Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2012 Red Hat, Inc.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-array.h"
   8#include "dm-space-map.h"
   9#include "dm-transaction-manager.h"
  10
  11#include <linux/export.h>
  12#include <linux/device-mapper.h>
  13
  14#define DM_MSG_PREFIX "array"
  15
  16/*----------------------------------------------------------------*/
  17
  18/*
  19 * The array is implemented as a fully populated btree, which points to
  20 * blocks that contain the packed values.  This is more space efficient
  21 * than just using a btree since we don't store 1 key per value.
  22 */
  23struct array_block {
  24	__le32 csum;
  25	__le32 max_entries;
  26	__le32 nr_entries;
  27	__le32 value_size;
  28	__le64 blocknr; /* Block this node is supposed to live in. */
  29} __packed;
  30
  31/*----------------------------------------------------------------*/
  32
  33/*
  34 * Validator methods.  As usual we calculate a checksum, and also write the
  35 * block location into the header (paranoia about ssds remapping areas by
  36 * mistake).
  37 */
  38#define CSUM_XOR 595846735
  39
  40static void array_block_prepare_for_write(struct dm_block_validator *v,
  41					  struct dm_block *b,
  42					  size_t size_of_block)
  43{
  44	struct array_block *bh_le = dm_block_data(b);
  45
  46	bh_le->blocknr = cpu_to_le64(dm_block_location(b));
  47	bh_le->csum = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
  48						 size_of_block - sizeof(__le32),
  49						 CSUM_XOR));
  50}
  51
  52static int array_block_check(struct dm_block_validator *v,
  53			     struct dm_block *b,
  54			     size_t size_of_block)
  55{
  56	struct array_block *bh_le = dm_block_data(b);
  57	__le32 csum_disk;
  58
  59	if (dm_block_location(b) != le64_to_cpu(bh_le->blocknr)) {
  60		DMERR_LIMIT("array_block_check failed: blocknr %llu != wanted %llu",
  61			    (unsigned long long) le64_to_cpu(bh_le->blocknr),
  62			    (unsigned long long) dm_block_location(b));
  63		return -ENOTBLK;
  64	}
  65
  66	csum_disk = cpu_to_le32(dm_bm_checksum(&bh_le->max_entries,
  67					       size_of_block - sizeof(__le32),
  68					       CSUM_XOR));
  69	if (csum_disk != bh_le->csum) {
  70		DMERR_LIMIT("array_block_check failed: csum %u != wanted %u",
  71			    (unsigned) le32_to_cpu(csum_disk),
  72			    (unsigned) le32_to_cpu(bh_le->csum));
  73		return -EILSEQ;
  74	}
  75
  76	return 0;
  77}
  78
  79static struct dm_block_validator array_validator = {
  80	.name = "array",
  81	.prepare_for_write = array_block_prepare_for_write,
  82	.check = array_block_check
  83};
  84
  85/*----------------------------------------------------------------*/
  86
  87/*
  88 * Functions for manipulating the array blocks.
  89 */
  90
  91/*
  92 * Returns a pointer to a value within an array block.
  93 *
  94 * index - The index into _this_ specific block.
  95 */
  96static void *element_at(struct dm_array_info *info, struct array_block *ab,
  97			unsigned index)
  98{
  99	unsigned char *entry = (unsigned char *) (ab + 1);
 100
 101	entry += index * info->value_type.size;
 102
 103	return entry;
 104}
 105
 106/*
 107 * Utility function that calls one of the value_type methods on every value
 108 * in an array block.
 109 */
 110static void on_entries(struct dm_array_info *info, struct array_block *ab,
 111		       void (*fn)(void *, const void *))
 112{
 113	unsigned i, nr_entries = le32_to_cpu(ab->nr_entries);
 114
 115	for (i = 0; i < nr_entries; i++)
 116		fn(info->value_type.context, element_at(info, ab, i));
 117}
 118
 119/*
 120 * Increment every value in an array block.
 121 */
 122static void inc_ablock_entries(struct dm_array_info *info, struct array_block *ab)
 123{
 124	struct dm_btree_value_type *vt = &info->value_type;
 125
 126	if (vt->inc)
 127		on_entries(info, ab, vt->inc);
 128}
 129
 130/*
 131 * Decrement every value in an array block.
 132 */
 133static void dec_ablock_entries(struct dm_array_info *info, struct array_block *ab)
 134{
 135	struct dm_btree_value_type *vt = &info->value_type;
 136
 137	if (vt->dec)
 138		on_entries(info, ab, vt->dec);
 139}
 140
 141/*
 142 * Each array block can hold this many values.
 143 */
 144static uint32_t calc_max_entries(size_t value_size, size_t size_of_block)
 145{
 146	return (size_of_block - sizeof(struct array_block)) / value_size;
 147}
 148
 149/*
 150 * Allocate a new array block.  The caller will need to unlock block.
 151 */
 152static int alloc_ablock(struct dm_array_info *info, size_t size_of_block,
 153			uint32_t max_entries,
 154			struct dm_block **block, struct array_block **ab)
 155{
 156	int r;
 157
 158	r = dm_tm_new_block(info->btree_info.tm, &array_validator, block);
 159	if (r)
 160		return r;
 161
 162	(*ab) = dm_block_data(*block);
 163	(*ab)->max_entries = cpu_to_le32(max_entries);
 164	(*ab)->nr_entries = cpu_to_le32(0);
 165	(*ab)->value_size = cpu_to_le32(info->value_type.size);
 166
 167	return 0;
 168}
 169
 170/*
 171 * Pad an array block out with a particular value.  Every instance will
 172 * cause an increment of the value_type.  new_nr must always be more than
 173 * the current number of entries.
 174 */
 175static void fill_ablock(struct dm_array_info *info, struct array_block *ab,
 176			const void *value, unsigned new_nr)
 177{
 178	unsigned i;
 179	uint32_t nr_entries;
 180	struct dm_btree_value_type *vt = &info->value_type;
 181
 182	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
 183	BUG_ON(new_nr < le32_to_cpu(ab->nr_entries));
 184
 185	nr_entries = le32_to_cpu(ab->nr_entries);
 186	for (i = nr_entries; i < new_nr; i++) {
 187		if (vt->inc)
 188			vt->inc(vt->context, value);
 189		memcpy(element_at(info, ab, i), value, vt->size);
 190	}
 191	ab->nr_entries = cpu_to_le32(new_nr);
 192}
 193
 194/*
 195 * Remove some entries from the back of an array block.  Every value
 196 * removed will be decremented.  new_nr must be <= the current number of
 197 * entries.
 198 */
 199static void trim_ablock(struct dm_array_info *info, struct array_block *ab,
 200			unsigned new_nr)
 201{
 202	unsigned i;
 203	uint32_t nr_entries;
 204	struct dm_btree_value_type *vt = &info->value_type;
 205
 206	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
 207	BUG_ON(new_nr > le32_to_cpu(ab->nr_entries));
 208
 209	nr_entries = le32_to_cpu(ab->nr_entries);
 210	for (i = nr_entries; i > new_nr; i--)
 211		if (vt->dec)
 212			vt->dec(vt->context, element_at(info, ab, i - 1));
 213	ab->nr_entries = cpu_to_le32(new_nr);
 214}
 215
 216/*
 217 * Read locks a block, and coerces it to an array block.  The caller must
 218 * unlock 'block' when finished.
 219 */
 220static int get_ablock(struct dm_array_info *info, dm_block_t b,
 221		      struct dm_block **block, struct array_block **ab)
 222{
 223	int r;
 224
 225	r = dm_tm_read_lock(info->btree_info.tm, b, &array_validator, block);
 226	if (r)
 227		return r;
 228
 229	*ab = dm_block_data(*block);
 230	return 0;
 231}
 232
 233/*
 234 * Unlocks an array block.
 235 */
 236static void unlock_ablock(struct dm_array_info *info, struct dm_block *block)
 237{
 238	dm_tm_unlock(info->btree_info.tm, block);
 239}
 240
 241/*----------------------------------------------------------------*/
 242
 243/*
 244 * Btree manipulation.
 245 */
 246
 247/*
 248 * Looks up an array block in the btree, and then read locks it.
 249 *
 250 * index is the index of the index of the array_block, (ie. the array index
 251 * / max_entries).
 252 */
 253static int lookup_ablock(struct dm_array_info *info, dm_block_t root,
 254			 unsigned index, struct dm_block **block,
 255			 struct array_block **ab)
 256{
 257	int r;
 258	uint64_t key = index;
 259	__le64 block_le;
 260
 261	r = dm_btree_lookup(&info->btree_info, root, &key, &block_le);
 262	if (r)
 263		return r;
 264
 265	return get_ablock(info, le64_to_cpu(block_le), block, ab);
 266}
 267
 268/*
 269 * Insert an array block into the btree.  The block is _not_ unlocked.
 270 */
 271static int insert_ablock(struct dm_array_info *info, uint64_t index,
 272			 struct dm_block *block, dm_block_t *root)
 273{
 274	__le64 block_le = cpu_to_le64(dm_block_location(block));
 275
 276	__dm_bless_for_disk(block_le);
 277	return dm_btree_insert(&info->btree_info, *root, &index, &block_le, root);
 278}
 279
 280/*----------------------------------------------------------------*/
 281
 282static int __shadow_ablock(struct dm_array_info *info, dm_block_t b,
 283			   struct dm_block **block, struct array_block **ab)
 284{
 285	int inc;
 286	int r = dm_tm_shadow_block(info->btree_info.tm, b,
 287				   &array_validator, block, &inc);
 288	if (r)
 289		return r;
 290
 291	*ab = dm_block_data(*block);
 292	if (inc)
 293		inc_ablock_entries(info, *ab);
 294
 295	return 0;
 296}
 297
 298/*
 299 * The shadow op will often be a noop.  Only insert if it really
 300 * copied data.
 301 */
 302static int __reinsert_ablock(struct dm_array_info *info, unsigned index,
 303			     struct dm_block *block, dm_block_t b,
 304			     dm_block_t *root)
 305{
 306	int r = 0;
 307
 308	if (dm_block_location(block) != b) {
 309		/*
 310		 * dm_tm_shadow_block will have already decremented the old
 311		 * block, but it is still referenced by the btree.  We
 312		 * increment to stop the insert decrementing it below zero
 313		 * when overwriting the old value.
 314		 */
 315		dm_tm_inc(info->btree_info.tm, b);
 316		r = insert_ablock(info, index, block, root);
 317	}
 318
 319	return r;
 320}
 321
 322/*
 323 * Looks up an array block in the btree.  Then shadows it, and updates the
 324 * btree to point to this new shadow.  'root' is an input/output parameter
 325 * for both the current root block, and the new one.
 326 */
 327static int shadow_ablock(struct dm_array_info *info, dm_block_t *root,
 328			 unsigned index, struct dm_block **block,
 329			 struct array_block **ab)
 330{
 331	int r;
 332	uint64_t key = index;
 333	dm_block_t b;
 334	__le64 block_le;
 335
 336	r = dm_btree_lookup(&info->btree_info, *root, &key, &block_le);
 337	if (r)
 338		return r;
 339	b = le64_to_cpu(block_le);
 340
 341	r = __shadow_ablock(info, b, block, ab);
 342	if (r)
 343		return r;
 344
 345	return __reinsert_ablock(info, index, *block, b, root);
 346}
 347
 348/*
 349 * Allocate an new array block, and fill it with some values.
 350 */
 351static int insert_new_ablock(struct dm_array_info *info, size_t size_of_block,
 352			     uint32_t max_entries,
 353			     unsigned block_index, uint32_t nr,
 354			     const void *value, dm_block_t *root)
 355{
 356	int r;
 357	struct dm_block *block;
 358	struct array_block *ab;
 359
 360	r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
 361	if (r)
 362		return r;
 363
 364	fill_ablock(info, ab, value, nr);
 365	r = insert_ablock(info, block_index, block, root);
 366	unlock_ablock(info, block);
 367
 368	return r;
 369}
 370
 371static int insert_full_ablocks(struct dm_array_info *info, size_t size_of_block,
 372			       unsigned begin_block, unsigned end_block,
 373			       unsigned max_entries, const void *value,
 374			       dm_block_t *root)
 375{
 376	int r = 0;
 377
 378	for (; !r && begin_block != end_block; begin_block++)
 379		r = insert_new_ablock(info, size_of_block, max_entries, begin_block, max_entries, value, root);
 380
 381	return r;
 382}
 383
 384/*
 385 * There are a bunch of functions involved with resizing an array.  This
 386 * structure holds information that commonly needed by them.  Purely here
 387 * to reduce parameter count.
 388 */
 389struct resize {
 390	/*
 391	 * Describes the array.
 392	 */
 393	struct dm_array_info *info;
 394
 395	/*
 396	 * The current root of the array.  This gets updated.
 397	 */
 398	dm_block_t root;
 399
 400	/*
 401	 * Metadata block size.  Used to calculate the nr entries in an
 402	 * array block.
 403	 */
 404	size_t size_of_block;
 405
 406	/*
 407	 * Maximum nr entries in an array block.
 408	 */
 409	unsigned max_entries;
 410
 411	/*
 412	 * nr of completely full blocks in the array.
 413	 *
 414	 * 'old' refers to before the resize, 'new' after.
 415	 */
 416	unsigned old_nr_full_blocks, new_nr_full_blocks;
 417
 418	/*
 419	 * Number of entries in the final block.  0 iff only full blocks in
 420	 * the array.
 421	 */
 422	unsigned old_nr_entries_in_last_block, new_nr_entries_in_last_block;
 423
 424	/*
 425	 * The default value used when growing the array.
 426	 */
 427	const void *value;
 428};
 429
 430/*
 431 * Removes a consecutive set of array blocks from the btree.  The values
 432 * in block are decremented as a side effect of the btree remove.
 433 *
 434 * begin_index - the index of the first array block to remove.
 435 * end_index - the one-past-the-end value.  ie. this block is not removed.
 436 */
 437static int drop_blocks(struct resize *resize, unsigned begin_index,
 438		       unsigned end_index)
 439{
 440	int r;
 441
 442	while (begin_index != end_index) {
 443		uint64_t key = begin_index++;
 444		r = dm_btree_remove(&resize->info->btree_info, resize->root,
 445				    &key, &resize->root);
 446		if (r)
 447			return r;
 448	}
 449
 450	return 0;
 451}
 452
 453/*
 454 * Calculates how many blocks are needed for the array.
 455 */
 456static unsigned total_nr_blocks_needed(unsigned nr_full_blocks,
 457				       unsigned nr_entries_in_last_block)
 458{
 459	return nr_full_blocks + (nr_entries_in_last_block ? 1 : 0);
 460}
 461
 462/*
 463 * Shrink an array.
 464 */
 465static int shrink(struct resize *resize)
 466{
 467	int r;
 468	unsigned begin, end;
 469	struct dm_block *block;
 470	struct array_block *ab;
 471
 472	/*
 473	 * Lose some blocks from the back?
 474	 */
 475	if (resize->new_nr_full_blocks < resize->old_nr_full_blocks) {
 476		begin = total_nr_blocks_needed(resize->new_nr_full_blocks,
 477					       resize->new_nr_entries_in_last_block);
 478		end = total_nr_blocks_needed(resize->old_nr_full_blocks,
 479					     resize->old_nr_entries_in_last_block);
 480
 481		r = drop_blocks(resize, begin, end);
 482		if (r)
 483			return r;
 484	}
 485
 486	/*
 487	 * Trim the new tail block
 488	 */
 489	if (resize->new_nr_entries_in_last_block) {
 490		r = shadow_ablock(resize->info, &resize->root,
 491				  resize->new_nr_full_blocks, &block, &ab);
 492		if (r)
 493			return r;
 494
 495		trim_ablock(resize->info, ab, resize->new_nr_entries_in_last_block);
 496		unlock_ablock(resize->info, block);
 497	}
 498
 499	return 0;
 500}
 501
 502/*
 503 * Grow an array.
 504 */
 505static int grow_extend_tail_block(struct resize *resize, uint32_t new_nr_entries)
 506{
 507	int r;
 508	struct dm_block *block;
 509	struct array_block *ab;
 510
 511	r = shadow_ablock(resize->info, &resize->root,
 512			  resize->old_nr_full_blocks, &block, &ab);
 513	if (r)
 514		return r;
 515
 516	fill_ablock(resize->info, ab, resize->value, new_nr_entries);
 517	unlock_ablock(resize->info, block);
 518
 519	return r;
 520}
 521
 522static int grow_add_tail_block(struct resize *resize)
 523{
 524	return insert_new_ablock(resize->info, resize->size_of_block,
 525				 resize->max_entries,
 526				 resize->new_nr_full_blocks,
 527				 resize->new_nr_entries_in_last_block,
 528				 resize->value, &resize->root);
 529}
 530
 531static int grow_needs_more_blocks(struct resize *resize)
 532{
 533	int r;
 534	unsigned old_nr_blocks = resize->old_nr_full_blocks;
 535
 536	if (resize->old_nr_entries_in_last_block > 0) {
 537		old_nr_blocks++;
 538
 539		r = grow_extend_tail_block(resize, resize->max_entries);
 540		if (r)
 541			return r;
 542	}
 543
 544	r = insert_full_ablocks(resize->info, resize->size_of_block,
 545				old_nr_blocks,
 546				resize->new_nr_full_blocks,
 547				resize->max_entries, resize->value,
 548				&resize->root);
 549	if (r)
 550		return r;
 551
 552	if (resize->new_nr_entries_in_last_block)
 553		r = grow_add_tail_block(resize);
 554
 555	return r;
 556}
 557
 558static int grow(struct resize *resize)
 559{
 560	if (resize->new_nr_full_blocks > resize->old_nr_full_blocks)
 561		return grow_needs_more_blocks(resize);
 562
 563	else if (resize->old_nr_entries_in_last_block)
 564		return grow_extend_tail_block(resize, resize->new_nr_entries_in_last_block);
 565
 566	else
 567		return grow_add_tail_block(resize);
 568}
 569
 570/*----------------------------------------------------------------*/
 571
 572/*
 573 * These are the value_type functions for the btree elements, which point
 574 * to array blocks.
 575 */
 576static void block_inc(void *context, const void *value)
 577{
 578	__le64 block_le;
 579	struct dm_array_info *info = context;
 580
 581	memcpy(&block_le, value, sizeof(block_le));
 582	dm_tm_inc(info->btree_info.tm, le64_to_cpu(block_le));
 583}
 584
 585static void block_dec(void *context, const void *value)
 586{
 587	int r;
 588	uint64_t b;
 589	__le64 block_le;
 590	uint32_t ref_count;
 591	struct dm_block *block;
 592	struct array_block *ab;
 593	struct dm_array_info *info = context;
 594
 595	memcpy(&block_le, value, sizeof(block_le));
 596	b = le64_to_cpu(block_le);
 597
 598	r = dm_tm_ref(info->btree_info.tm, b, &ref_count);
 599	if (r) {
 600		DMERR_LIMIT("couldn't get reference count for block %llu",
 601			    (unsigned long long) b);
 602		return;
 603	}
 604
 605	if (ref_count == 1) {
 606		/*
 607		 * We're about to drop the last reference to this ablock.
 608		 * So we need to decrement the ref count of the contents.
 609		 */
 610		r = get_ablock(info, b, &block, &ab);
 611		if (r) {
 612			DMERR_LIMIT("couldn't get array block %llu",
 613				    (unsigned long long) b);
 614			return;
 615		}
 616
 617		dec_ablock_entries(info, ab);
 618		unlock_ablock(info, block);
 619	}
 620
 621	dm_tm_dec(info->btree_info.tm, b);
 622}
 623
 624static int block_equal(void *context, const void *value1, const void *value2)
 625{
 626	return !memcmp(value1, value2, sizeof(__le64));
 627}
 628
 629/*----------------------------------------------------------------*/
 630
 631void dm_array_info_init(struct dm_array_info *info,
 632			struct dm_transaction_manager *tm,
 633			struct dm_btree_value_type *vt)
 634{
 635	struct dm_btree_value_type *bvt = &info->btree_info.value_type;
 636
 637	memcpy(&info->value_type, vt, sizeof(info->value_type));
 638	info->btree_info.tm = tm;
 639	info->btree_info.levels = 1;
 640
 641	bvt->context = info;
 642	bvt->size = sizeof(__le64);
 643	bvt->inc = block_inc;
 644	bvt->dec = block_dec;
 645	bvt->equal = block_equal;
 646}
 647EXPORT_SYMBOL_GPL(dm_array_info_init);
 648
 649int dm_array_empty(struct dm_array_info *info, dm_block_t *root)
 650{
 651	return dm_btree_empty(&info->btree_info, root);
 652}
 653EXPORT_SYMBOL_GPL(dm_array_empty);
 654
 655static int array_resize(struct dm_array_info *info, dm_block_t root,
 656			uint32_t old_size, uint32_t new_size,
 657			const void *value, dm_block_t *new_root)
 658{
 659	int r;
 660	struct resize resize;
 661
 662	if (old_size == new_size) {
 663		*new_root = root;
 664		return 0;
 665	}
 666
 667	resize.info = info;
 668	resize.root = root;
 669	resize.size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
 670	resize.max_entries = calc_max_entries(info->value_type.size,
 671					      resize.size_of_block);
 672
 673	resize.old_nr_full_blocks = old_size / resize.max_entries;
 674	resize.old_nr_entries_in_last_block = old_size % resize.max_entries;
 675	resize.new_nr_full_blocks = new_size / resize.max_entries;
 676	resize.new_nr_entries_in_last_block = new_size % resize.max_entries;
 677	resize.value = value;
 678
 679	r = ((new_size > old_size) ? grow : shrink)(&resize);
 680	if (r)
 681		return r;
 682
 683	*new_root = resize.root;
 684	return 0;
 685}
 686
 687int dm_array_resize(struct dm_array_info *info, dm_block_t root,
 688		    uint32_t old_size, uint32_t new_size,
 689		    const void *value, dm_block_t *new_root)
 690		    __dm_written_to_disk(value)
 691{
 692	int r = array_resize(info, root, old_size, new_size, value, new_root);
 693	__dm_unbless_for_disk(value);
 694	return r;
 695}
 696EXPORT_SYMBOL_GPL(dm_array_resize);
 697
 698static int populate_ablock_with_values(struct dm_array_info *info, struct array_block *ab,
 699				       value_fn fn, void *context, unsigned base, unsigned new_nr)
 700{
 701	int r;
 702	unsigned i;
 703	struct dm_btree_value_type *vt = &info->value_type;
 704
 705	BUG_ON(le32_to_cpu(ab->nr_entries));
 706	BUG_ON(new_nr > le32_to_cpu(ab->max_entries));
 707
 708	for (i = 0; i < new_nr; i++) {
 709		r = fn(base + i, element_at(info, ab, i), context);
 710		if (r)
 711			return r;
 712
 713		if (vt->inc)
 714			vt->inc(vt->context, element_at(info, ab, i));
 715	}
 716
 717	ab->nr_entries = cpu_to_le32(new_nr);
 718	return 0;
 719}
 720
 721int dm_array_new(struct dm_array_info *info, dm_block_t *root,
 722		 uint32_t size, value_fn fn, void *context)
 723{
 724	int r;
 725	struct dm_block *block;
 726	struct array_block *ab;
 727	unsigned block_index, end_block, size_of_block, max_entries;
 728
 729	r = dm_array_empty(info, root);
 730	if (r)
 731		return r;
 732
 733	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
 734	max_entries = calc_max_entries(info->value_type.size, size_of_block);
 735	end_block = dm_div_up(size, max_entries);
 736
 737	for (block_index = 0; block_index != end_block; block_index++) {
 738		r = alloc_ablock(info, size_of_block, max_entries, &block, &ab);
 739		if (r)
 740			break;
 741
 742		r = populate_ablock_with_values(info, ab, fn, context,
 743						block_index * max_entries,
 744						min(max_entries, size));
 745		if (r) {
 746			unlock_ablock(info, block);
 747			break;
 748		}
 749
 750		r = insert_ablock(info, block_index, block, root);
 751		unlock_ablock(info, block);
 752		if (r)
 753			break;
 754
 755		size -= max_entries;
 756	}
 757
 758	return r;
 759}
 760EXPORT_SYMBOL_GPL(dm_array_new);
 761
 762int dm_array_del(struct dm_array_info *info, dm_block_t root)
 763{
 764	return dm_btree_del(&info->btree_info, root);
 765}
 766EXPORT_SYMBOL_GPL(dm_array_del);
 767
 768int dm_array_get_value(struct dm_array_info *info, dm_block_t root,
 769		       uint32_t index, void *value_le)
 770{
 771	int r;
 772	struct dm_block *block;
 773	struct array_block *ab;
 774	size_t size_of_block;
 775	unsigned entry, max_entries;
 776
 777	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
 778	max_entries = calc_max_entries(info->value_type.size, size_of_block);
 779
 780	r = lookup_ablock(info, root, index / max_entries, &block, &ab);
 781	if (r)
 782		return r;
 783
 784	entry = index % max_entries;
 785	if (entry >= le32_to_cpu(ab->nr_entries))
 786		r = -ENODATA;
 787	else
 788		memcpy(value_le, element_at(info, ab, entry),
 789		       info->value_type.size);
 790
 791	unlock_ablock(info, block);
 792	return r;
 793}
 794EXPORT_SYMBOL_GPL(dm_array_get_value);
 795
 796static int array_set_value(struct dm_array_info *info, dm_block_t root,
 797			   uint32_t index, const void *value, dm_block_t *new_root)
 798{
 799	int r;
 800	struct dm_block *block;
 801	struct array_block *ab;
 802	size_t size_of_block;
 803	unsigned max_entries;
 804	unsigned entry;
 805	void *old_value;
 806	struct dm_btree_value_type *vt = &info->value_type;
 807
 808	size_of_block = dm_bm_block_size(dm_tm_get_bm(info->btree_info.tm));
 809	max_entries = calc_max_entries(info->value_type.size, size_of_block);
 810
 811	r = shadow_ablock(info, &root, index / max_entries, &block, &ab);
 812	if (r)
 813		return r;
 814	*new_root = root;
 815
 816	entry = index % max_entries;
 817	if (entry >= le32_to_cpu(ab->nr_entries)) {
 818		r = -ENODATA;
 819		goto out;
 820	}
 821
 822	old_value = element_at(info, ab, entry);
 823	if (vt->dec &&
 824	    (!vt->equal || !vt->equal(vt->context, old_value, value))) {
 825		vt->dec(vt->context, old_value);
 826		if (vt->inc)
 827			vt->inc(vt->context, value);
 828	}
 829
 830	memcpy(old_value, value, info->value_type.size);
 831
 832out:
 833	unlock_ablock(info, block);
 834	return r;
 835}
 836
 837int dm_array_set_value(struct dm_array_info *info, dm_block_t root,
 838		 uint32_t index, const void *value, dm_block_t *new_root)
 839		 __dm_written_to_disk(value)
 840{
 841	int r;
 842
 843	r = array_set_value(info, root, index, value, new_root);
 844	__dm_unbless_for_disk(value);
 845	return r;
 846}
 847EXPORT_SYMBOL_GPL(dm_array_set_value);
 848
 849struct walk_info {
 850	struct dm_array_info *info;
 851	int (*fn)(void *context, uint64_t key, void *leaf);
 852	void *context;
 853};
 854
 855static int walk_ablock(void *context, uint64_t *keys, void *leaf)
 856{
 857	struct walk_info *wi = context;
 858
 859	int r;
 860	unsigned i;
 861	__le64 block_le;
 862	unsigned nr_entries, max_entries;
 863	struct dm_block *block;
 864	struct array_block *ab;
 865
 866	memcpy(&block_le, leaf, sizeof(block_le));
 867	r = get_ablock(wi->info, le64_to_cpu(block_le), &block, &ab);
 868	if (r)
 869		return r;
 870
 871	max_entries = le32_to_cpu(ab->max_entries);
 872	nr_entries = le32_to_cpu(ab->nr_entries);
 873	for (i = 0; i < nr_entries; i++) {
 874		r = wi->fn(wi->context, keys[0] * max_entries + i,
 875			   element_at(wi->info, ab, i));
 876
 877		if (r)
 878			break;
 879	}
 880
 881	unlock_ablock(wi->info, block);
 882	return r;
 883}
 884
 885int dm_array_walk(struct dm_array_info *info, dm_block_t root,
 886		  int (*fn)(void *, uint64_t key, void *leaf),
 887		  void *context)
 888{
 889	struct walk_info wi;
 890
 891	wi.info = info;
 892	wi.fn = fn;
 893	wi.context = context;
 894
 895	return dm_btree_walk(&info->btree_info, root, walk_ablock, &wi);
 896}
 897EXPORT_SYMBOL_GPL(dm_array_walk);
 898
 899/*----------------------------------------------------------------*/
 900
 901static int load_ablock(struct dm_array_cursor *c)
 902{
 903	int r;
 904	__le64 value_le;
 905	uint64_t key;
 906
 907	if (c->block)
 908		unlock_ablock(c->info, c->block);
 909
 910	c->block = NULL;
 911	c->ab = NULL;
 912	c->index = 0;
 913
 914	r = dm_btree_cursor_get_value(&c->cursor, &key, &value_le);
 915	if (r) {
 916		DMERR("dm_btree_cursor_get_value failed");
 917		dm_btree_cursor_end(&c->cursor);
 918
 919	} else {
 920		r = get_ablock(c->info, le64_to_cpu(value_le), &c->block, &c->ab);
 921		if (r) {
 922			DMERR("get_ablock failed");
 923			dm_btree_cursor_end(&c->cursor);
 924		}
 925	}
 926
 927	return r;
 928}
 929
 930int dm_array_cursor_begin(struct dm_array_info *info, dm_block_t root,
 931			  struct dm_array_cursor *c)
 932{
 933	int r;
 934
 935	memset(c, 0, sizeof(*c));
 936	c->info = info;
 937	r = dm_btree_cursor_begin(&info->btree_info, root, true, &c->cursor);
 938	if (r) {
 939		DMERR("couldn't create btree cursor");
 940		return r;
 941	}
 942
 943	return load_ablock(c);
 944}
 945EXPORT_SYMBOL_GPL(dm_array_cursor_begin);
 946
 947void dm_array_cursor_end(struct dm_array_cursor *c)
 948{
 949	if (c->block) {
 950		unlock_ablock(c->info, c->block);
 951		dm_btree_cursor_end(&c->cursor);
 952	}
 953}
 954EXPORT_SYMBOL_GPL(dm_array_cursor_end);
 955
 956int dm_array_cursor_next(struct dm_array_cursor *c)
 957{
 958	int r;
 959
 960	if (!c->block)
 961		return -ENODATA;
 962
 963	c->index++;
 964
 965	if (c->index >= le32_to_cpu(c->ab->nr_entries)) {
 966		r = dm_btree_cursor_next(&c->cursor);
 967		if (r)
 968			return r;
 969
 970		r = load_ablock(c);
 971		if (r)
 972			return r;
 973	}
 974
 975	return 0;
 976}
 977EXPORT_SYMBOL_GPL(dm_array_cursor_next);
 978
 979int dm_array_cursor_skip(struct dm_array_cursor *c, uint32_t count)
 980{
 981	int r;
 982
 983	do {
 984		uint32_t remaining = le32_to_cpu(c->ab->nr_entries) - c->index;
 985
 986		if (count < remaining) {
 987			c->index += count;
 988			return 0;
 989		}
 990
 991		count -= remaining;
 992		r = dm_array_cursor_next(c);
 993
 994	} while (!r);
 995
 996	return r;
 997}
 998EXPORT_SYMBOL_GPL(dm_array_cursor_skip);
 999
1000void dm_array_cursor_get_value(struct dm_array_cursor *c, void **value_le)
1001{
1002	*value_le = element_at(c->info, c->ab, c->index);
1003}
1004EXPORT_SYMBOL_GPL(dm_array_cursor_get_value);
1005
1006/*----------------------------------------------------------------*/