728	if (ordered)
 729		scif_ordered_memcpy_fromio(dst, src, count);
 730	else
 731		memcpy_fromio(dst, (void __iomem __force *)src, count);
 732}
 733
 734#define SCIF_RMA_ERROR_CODE (~(dma_addr_t)0x0)
 735
 736/*
 737 * scif_off_to_dma_addr:
 738 * Obtain the dma_addr given the window and the offset.
 739 * @window: Registered window.
 740 * @off: Window offset.
 741 * @nr_bytes: Return the number of contiguous bytes till next DMA addr index.
 742 * @index: Return the index of the dma_addr array found.
 743 * @start_off: start offset of index of the dma addr array found.
 744 * The nr_bytes provides the callee an estimate of the maximum possible
 745 * DMA xfer possible while the index/start_off provide faster lookups
 746 * for the next iteration.
 747 */
 748dma_addr_t scif_off_to_dma_addr(struct scif_window *window, s64 off,
 749				size_t *nr_bytes, struct scif_window_iter *iter)
 750{
 751	int i, page_nr;
 752	s64 start, end;
 753	off_t page_off;
 754
 755	if (window->nr_pages == window->nr_contig_chunks) {
 756		page_nr = (off - window->offset) >> PAGE_SHIFT;
 757		page_off = off & ~PAGE_MASK;
 758
 759		if (nr_bytes)
 760			*nr_bytes = PAGE_SIZE - page_off;
 761		return window->dma_addr[page_nr] | page_off;
 762	}
 763	if (iter) {
 764		i = iter->index;
 765		start = iter->offset;
 766	} else {
 767		i =  0;
 768		start =  window->offset;
 769	}
 770	for (; i < window->nr_contig_chunks; i++) {
 771		end = start + (window->num_pages[i] << PAGE_SHIFT);
 772		if (off >= start && off < end) {
 773			if (iter) {
 774				iter->index = i;
 775				iter->offset = start;
 776			}
 777			if (nr_bytes)
 778				*nr_bytes = end - off;
 779			return (window->dma_addr[i] + (off - start));
 780		}
 781		start += (window->num_pages[i] << PAGE_SHIFT);
 782	}
 783	dev_err(scif_info.mdev.this_device,
 784		"%s %d BUG. Addr not found? window %p off 0x%llx\n",
 785		__func__, __LINE__, window, off);
 786	return SCIF_RMA_ERROR_CODE;
 787}
 788
 789/*
 790 * Copy between rma window and temporary buffer
 791 */
 792static void scif_rma_local_cpu_copy(s64 offset, struct scif_window *window,
 793				    u8 *temp, size_t rem_len, bool to_temp)
 794{
 795	void *window_virt;
 796	size_t loop_len;
 797	int offset_in_page;
 798	s64 end_offset;
 799
 800	offset_in_page = offset & ~PAGE_MASK;
 801	loop_len = PAGE_SIZE - offset_in_page;
 802
 803	if (rem_len < loop_len)
 804		loop_len = rem_len;
 805
 806	window_virt = _get_local_va(offset, window, loop_len);
 807	if (!window_virt)
 808		return;
 809	if (to_temp)
 810		memcpy(temp, window_virt, loop_len);
 811	else
 812		memcpy(window_virt, temp, loop_len);
 813
 814	offset += loop_len;
 815	temp += loop_len;
 816	rem_len -= loop_len;
 817
 818	end_offset = window->offset +
 819		(window->nr_pages << PAGE_SHIFT);
 820	while (rem_len) {
 821		if (offset == end_offset) {
 822			window = list_next_entry(window, list);
 823			end_offset = window->offset +
 824				(window->nr_pages << PAGE_SHIFT);
 825		}
 826		loop_len = min(PAGE_SIZE, rem_len);
 827		window_virt = _get_local_va(offset, window, loop_len);
 828		if (!window_virt)
 829			return;
 830		if (to_temp)
 831			memcpy(temp, window_virt, loop_len);
 832		else
 833			memcpy(window_virt, temp, loop_len);
 834		offset	+= loop_len;
 835		temp	+= loop_len;
 836		rem_len	-= loop_len;
 837	}
 838}
 839
 840/**
 841 * scif_rma_completion_cb:
 842 * @data: RMA cookie
 843 *
 844 * RMA interrupt completion callback.
 845 */
 846static void scif_rma_completion_cb(void *data)
 847{
 848	struct scif_dma_comp_cb *comp_cb = data;
 849
 850	/* Free DMA Completion CB. */
 851	if (comp_cb->dst_window)
 852		scif_rma_local_cpu_copy(comp_cb->dst_offset,
 853					comp_cb->dst_window,
 854					comp_cb->temp_buf +
 855					comp_cb->header_padding,
 856					comp_cb->len, false);
 857	scif_unmap_single(comp_cb->temp_phys, comp_cb->sdev,
 858			  SCIF_KMEM_UNALIGNED_BUF_SIZE);
 859	if (comp_cb->is_cache)
 860		kmem_cache_free(unaligned_cache,
 861				comp_cb->temp_buf_to_free);
 862	else
 863		kfree(comp_cb->temp_buf_to_free);
 864}
 865
 866/* Copies between temporary buffer and offsets provided in work */
 867static int
 868scif_rma_list_dma_copy_unaligned(struct scif_copy_work *work,
 869				 u8 *temp, struct dma_chan *chan,
 870				 bool src_local)
 871{
 872	struct scif_dma_comp_cb *comp_cb = work->comp_cb;
 873	dma_addr_t window_dma_addr, temp_dma_addr;
 874	dma_addr_t temp_phys = comp_cb->temp_phys;
 875	size_t loop_len, nr_contig_bytes = 0, remaining_len = work->len;
 876	int offset_in_ca, ret = 0;
 877	s64 end_offset, offset;
 878	struct scif_window *window;
 879	void *window_virt_addr;
 880	size_t tail_len;
 881	struct dma_async_tx_descriptor *tx;
 882	struct dma_device *dev = chan->device;
 883	dma_cookie_t cookie;
 884
 885	if (src_local) {
 886		offset = work->dst_offset;
 887		window = work->dst_window;
 888	} else {
 889		offset = work->src_offset;
 890		window = work->src_window;
 891	}
 892
 893	offset_in_ca = offset & (L1_CACHE_BYTES - 1);
 894	if (offset_in_ca) {
 895		loop_len = L1_CACHE_BYTES - offset_in_ca;
 896		loop_len = min(loop_len, remaining_len);
 897		window_virt_addr = ioremap_remote(offset, window,
 898						  loop_len,
 899						  work->remote_dev,
 900						  NULL);
 901		if (!window_virt_addr)
 902			return -ENOMEM;
 903		if (src_local)
 904			scif_unaligned_cpy_toio(window_virt_addr, temp,
 905						loop_len,
 906						work->ordered &&
 907						!(remaining_len - loop_len));
 908		else
 909			scif_unaligned_cpy_fromio(temp, window_virt_addr,
 910						  loop_len, work->ordered &&
 911						  !(remaining_len - loop_len));
 912		iounmap_remote(window_virt_addr, loop_len, work);
 913
 914		offset += loop_len;
 915		temp += loop_len;
 916		temp_phys += loop_len;
 917		remaining_len -= loop_len;
 918	}
 919
 920	offset_in_ca = offset & ~PAGE_MASK;
 921	end_offset = window->offset +
 922		(window->nr_pages << PAGE_SHIFT);
 923
 924	tail_len = remaining_len & (L1_CACHE_BYTES - 1);
 925	remaining_len -= tail_len;
 926	while (remaining_len) {
 927		if (offset == end_offset) {
 928			window = list_next_entry(window, list);
 929			end_offset = window->offset +
 930				(window->nr_pages << PAGE_SHIFT);
 931		}
 932		if (scif_is_mgmt_node())
 933			temp_dma_addr = temp_phys;
 934		else
 935			/* Fix if we ever enable IOMMU on the card */
 936			temp_dma_addr = (dma_addr_t)virt_to_phys(temp);
 937		window_dma_addr = scif_off_to_dma_addr(window, offset,
 938						       &nr_contig_bytes,
 939						       NULL);
 940		loop_len = min(nr_contig_bytes, remaining_len);
 941		if (src_local) {
 942			if (work->ordered && !tail_len &&
 943			    !(remaining_len - loop_len) &&
 944			    loop_len != L1_CACHE_BYTES) {
 945				/*
 946				 * Break up the last chunk of the transfer into
 947				 * two steps. if there is no tail to guarantee
 948				 * DMA ordering. SCIF_DMA_POLLING inserts
 949				 * a status update descriptor in step 1 which
 950				 * acts as a double sided synchronization fence
 951				 * for the DMA engine to ensure that the last
 952				 * cache line in step 2 is updated last.
 953				 */
 954				/* Step 1) DMA: Body Length - L1_CACHE_BYTES. */
 955				tx =
 956				dev->device_prep_dma_memcpy(chan,
 957							    window_dma_addr,
 958							    temp_dma_addr,
 959							    loop_len -
 960							    L1_CACHE_BYTES,
 961							    DMA_PREP_FENCE);
 962				if (!tx) {
 963					ret = -ENOMEM;
 964					goto err;
 965				}
 966				cookie = tx->tx_submit(tx);
 967				if (dma_submit_error(cookie)) {
 968					ret = -ENOMEM;
 969					goto err;
 970				}
 971				dma_async_issue_pending(chan);
 972				offset += (loop_len - L1_CACHE_BYTES);
 973				temp_dma_addr += (loop_len - L1_CACHE_BYTES);
 974				window_dma_addr += (loop_len - L1_CACHE_BYTES);
 975				remaining_len -= (loop_len - L1_CACHE_BYTES);
 976				loop_len = remaining_len;
 977
 978				/* Step 2) DMA: L1_CACHE_BYTES */
 979				tx =
 980				dev->device_prep_dma_memcpy(chan,
 981							    window_dma_addr,
 982							    temp_dma_addr,
 983							    loop_len, 0);
 984				if (!tx) {
 985					ret = -ENOMEM;
 986					goto err;
 987				}
 988				cookie = tx->tx_submit(tx);
 989				if (dma_submit_error(cookie)) {
 990					ret = -ENOMEM;
 991					goto err;
 992				}
 993				dma_async_issue_pending(chan);
 994			} else {
 995				tx =
 996				dev->device_prep_dma_memcpy(chan,
 997							    window_dma_addr,
 998							    temp_dma_addr,
 999							    loop_len, 0);
1000				if (!tx) {
1001					ret = -ENOMEM;
1002					goto err;
1003				}
1004				cookie = tx->tx_submit(tx);
1005				if (dma_submit_error(cookie)) {
1006					ret = -ENOMEM;
1007					goto err;
1008				}
1009				dma_async_issue_pending(chan);
1010			}
1011		} else {
1012			tx = dev->device_prep_dma_memcpy(chan, temp_dma_addr,
1013					window_dma_addr, loop_len, 0);
1014			if (!tx) {
1015				ret = -ENOMEM;
1016				goto err;
1017			}
1018			cookie = tx->tx_submit(tx);
1019			if (dma_submit_error(cookie)) {
1020				ret = -ENOMEM;
1021				goto err;
1022			}
1023			dma_async_issue_pending(chan);
1024		}
1025		offset += loop_len;
1026		temp += loop_len;
1027		temp_phys += loop_len;
1028		remaining_len -= loop_len;
1029		offset_in_ca = 0;
1030	}
1031	if (tail_len) {
1032		if (offset == end_offset) {
1033			window = list_next_entry(window, list);
1034			end_offset = window->offset +
1035				(window->nr_pages << PAGE_SHIFT);
1036		}
1037		window_virt_addr = ioremap_remote(offset, window, tail_len,
1038						  work->remote_dev,
1039						  NULL);
1040		if (!window_virt_addr)
1041			return -ENOMEM;
1042		/*
1043		 * The CPU copy for the tail bytes must be initiated only once
1044		 * previous DMA transfers for this endpoint have completed
1045		 * to guarantee ordering.
1046		 */
1047		if (work->ordered) {
1048			struct scif_dev *rdev = work->remote_dev;
1049
1050			ret = scif_drain_dma_intr(rdev->sdev, chan);
1051			if (ret)
1052				return ret;
1053		}
1054		if (src_local)
1055			scif_unaligned_cpy_toio(window_virt_addr, temp,
1056						tail_len, work->ordered);
1057		else
1058			scif_unaligned_cpy_fromio(temp, window_virt_addr,
1059						  tail_len, work->ordered);
1060		iounmap_remote(window_virt_addr, tail_len, work);
1061	}
1062	tx = dev->device_prep_dma_memcpy(chan, 0, 0, 0, DMA_PREP_INTERRUPT);
1063	if (!tx) {
1064		ret = -ENOMEM;
1065		return ret;
1066	}
1067	tx->callback = &scif_rma_completion_cb;
1068	tx->callback_param = comp_cb;
1069	cookie = tx->tx_submit(tx);
1070
1071	if (dma_submit_error(cookie)) {
1072		ret = -ENOMEM;
1073		return ret;
1074	}
1075	dma_async_issue_pending(chan);
1076	return 0;
1077err:
1078	dev_err(scif_info.mdev.this_device,
1079		"%s %d Desc Prog Failed ret %d\n",
1080		__func__, __LINE__, ret);
1081	return ret;
1082}
1083
1084/*
1085 * _scif_rma_list_dma_copy_aligned:
1086 *
1087 * Traverse all the windows and perform DMA copy.
1088 */
1089static int _scif_rma_list_dma_copy_aligned(struct scif_copy_work *work,
1090					   struct dma_chan *chan)
1091{
1092	dma_addr_t src_dma_addr, dst_dma_addr;
1093	size_t loop_len, remaining_len, src_contig_bytes = 0;
1094	size_t dst_contig_bytes = 0;
1095	struct scif_window_iter src_win_iter;
1096	struct scif_window_iter dst_win_iter;
1097	s64 end_src_offset, end_dst_offset;
1098	struct scif_window *src_window = work->src_window;
1099	struct scif_window *dst_window = work->dst_window;
1100	s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1101	int ret = 0;
1102	struct dma_async_tx_descriptor *tx;
1103	struct dma_device *dev = chan->device;
1104	dma_cookie_t cookie;
1105
1106	remaining_len = work->len;
1107
1108	scif_init_window_iter(src_window, &src_win_iter);
1109	scif_init_window_iter(dst_window, &dst_win_iter);
1110	end_src_offset = src_window->offset +
1111		(src_window->nr_pages << PAGE_SHIFT);
1112	end_dst_offset = dst_window->offset +
1113		(dst_window->nr_pages << PAGE_SHIFT);
1114	while (remaining_len) {
1115		if (src_offset == end_src_offset) {
1116			src_window = list_next_entry(src_window, list);
1117			end_src_offset = src_window->offset +
1118				(src_window->nr_pages << PAGE_SHIFT);
1119			scif_init_window_iter(src_window, &src_win_iter);
1120		}
1121		if (dst_offset == end_dst_offset) {
1122			dst_window = list_next_entry(dst_window, list);
1123			end_dst_offset = dst_window->offset +
1124				(dst_window->nr_pages << PAGE_SHIFT);
1125			scif_init_window_iter(dst_window, &dst_win_iter);
1126		}
1127
1128		/* compute dma addresses for transfer */
1129		src_dma_addr = scif_off_to_dma_addr(src_window, src_offset,
1130						    &src_contig_bytes,
1131						    &src_win_iter);
1132		dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset,
1133						    &dst_contig_bytes,
1134						    &dst_win_iter);
1135		loop_len = min(src_contig_bytes, dst_contig_bytes);
1136		loop_len = min(loop_len, remaining_len);
1137		if (work->ordered && !(remaining_len - loop_len)) {
1138			/*
1139			 * Break up the last chunk of the transfer into two
1140			 * steps to ensure that the last byte in step 2 is
1141			 * updated last.
1142			 */
1143			/* Step 1) DMA: Body Length - 1 */
1144			tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1145							 src_dma_addr,
1146							 loop_len - 1,
1147							 DMA_PREP_FENCE);
1148			if (!tx) {
1149				ret = -ENOMEM;
1150				goto err;
1151			}
1152			cookie = tx->tx_submit(tx);
1153			if (dma_submit_error(cookie)) {
1154				ret = -ENOMEM;
1155				goto err;
1156			}
1157			src_offset += (loop_len - 1);
1158			dst_offset += (loop_len - 1);
1159			src_dma_addr += (loop_len - 1);
1160			dst_dma_addr += (loop_len - 1);
1161			remaining_len -= (loop_len - 1);
1162			loop_len = remaining_len;
1163
1164			/* Step 2) DMA: 1 BYTES */
1165			tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1166					src_dma_addr, loop_len, 0);
1167			if (!tx) {
1168				ret = -ENOMEM;
1169				goto err;
1170			}
1171			cookie = tx->tx_submit(tx);
1172			if (dma_submit_error(cookie)) {
1173				ret = -ENOMEM;
1174				goto err;
1175			}
1176			dma_async_issue_pending(chan);
1177		} else {
1178			tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1179					src_dma_addr, loop_len, 0);
1180			if (!tx) {
1181				ret = -ENOMEM;
1182				goto err;
1183			}
1184			cookie = tx->tx_submit(tx);
1185			if (dma_submit_error(cookie)) {
1186				ret = -ENOMEM;
1187				goto err;
1188			}
1189		}
1190		src_offset += loop_len;
1191		dst_offset += loop_len;
1192		remaining_len -= loop_len;
1193	}
1194	return ret;
1195err:
1196	dev_err(scif_info.mdev.this_device,
1197		"%s %d Desc Prog Failed ret %d\n",
1198		__func__, __LINE__, ret);
1199	return ret;
1200}
1201
1202/*
1203 * scif_rma_list_dma_copy_aligned:
1204 *
1205 * Traverse all the windows and perform DMA copy.
1206 */
1207static int scif_rma_list_dma_copy_aligned(struct scif_copy_work *work,
1208					  struct dma_chan *chan)
1209{
1210	dma_addr_t src_dma_addr, dst_dma_addr;
1211	size_t loop_len, remaining_len, tail_len, src_contig_bytes = 0;
1212	size_t dst_contig_bytes = 0;
1213	int src_cache_off;
1214	s64 end_src_offset, end_dst_offset;
1215	struct scif_window_iter src_win_iter;
1216	struct scif_window_iter dst_win_iter;
1217	void *src_virt, *dst_virt;
1218	struct scif_window *src_window = work->src_window;
1219	struct scif_window *dst_window = work->dst_window;
1220	s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1221	int ret = 0;
1222	struct dma_async_tx_descriptor *tx;
1223	struct dma_device *dev = chan->device;
1224	dma_cookie_t cookie;
1225
1226	remaining_len = work->len;
1227	scif_init_window_iter(src_window, &src_win_iter);
1228	scif_init_window_iter(dst_window, &dst_win_iter);
1229
1230	src_cache_off = src_offset & (L1_CACHE_BYTES - 1);
1231	if (src_cache_off != 0) {
1232		/* Head */
1233		loop_len = L1_CACHE_BYTES - src_cache_off;
1234		loop_len = min(loop_len, remaining_len);
1235		src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset);
1236		dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset);
1237		if (src_window->type == SCIF_WINDOW_SELF)
1238			src_virt = _get_local_va(src_offset, src_window,
1239						 loop_len);
1240		else
1241			src_virt = ioremap_remote(src_offset, src_window,
1242						  loop_len,
1243						  work->remote_dev, NULL);
1244		if (!src_virt)
1245			return -ENOMEM;
1246		if (dst_window->type == SCIF_WINDOW_SELF)
1247			dst_virt = _get_local_va(dst_offset, dst_window,
1248						 loop_len);
1249		else
1250			dst_virt = ioremap_remote(dst_offset, dst_window,
1251						  loop_len,
1252						  work->remote_dev, NULL);
1253		if (!dst_virt) {
1254			if (src_window->type != SCIF_WINDOW_SELF)
1255				iounmap_remote(src_virt, loop_len, work);
1256			return -ENOMEM;
1257		}
1258		if (src_window->type == SCIF_WINDOW_SELF)
1259			scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len,
1260						remaining_len == loop_len ?
1261						work->ordered : false);
1262		else
1263			scif_unaligned_cpy_fromio(dst_virt, src_virt, loop_len,
1264						  remaining_len == loop_len ?
1265						  work->ordered : false);
1266		if (src_window->type != SCIF_WINDOW_SELF)
1267			iounmap_remote(src_virt, loop_len, work);
1268		if (dst_window->type != SCIF_WINDOW_SELF)
1269			iounmap_remote(dst_virt, loop_len, work);
1270		src_offset += loop_len;
1271		dst_offset += loop_len;
1272		remaining_len -= loop_len;
1273	}
1274
1275	end_src_offset = src_window->offset +
1276		(src_window->nr_pages << PAGE_SHIFT);
1277	end_dst_offset = dst_window->offset +
1278		(dst_window->nr_pages << PAGE_SHIFT);
1279	tail_len = remaining_len & (L1_CACHE_BYTES - 1);
1280	remaining_len -= tail_len;
1281	while (remaining_len) {
1282		if (src_offset == end_src_offset) {
1283			src_window = list_next_entry(src_window, list);
1284			end_src_offset = src_window->offset +
1285				(src_window->nr_pages << PAGE_SHIFT);
1286			scif_init_window_iter(src_window, &src_win_iter);
1287		}
1288		if (dst_offset == end_dst_offset) {
1289			dst_window = list_next_entry(dst_window, list);
1290			end_dst_offset = dst_window->offset +
1291				(dst_window->nr_pages << PAGE_SHIFT);
1292			scif_init_window_iter(dst_window, &dst_win_iter);
1293		}
1294
1295		/* compute dma addresses for transfer */
1296		src_dma_addr = scif_off_to_dma_addr(src_window, src_offset,
1297						    &src_contig_bytes,
1298						    &src_win_iter);
1299		dst_dma_addr = scif_off_to_dma_addr(dst_window, dst_offset,
1300						    &dst_contig_bytes,
1301						    &dst_win_iter);
1302		loop_len = min(src_contig_bytes, dst_contig_bytes);
1303		loop_len = min(loop_len, remaining_len);
1304		if (work->ordered && !tail_len &&
1305		    !(remaining_len - loop_len)) {
1306			/*
1307			 * Break up the last chunk of the transfer into two
1308			 * steps. if there is no tail to gurantee DMA ordering.
1309			 * Passing SCIF_DMA_POLLING inserts a status update
1310			 * descriptor in step 1 which acts as a double sided
1311			 * synchronization fence for the DMA engine to ensure
1312			 * that the last cache line in step 2 is updated last.
1313			 */
1314			/* Step 1) DMA: Body Length - L1_CACHE_BYTES. */
1315			tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1316							 src_dma_addr,
1317							 loop_len -
1318							 L1_CACHE_BYTES,
1319							 DMA_PREP_FENCE);
1320			if (!tx) {
1321				ret = -ENOMEM;
1322				goto err;
1323			}
1324			cookie = tx->tx_submit(tx);
1325			if (dma_submit_error(cookie)) {
1326				ret = -ENOMEM;
1327				goto err;
1328			}
1329			dma_async_issue_pending(chan);
1330			src_offset += (loop_len - L1_CACHE_BYTES);
1331			dst_offset += (loop_len - L1_CACHE_BYTES);
1332			src_dma_addr += (loop_len - L1_CACHE_BYTES);
1333			dst_dma_addr += (loop_len - L1_CACHE_BYTES);
1334			remaining_len -= (loop_len - L1_CACHE_BYTES);
1335			loop_len = remaining_len;
1336
1337			/* Step 2) DMA: L1_CACHE_BYTES */
1338			tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1339							 src_dma_addr,
1340							 loop_len, 0);
1341			if (!tx) {
1342				ret = -ENOMEM;
1343				goto err;
1344			}
1345			cookie = tx->tx_submit(tx);
1346			if (dma_submit_error(cookie)) {
1347				ret = -ENOMEM;
1348				goto err;
1349			}
1350			dma_async_issue_pending(chan);
1351		} else {
1352			tx = dev->device_prep_dma_memcpy(chan, dst_dma_addr,
1353							 src_dma_addr,
1354							 loop_len, 0);
1355			if (!tx) {
1356				ret = -ENOMEM;
1357				goto err;
1358			}
1359			cookie = tx->tx_submit(tx);
1360			if (dma_submit_error(cookie)) {
1361				ret = -ENOMEM;
1362				goto err;
1363			}
1364			dma_async_issue_pending(chan);
1365		}
1366		src_offset += loop_len;
1367		dst_offset += loop_len;
1368		remaining_len -= loop_len;
1369	}
1370	remaining_len = tail_len;
1371	if (remaining_len) {
1372		loop_len = remaining_len;
1373		if (src_offset == end_src_offset)
1374			src_window = list_next_entry(src_window, list);
1375		if (dst_offset == end_dst_offset)
1376			dst_window = list_next_entry(dst_window, list);
1377
1378		src_dma_addr = __scif_off_to_dma_addr(src_window, src_offset);
1379		dst_dma_addr = __scif_off_to_dma_addr(dst_window, dst_offset);
1380		/*
1381		 * The CPU copy for the tail bytes must be initiated only once
1382		 * previous DMA transfers for this endpoint have completed to
1383		 * guarantee ordering.
1384		 */
1385		if (work->ordered) {
1386			struct scif_dev *rdev = work->remote_dev;
1387
1388			ret = scif_drain_dma_poll(rdev->sdev, chan);
1389			if (ret)
1390				return ret;
1391		}
1392		if (src_window->type == SCIF_WINDOW_SELF)
1393			src_virt = _get_local_va(src_offset, src_window,
1394						 loop_len);
1395		else
1396			src_virt = ioremap_remote(src_offset, src_window,
1397						  loop_len,
1398						  work->remote_dev, NULL);
1399		if (!src_virt)
1400			return -ENOMEM;
1401
1402		if (dst_window->type == SCIF_WINDOW_SELF)
1403			dst_virt = _get_local_va(dst_offset, dst_window,
1404						 loop_len);
1405		else
1406			dst_virt = ioremap_remote(dst_offset, dst_window,
1407						  loop_len,
1408						  work->remote_dev, NULL);
1409		if (!dst_virt) {
1410			if (src_window->type != SCIF_WINDOW_SELF)
1411				iounmap_remote(src_virt, loop_len, work);
1412			return -ENOMEM;
1413		}
1414
1415		if (src_window->type == SCIF_WINDOW_SELF)
1416			scif_unaligned_cpy_toio(dst_virt, src_virt, loop_len,
1417						work->ordered);
1418		else
1419			scif_unaligned_cpy_fromio(dst_virt, src_virt,
1420						  loop_len, work->ordered);
1421		if (src_window->type != SCIF_WINDOW_SELF)
1422			iounmap_remote(src_virt, loop_len, work);
1423
1424		if (dst_window->type != SCIF_WINDOW_SELF)
1425			iounmap_remote(dst_virt, loop_len, work);
1426		remaining_len -= loop_len;
1427	}
1428	return ret;
1429err:
1430	dev_err(scif_info.mdev.this_device,
1431		"%s %d Desc Prog Failed ret %d\n",
1432		__func__, __LINE__, ret);
1433	return ret;
1434}
1435
1436/*
1437 * scif_rma_list_cpu_copy:
1438 *
1439 * Traverse all the windows and perform CPU copy.
1440 */
1441static int scif_rma_list_cpu_copy(struct scif_copy_work *work)
1442{
1443	void *src_virt, *dst_virt;
1444	size_t loop_len, remaining_len;
1445	int src_page_off, dst_page_off;
1446	s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1447	struct scif_window *src_window = work->src_window;
1448	struct scif_window *dst_window = work->dst_window;
1449	s64 end_src_offset, end_dst_offset;
1450	int ret = 0;
1451	struct scif_window_iter src_win_iter;
1452	struct scif_window_iter dst_win_iter;
1453
1454	remaining_len = work->len;
1455
1456	scif_init_window_iter(src_window, &src_win_iter);
1457	scif_init_window_iter(dst_window, &dst_win_iter);
1458	while (remaining_len) {
1459		src_page_off = src_offset & ~PAGE_MASK;
1460		dst_page_off = dst_offset & ~PAGE_MASK;
1461		loop_len = min(PAGE_SIZE -
1462			       max(src_page_off, dst_page_off),
1463			       remaining_len);
1464
1465		if (src_window->type == SCIF_WINDOW_SELF)
1466			src_virt = _get_local_va(src_offset, src_window,
1467						 loop_len);
1468		else
1469			src_virt = ioremap_remote(src_offset, src_window,
1470						  loop_len,
1471						  work->remote_dev,
1472						  &src_win_iter);
1473		if (!src_virt) {
1474			ret = -ENOMEM;
1475			goto error;
1476		}
1477
1478		if (dst_window->type == SCIF_WINDOW_SELF)
1479			dst_virt = _get_local_va(dst_offset, dst_window,
1480						 loop_len);
1481		else
1482			dst_virt = ioremap_remote(dst_offset, dst_window,
1483						  loop_len,
1484						  work->remote_dev,
1485						  &dst_win_iter);
1486		if (!dst_virt) {
1487			if (src_window->type == SCIF_WINDOW_PEER)
1488				iounmap_remote(src_virt, loop_len, work);
1489			ret = -ENOMEM;
1490			goto error;
1491		}
1492
1493		if (work->loopback) {
1494			memcpy(dst_virt, src_virt, loop_len);
1495		} else {
1496			if (src_window->type == SCIF_WINDOW_SELF)
1497				memcpy_toio((void __iomem __force *)dst_virt,
1498					    src_virt, loop_len);
1499			else
1500				memcpy_fromio(dst_virt,
1501					      (void __iomem __force *)src_virt,
1502					      loop_len);
1503		}
1504		if (src_window->type == SCIF_WINDOW_PEER)
1505			iounmap_remote(src_virt, loop_len, work);
1506
1507		if (dst_window->type == SCIF_WINDOW_PEER)
1508			iounmap_remote(dst_virt, loop_len, work);
1509
1510		src_offset += loop_len;
1511		dst_offset += loop_len;
1512		remaining_len -= loop_len;
1513		if (remaining_len) {
1514			end_src_offset = src_window->offset +
1515				(src_window->nr_pages << PAGE_SHIFT);
1516			end_dst_offset = dst_window->offset +
1517				(dst_window->nr_pages << PAGE_SHIFT);
1518			if (src_offset == end_src_offset) {
1519				src_window = list_next_entry(src_window, list);
1520				scif_init_window_iter(src_window,
1521						      &src_win_iter);
1522			}
1523			if (dst_offset == end_dst_offset) {
1524				dst_window = list_next_entry(dst_window, list);
1525				scif_init_window_iter(dst_window,
1526						      &dst_win_iter);
1527			}
1528		}
1529	}
1530error:
1531	return ret;
1532}
1533
1534static int scif_rma_list_dma_copy_wrapper(struct scif_endpt *epd,
1535					  struct scif_copy_work *work,
1536					  struct dma_chan *chan, off_t loffset)
1537{
1538	int src_cache_off, dst_cache_off;
1539	s64 src_offset = work->src_offset, dst_offset = work->dst_offset;
1540	u8 *temp = NULL;
1541	bool src_local = true;
1542	struct scif_dma_comp_cb *comp_cb;
1543	int err;
1544
1545	if (is_dma_copy_aligned(chan->device, 1, 1, 1))
1546		return _scif_rma_list_dma_copy_aligned(work, chan);
1547
1548	src_cache_off = src_offset & (L1_CACHE_BYTES - 1);
1549	dst_cache_off = dst_offset & (L1_CACHE_BYTES - 1);
1550
1551	if (dst_cache_off == src_cache_off)
1552		return scif_rma_list_dma_copy_aligned(work, chan);
1553
1554	if (work->loopback)
1555		return scif_rma_list_cpu_copy(work);
1556	src_local = work->src_window->type == SCIF_WINDOW_SELF;
1557
1558	/* Allocate dma_completion cb */
1559	comp_cb = kzalloc(sizeof(*comp_cb), GFP_KERNEL);
1560	if (!comp_cb)
1561		goto error;
1562
1563	work->comp_cb = comp_cb;
1564	comp_cb->cb_cookie = comp_cb;
1565	comp_cb->dma_completion_func = &scif_rma_completion_cb;
1566
1567	if (work->len + (L1_CACHE_BYTES << 1) < SCIF_KMEM_UNALIGNED_BUF_SIZE) {
1568		comp_cb->is_cache = false;
1569		/* Allocate padding bytes to align to a cache line */
1570		temp = kmalloc(work->len + (L1_CACHE_BYTES << 1),
1571			       GFP_KERNEL);
1572		if (!temp)
1573			goto free_comp_cb;
1574		comp_cb->temp_buf_to_free = temp;
1575		/* kmalloc(..) does not guarantee cache line alignment */
1576		if (!IS_ALIGNED((u64)temp, L1_CACHE_BYTES))
1577			temp = PTR_ALIGN(temp, L1_CACHE_BYTES);
1578	} else {
1579		comp_cb->is_cache = true;
1580		temp = kmem_cache_alloc(unaligned_cache, GFP_KERNEL);
1581		if (!temp)
1582			goto free_comp_cb;
1583		comp_cb->temp_buf_to_free = temp;
1584	}
1585
1586	if (src_local) {
1587		temp += dst_cache_off;
1588		scif_rma_local_cpu_copy(work->src_offset, work->src_window,
1589					temp, work->len, true);
1590	} else {
1591		comp_cb->dst_window = work->dst_window;
1592		comp_cb->dst_offset = work->dst_offset;
1593		work->src_offset = work->src_offset - src_cache_off;
1594		comp_cb->len = work->len;
1595		work->len = ALIGN(work->len + src_cache_off, L1_CACHE_BYTES);
1596		comp_cb->header_padding = src_cache_off;
1597	}
1598	comp_cb->temp_buf = temp;
1599
1600	err = scif_map_single(&comp_cb->temp_phys, temp,
1601			      work->remote_dev, SCIF_KMEM_UNALIGNED_BUF_SIZE);
1602	if (err)
1603		goto free_temp_buf;
1604	comp_cb->sdev = work->remote_dev;
1605	if (scif_rma_list_dma_copy_unaligned(work, temp, chan, src_local) < 0)
1606		goto free_temp_buf;
1607	if (!src_local)
1608		work->fence_type = SCIF_DMA_INTR;
1609	return 0;
1610free_temp_buf:
1611	if (comp_cb->is_cache)
1612		kmem_cache_free(unaligned_cache, comp_cb->temp_buf_to_free);
1613	else
1614		kfree(comp_cb->temp_buf_to_free);
1615free_comp_cb:
1616	kfree(comp_cb);
1617error:
1618	return -ENOMEM;
1619}
1620
1621/**
1622 * scif_rma_copy:
1623 * @epd: end point descriptor.
1624 * @loffset: offset in local registered address space to/from which to copy
1625 * @addr: user virtual address to/from which to copy
1626 * @len: length of range to copy
1627 * @roffset: offset in remote registered address space to/from which to copy
1628 * @flags: flags
1629 * @dir: LOCAL->REMOTE or vice versa.
1630 * @last_chunk: true if this is the last chunk of a larger transfer
1631 *
1632 * Validate parameters, check if src/dst registered ranges requested for copy
1633 * are valid and initiate either CPU or DMA copy.
1634 */
1635static int scif_rma_copy(scif_epd_t epd, off_t loffset, unsigned long addr,
1636			 size_t len, off_t roffset, int flags,
1637			 enum scif_rma_dir dir, bool last_chunk)
1638{
1639	struct scif_endpt *ep = (struct scif_endpt *)epd;
1640	struct scif_rma_req remote_req;
1641	struct scif_rma_req req;
1642	struct scif_window *local_window = NULL;
1643	struct scif_window *remote_window = NULL;
1644	struct scif_copy_work copy_work;
1645	bool loopback;
1646	int err = 0;
1647	struct dma_chan *chan;
1648	struct scif_mmu_notif *mmn = NULL;
1649	bool cache = false;
1650	struct device *spdev;
1651
1652	err = scif_verify_epd(ep);
1653	if (err)
1654		return err;
1655
1656	if (flags && !(flags & (SCIF_RMA_USECPU | SCIF_RMA_USECACHE |
1657				SCIF_RMA_SYNC | SCIF_RMA_ORDERED)))
1658		return -EINVAL;
1659
1660	loopback = scifdev_self(ep->remote_dev) ? true : false;
1661	copy_work.fence_type = ((flags & SCIF_RMA_SYNC) && last_chunk) ?
1662				SCIF_DMA_POLL : 0;
1663	copy_work.ordered = !!((flags & SCIF_RMA_ORDERED) && last_chunk);
1664
1665	/* Use CPU for Mgmt node <-> Mgmt node copies */
1666	if (loopback && scif_is_mgmt_node()) {
1667		flags |= SCIF_RMA_USECPU;
1668		copy_work.fence_type = 0x0;
1669	}
1670
1671	cache = scif_is_set_reg_cache(flags);
1672
1673	remote_req.out_window = &remote_window;
1674	remote_req.offset = roffset;
1675	remote_req.nr_bytes = len;
1676	/*
1677	 * If transfer is from local to remote then the remote window
1678	 * must be writeable and vice versa.
1679	 */
1680	remote_req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_WRITE : VM_READ;
1681	remote_req.type = SCIF_WINDOW_PARTIAL;
1682	remote_req.head = &ep->rma_info.remote_reg_list;
1683
1684	spdev = scif_get_peer_dev(ep->remote_dev);
1685	if (IS_ERR(spdev)) {
1686		err = PTR_ERR(spdev);
1687		return err;
1688	}
1689
1690	if (addr && cache) {
1691		mutex_lock(&ep->rma_info.mmn_lock);
1692		mmn = scif_find_mmu_notifier(current->mm, &ep->rma_info);
1693		if (!mmn)
1694			mmn = scif_add_mmu_notifier(current->mm, ep);
1695		mutex_unlock(&ep->rma_info.mmn_lock);
1696		if (IS_ERR(mmn)) {
1697			scif_put_peer_dev(spdev);
1698			return PTR_ERR(mmn);
1699		}
1700		cache = cache && !scif_rma_tc_can_cache(ep, len);
1701	}
1702	mutex_lock(&ep->rma_info.rma_lock);
1703	if (addr) {
1704		req.out_window = &local_window;
1705		req.nr_bytes = ALIGN(len + (addr & ~PAGE_MASK),
1706				     PAGE_SIZE);
1707		req.va_for_temp = addr & PAGE_MASK;
1708		req.prot = (dir == SCIF_LOCAL_TO_REMOTE ?
1709			    VM_READ : VM_WRITE | VM_READ);
1710		/* Does a valid local window exist? */
1711		if (mmn) {
1712			spin_lock(&ep->rma_info.tc_lock);
1713			req.head = &mmn->tc_reg_list;
1714			err = scif_query_tcw(ep, &req);
1715			spin_unlock(&ep->rma_info.tc_lock);
1716		}
1717		if (!mmn || err) {
1718			err = scif_register_temp(epd, req.va_for_temp,
1719						 req.nr_bytes, req.prot,
1720						 &loffset, &local_window);
1721			if (err) {
1722				mutex_unlock(&ep->rma_info.rma_lock);
1723				goto error;
1724			}
1725			if (!cache)
1726				goto skip_cache;
1727			atomic_inc(&ep->rma_info.tcw_refcount);
1728			atomic_add_return(local_window->nr_pages,
1729					  &ep->rma_info.tcw_total_pages);
1730			if (mmn) {
1731				spin_lock(&ep->rma_info.tc_lock);
1732				scif_insert_tcw(local_window,
1733						&mmn->tc_reg_list);
1734				spin_unlock(&ep->rma_info.tc_lock);
1735			}
1736		}
1737skip_cache:
1738		loffset = local_window->offset +
1739				(addr - local_window->va_for_temp);
1740	} else {
1741		req.out_window = &local_window;
1742		req.offset = loffset;
1743		/*
1744		 * If transfer is from local to remote then the self window
1745		 * must be readable and vice versa.
1746		 */
1747		req.prot = dir == SCIF_LOCAL_TO_REMOTE ? VM_READ : VM_WRITE;
1748		req.nr_bytes = len;
1749		req.type = SCIF_WINDOW_PARTIAL;
1750		req.head = &ep->rma_info.reg_list;
1751		/* Does a valid local window exist? */
1752		err = scif_query_window(&req);
1753		if (err) {
1754			mutex_unlock(&ep->rma_info.rma_lock);
1755			goto error;
1756		}
1757	}
1758
1759	/* Does a valid remote window exist? */
1760	err = scif_query_window(&remote_req);
1761	if (err) {
1762		mutex_unlock(&ep->rma_info.rma_lock);
1763		goto error;
1764	}
1765
1766	/*
1767	 * Prepare copy_work for submitting work to the DMA kernel thread
1768	 * or CPU copy routine.
1769	 */
1770	copy_work.len = len;
1771	copy_work.loopback = loopback;
1772	copy_work.remote_dev = ep->remote_dev;
1773	if (dir == SCIF_LOCAL_TO_REMOTE) {
1774		copy_work.src_offset = loffset;
1775		copy_work.src_window = local_window;
1776		copy_work.dst_offset = roffset;
1777		copy_work.dst_window = remote_window;
1778	} else {
1779		copy_work.src_offset = roffset;
1780		copy_work.src_window = remote_window;
1781		copy_work.dst_offset = loffset;
1782		copy_work.dst_window = local_window;
1783	}
1784
1785	if (flags & SCIF_RMA_USECPU) {
1786		scif_rma_list_cpu_copy(&copy_work);
1787	} else {
1788		chan = ep->rma_info.dma_chan;
1789		err = scif_rma_list_dma_copy_wrapper(epd, &copy_work,
1790						     chan, loffset);
1791	}
1792	if (addr && !cache)
1793		atomic_inc(&ep->rma_info.tw_refcount);
1794
1795	mutex_unlock(&ep->rma_info.rma_lock);
1796
1797	if (last_chunk) {
1798		struct scif_dev *rdev = ep->remote_dev;
1799
1800		if (copy_work.fence_type == SCIF_DMA_POLL)
1801			err = scif_drain_dma_poll(rdev->sdev,
1802						  ep->rma_info.dma_chan);
1803		else if (copy_work.fence_type == SCIF_DMA_INTR)
1804			err = scif_drain_dma_intr(rdev->sdev,
1805						  ep->rma_info.dma_chan);
1806	}
1807
1808	if (addr && !cache)
1809		scif_queue_for_cleanup(local_window, &scif_info.rma);
1810	scif_put_peer_dev(spdev);
1811	return err;
1812error:
1813	if (err) {
1814		if (addr && local_window && !cache)
1815			scif_destroy_window(ep, local_window);
1816		dev_err(scif_info.mdev.this_device,
1817			"%s %d err %d len 0x%lx\n",
1818			__func__, __LINE__, err, len);
1819	}
1820	scif_put_peer_dev(spdev);
1821	return err;
1822}
1823
1824int scif_readfrom(scif_epd_t epd, off_t loffset, size_t len,
1825		  off_t roffset, int flags)
1826{
1827	int err;
1828
1829	dev_dbg(scif_info.mdev.this_device,
1830		"SCIFAPI readfrom: ep %p loffset 0x%lx len 0x%lx offset 0x%lx flags 0x%x\n",
1831		epd, loffset, len, roffset, flags);
1832	if (scif_unaligned(loffset, roffset)) {
1833		while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1834			err = scif_rma_copy(epd, loffset, 0x0,
1835					    SCIF_MAX_UNALIGNED_BUF_SIZE,
1836					    roffset, flags,
1837					    SCIF_REMOTE_TO_LOCAL, false);
1838			if (err)
1839				goto readfrom_err;
1840			loffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1841			roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1842			len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1843		}
1844	}
1845	err = scif_rma_copy(epd, loffset, 0x0, len,
1846			    roffset, flags, SCIF_REMOTE_TO_LOCAL, true);
1847readfrom_err:
1848	return err;
1849}
1850EXPORT_SYMBOL_GPL(scif_readfrom);
1851
1852int scif_writeto(scif_epd_t epd, off_t loffset, size_t len,
1853		 off_t roffset, int flags)
1854{
1855	int err;
1856
1857	dev_dbg(scif_info.mdev.this_device,
1858		"SCIFAPI writeto: ep %p loffset 0x%lx len 0x%lx roffset 0x%lx flags 0x%x\n",
1859		epd, loffset, len, roffset, flags);
1860	if (scif_unaligned(loffset, roffset)) {
1861		while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1862			err = scif_rma_copy(epd, loffset, 0x0,
1863					    SCIF_MAX_UNALIGNED_BUF_SIZE,
1864					    roffset, flags,
1865					    SCIF_LOCAL_TO_REMOTE, false);
1866			if (err)
1867				goto writeto_err;
1868			loffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1869			roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1870			len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1871		}
1872	}
1873	err = scif_rma_copy(epd, loffset, 0x0, len,
1874			    roffset, flags, SCIF_LOCAL_TO_REMOTE, true);
1875writeto_err:
1876	return err;
1877}
1878EXPORT_SYMBOL_GPL(scif_writeto);
1879
1880int scif_vreadfrom(scif_epd_t epd, void *addr, size_t len,
1881		   off_t roffset, int flags)
1882{
1883	int err;
1884
1885	dev_dbg(scif_info.mdev.this_device,
1886		"SCIFAPI vreadfrom: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n",
1887		epd, addr, len, roffset, flags);
1888	if (scif_unaligned((off_t __force)addr, roffset)) {
1889		if (len > SCIF_MAX_UNALIGNED_BUF_SIZE)
1890			flags &= ~SCIF_RMA_USECACHE;
1891
1892		while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1893			err = scif_rma_copy(epd, 0, (u64)addr,
1894					    SCIF_MAX_UNALIGNED_BUF_SIZE,
1895					    roffset, flags,
1896					    SCIF_REMOTE_TO_LOCAL, false);
1897			if (err)
1898				goto vreadfrom_err;
1899			addr += SCIF_MAX_UNALIGNED_BUF_SIZE;
1900			roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1901			len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1902		}
1903	}
1904	err = scif_rma_copy(epd, 0, (u64)addr, len,
1905			    roffset, flags, SCIF_REMOTE_TO_LOCAL, true);
1906vreadfrom_err:
1907	return err;
1908}
1909EXPORT_SYMBOL_GPL(scif_vreadfrom);
1910
1911int scif_vwriteto(scif_epd_t epd, void *addr, size_t len,
1912		  off_t roffset, int flags)
1913{
1914	int err;
1915
1916	dev_dbg(scif_info.mdev.this_device,
1917		"SCIFAPI vwriteto: ep %p addr %p len 0x%lx roffset 0x%lx flags 0x%x\n",
1918		epd, addr, len, roffset, flags);
1919	if (scif_unaligned((off_t __force)addr, roffset)) {
1920		if (len > SCIF_MAX_UNALIGNED_BUF_SIZE)
1921			flags &= ~SCIF_RMA_USECACHE;
1922
1923		while (len > SCIF_MAX_UNALIGNED_BUF_SIZE) {
1924			err = scif_rma_copy(epd, 0, (u64)addr,
1925					    SCIF_MAX_UNALIGNED_BUF_SIZE,
1926					    roffset, flags,
1927					    SCIF_LOCAL_TO_REMOTE, false);
1928			if (err)
1929				goto vwriteto_err;
1930			addr += SCIF_MAX_UNALIGNED_BUF_SIZE;
1931			roffset += SCIF_MAX_UNALIGNED_BUF_SIZE;
1932			len -= SCIF_MAX_UNALIGNED_BUF_SIZE;
1933		}
1934	}
1935	err = scif_rma_copy(epd, 0, (u64)addr, len,
1936			    roffset, flags, SCIF_LOCAL_TO_REMOTE, true);
1937vwriteto_err:
1938	return err;
1939}
1940EXPORT_SYMBOL_GPL(scif_vwriteto);