Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) 2015 Broadcom
  4 */
  5
  6/**
  7 * DOC: VC4 CRTC module
  8 *
  9 * In VC4, the Pixel Valve is what most closely corresponds to the
 10 * DRM's concept of a CRTC.  The PV generates video timings from the
 11 * encoder's clock plus its configuration.  It pulls scaled pixels from
 12 * the HVS at that timing, and feeds it to the encoder.
 13 *
 14 * However, the DRM CRTC also collects the configuration of all the
 15 * DRM planes attached to it.  As a result, the CRTC is also
 16 * responsible for writing the display list for the HVS channel that
 17 * the CRTC will use.
 18 *
 19 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 21 * image domain can feed either HDMI or the SDTV controller.  The
 22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 23 * SDTV, etc.) according to which output type is chosen in the mux.
 24 *
 25 * For power management, the pixel valve's registers are all clocked
 26 * by the AXI clock, while the timings and FIFOs make use of the
 27 * output-specific clock.  Since the encoders also directly consume
 28 * the CPRMAN clocks, and know what timings they need, they are the
 29 * ones that set the clock.
 30 */
 31
 32#include <linux/clk.h>
 33#include <linux/component.h>
 34#include <linux/of_device.h>
 35
 36#include <drm/drm_atomic.h>
 37#include <drm/drm_atomic_helper.h>
 38#include <drm/drm_atomic_uapi.h>
 39#include <drm/drm_fb_cma_helper.h>
 40#include <drm/drm_print.h>
 41#include <drm/drm_probe_helper.h>
 42#include <drm/drm_vblank.h>
 43
 44#include "vc4_drv.h"
 45#include "vc4_regs.h"
 46
 47#define HVS_FIFO_LATENCY_PIX	6
 48
 49#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
 50#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
 51
 52static const struct debugfs_reg32 crtc_regs[] = {
 53	VC4_REG32(PV_CONTROL),
 54	VC4_REG32(PV_V_CONTROL),
 55	VC4_REG32(PV_VSYNCD_EVEN),
 56	VC4_REG32(PV_HORZA),
 57	VC4_REG32(PV_HORZB),
 58	VC4_REG32(PV_VERTA),
 59	VC4_REG32(PV_VERTB),
 60	VC4_REG32(PV_VERTA_EVEN),
 61	VC4_REG32(PV_VERTB_EVEN),
 62	VC4_REG32(PV_INTEN),
 63	VC4_REG32(PV_INTSTAT),
 64	VC4_REG32(PV_STAT),
 65	VC4_REG32(PV_HACT_ACT),
 66};
 67
 68static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
 69					  bool in_vblank_irq,
 70					  int *vpos, int *hpos,
 71					  ktime_t *stime, ktime_t *etime,
 72					  const struct drm_display_mode *mode)
 73{
 74	struct drm_device *dev = crtc->dev;
 75	struct vc4_dev *vc4 = to_vc4_dev(dev);
 76	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
 77	u32 val;
 78	int fifo_lines;
 79	int vblank_lines;
 80	bool ret = false;
 81
 82	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 83
 84	/* Get optional system timestamp before query. */
 85	if (stime)
 86		*stime = ktime_get();
 87
 88	/*
 89	 * Read vertical scanline which is currently composed for our
 90	 * pixelvalve by the HVS, and also the scaler status.
 91	 */
 92	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
 93
 94	/* Get optional system timestamp after query. */
 95	if (etime)
 96		*etime = ktime_get();
 97
 98	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 99
100	/* Vertical position of hvs composed scanline. */
101	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
102	*hpos = 0;
103
104	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
105		*vpos /= 2;
106
107		/* Use hpos to correct for field offset in interlaced mode. */
108		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
109			*hpos += mode->crtc_htotal / 2;
110	}
111
112	/* This is the offset we need for translating hvs -> pv scanout pos. */
113	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
114
115	if (fifo_lines > 0)
116		ret = true;
117
118	/* HVS more than fifo_lines into frame for compositing? */
119	if (*vpos > fifo_lines) {
120		/*
121		 * We are in active scanout and can get some meaningful results
122		 * from HVS. The actual PV scanout can not trail behind more
123		 * than fifo_lines as that is the fifo's capacity. Assume that
124		 * in active scanout the HVS and PV work in lockstep wrt. HVS
125		 * refilling the fifo and PV consuming from the fifo, ie.
126		 * whenever the PV consumes and frees up a scanline in the
127		 * fifo, the HVS will immediately refill it, therefore
128		 * incrementing vpos. Therefore we choose HVS read position -
129		 * fifo size in scanlines as a estimate of the real scanout
130		 * position of the PV.
131		 */
132		*vpos -= fifo_lines + 1;
133
134		return ret;
135	}
136
137	/*
138	 * Less: This happens when we are in vblank and the HVS, after getting
139	 * the VSTART restart signal from the PV, just started refilling its
140	 * fifo with new lines from the top-most lines of the new framebuffers.
141	 * The PV does not scan out in vblank, so does not remove lines from
142	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
143	 * We can't get meaningful readings wrt. scanline position of the PV
144	 * and need to make things up in a approximative but consistent way.
145	 */
146	vblank_lines = mode->vtotal - mode->vdisplay;
147
148	if (in_vblank_irq) {
149		/*
150		 * Assume the irq handler got called close to first
151		 * line of vblank, so PV has about a full vblank
152		 * scanlines to go, and as a base timestamp use the
153		 * one taken at entry into vblank irq handler, so it
154		 * is not affected by random delays due to lock
155		 * contention on event_lock or vblank_time lock in
156		 * the core.
157		 */
158		*vpos = -vblank_lines;
159
160		if (stime)
161			*stime = vc4_crtc->t_vblank;
162		if (etime)
163			*etime = vc4_crtc->t_vblank;
164
165		/*
166		 * If the HVS fifo is not yet full then we know for certain
167		 * we are at the very beginning of vblank, as the hvs just
168		 * started refilling, and the stime and etime timestamps
169		 * truly correspond to start of vblank.
170		 *
171		 * Unfortunately there's no way to report this to upper levels
172		 * and make it more useful.
173		 */
174	} else {
175		/*
176		 * No clue where we are inside vblank. Return a vpos of zero,
177		 * which will cause calling code to just return the etime
178		 * timestamp uncorrected. At least this is no worse than the
179		 * standard fallback.
180		 */
181		*vpos = 0;
182	}
183
184	return ret;
185}
186
187void vc4_crtc_destroy(struct drm_crtc *crtc)
188{
189	drm_crtc_cleanup(crtc);
190}
191
192static u32 vc4_get_fifo_full_level(u32 format)
193{
194	static const u32 fifo_len_bytes = 64;
195
196	switch (format) {
197	case PV_CONTROL_FORMAT_DSIV_16:
198	case PV_CONTROL_FORMAT_DSIC_16:
199		return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
200	case PV_CONTROL_FORMAT_DSIV_18:
201		return fifo_len_bytes - 14;
202	case PV_CONTROL_FORMAT_24:
203	case PV_CONTROL_FORMAT_DSIV_24:
204	default:
205		return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
206	}
207}
208
209/*
210 * Returns the encoder attached to the CRTC.
211 *
212 * VC4 can only scan out to one encoder at a time, while the DRM core
213 * allows drivers to push pixels to more than one encoder from the
214 * same CRTC.
215 */
216static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
217{
218	struct drm_connector *connector;
219	struct drm_connector_list_iter conn_iter;
220
221	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
222	drm_for_each_connector_iter(connector, &conn_iter) {
223		if (connector->state->crtc == crtc) {
224			drm_connector_list_iter_end(&conn_iter);
225			return connector->encoder;
226		}
227	}
228	drm_connector_list_iter_end(&conn_iter);
229
230	return NULL;
231}
232
233static void vc4_crtc_config_pv(struct drm_crtc *crtc)
234{
235	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
236	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
237	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238	struct drm_crtc_state *state = crtc->state;
239	struct drm_display_mode *mode = &state->adjusted_mode;
240	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
241	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
242	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
243		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
244	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
245
246	/* Reset the PV fifo. */
247	CRTC_WRITE(PV_CONTROL, 0);
248	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
249	CRTC_WRITE(PV_CONTROL, 0);
250
251	CRTC_WRITE(PV_HORZA,
252		   VC4_SET_FIELD((mode->htotal -
253				  mode->hsync_end) * pixel_rep,
254				 PV_HORZA_HBP) |
255		   VC4_SET_FIELD((mode->hsync_end -
256				  mode->hsync_start) * pixel_rep,
257				 PV_HORZA_HSYNC));
258	CRTC_WRITE(PV_HORZB,
259		   VC4_SET_FIELD((mode->hsync_start -
260				  mode->hdisplay) * pixel_rep,
261				 PV_HORZB_HFP) |
262		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
263
264	CRTC_WRITE(PV_VERTA,
265		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
266				 PV_VERTA_VBP) |
267		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
268				 PV_VERTA_VSYNC));
269	CRTC_WRITE(PV_VERTB,
270		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
271				 PV_VERTB_VFP) |
272		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
273
274	if (interlace) {
275		CRTC_WRITE(PV_VERTA_EVEN,
276			   VC4_SET_FIELD(mode->crtc_vtotal -
277					 mode->crtc_vsync_end - 1,
278					 PV_VERTA_VBP) |
279			   VC4_SET_FIELD(mode->crtc_vsync_end -
280					 mode->crtc_vsync_start,
281					 PV_VERTA_VSYNC));
282		CRTC_WRITE(PV_VERTB_EVEN,
283			   VC4_SET_FIELD(mode->crtc_vsync_start -
284					 mode->crtc_vdisplay,
285					 PV_VERTB_VFP) |
286			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
287
288		/* We set up first field even mode for HDMI.  VEC's
289		 * NTSC mode would want first field odd instead, once
290		 * we support it (to do so, set ODD_FIRST and put the
291		 * delay in VSYNCD_EVEN instead).
292		 */
293		CRTC_WRITE(PV_V_CONTROL,
294			   PV_VCONTROL_CONTINUOUS |
295			   (is_dsi ? PV_VCONTROL_DSI : 0) |
296			   PV_VCONTROL_INTERLACE |
297			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
298					 PV_VCONTROL_ODD_DELAY));
299		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
300	} else {
301		CRTC_WRITE(PV_V_CONTROL,
302			   PV_VCONTROL_CONTINUOUS |
303			   (is_dsi ? PV_VCONTROL_DSI : 0));
304	}
305
306	if (is_dsi)
307		CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
308
309	CRTC_WRITE(PV_CONTROL,
310		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
311		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
312				 PV_CONTROL_FIFO_LEVEL) |
313		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
314		   PV_CONTROL_CLR_AT_START |
315		   PV_CONTROL_TRIGGER_UNDERFLOW |
316		   PV_CONTROL_WAIT_HSTART |
317		   VC4_SET_FIELD(vc4_encoder->clock_select,
318				 PV_CONTROL_CLK_SELECT) |
319		   PV_CONTROL_FIFO_CLR |
320		   PV_CONTROL_EN);
321}
322
323static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
324{
325	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
326	bool debug_dump_regs = false;
327
328	if (debug_dump_regs) {
329		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
330		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
331			 drm_crtc_index(crtc));
332		drm_print_regset32(&p, &vc4_crtc->regset);
333	}
334
335	vc4_crtc_config_pv(crtc);
336
337	vc4_hvs_mode_set_nofb(crtc);
338
339	if (debug_dump_regs) {
340		struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
341		dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
342			 drm_crtc_index(crtc));
343		drm_print_regset32(&p, &vc4_crtc->regset);
344	}
345}
346
347static void require_hvs_enabled(struct drm_device *dev)
348{
349	struct vc4_dev *vc4 = to_vc4_dev(dev);
350
351	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
352		     SCALER_DISPCTRL_ENABLE);
353}
354
355static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
356				    struct drm_crtc_state *old_state)
357{
358	struct drm_device *dev = crtc->dev;
359	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
360	int ret;
361
362	require_hvs_enabled(dev);
363
364	/* Disable vblank irq handling before crtc is disabled. */
365	drm_crtc_vblank_off(crtc);
366
367	CRTC_WRITE(PV_V_CONTROL,
368		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
369	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
370	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
371
372	vc4_hvs_atomic_disable(crtc, old_state);
373
374	/*
375	 * Make sure we issue a vblank event after disabling the CRTC if
376	 * someone was waiting it.
377	 */
378	if (crtc->state->event) {
379		unsigned long flags;
380
381		spin_lock_irqsave(&dev->event_lock, flags);
382		drm_crtc_send_vblank_event(crtc, crtc->state->event);
383		crtc->state->event = NULL;
384		spin_unlock_irqrestore(&dev->event_lock, flags);
385	}
386}
387
388static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
389				   struct drm_crtc_state *old_state)
390{
391	struct drm_device *dev = crtc->dev;
392	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
393
394	require_hvs_enabled(dev);
395
396	/* Enable vblank irq handling before crtc is started otherwise
397	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
398	 */
399	drm_crtc_vblank_on(crtc);
400
401	vc4_hvs_atomic_enable(crtc, old_state);
402
403	/* When feeding the transposer block the pixelvalve is unneeded and
404	 * should not be enabled.
405	 */
406	CRTC_WRITE(PV_V_CONTROL,
407		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
408}
409
410static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
411						const struct drm_display_mode *mode)
412{
413	/* Do not allow doublescan modes from user space */
414	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
415		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
416			      crtc->base.id);
417		return MODE_NO_DBLESCAN;
418	}
419
420	return MODE_OK;
421}
422
423void vc4_crtc_get_margins(struct drm_crtc_state *state,
424			  unsigned int *left, unsigned int *right,
425			  unsigned int *top, unsigned int *bottom)
426{
427	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
428	struct drm_connector_state *conn_state;
429	struct drm_connector *conn;
430	int i;
431
432	*left = vc4_state->margins.left;
433	*right = vc4_state->margins.right;
434	*top = vc4_state->margins.top;
435	*bottom = vc4_state->margins.bottom;
436
437	/* We have to interate over all new connector states because
438	 * vc4_crtc_get_margins() might be called before
439	 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
440	 * might be outdated.
441	 */
442	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
443		if (conn_state->crtc != state->crtc)
444			continue;
445
446		*left = conn_state->tv.margins.left;
447		*right = conn_state->tv.margins.right;
448		*top = conn_state->tv.margins.top;
449		*bottom = conn_state->tv.margins.bottom;
450		break;
451	}
452}
453
454static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
455				 struct drm_crtc_state *state)
456{
457	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
458	struct drm_connector *conn;
459	struct drm_connector_state *conn_state;
460	int ret, i;
461
462	ret = vc4_hvs_atomic_check(crtc, state);
463	if (ret)
464		return ret;
465
466	for_each_new_connector_in_state(state->state, conn, conn_state, i) {
467		if (conn_state->crtc != crtc)
468			continue;
469
470		vc4_state->margins.left = conn_state->tv.margins.left;
471		vc4_state->margins.right = conn_state->tv.margins.right;
472		vc4_state->margins.top = conn_state->tv.margins.top;
473		vc4_state->margins.bottom = conn_state->tv.margins.bottom;
474		break;
475	}
476
477	return 0;
478}
479
480static int vc4_enable_vblank(struct drm_crtc *crtc)
481{
482	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
483
484	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
485
486	return 0;
487}
488
489static void vc4_disable_vblank(struct drm_crtc *crtc)
490{
491	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
492
493	CRTC_WRITE(PV_INTEN, 0);
494}
495
496static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
497{
498	struct drm_crtc *crtc = &vc4_crtc->base;
499	struct drm_device *dev = crtc->dev;
500	struct vc4_dev *vc4 = to_vc4_dev(dev);
501	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
502	u32 chan = vc4_crtc->channel;
503	unsigned long flags;
504
505	spin_lock_irqsave(&dev->event_lock, flags);
506	if (vc4_crtc->event &&
507	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
508	     vc4_state->feed_txp)) {
509		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
510		vc4_crtc->event = NULL;
511		drm_crtc_vblank_put(crtc);
512
513		/* Wait for the page flip to unmask the underrun to ensure that
514		 * the display list was updated by the hardware. Before that
515		 * happens, the HVS will be using the previous display list with
516		 * the CRTC and encoder already reconfigured, leading to
517		 * underruns. This can be seen when reconfiguring the CRTC.
518		 */
519		vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
520	}
521	spin_unlock_irqrestore(&dev->event_lock, flags);
522}
523
524void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
525{
526	crtc->t_vblank = ktime_get();
527	drm_crtc_handle_vblank(&crtc->base);
528	vc4_crtc_handle_page_flip(crtc);
529}
530
531static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
532{
533	struct vc4_crtc *vc4_crtc = data;
534	u32 stat = CRTC_READ(PV_INTSTAT);
535	irqreturn_t ret = IRQ_NONE;
536
537	if (stat & PV_INT_VFP_START) {
538		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
539		vc4_crtc_handle_vblank(vc4_crtc);
540		ret = IRQ_HANDLED;
541	}
542
543	return ret;
544}
545
546struct vc4_async_flip_state {
547	struct drm_crtc *crtc;
548	struct drm_framebuffer *fb;
549	struct drm_framebuffer *old_fb;
550	struct drm_pending_vblank_event *event;
551
552	struct vc4_seqno_cb cb;
553};
554
555/* Called when the V3D execution for the BO being flipped to is done, so that
556 * we can actually update the plane's address to point to it.
557 */
558static void
559vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
560{
561	struct vc4_async_flip_state *flip_state =
562		container_of(cb, struct vc4_async_flip_state, cb);
563	struct drm_crtc *crtc = flip_state->crtc;
564	struct drm_device *dev = crtc->dev;
565	struct vc4_dev *vc4 = to_vc4_dev(dev);
566	struct drm_plane *plane = crtc->primary;
567
568	vc4_plane_async_set_fb(plane, flip_state->fb);
569	if (flip_state->event) {
570		unsigned long flags;
571
572		spin_lock_irqsave(&dev->event_lock, flags);
573		drm_crtc_send_vblank_event(crtc, flip_state->event);
574		spin_unlock_irqrestore(&dev->event_lock, flags);
575	}
576
577	drm_crtc_vblank_put(crtc);
578	drm_framebuffer_put(flip_state->fb);
579
580	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
581	 * when the planes are updated through the async update path.
582	 * FIXME: we should move to generic async-page-flip when it's
583	 * available, so that we can get rid of this hand-made cleanup_fb()
584	 * logic.
585	 */
586	if (flip_state->old_fb) {
587		struct drm_gem_cma_object *cma_bo;
588		struct vc4_bo *bo;
589
590		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
591		bo = to_vc4_bo(&cma_bo->base);
592		vc4_bo_dec_usecnt(bo);
593		drm_framebuffer_put(flip_state->old_fb);
594	}
595
596	kfree(flip_state);
597
598	up(&vc4->async_modeset);
599}
600
601/* Implements async (non-vblank-synced) page flips.
602 *
603 * The page flip ioctl needs to return immediately, so we grab the
604 * modeset semaphore on the pipe, and queue the address update for
605 * when V3D is done with the BO being flipped to.
606 */
607static int vc4_async_page_flip(struct drm_crtc *crtc,
608			       struct drm_framebuffer *fb,
609			       struct drm_pending_vblank_event *event,
610			       uint32_t flags)
611{
612	struct drm_device *dev = crtc->dev;
613	struct vc4_dev *vc4 = to_vc4_dev(dev);
614	struct drm_plane *plane = crtc->primary;
615	int ret = 0;
616	struct vc4_async_flip_state *flip_state;
617	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
618	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
619
620	/* Increment the BO usecnt here, so that we never end up with an
621	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
622	 * plane is later updated through the non-async path.
623	 * FIXME: we should move to generic async-page-flip when it's
624	 * available, so that we can get rid of this hand-made prepare_fb()
625	 * logic.
626	 */
627	ret = vc4_bo_inc_usecnt(bo);
628	if (ret)
629		return ret;
630
631	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
632	if (!flip_state) {
633		vc4_bo_dec_usecnt(bo);
634		return -ENOMEM;
635	}
636
637	drm_framebuffer_get(fb);
638	flip_state->fb = fb;
639	flip_state->crtc = crtc;
640	flip_state->event = event;
641
642	/* Make sure all other async modesetes have landed. */
643	ret = down_interruptible(&vc4->async_modeset);
644	if (ret) {
645		drm_framebuffer_put(fb);
646		vc4_bo_dec_usecnt(bo);
647		kfree(flip_state);
648		return ret;
649	}
650
651	/* Save the current FB before it's replaced by the new one in
652	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
653	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
654	 * it consistent.
655	 * FIXME: we should move to generic async-page-flip when it's
656	 * available, so that we can get rid of this hand-made cleanup_fb()
657	 * logic.
658	 */
659	flip_state->old_fb = plane->state->fb;
660	if (flip_state->old_fb)
661		drm_framebuffer_get(flip_state->old_fb);
662
663	WARN_ON(drm_crtc_vblank_get(crtc) != 0);
664
665	/* Immediately update the plane's legacy fb pointer, so that later
666	 * modeset prep sees the state that will be present when the semaphore
667	 * is released.
668	 */
669	drm_atomic_set_fb_for_plane(plane->state, fb);
670
671	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
672			   vc4_async_page_flip_complete);
673
674	/* Driver takes ownership of state on successful async commit. */
675	return 0;
676}
677
678int vc4_page_flip(struct drm_crtc *crtc,
679		  struct drm_framebuffer *fb,
680		  struct drm_pending_vblank_event *event,
681		  uint32_t flags,
682		  struct drm_modeset_acquire_ctx *ctx)
683{
684	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
685		return vc4_async_page_flip(crtc, fb, event, flags);
686	else
687		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
688}
689
690struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
691{
692	struct vc4_crtc_state *vc4_state, *old_vc4_state;
693
694	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
695	if (!vc4_state)
696		return NULL;
697
698	old_vc4_state = to_vc4_crtc_state(crtc->state);
699	vc4_state->feed_txp = old_vc4_state->feed_txp;
700	vc4_state->margins = old_vc4_state->margins;
701
702	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
703	return &vc4_state->base;
704}
705
706void vc4_crtc_destroy_state(struct drm_crtc *crtc,
707			    struct drm_crtc_state *state)
708{
709	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
710	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
711
712	if (drm_mm_node_allocated(&vc4_state->mm)) {
713		unsigned long flags;
714
715		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
716		drm_mm_remove_node(&vc4_state->mm);
717		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
718
719	}
720
721	drm_atomic_helper_crtc_destroy_state(crtc, state);
722}
723
724void vc4_crtc_reset(struct drm_crtc *crtc)
725{
726	if (crtc->state)
727		vc4_crtc_destroy_state(crtc, crtc->state);
728	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
729	if (crtc->state)
730		__drm_atomic_helper_crtc_reset(crtc, crtc->state);
731}
732
733static const struct drm_crtc_funcs vc4_crtc_funcs = {
734	.set_config = drm_atomic_helper_set_config,
735	.destroy = vc4_crtc_destroy,
736	.page_flip = vc4_page_flip,
737	.set_property = NULL,
738	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
739	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
740	.reset = vc4_crtc_reset,
741	.atomic_duplicate_state = vc4_crtc_duplicate_state,
742	.atomic_destroy_state = vc4_crtc_destroy_state,
743	.gamma_set = drm_atomic_helper_legacy_gamma_set,
744	.enable_vblank = vc4_enable_vblank,
745	.disable_vblank = vc4_disable_vblank,
746	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
747};
748
749static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
750	.mode_set_nofb = vc4_crtc_mode_set_nofb,
751	.mode_valid = vc4_crtc_mode_valid,
752	.atomic_check = vc4_crtc_atomic_check,
753	.atomic_flush = vc4_hvs_atomic_flush,
754	.atomic_enable = vc4_crtc_atomic_enable,
755	.atomic_disable = vc4_crtc_atomic_disable,
756	.get_scanout_position = vc4_crtc_get_scanout_position,
757};
758
759static const struct vc4_pv_data bcm2835_pv0_data = {
760	.base = {
761		.hvs_channel = 0,
762	},
763	.debugfs_name = "crtc0_regs",
764	.encoder_types = {
765		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
766		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
767	},
768};
769
770static const struct vc4_pv_data bcm2835_pv1_data = {
771	.base = {
772		.hvs_channel = 2,
773	},
774	.debugfs_name = "crtc1_regs",
775	.encoder_types = {
776		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
777		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
778	},
779};
780
781static const struct vc4_pv_data bcm2835_pv2_data = {
782	.base = {
783		.hvs_channel = 1,
784	},
785	.debugfs_name = "crtc2_regs",
786	.encoder_types = {
787		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
788		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
789	},
790};
791
792static const struct of_device_id vc4_crtc_dt_match[] = {
793	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
794	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
795	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
796	{}
797};
798
799static void vc4_set_crtc_possible_masks(struct drm_device *drm,
800					struct drm_crtc *crtc)
801{
802	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
803	const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
804	const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
805	struct drm_encoder *encoder;
806
807	drm_for_each_encoder(encoder, drm) {
808		struct vc4_encoder *vc4_encoder;
809		int i;
810
811		vc4_encoder = to_vc4_encoder(encoder);
812		for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
813			if (vc4_encoder->type == encoder_types[i]) {
814				vc4_encoder->clock_select = i;
815				encoder->possible_crtcs |= drm_crtc_mask(crtc);
816				break;
817			}
818		}
819	}
820}
821
822static void
823vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
824{
825	struct drm_device *drm = vc4_crtc->base.dev;
826	struct vc4_dev *vc4 = to_vc4_dev(drm);
827	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
828	/* Top/base are supposed to be 4-pixel aligned, but the
829	 * Raspberry Pi firmware fills the low bits (which are
830	 * presumably ignored).
831	 */
832	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
833	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
834
835	vc4_crtc->cob_size = top - base + 4;
836}
837
838int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
839		  const struct drm_crtc_funcs *crtc_funcs,
840		  const struct drm_crtc_helper_funcs *crtc_helper_funcs)
841{
842	struct drm_crtc *crtc = &vc4_crtc->base;
843	struct drm_plane *primary_plane;
844	unsigned int i;
845
846	/* For now, we create just the primary and the legacy cursor
847	 * planes.  We should be able to stack more planes on easily,
848	 * but to do that we would need to compute the bandwidth
849	 * requirement of the plane configuration, and reject ones
850	 * that will take too much.
851	 */
852	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
853	if (IS_ERR(primary_plane)) {
854		dev_err(drm->dev, "failed to construct primary plane\n");
855		return PTR_ERR(primary_plane);
856	}
857
858	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
859				  crtc_funcs, NULL);
860	drm_crtc_helper_add(crtc, crtc_helper_funcs);
861	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
862	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
863	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
864
865	/* We support CTM, but only for one CRTC at a time. It's therefore
866	 * implemented as private driver state in vc4_kms, not here.
867	 */
868	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
869	vc4_crtc_get_cob_allocation(vc4_crtc);
870
871	for (i = 0; i < crtc->gamma_size; i++) {
872		vc4_crtc->lut_r[i] = i;
873		vc4_crtc->lut_g[i] = i;
874		vc4_crtc->lut_b[i] = i;
875	}
876
877	return 0;
878}
879
880static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
881{
882	struct platform_device *pdev = to_platform_device(dev);
883	struct drm_device *drm = dev_get_drvdata(master);
884	const struct vc4_pv_data *pv_data;
885	struct vc4_crtc *vc4_crtc;
886	struct drm_crtc *crtc;
887	struct drm_plane *destroy_plane, *temp;
888	int ret;
889
890	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
891	if (!vc4_crtc)
892		return -ENOMEM;
893	crtc = &vc4_crtc->base;
894
895	pv_data = of_device_get_match_data(dev);
896	if (!pv_data)
897		return -ENODEV;
898	vc4_crtc->data = &pv_data->base;
899	vc4_crtc->pdev = pdev;
900
901	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
902	if (IS_ERR(vc4_crtc->regs))
903		return PTR_ERR(vc4_crtc->regs);
904
905	vc4_crtc->regset.base = vc4_crtc->regs;
906	vc4_crtc->regset.regs = crtc_regs;
907	vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
908
909	ret = vc4_crtc_init(drm, vc4_crtc,
910			    &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
911	if (ret)
912		return ret;
913	vc4_set_crtc_possible_masks(drm, crtc);
914
915	CRTC_WRITE(PV_INTEN, 0);
916	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
917	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
918			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
919	if (ret)
920		goto err_destroy_planes;
921
922	platform_set_drvdata(pdev, vc4_crtc);
923
924	vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
925				 &vc4_crtc->regset);
926
927	return 0;
928
929err_destroy_planes:
930	list_for_each_entry_safe(destroy_plane, temp,
931				 &drm->mode_config.plane_list, head) {
932		if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
933		    destroy_plane->funcs->destroy(destroy_plane);
934	}
935
936	return ret;
937}
938
939static void vc4_crtc_unbind(struct device *dev, struct device *master,
940			    void *data)
941{
942	struct platform_device *pdev = to_platform_device(dev);
943	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
944
945	vc4_crtc_destroy(&vc4_crtc->base);
946
947	CRTC_WRITE(PV_INTEN, 0);
948
949	platform_set_drvdata(pdev, NULL);
950}
951
952static const struct component_ops vc4_crtc_ops = {
953	.bind   = vc4_crtc_bind,
954	.unbind = vc4_crtc_unbind,
955};
956
957static int vc4_crtc_dev_probe(struct platform_device *pdev)
958{
959	return component_add(&pdev->dev, &vc4_crtc_ops);
960}
961
962static int vc4_crtc_dev_remove(struct platform_device *pdev)
963{
964	component_del(&pdev->dev, &vc4_crtc_ops);
965	return 0;
966}
967
968struct platform_driver vc4_crtc_driver = {
969	.probe = vc4_crtc_dev_probe,
970	.remove = vc4_crtc_dev_remove,
971	.driver = {
972		.name = "vc4_crtc",
973		.of_match_table = vc4_crtc_dt_match,
974	},
975};