Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
  3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/slab.h>
 
 35
 36#include "mlx4_ib.h"
 37
 38static u32 convert_access(int acc)
 39{
 40	return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
 41	       (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
 42	       (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
 43	       (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
 
 44	       MLX4_PERM_LOCAL_READ;
 45}
 46
 
 
 
 
 
 
 
 
 
 47struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
 48{
 49	struct mlx4_ib_mr *mr;
 50	int err;
 51
 52	mr = kmalloc(sizeof *mr, GFP_KERNEL);
 53	if (!mr)
 54		return ERR_PTR(-ENOMEM);
 55
 56	err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
 57			    ~0ull, convert_access(acc), 0, 0, &mr->mmr);
 58	if (err)
 59		goto err_free;
 60
 61	err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
 62	if (err)
 63		goto err_mr;
 64
 65	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
 66	mr->umem = NULL;
 67
 68	return &mr->ibmr;
 69
 70err_mr:
 71	mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
 72
 73err_free:
 74	kfree(mr);
 75
 76	return ERR_PTR(err);
 77}
 78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
 80			   struct ib_umem *umem)
 81{
 82	u64 *pages;
 83	struct ib_umem_chunk *chunk;
 84	int i, j, k;
 85	int n;
 86	int len;
 87	int err = 0;
 
 
 
 
 
 
 
 88
 89	pages = (u64 *) __get_free_page(GFP_KERNEL);
 90	if (!pages)
 91		return -ENOMEM;
 92
 93	i = n = 0;
 
 94
 95	list_for_each_entry(chunk, &umem->chunk_list, list)
 96		for (j = 0; j < chunk->nmap; ++j) {
 97			len = sg_dma_len(&chunk->page_list[j]) >> mtt->page_shift;
 98			for (k = 0; k < len; ++k) {
 99				pages[i++] = sg_dma_address(&chunk->page_list[j]) +
100					umem->page_size * k;
101				/*
102				 * Be friendly to mlx4_write_mtt() and
103				 * pass it chunks of appropriate size.
104				 */
105				if (i == PAGE_SIZE / sizeof (u64)) {
106					err = mlx4_write_mtt(dev->dev, mtt, n,
107							     i, pages);
108					if (err)
109						goto out;
110					n += i;
111					i = 0;
112				}
113			}
114		}
 
 
 
 
 
 
 
 
 
 
 
 
115
116	if (i)
117		err = mlx4_write_mtt(dev->dev, mtt, n, i, pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
119out:
120	free_page((unsigned long) pages);
121	return err;
122}
123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
125				  u64 virt_addr, int access_flags,
126				  struct ib_udata *udata)
127{
128	struct mlx4_ib_dev *dev = to_mdev(pd->device);
129	struct mlx4_ib_mr *mr;
130	int shift;
131	int err;
132	int n;
133
134	mr = kmalloc(sizeof *mr, GFP_KERNEL);
135	if (!mr)
136		return ERR_PTR(-ENOMEM);
137
138	mr->umem = ib_umem_get(pd->uobject->context, start, length,
139			       access_flags, 0);
140	if (IS_ERR(mr->umem)) {
141		err = PTR_ERR(mr->umem);
142		goto err_free;
143	}
144
145	n = ib_umem_page_count(mr->umem);
146	shift = ilog2(mr->umem->page_size);
147
148	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
149			    convert_access(access_flags), n, shift, &mr->mmr);
150	if (err)
151		goto err_umem;
152
153	err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
154	if (err)
155		goto err_mr;
156
157	err = mlx4_mr_enable(dev->dev, &mr->mmr);
158	if (err)
159		goto err_mr;
160
161	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
 
 
162
163	return &mr->ibmr;
164
165err_mr:
166	mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
167
168err_umem:
169	ib_umem_release(mr->umem);
170
171err_free:
172	kfree(mr);
173
174	return ERR_PTR(err);
175}
176
177int mlx4_ib_dereg_mr(struct ib_mr *ibmr)
178{
179	struct mlx4_ib_mr *mr = to_mmr(ibmr);
 
 
 
 
 
 
 
180
181	mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
182	if (mr->umem)
183		ib_umem_release(mr->umem);
184	kfree(mr);
 
185
186	return 0;
187}
188
189struct ib_mr *mlx4_ib_alloc_fast_reg_mr(struct ib_pd *pd,
190					int max_page_list_len)
191{
192	struct mlx4_ib_dev *dev = to_mdev(pd->device);
193	struct mlx4_ib_mr *mr;
194	int err;
195
196	mr = kmalloc(sizeof *mr, GFP_KERNEL);
197	if (!mr)
198		return ERR_PTR(-ENOMEM);
199
200	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
201			    max_page_list_len, 0, &mr->mmr);
202	if (err)
203		goto err_free;
 
 
204
205	err = mlx4_mr_enable(dev->dev, &mr->mmr);
206	if (err)
207		goto err_mr;
208
209	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
210	mr->umem = NULL;
 
211
212	return &mr->ibmr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213
214err_mr:
215	mlx4_mr_free(dev->dev, &mr->mmr);
 
 
 
 
 
 
 
216
217err_free:
218	kfree(mr);
219	return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220}
221
222struct ib_fast_reg_page_list *mlx4_ib_alloc_fast_reg_page_list(struct ib_device *ibdev,
223							       int page_list_len)
224{
225	struct mlx4_ib_dev *dev = to_mdev(ibdev);
226	struct mlx4_ib_fast_reg_page_list *mfrpl;
227	int size = page_list_len * sizeof (u64);
 
 
 
 
 
 
 
 
228
229	if (page_list_len > MLX4_MAX_FAST_REG_PAGES)
230		return ERR_PTR(-EINVAL);
 
 
231
232	mfrpl = kmalloc(sizeof *mfrpl, GFP_KERNEL);
233	if (!mfrpl)
234		return ERR_PTR(-ENOMEM);
235
236	mfrpl->ibfrpl.page_list = kmalloc(size, GFP_KERNEL);
237	if (!mfrpl->ibfrpl.page_list)
238		goto err_free;
 
239
240	mfrpl->mapped_page_list = dma_alloc_coherent(&dev->dev->pdev->dev,
241						     size, &mfrpl->map,
242						     GFP_KERNEL);
243	if (!mfrpl->mapped_page_list)
244		goto err_free;
245
246	WARN_ON(mfrpl->map & 0x3f);
 
 
 
247
248	return &mfrpl->ibfrpl;
 
 
 
 
249
250err_free:
251	kfree(mfrpl->ibfrpl.page_list);
252	kfree(mfrpl);
253	return ERR_PTR(-ENOMEM);
 
254}
255
256void mlx4_ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list)
257{
258	struct mlx4_ib_dev *dev = to_mdev(page_list->device);
259	struct mlx4_ib_fast_reg_page_list *mfrpl = to_mfrpl(page_list);
260	int size = page_list->max_page_list_len * sizeof (u64);
261
262	dma_free_coherent(&dev->dev->pdev->dev, size, mfrpl->mapped_page_list,
263			  mfrpl->map);
264	kfree(mfrpl->ibfrpl.page_list);
265	kfree(mfrpl);
 
 
 
 
 
 
266}
267
268struct ib_fmr *mlx4_ib_fmr_alloc(struct ib_pd *pd, int acc,
269				 struct ib_fmr_attr *fmr_attr)
270{
271	struct mlx4_ib_dev *dev = to_mdev(pd->device);
272	struct mlx4_ib_fmr *fmr;
273	int err = -ENOMEM;
274
275	fmr = kmalloc(sizeof *fmr, GFP_KERNEL);
276	if (!fmr)
277		return ERR_PTR(-ENOMEM);
278
279	err = mlx4_fmr_alloc(dev->dev, to_mpd(pd)->pdn, convert_access(acc),
280			     fmr_attr->max_pages, fmr_attr->max_maps,
281			     fmr_attr->page_shift, &fmr->mfmr);
282	if (err)
283		goto err_free;
284
285	err = mlx4_fmr_enable(to_mdev(pd->device)->dev, &fmr->mfmr);
286	if (err)
287		goto err_mr;
288
289	fmr->ibfmr.rkey = fmr->ibfmr.lkey = fmr->mfmr.mr.key;
290
291	return &fmr->ibfmr;
292
293err_mr:
294	mlx4_mr_free(to_mdev(pd->device)->dev, &fmr->mfmr.mr);
295
296err_free:
297	kfree(fmr);
298
299	return ERR_PTR(err);
300}
301
302int mlx4_ib_map_phys_fmr(struct ib_fmr *ibfmr, u64 *page_list,
303		      int npages, u64 iova)
304{
305	struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
306	struct mlx4_ib_dev *dev = to_mdev(ifmr->ibfmr.device);
307
308	return mlx4_map_phys_fmr(dev->dev, &ifmr->mfmr, page_list, npages, iova,
309				 &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
 
 
310}
311
312int mlx4_ib_unmap_fmr(struct list_head *fmr_list)
 
313{
314	struct ib_fmr *ibfmr;
 
315	int err;
316	struct mlx4_dev *mdev = NULL;
317
318	list_for_each_entry(ibfmr, fmr_list, list) {
319		if (mdev && to_mdev(ibfmr->device)->dev != mdev)
320			return -EINVAL;
321		mdev = to_mdev(ibfmr->device)->dev;
322	}
323
324	if (!mdev)
325		return 0;
 
326
327	list_for_each_entry(ibfmr, fmr_list, list) {
328		struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
 
329
330		mlx4_fmr_unmap(mdev, &ifmr->mfmr, &ifmr->ibfmr.lkey, &ifmr->ibfmr.rkey);
331	}
 
 
332
333	/*
334	 * Make sure all MPT status updates are visible before issuing
335	 * SYNC_TPT firmware command.
336	 */
337	wmb();
338
339	err = mlx4_SYNC_TPT(mdev);
 
340	if (err)
341		printk(KERN_WARNING "mlx4_ib: SYNC_TPT error %d when "
342		       "unmapping FMRs\n", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
343
344	return 0;
345}
346
347int mlx4_ib_fmr_dealloc(struct ib_fmr *ibfmr)
 
348{
349	struct mlx4_ib_fmr *ifmr = to_mfmr(ibfmr);
350	struct mlx4_ib_dev *dev = to_mdev(ibfmr->device);
351	int err;
352
353	err = mlx4_fmr_free(dev->dev, &ifmr->mfmr);
354
355	if (!err)
356		kfree(ifmr);
357
358	return err;
 
 
 
 
 
359}
v5.9
  1/*
  2 * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved.
  3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/slab.h>
 35#include <rdma/ib_user_verbs.h>
 36
 37#include "mlx4_ib.h"
 38
 39static u32 convert_access(int acc)
 40{
 41	return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC       : 0) |
 42	       (acc & IB_ACCESS_REMOTE_WRITE  ? MLX4_PERM_REMOTE_WRITE : 0) |
 43	       (acc & IB_ACCESS_REMOTE_READ   ? MLX4_PERM_REMOTE_READ  : 0) |
 44	       (acc & IB_ACCESS_LOCAL_WRITE   ? MLX4_PERM_LOCAL_WRITE  : 0) |
 45	       (acc & IB_ACCESS_MW_BIND	      ? MLX4_PERM_BIND_MW      : 0) |
 46	       MLX4_PERM_LOCAL_READ;
 47}
 48
 49static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type)
 50{
 51	switch (type) {
 52	case IB_MW_TYPE_1:	return MLX4_MW_TYPE_1;
 53	case IB_MW_TYPE_2:	return MLX4_MW_TYPE_2;
 54	default:		return -1;
 55	}
 56}
 57
 58struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc)
 59{
 60	struct mlx4_ib_mr *mr;
 61	int err;
 62
 63	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
 64	if (!mr)
 65		return ERR_PTR(-ENOMEM);
 66
 67	err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0,
 68			    ~0ull, convert_access(acc), 0, 0, &mr->mmr);
 69	if (err)
 70		goto err_free;
 71
 72	err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr);
 73	if (err)
 74		goto err_mr;
 75
 76	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
 77	mr->umem = NULL;
 78
 79	return &mr->ibmr;
 80
 81err_mr:
 82	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
 83
 84err_free:
 85	kfree(mr);
 86
 87	return ERR_PTR(err);
 88}
 89
 90enum {
 91	MLX4_MAX_MTT_SHIFT = 31
 92};
 93
 94static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev,
 95					struct mlx4_mtt *mtt,
 96					u64 mtt_size, u64 mtt_shift, u64 len,
 97					u64 cur_start_addr, u64 *pages,
 98					int *start_index, int *npages)
 99{
100	u64 cur_end_addr = cur_start_addr + len;
101	u64 cur_end_addr_aligned = 0;
102	u64 mtt_entries;
103	int err = 0;
104	int k;
105
106	len += (cur_start_addr & (mtt_size - 1ULL));
107	cur_end_addr_aligned = round_up(cur_end_addr, mtt_size);
108	len += (cur_end_addr_aligned - cur_end_addr);
109	if (len & (mtt_size - 1ULL)) {
110		pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n",
111			len, mtt_size);
112		return -EINVAL;
113	}
114
115	mtt_entries = (len >> mtt_shift);
116
117	/*
118	 * Align the MTT start address to the mtt_size.
119	 * Required to handle cases when the MR starts in the middle of an MTT
120	 * record. Was not required in old code since the physical addresses
121	 * provided by the dma subsystem were page aligned, which was also the
122	 * MTT size.
123	 */
124	cur_start_addr = round_down(cur_start_addr, mtt_size);
125	/* A new block is started ... */
126	for (k = 0; k < mtt_entries; ++k) {
127		pages[*npages] = cur_start_addr + (mtt_size * k);
128		(*npages)++;
129		/*
130		 * Be friendly to mlx4_write_mtt() and pass it chunks of
131		 * appropriate size.
132		 */
133		if (*npages == PAGE_SIZE / sizeof(u64)) {
134			err = mlx4_write_mtt(dev->dev, mtt, *start_index,
135					     *npages, pages);
136			if (err)
137				return err;
138
139			(*start_index) += *npages;
140			*npages = 0;
141		}
142	}
143
144	return 0;
145}
146
147static inline u64 alignment_of(u64 ptr)
148{
149	return ilog2(ptr & (~(ptr - 1)));
150}
151
152static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start,
153				       u64 current_block_end,
154				       u64 block_shift)
155{
156	/* Check whether the alignment of the new block is aligned as well as
157	 * the previous block.
158	 * Block address must start with zeros till size of entity_size.
159	 */
160	if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0)
161		/*
162		 * It is not as well aligned as the previous block-reduce the
163		 * mtt size accordingly. Here we take the last right bit which
164		 * is 1.
165		 */
166		block_shift = alignment_of(next_block_start);
167
168	/*
169	 * Check whether the alignment of the end of previous block - is it
170	 * aligned as well as the start of the block
171	 */
172	if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0)
173		/*
174		 * It is not as well aligned as the start of the block -
175		 * reduce the mtt size accordingly.
176		 */
177		block_shift = alignment_of(current_block_end);
178
179	return block_shift;
180}
181
182int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt,
183			   struct ib_umem *umem)
184{
185	u64 *pages;
186	u64 len = 0;
 
 
 
187	int err = 0;
188	u64 mtt_size;
189	u64 cur_start_addr = 0;
190	u64 mtt_shift;
191	int start_index = 0;
192	int npages = 0;
193	struct scatterlist *sg;
194	int i;
195
196	pages = (u64 *) __get_free_page(GFP_KERNEL);
197	if (!pages)
198		return -ENOMEM;
199
200	mtt_shift = mtt->page_shift;
201	mtt_size = 1ULL << mtt_shift;
202
203	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
204		if (cur_start_addr + len == sg_dma_address(sg)) {
205			/* still the same block */
206			len += sg_dma_len(sg);
207			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208		}
209		/*
210		 * A new block is started ...
211		 * If len is malaligned, write an extra mtt entry to cover the
212		 * misaligned area (round up the division)
213		 */
214		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
215						   mtt_shift, len,
216						   cur_start_addr,
217						   pages, &start_index,
218						   &npages);
219		if (err)
220			goto out;
221
222		cur_start_addr = sg_dma_address(sg);
223		len = sg_dma_len(sg);
224	}
225
226	/* Handle the last block */
227	if (len > 0) {
228		/*
229		 * If len is malaligned, write an extra mtt entry to cover
230		 * the misaligned area (round up the division)
231		 */
232		err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size,
233						   mtt_shift, len,
234						   cur_start_addr, pages,
235						   &start_index, &npages);
236		if (err)
237			goto out;
238	}
239
240	if (npages)
241		err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages);
242
243out:
244	free_page((unsigned long) pages);
245	return err;
246}
247
248/*
249 * Calculate optimal mtt size based on contiguous pages.
250 * Function will return also the number of pages that are not aligned to the
251 * calculated mtt_size to be added to total number of pages. For that we should
252 * check the first chunk length & last chunk length and if not aligned to
253 * mtt_size we should increment the non_aligned_pages number. All chunks in the
254 * middle already handled as part of mtt shift calculation for both their start
255 * & end addresses.
256 */
257int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va,
258				       int *num_of_mtts)
259{
260	u64 block_shift = MLX4_MAX_MTT_SHIFT;
261	u64 min_shift = PAGE_SHIFT;
262	u64 last_block_aligned_end = 0;
263	u64 current_block_start = 0;
264	u64 first_block_start = 0;
265	u64 current_block_len = 0;
266	u64 last_block_end = 0;
267	struct scatterlist *sg;
268	u64 current_block_end;
269	u64 misalignment_bits;
270	u64 next_block_start;
271	u64 total_len = 0;
272	int i;
273
274	for_each_sg(umem->sg_head.sgl, sg, umem->nmap, i) {
275		/*
276		 * Initialization - save the first chunk start as the
277		 * current_block_start - block means contiguous pages.
278		 */
279		if (current_block_len == 0 && current_block_start == 0) {
280			current_block_start = sg_dma_address(sg);
281			first_block_start = current_block_start;
282			/*
283			 * Find the bits that are different between the physical
284			 * address and the virtual address for the start of the
285			 * MR.
286			 * umem_get aligned the start_va to a page boundary.
287			 * Therefore, we need to align the start va to the same
288			 * boundary.
289			 * misalignment_bits is needed to handle the  case of a
290			 * single memory region. In this case, the rest of the
291			 * logic will not reduce the block size.  If we use a
292			 * block size which is bigger than the alignment of the
293			 * misalignment bits, we might use the virtual page
294			 * number instead of the physical page number, resulting
295			 * in access to the wrong data.
296			 */
297			misalignment_bits =
298				(start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^
299				current_block_start;
300			block_shift = min(alignment_of(misalignment_bits),
301					  block_shift);
302		}
303
304		/*
305		 * Go over the scatter entries and check if they continue the
306		 * previous scatter entry.
307		 */
308		next_block_start = sg_dma_address(sg);
309		current_block_end = current_block_start	+ current_block_len;
310		/* If we have a split (non-contig.) between two blocks */
311		if (current_block_end != next_block_start) {
312			block_shift = mlx4_ib_umem_calc_block_mtt
313					(next_block_start,
314					 current_block_end,
315					 block_shift);
316
317			/*
318			 * If we reached the minimum shift for 4k page we stop
319			 * the loop.
320			 */
321			if (block_shift <= min_shift)
322				goto end;
323
324			/*
325			 * If not saved yet we are in first block - we save the
326			 * length of first block to calculate the
327			 * non_aligned_pages number at the end.
328			 */
329			total_len += current_block_len;
330
331			/* Start a new block */
332			current_block_start = next_block_start;
333			current_block_len = sg_dma_len(sg);
334			continue;
335		}
336		/* The scatter entry is another part of the current block,
337		 * increase the block size.
338		 * An entry in the scatter can be larger than 4k (page) as of
339		 * dma mapping which merge some blocks together.
340		 */
341		current_block_len += sg_dma_len(sg);
342	}
343
344	/* Account for the last block in the total len */
345	total_len += current_block_len;
346	/* Add to the first block the misalignment that it suffers from. */
347	total_len += (first_block_start & ((1ULL << block_shift) - 1ULL));
348	last_block_end = current_block_start + current_block_len;
349	last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift);
350	total_len += (last_block_aligned_end - last_block_end);
351
352	if (total_len & ((1ULL << block_shift) - 1ULL))
353		pr_warn("misaligned total length detected (%llu, %llu)!",
354			total_len, block_shift);
355
356	*num_of_mtts = total_len >> block_shift;
357end:
358	if (block_shift < min_shift) {
359		/*
360		 * If shift is less than the min we set a warning and return the
361		 * min shift.
362		 */
363		pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift);
364
365		block_shift = min_shift;
366	}
367	return block_shift;
368}
369
370static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start,
371					u64 length, int access_flags)
372{
373	/*
374	 * Force registering the memory as writable if the underlying pages
375	 * are writable.  This is so rereg can change the access permissions
376	 * from readable to writable without having to run through ib_umem_get
377	 * again
378	 */
379	if (!ib_access_writable(access_flags)) {
380		unsigned long untagged_start = untagged_addr(start);
381		struct vm_area_struct *vma;
382
383		mmap_read_lock(current->mm);
384		/*
385		 * FIXME: Ideally this would iterate over all the vmas that
386		 * cover the memory, but for now it requires a single vma to
387		 * entirely cover the MR to support RO mappings.
388		 */
389		vma = find_vma(current->mm, untagged_start);
390		if (vma && vma->vm_end >= untagged_start + length &&
391		    vma->vm_start <= untagged_start) {
392			if (vma->vm_flags & VM_WRITE)
393				access_flags |= IB_ACCESS_LOCAL_WRITE;
394		} else {
395			access_flags |= IB_ACCESS_LOCAL_WRITE;
396		}
397
398		mmap_read_unlock(current->mm);
399	}
400
401	return ib_umem_get(device, start, length, access_flags);
402}
403
404struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
405				  u64 virt_addr, int access_flags,
406				  struct ib_udata *udata)
407{
408	struct mlx4_ib_dev *dev = to_mdev(pd->device);
409	struct mlx4_ib_mr *mr;
410	int shift;
411	int err;
412	int n;
413
414	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
415	if (!mr)
416		return ERR_PTR(-ENOMEM);
417
418	mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags);
 
419	if (IS_ERR(mr->umem)) {
420		err = PTR_ERR(mr->umem);
421		goto err_free;
422	}
423
424	n = ib_umem_page_count(mr->umem);
425	shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n);
426
427	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length,
428			    convert_access(access_flags), n, shift, &mr->mmr);
429	if (err)
430		goto err_umem;
431
432	err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem);
433	if (err)
434		goto err_mr;
435
436	err = mlx4_mr_enable(dev->dev, &mr->mmr);
437	if (err)
438		goto err_mr;
439
440	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
441	mr->ibmr.length = length;
442	mr->ibmr.page_size = 1U << shift;
443
444	return &mr->ibmr;
445
446err_mr:
447	(void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr);
448
449err_umem:
450	ib_umem_release(mr->umem);
451
452err_free:
453	kfree(mr);
454
455	return ERR_PTR(err);
456}
457
458int mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags,
459			  u64 start, u64 length, u64 virt_addr,
460			  int mr_access_flags, struct ib_pd *pd,
461			  struct ib_udata *udata)
462{
463	struct mlx4_ib_dev *dev = to_mdev(mr->device);
464	struct mlx4_ib_mr *mmr = to_mmr(mr);
465	struct mlx4_mpt_entry *mpt_entry;
466	struct mlx4_mpt_entry **pmpt_entry = &mpt_entry;
467	int err;
468
469	/* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs,
470	 * we assume that the calls can't run concurrently. Otherwise, a
471	 * race exists.
472	 */
473	err =  mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry);
474
475	if (err)
476		return err;
477
478	if (flags & IB_MR_REREG_PD) {
479		err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry,
480					   to_mpd(pd)->pdn);
 
 
 
481
482		if (err)
483			goto release_mpt_entry;
484	}
485
486	if (flags & IB_MR_REREG_ACCESS) {
487		if (ib_access_writable(mr_access_flags) &&
488		    !mmr->umem->writable) {
489			err = -EPERM;
490			goto release_mpt_entry;
491		}
492
493		err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry,
494					       convert_access(mr_access_flags));
 
495
496		if (err)
497			goto release_mpt_entry;
498	}
499
500	if (flags & IB_MR_REREG_TRANS) {
501		int shift;
502		int n;
503
504		mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
505		ib_umem_release(mmr->umem);
506		mmr->umem = mlx4_get_umem_mr(mr->device, start, length,
507					     mr_access_flags);
508		if (IS_ERR(mmr->umem)) {
509			err = PTR_ERR(mmr->umem);
510			/* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */
511			mmr->umem = NULL;
512			goto release_mpt_entry;
513		}
514		n = ib_umem_page_count(mmr->umem);
515		shift = PAGE_SHIFT;
516
517		err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr,
518					      virt_addr, length, n, shift,
519					      *pmpt_entry);
520		if (err) {
521			ib_umem_release(mmr->umem);
522			goto release_mpt_entry;
523		}
524		mmr->mmr.iova       = virt_addr;
525		mmr->mmr.size       = length;
526
527		err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem);
528		if (err) {
529			mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr);
530			ib_umem_release(mmr->umem);
531			goto release_mpt_entry;
532		}
533	}
534
535	/* If we couldn't transfer the MR to the HCA, just remember to
536	 * return a failure. But dereg_mr will free the resources.
537	 */
538	err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry);
539	if (!err && flags & IB_MR_REREG_ACCESS)
540		mmr->mmr.access = mr_access_flags;
541
542release_mpt_entry:
543	mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry);
544
545	return err;
546}
547
548static int
549mlx4_alloc_priv_pages(struct ib_device *device,
550		      struct mlx4_ib_mr *mr,
551		      int max_pages)
552{
553	int ret;
554
555	/* Ensure that size is aligned to DMA cacheline
556	 * requirements.
557	 * max_pages is limited to MLX4_MAX_FAST_REG_PAGES
558	 * so page_map_size will never cross PAGE_SIZE.
559	 */
560	mr->page_map_size = roundup(max_pages * sizeof(u64),
561				    MLX4_MR_PAGES_ALIGN);
562
563	/* Prevent cross page boundary allocation. */
564	mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL);
565	if (!mr->pages)
566		return -ENOMEM;
567
568	mr->page_map = dma_map_single(device->dev.parent, mr->pages,
569				      mr->page_map_size, DMA_TO_DEVICE);
 
570
571	if (dma_mapping_error(device->dev.parent, mr->page_map)) {
572		ret = -ENOMEM;
573		goto err;
574	}
575
576	return 0;
 
 
 
 
577
578err:
579	free_page((unsigned long)mr->pages);
580	return ret;
581}
582
583static void
584mlx4_free_priv_pages(struct mlx4_ib_mr *mr)
585{
586	if (mr->pages) {
587		struct ib_device *device = mr->ibmr.device;
588
589		dma_unmap_single(device->dev.parent, mr->page_map,
590				 mr->page_map_size, DMA_TO_DEVICE);
591		free_page((unsigned long)mr->pages);
592		mr->pages = NULL;
593	}
594}
595
596int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
597{
598	struct mlx4_ib_mr *mr = to_mmr(ibmr);
599	int ret;
 
600
601	mlx4_free_priv_pages(mr);
602
603	ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr);
604	if (ret)
605		return ret;
606	if (mr->umem)
607		ib_umem_release(mr->umem);
608	kfree(mr);
609
610	return 0;
611}
612
613struct ib_mw *mlx4_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
614			       struct ib_udata *udata)
615{
616	struct mlx4_ib_dev *dev = to_mdev(pd->device);
617	struct mlx4_ib_mw *mw;
618	int err;
619
620	mw = kmalloc(sizeof(*mw), GFP_KERNEL);
621	if (!mw)
622		return ERR_PTR(-ENOMEM);
623
624	err = mlx4_mw_alloc(dev->dev, to_mpd(pd)->pdn,
625			    to_mlx4_type(type), &mw->mmw);
 
626	if (err)
627		goto err_free;
628
629	err = mlx4_mw_enable(dev->dev, &mw->mmw);
630	if (err)
631		goto err_mw;
632
633	mw->ibmw.rkey = mw->mmw.key;
634
635	return &mw->ibmw;
636
637err_mw:
638	mlx4_mw_free(dev->dev, &mw->mmw);
639
640err_free:
641	kfree(mw);
642
643	return ERR_PTR(err);
644}
645
646int mlx4_ib_dealloc_mw(struct ib_mw *ibmw)
 
647{
648	struct mlx4_ib_mw *mw = to_mmw(ibmw);
 
649
650	mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw);
651	kfree(mw);
652
653	return 0;
654}
655
656struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
657			       u32 max_num_sg)
658{
659	struct mlx4_ib_dev *dev = to_mdev(pd->device);
660	struct mlx4_ib_mr *mr;
661	int err;
 
 
 
 
 
 
 
662
663	if (mr_type != IB_MR_TYPE_MEM_REG ||
664	    max_num_sg > MLX4_MAX_FAST_REG_PAGES)
665		return ERR_PTR(-EINVAL);
666
667	mr = kzalloc(sizeof(*mr), GFP_KERNEL);
668	if (!mr)
669		return ERR_PTR(-ENOMEM);
670
671	err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0,
672			    max_num_sg, 0, &mr->mmr);
673	if (err)
674		goto err_free;
675
676	err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg);
677	if (err)
678		goto err_free_mr;
 
 
679
680	mr->max_pages = max_num_sg;
681	err = mlx4_mr_enable(dev->dev, &mr->mmr);
682	if (err)
683		goto err_free_pl;
684
685	mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key;
686	mr->umem = NULL;
687
688	return &mr->ibmr;
689
690err_free_pl:
691	mr->ibmr.device = pd->device;
692	mlx4_free_priv_pages(mr);
693err_free_mr:
694	(void) mlx4_mr_free(dev->dev, &mr->mmr);
695err_free:
696	kfree(mr);
697	return ERR_PTR(err);
698}
699
700static int mlx4_set_page(struct ib_mr *ibmr, u64 addr)
701{
702	struct mlx4_ib_mr *mr = to_mmr(ibmr);
703
704	if (unlikely(mr->npages == mr->max_pages))
705		return -ENOMEM;
706
707	mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT);
708
709	return 0;
710}
711
712int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
713		      unsigned int *sg_offset)
714{
715	struct mlx4_ib_mr *mr = to_mmr(ibmr);
716	int rc;
 
717
718	mr->npages = 0;
719
720	ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map,
721				   mr->page_map_size, DMA_TO_DEVICE);
722
723	rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page);
724
725	ib_dma_sync_single_for_device(ibmr->device, mr->page_map,
726				      mr->page_map_size, DMA_TO_DEVICE);
727
728	return rc;
729}