Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
   4 *
   5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
   6 *
   7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/mutex.h>
  12#include <linux/platform_device.h>
  13#include <linux/sys_soc.h>
  14
  15#include <drm/drm_atomic.h>
  16#include <drm/drm_atomic_helper.h>
  17#include <drm/drm_bridge.h>
  18#include <drm/drm_crtc.h>
  19#include <drm/drm_device.h>
  20#include <drm/drm_fb_cma_helper.h>
  21#include <drm/drm_gem_cma_helper.h>
  22#include <drm/drm_plane_helper.h>
  23#include <drm/drm_vblank.h>
  24
  25#include "rcar_cmm.h"
  26#include "rcar_du_crtc.h"
  27#include "rcar_du_drv.h"
  28#include "rcar_du_encoder.h"
  29#include "rcar_du_kms.h"
  30#include "rcar_du_plane.h"
  31#include "rcar_du_regs.h"
  32#include "rcar_du_vsp.h"
  33#include "rcar_lvds.h"
  34
  35static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
  36{
  37	struct rcar_du_device *rcdu = rcrtc->dev;
  38
  39	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
  40}
  41
  42static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
  43{
  44	struct rcar_du_device *rcdu = rcrtc->dev;
  45
  46	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
  47}
  48
  49static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
  50{
  51	struct rcar_du_device *rcdu = rcrtc->dev;
  52
  53	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  54		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
  55}
  56
  57static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
  58{
  59	struct rcar_du_device *rcdu = rcrtc->dev;
  60
  61	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
  62		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
  63}
  64
  65void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
  66{
  67	struct rcar_du_device *rcdu = rcrtc->dev;
  68
  69	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
  70	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
  71}
  72
  73/* -----------------------------------------------------------------------------
  74 * Hardware Setup
  75 */
  76
  77struct dpll_info {
  78	unsigned int output;
  79	unsigned int fdpll;
  80	unsigned int n;
  81	unsigned int m;
  82};
  83
  84static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
  85				 struct dpll_info *dpll,
  86				 unsigned long input,
  87				 unsigned long target)
  88{
  89	unsigned long best_diff = (unsigned long)-1;
  90	unsigned long diff;
  91	unsigned int fdpll;
  92	unsigned int m;
  93	unsigned int n;
  94
  95	/*
  96	 *   fin                                 fvco        fout       fclkout
  97	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
  98	 *              +-> |  |                             |
  99	 *              |                                    |
 100	 *              +---------------- [1/N] <------------+
 101	 *
 102	 *	fclkout = fvco / P / FDPLL -- (1)
 103	 *
 104	 * fin/M = fvco/P/N
 105	 *
 106	 *	fvco = fin * P *  N / M -- (2)
 107	 *
 108	 * (1) + (2) indicates
 109	 *
 110	 *	fclkout = fin * N / M / FDPLL
 111	 *
 112	 * NOTES
 113	 *	N	: (n + 1)
 114	 *	M	: (m + 1)
 115	 *	FDPLL	: (fdpll + 1)
 116	 *	P	: 2
 117	 *	2kHz < fvco < 4096MHz
 118	 *
 119	 * To minimize the jitter,
 120	 * N : as large as possible
 121	 * M : as small as possible
 122	 */
 123	for (m = 0; m < 4; m++) {
 124		for (n = 119; n > 38; n--) {
 125			/*
 126			 * This code only runs on 64-bit architectures, the
 127			 * unsigned long type can thus be used for 64-bit
 128			 * computation. It will still compile without any
 129			 * warning on 32-bit architectures.
 130			 *
 131			 * To optimize calculations, use fout instead of fvco
 132			 * to verify the VCO frequency constraint.
 133			 */
 134			unsigned long fout = input * (n + 1) / (m + 1);
 135
 136			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
 137				continue;
 138
 139			for (fdpll = 1; fdpll < 32; fdpll++) {
 140				unsigned long output;
 141
 142				output = fout / (fdpll + 1);
 143				if (output >= 400 * 1000 * 1000)
 144					continue;
 145
 146				diff = abs((long)output - (long)target);
 147				if (best_diff > diff) {
 148					best_diff = diff;
 149					dpll->n = n;
 150					dpll->m = m;
 151					dpll->fdpll = fdpll;
 152					dpll->output = output;
 153				}
 154
 155				if (diff == 0)
 156					goto done;
 157			}
 158		}
 159	}
 160
 161done:
 162	dev_dbg(rcrtc->dev->dev,
 163		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
 164		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
 165}
 166
 167struct du_clk_params {
 168	struct clk *clk;
 169	unsigned long rate;
 170	unsigned long diff;
 171	u32 escr;
 172};
 173
 174static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
 175				 u32 escr, struct du_clk_params *params)
 176{
 177	unsigned long rate;
 178	unsigned long diff;
 179	u32 div;
 180
 181	/*
 182	 * If the target rate has already been achieved perfectly we can't do
 183	 * better.
 184	 */
 185	if (params->diff == 0)
 186		return;
 187
 188	/*
 189	 * Compute the input clock rate and internal divisor values to obtain
 190	 * the clock rate closest to the target frequency.
 191	 */
 192	rate = clk_round_rate(clk, target);
 193	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
 194	diff = abs(rate / (div + 1) - target);
 195
 196	/*
 197	 * Store the parameters if the resulting frequency is better than any
 198	 * previously calculated value.
 199	 */
 200	if (diff < params->diff) {
 201		params->clk = clk;
 202		params->rate = rate;
 203		params->diff = diff;
 204		params->escr = escr | div;
 205	}
 206}
 207
 208static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
 209	{ .soc_id = "r8a7795", .revision = "ES1.*" },
 210	{ /* sentinel */ }
 211};
 212
 213static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
 214{
 215	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
 216	struct rcar_du_device *rcdu = rcrtc->dev;
 217	unsigned long mode_clock = mode->clock * 1000;
 218	u32 dsmr;
 219	u32 escr;
 220
 221	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
 222		unsigned long target = mode_clock;
 223		struct dpll_info dpll = { 0 };
 224		unsigned long extclk;
 225		u32 dpllcr;
 226		u32 div = 0;
 227
 228		/*
 229		 * DU channels that have a display PLL can't use the internal
 230		 * system clock, and have no internal clock divider.
 231		 */
 232
 233		/*
 234		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
 235		 * We can work around them by configuring the DPLL to twice the
 236		 * desired frequency, coupled with a /2 post-divider. Restrict
 237		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
 238		 * no post-divider when a display PLL is present (as shown by
 239		 * the workaround breaking HDMI output on M3-W during testing).
 240		 */
 241		if (soc_device_match(rcar_du_r8a7795_es1)) {
 242			target *= 2;
 243			div = 1;
 244		}
 245
 246		extclk = clk_get_rate(rcrtc->extclock);
 247		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
 248
 249		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
 250		       | DPLLCR_FDPLL(dpll.fdpll)
 251		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
 252		       | DPLLCR_STBY;
 253
 254		if (rcrtc->index == 1)
 255			dpllcr |= DPLLCR_PLCS1
 256			       |  DPLLCR_INCS_DOTCLKIN1;
 257		else
 258			dpllcr |= DPLLCR_PLCS0
 259			       |  DPLLCR_INCS_DOTCLKIN0;
 260
 261		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
 262
 263		escr = ESCR_DCLKSEL_DCLKIN | div;
 264	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
 265		/*
 266		 * Use the LVDS PLL output as the dot clock when outputting to
 267		 * the LVDS encoder on an SoC that supports this clock routing
 268		 * option. We use the clock directly in that case, without any
 269		 * additional divider.
 270		 */
 271		escr = ESCR_DCLKSEL_DCLKIN;
 272	} else {
 273		struct du_clk_params params = { .diff = (unsigned long)-1 };
 274
 275		rcar_du_escr_divider(rcrtc->clock, mode_clock,
 276				     ESCR_DCLKSEL_CLKS, &params);
 277		if (rcrtc->extclock)
 278			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
 279					     ESCR_DCLKSEL_DCLKIN, &params);
 280
 281		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
 282			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
 283			params.rate);
 284
 285		clk_set_rate(params.clk, params.rate);
 286		escr = params.escr;
 287	}
 288
 289	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
 290
 291	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
 292	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
 293
 294	/* Signal polarities */
 295	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
 296	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
 297	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
 298	     | DSMR_DIPM_DISP | DSMR_CSPM;
 299	rcar_du_crtc_write(rcrtc, DSMR, dsmr);
 300
 301	/* Display timings */
 302	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
 303	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
 304					mode->hdisplay - 19);
 305	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
 306					mode->hsync_start - 1);
 307	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
 308
 309	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
 310					mode->crtc_vsync_end - 2);
 311	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
 312					mode->crtc_vsync_end +
 313					mode->crtc_vdisplay - 2);
 314	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
 315					mode->crtc_vsync_end +
 316					mode->crtc_vsync_start - 1);
 317	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
 318
 319	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
 320	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
 321}
 322
 323static unsigned int plane_zpos(struct rcar_du_plane *plane)
 324{
 325	return plane->plane.state->normalized_zpos;
 326}
 327
 328static const struct rcar_du_format_info *
 329plane_format(struct rcar_du_plane *plane)
 330{
 331	return to_rcar_plane_state(plane->plane.state)->format;
 332}
 333
 334static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
 335{
 336	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
 337	struct rcar_du_device *rcdu = rcrtc->dev;
 338	unsigned int num_planes = 0;
 339	unsigned int dptsr_planes;
 340	unsigned int hwplanes = 0;
 341	unsigned int prio = 0;
 342	unsigned int i;
 343	u32 dspr = 0;
 344
 345	for (i = 0; i < rcrtc->group->num_planes; ++i) {
 346		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
 347		unsigned int j;
 348
 349		if (plane->plane.state->crtc != &rcrtc->crtc ||
 350		    !plane->plane.state->visible)
 351			continue;
 352
 353		/* Insert the plane in the sorted planes array. */
 354		for (j = num_planes++; j > 0; --j) {
 355			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
 356				break;
 357			planes[j] = planes[j-1];
 358		}
 359
 360		planes[j] = plane;
 361		prio += plane_format(plane)->planes * 4;
 362	}
 363
 364	for (i = 0; i < num_planes; ++i) {
 365		struct rcar_du_plane *plane = planes[i];
 366		struct drm_plane_state *state = plane->plane.state;
 367		unsigned int index = to_rcar_plane_state(state)->hwindex;
 368
 369		prio -= 4;
 370		dspr |= (index + 1) << prio;
 371		hwplanes |= 1 << index;
 372
 373		if (plane_format(plane)->planes == 2) {
 374			index = (index + 1) % 8;
 375
 376			prio -= 4;
 377			dspr |= (index + 1) << prio;
 378			hwplanes |= 1 << index;
 379		}
 380	}
 381
 382	/* If VSP+DU integration is enabled the plane assignment is fixed. */
 383	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
 384		if (rcdu->info->gen < 3) {
 385			dspr = (rcrtc->index % 2) + 1;
 386			hwplanes = 1 << (rcrtc->index % 2);
 387		} else {
 388			dspr = (rcrtc->index % 2) ? 3 : 1;
 389			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
 390		}
 391	}
 392
 393	/*
 394	 * Update the planes to display timing and dot clock generator
 395	 * associations.
 396	 *
 397	 * Updating the DPTSR register requires restarting the CRTC group,
 398	 * resulting in visible flicker. To mitigate the issue only update the
 399	 * association if needed by enabled planes. Planes being disabled will
 400	 * keep their current association.
 401	 */
 402	mutex_lock(&rcrtc->group->lock);
 403
 404	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
 405		     : rcrtc->group->dptsr_planes & ~hwplanes;
 406
 407	if (dptsr_planes != rcrtc->group->dptsr_planes) {
 408		rcar_du_group_write(rcrtc->group, DPTSR,
 409				    (dptsr_planes << 16) | dptsr_planes);
 410		rcrtc->group->dptsr_planes = dptsr_planes;
 411
 412		if (rcrtc->group->used_crtcs)
 413			rcar_du_group_restart(rcrtc->group);
 414	}
 415
 416	/* Restart the group if plane sources have changed. */
 417	if (rcrtc->group->need_restart)
 418		rcar_du_group_restart(rcrtc->group);
 419
 420	mutex_unlock(&rcrtc->group->lock);
 421
 422	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
 423			    dspr);
 424}
 425
 426/* -----------------------------------------------------------------------------
 427 * Page Flip
 428 */
 429
 430void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
 431{
 432	struct drm_pending_vblank_event *event;
 433	struct drm_device *dev = rcrtc->crtc.dev;
 434	unsigned long flags;
 435
 436	spin_lock_irqsave(&dev->event_lock, flags);
 437	event = rcrtc->event;
 438	rcrtc->event = NULL;
 439	spin_unlock_irqrestore(&dev->event_lock, flags);
 440
 441	if (event == NULL)
 442		return;
 443
 444	spin_lock_irqsave(&dev->event_lock, flags);
 445	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
 446	wake_up(&rcrtc->flip_wait);
 447	spin_unlock_irqrestore(&dev->event_lock, flags);
 448
 449	drm_crtc_vblank_put(&rcrtc->crtc);
 450}
 451
 452static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
 453{
 454	struct drm_device *dev = rcrtc->crtc.dev;
 455	unsigned long flags;
 456	bool pending;
 457
 458	spin_lock_irqsave(&dev->event_lock, flags);
 459	pending = rcrtc->event != NULL;
 460	spin_unlock_irqrestore(&dev->event_lock, flags);
 461
 462	return pending;
 463}
 464
 465static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
 466{
 467	struct rcar_du_device *rcdu = rcrtc->dev;
 468
 469	if (wait_event_timeout(rcrtc->flip_wait,
 470			       !rcar_du_crtc_page_flip_pending(rcrtc),
 471			       msecs_to_jiffies(50)))
 472		return;
 473
 474	dev_warn(rcdu->dev, "page flip timeout\n");
 475
 476	rcar_du_crtc_finish_page_flip(rcrtc);
 477}
 478
 479/* -----------------------------------------------------------------------------
 480 * Color Management Module (CMM)
 481 */
 482
 483static int rcar_du_cmm_check(struct drm_crtc *crtc,
 484			     struct drm_crtc_state *state)
 485{
 486	struct drm_property_blob *drm_lut = state->gamma_lut;
 487	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 488	struct device *dev = rcrtc->dev->dev;
 489
 490	if (!drm_lut)
 491		return 0;
 492
 493	/* We only accept fully populated LUT tables. */
 494	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
 495		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
 496			drm_lut->length);
 497		return -EINVAL;
 498	}
 499
 500	return 0;
 501}
 502
 503static void rcar_du_cmm_setup(struct drm_crtc *crtc)
 504{
 505	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
 506	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 507	struct rcar_cmm_config cmm_config = {};
 508
 509	if (!rcrtc->cmm)
 510		return;
 511
 512	if (drm_lut)
 513		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
 514
 515	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
 516}
 517
 518/* -----------------------------------------------------------------------------
 519 * Start/Stop and Suspend/Resume
 520 */
 521
 522static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
 523{
 524	/* Set display off and background to black */
 525	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
 526	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
 527
 528	/* Configure display timings and output routing */
 529	rcar_du_crtc_set_display_timing(rcrtc);
 530	rcar_du_group_set_routing(rcrtc->group);
 531
 532	/* Start with all planes disabled. */
 533	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 534
 535	/* Enable the VSP compositor. */
 536	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 537		rcar_du_vsp_enable(rcrtc);
 538
 539	/* Turn vertical blanking interrupt reporting on. */
 540	drm_crtc_vblank_on(&rcrtc->crtc);
 541}
 542
 543static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
 544{
 545	int ret;
 546
 547	/*
 548	 * Guard against double-get, as the function is called from both the
 549	 * .atomic_enable() and .atomic_begin() handlers.
 550	 */
 551	if (rcrtc->initialized)
 552		return 0;
 553
 554	ret = clk_prepare_enable(rcrtc->clock);
 555	if (ret < 0)
 556		return ret;
 557
 558	ret = clk_prepare_enable(rcrtc->extclock);
 559	if (ret < 0)
 560		goto error_clock;
 561
 562	ret = rcar_du_group_get(rcrtc->group);
 563	if (ret < 0)
 564		goto error_group;
 565
 566	rcar_du_crtc_setup(rcrtc);
 567	rcrtc->initialized = true;
 568
 569	return 0;
 570
 571error_group:
 572	clk_disable_unprepare(rcrtc->extclock);
 573error_clock:
 574	clk_disable_unprepare(rcrtc->clock);
 575	return ret;
 576}
 577
 578static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
 579{
 580	rcar_du_group_put(rcrtc->group);
 581
 582	clk_disable_unprepare(rcrtc->extclock);
 583	clk_disable_unprepare(rcrtc->clock);
 584
 585	rcrtc->initialized = false;
 586}
 587
 588static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
 589{
 590	bool interlaced;
 591
 592	/*
 593	 * Select master sync mode. This enables display operation in master
 594	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
 595	 * actively driven).
 596	 */
 597	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
 598	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
 599				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
 600				   DSYSR_TVM_MASTER);
 601
 602	rcar_du_group_start_stop(rcrtc->group, true);
 603}
 604
 605static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
 606{
 607	struct rcar_du_device *rcdu = rcrtc->dev;
 608	struct drm_crtc *crtc = &rcrtc->crtc;
 609	u32 status;
 610
 611	/* Make sure vblank interrupts are enabled. */
 612	drm_crtc_vblank_get(crtc);
 613
 614	/*
 615	 * Disable planes and calculate how many vertical blanking interrupts we
 616	 * have to wait for. If a vertical blanking interrupt has been triggered
 617	 * but not processed yet, we don't know whether it occurred before or
 618	 * after the planes got disabled. We thus have to wait for two vblank
 619	 * interrupts in that case.
 620	 */
 621	spin_lock_irq(&rcrtc->vblank_lock);
 622	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
 623	status = rcar_du_crtc_read(rcrtc, DSSR);
 624	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
 625	spin_unlock_irq(&rcrtc->vblank_lock);
 626
 627	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
 628				msecs_to_jiffies(100)))
 629		dev_warn(rcdu->dev, "vertical blanking timeout\n");
 630
 631	drm_crtc_vblank_put(crtc);
 632}
 633
 634static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
 635{
 636	struct drm_crtc *crtc = &rcrtc->crtc;
 637
 638	/*
 639	 * Disable all planes and wait for the change to take effect. This is
 640	 * required as the plane enable registers are updated on vblank, and no
 641	 * vblank will occur once the CRTC is stopped. Disabling planes when
 642	 * starting the CRTC thus wouldn't be enough as it would start scanning
 643	 * out immediately from old frame buffers until the next vblank.
 644	 *
 645	 * This increases the CRTC stop delay, especially when multiple CRTCs
 646	 * are stopped in one operation as we now wait for one vblank per CRTC.
 647	 * Whether this can be improved needs to be researched.
 648	 */
 649	rcar_du_crtc_disable_planes(rcrtc);
 650
 651	/*
 652	 * Disable vertical blanking interrupt reporting. We first need to wait
 653	 * for page flip completion before stopping the CRTC as userspace
 654	 * expects page flips to eventually complete.
 655	 */
 656	rcar_du_crtc_wait_page_flip(rcrtc);
 657	drm_crtc_vblank_off(crtc);
 658
 659	/* Disable the VSP compositor. */
 660	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 661		rcar_du_vsp_disable(rcrtc);
 662
 663	if (rcrtc->cmm)
 664		rcar_cmm_disable(rcrtc->cmm);
 665
 666	/*
 667	 * Select switch sync mode. This stops display operation and configures
 668	 * the HSYNC and VSYNC signals as inputs.
 669	 *
 670	 * TODO: Find another way to stop the display for DUs that don't support
 671	 * TVM sync.
 672	 */
 673	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
 674		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
 675					   DSYSR_TVM_SWITCH);
 676
 677	rcar_du_group_start_stop(rcrtc->group, false);
 678}
 679
 680/* -----------------------------------------------------------------------------
 681 * CRTC Functions
 682 */
 683
 684static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
 685				     struct drm_crtc_state *state)
 686{
 687	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
 688	struct drm_encoder *encoder;
 689	int ret;
 690
 691	ret = rcar_du_cmm_check(crtc, state);
 692	if (ret)
 693		return ret;
 694
 695	/* Store the routes from the CRTC output to the DU outputs. */
 696	rstate->outputs = 0;
 697
 698	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
 699		struct rcar_du_encoder *renc;
 700
 701		/* Skip the writeback encoder. */
 702		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
 703			continue;
 704
 705		renc = to_rcar_encoder(encoder);
 706		rstate->outputs |= BIT(renc->output);
 707	}
 708
 709	return 0;
 710}
 711
 712static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
 713				       struct drm_crtc_state *old_state)
 714{
 715	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 716	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
 717	struct rcar_du_device *rcdu = rcrtc->dev;
 718
 719	if (rcrtc->cmm)
 720		rcar_cmm_enable(rcrtc->cmm);
 721	rcar_du_crtc_get(rcrtc);
 722
 723	/*
 724	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
 725	 * the DU channel. We need to enable its clock output explicitly if
 726	 * the LVDS output is disabled.
 727	 */
 728	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 729	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 730		struct rcar_du_encoder *encoder =
 731			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
 732		const struct drm_display_mode *mode =
 733			&crtc->state->adjusted_mode;
 734		struct drm_bridge *bridge;
 735
 736		bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
 737		rcar_lvds_clk_enable(bridge, mode->clock * 1000);
 738	}
 739
 740	rcar_du_crtc_start(rcrtc);
 741
 742	/*
 743	 * TODO: The chip manual indicates that CMM tables should be written
 744	 * after the DU channel has been activated. Investigate the impact
 745	 * of this restriction on the first displayed frame.
 746	 */
 747	rcar_du_cmm_setup(crtc);
 748}
 749
 750static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
 751					struct drm_crtc_state *old_state)
 752{
 753	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 754	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
 755	struct rcar_du_device *rcdu = rcrtc->dev;
 756
 757	rcar_du_crtc_stop(rcrtc);
 758	rcar_du_crtc_put(rcrtc);
 759
 760	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
 761	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
 762		struct rcar_du_encoder *encoder =
 763			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
 764		struct drm_bridge *bridge;
 765
 766		/*
 767		 * Disable the LVDS clock output, see
 768		 * rcar_du_crtc_atomic_enable().
 769		 */
 770		bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
 771		rcar_lvds_clk_disable(bridge);
 772	}
 773
 774	spin_lock_irq(&crtc->dev->event_lock);
 775	if (crtc->state->event) {
 776		drm_crtc_send_vblank_event(crtc, crtc->state->event);
 777		crtc->state->event = NULL;
 778	}
 779	spin_unlock_irq(&crtc->dev->event_lock);
 780}
 781
 782static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
 783				      struct drm_crtc_state *old_crtc_state)
 784{
 785	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 786
 787	WARN_ON(!crtc->state->enable);
 788
 789	/*
 790	 * If a mode set is in progress we can be called with the CRTC disabled.
 791	 * We thus need to first get and setup the CRTC in order to configure
 792	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
 793	 * kept awake until the .atomic_enable() call that will follow. The get
 794	 * operation in .atomic_enable() will in that case be a no-op, and the
 795	 * CRTC will be put later in .atomic_disable().
 796	 *
 797	 * If a mode set is not in progress the CRTC is enabled, and the
 798	 * following get call will be a no-op. There is thus no need to balance
 799	 * it in .atomic_flush() either.
 800	 */
 801	rcar_du_crtc_get(rcrtc);
 802
 803	/* If the active state changed, we let .atomic_enable handle CMM. */
 804	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
 805		rcar_du_cmm_setup(crtc);
 806
 807	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 808		rcar_du_vsp_atomic_begin(rcrtc);
 809}
 810
 811static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
 812				      struct drm_crtc_state *old_crtc_state)
 813{
 814	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 815	struct drm_device *dev = rcrtc->crtc.dev;
 816	unsigned long flags;
 817
 818	rcar_du_crtc_update_planes(rcrtc);
 819
 820	if (crtc->state->event) {
 821		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 822
 823		spin_lock_irqsave(&dev->event_lock, flags);
 824		rcrtc->event = crtc->state->event;
 825		crtc->state->event = NULL;
 826		spin_unlock_irqrestore(&dev->event_lock, flags);
 827	}
 828
 829	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
 830		rcar_du_vsp_atomic_flush(rcrtc);
 831}
 832
 833static enum drm_mode_status
 834rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
 835			const struct drm_display_mode *mode)
 836{
 837	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 838	struct rcar_du_device *rcdu = rcrtc->dev;
 839	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
 840	unsigned int vbp;
 841
 842	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
 843		return MODE_NO_INTERLACE;
 844
 845	/*
 846	 * The hardware requires a minimum combined horizontal sync and back
 847	 * porch of 20 pixels and a minimum vertical back porch of 3 lines.
 848	 */
 849	if (mode->htotal - mode->hsync_start < 20)
 850		return MODE_HBLANK_NARROW;
 851
 852	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
 853	if (vbp < 3)
 854		return MODE_VBLANK_NARROW;
 855
 856	return MODE_OK;
 857}
 858
 859static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
 860	.atomic_check = rcar_du_crtc_atomic_check,
 861	.atomic_begin = rcar_du_crtc_atomic_begin,
 862	.atomic_flush = rcar_du_crtc_atomic_flush,
 863	.atomic_enable = rcar_du_crtc_atomic_enable,
 864	.atomic_disable = rcar_du_crtc_atomic_disable,
 865	.mode_valid = rcar_du_crtc_mode_valid,
 866};
 867
 868static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
 869{
 870	struct rcar_du_device *rcdu = rcrtc->dev;
 871	const char **sources;
 872	unsigned int count;
 873	int i = -1;
 874
 875	/* CRC available only on Gen3 HW. */
 876	if (rcdu->info->gen < 3)
 877		return;
 878
 879	/* Reserve 1 for "auto" source. */
 880	count = rcrtc->vsp->num_planes + 1;
 881
 882	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
 883	if (!sources)
 884		return;
 885
 886	sources[0] = kstrdup("auto", GFP_KERNEL);
 887	if (!sources[0])
 888		goto error;
 889
 890	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
 891		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
 892		char name[16];
 893
 894		sprintf(name, "plane%u", plane->base.id);
 895		sources[i + 1] = kstrdup(name, GFP_KERNEL);
 896		if (!sources[i + 1])
 897			goto error;
 898	}
 899
 900	rcrtc->sources = sources;
 901	rcrtc->sources_count = count;
 902	return;
 903
 904error:
 905	while (i >= 0) {
 906		kfree(sources[i]);
 907		i--;
 908	}
 909	kfree(sources);
 910}
 911
 912static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
 913{
 914	unsigned int i;
 915
 916	if (!rcrtc->sources)
 917		return;
 918
 919	for (i = 0; i < rcrtc->sources_count; i++)
 920		kfree(rcrtc->sources[i]);
 921	kfree(rcrtc->sources);
 922
 923	rcrtc->sources = NULL;
 924	rcrtc->sources_count = 0;
 925}
 926
 927static struct drm_crtc_state *
 928rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
 929{
 930	struct rcar_du_crtc_state *state;
 931	struct rcar_du_crtc_state *copy;
 932
 933	if (WARN_ON(!crtc->state))
 934		return NULL;
 935
 936	state = to_rcar_crtc_state(crtc->state);
 937	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
 938	if (copy == NULL)
 939		return NULL;
 940
 941	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
 942
 943	return &copy->state;
 944}
 945
 946static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
 947					      struct drm_crtc_state *state)
 948{
 949	__drm_atomic_helper_crtc_destroy_state(state);
 950	kfree(to_rcar_crtc_state(state));
 951}
 952
 953static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
 954{
 955	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 956
 957	rcar_du_crtc_crc_cleanup(rcrtc);
 958
 959	return drm_crtc_cleanup(crtc);
 960}
 961
 962static void rcar_du_crtc_reset(struct drm_crtc *crtc)
 963{
 964	struct rcar_du_crtc_state *state;
 965
 966	if (crtc->state) {
 967		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
 968		crtc->state = NULL;
 969	}
 970
 971	state = kzalloc(sizeof(*state), GFP_KERNEL);
 972	if (state == NULL)
 973		return;
 974
 975	state->crc.source = VSP1_DU_CRC_NONE;
 976	state->crc.index = 0;
 977
 978	__drm_atomic_helper_crtc_reset(crtc, &state->state);
 979}
 980
 981static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
 982{
 983	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 984
 985	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
 986	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
 987	rcrtc->vblank_enable = true;
 988
 989	return 0;
 990}
 991
 992static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
 993{
 994	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
 995
 996	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
 997	rcrtc->vblank_enable = false;
 998}
 999
1000static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
1001					 const char *source_name,
1002					 enum vsp1_du_crc_source *source)
1003{
1004	unsigned int index;
1005	int ret;
1006
1007	/*
1008	 * Parse the source name. Supported values are "plane%u" to compute the
1009	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
1010	 * CRC on the composer (VSP) output.
1011	 */
1012
1013	if (!source_name) {
1014		*source = VSP1_DU_CRC_NONE;
1015		return 0;
1016	} else if (!strcmp(source_name, "auto")) {
1017		*source = VSP1_DU_CRC_OUTPUT;
1018		return 0;
1019	} else if (strstarts(source_name, "plane")) {
1020		unsigned int i;
1021
1022		*source = VSP1_DU_CRC_PLANE;
1023
1024		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
1025		if (ret < 0)
1026			return ret;
1027
1028		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
1029			if (index == rcrtc->vsp->planes[i].plane.base.id)
1030				return i;
1031		}
1032	}
1033
1034	return -EINVAL;
1035}
1036
1037static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
1038					  const char *source_name,
1039					  size_t *values_cnt)
1040{
1041	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1042	enum vsp1_du_crc_source source;
1043
1044	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
1045		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
1046		return -EINVAL;
1047	}
1048
1049	*values_cnt = 1;
1050	return 0;
1051}
1052
1053static const char *const *
1054rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
1055{
1056	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1057
1058	*count = rcrtc->sources_count;
1059	return rcrtc->sources;
1060}
1061
1062static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
1063				       const char *source_name)
1064{
1065	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
1066	struct drm_modeset_acquire_ctx ctx;
1067	struct drm_crtc_state *crtc_state;
1068	struct drm_atomic_state *state;
1069	enum vsp1_du_crc_source source;
1070	unsigned int index;
1071	int ret;
1072
1073	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
1074	if (ret < 0)
1075		return ret;
1076
1077	index = ret;
1078
1079	/* Perform an atomic commit to set the CRC source. */
1080	drm_modeset_acquire_init(&ctx, 0);
1081
1082	state = drm_atomic_state_alloc(crtc->dev);
1083	if (!state) {
1084		ret = -ENOMEM;
1085		goto unlock;
1086	}
1087
1088	state->acquire_ctx = &ctx;
1089
1090retry:
1091	crtc_state = drm_atomic_get_crtc_state(state, crtc);
1092	if (!IS_ERR(crtc_state)) {
1093		struct rcar_du_crtc_state *rcrtc_state;
1094
1095		rcrtc_state = to_rcar_crtc_state(crtc_state);
1096		rcrtc_state->crc.source = source;
1097		rcrtc_state->crc.index = index;
1098
1099		ret = drm_atomic_commit(state);
1100	} else {
1101		ret = PTR_ERR(crtc_state);
1102	}
1103
1104	if (ret == -EDEADLK) {
1105		drm_atomic_state_clear(state);
1106		drm_modeset_backoff(&ctx);
1107		goto retry;
1108	}
1109
1110	drm_atomic_state_put(state);
1111
1112unlock:
1113	drm_modeset_drop_locks(&ctx);
1114	drm_modeset_acquire_fini(&ctx);
1115
1116	return ret;
1117}
1118
1119static const struct drm_crtc_funcs crtc_funcs_gen2 = {
1120	.reset = rcar_du_crtc_reset,
1121	.destroy = drm_crtc_cleanup,
1122	.set_config = drm_atomic_helper_set_config,
1123	.page_flip = drm_atomic_helper_page_flip,
1124	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1125	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1126	.enable_vblank = rcar_du_crtc_enable_vblank,
1127	.disable_vblank = rcar_du_crtc_disable_vblank,
1128};
1129
1130static const struct drm_crtc_funcs crtc_funcs_gen3 = {
1131	.reset = rcar_du_crtc_reset,
1132	.destroy = rcar_du_crtc_cleanup,
1133	.set_config = drm_atomic_helper_set_config,
1134	.page_flip = drm_atomic_helper_page_flip,
1135	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
1136	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
1137	.enable_vblank = rcar_du_crtc_enable_vblank,
1138	.disable_vblank = rcar_du_crtc_disable_vblank,
1139	.set_crc_source = rcar_du_crtc_set_crc_source,
1140	.verify_crc_source = rcar_du_crtc_verify_crc_source,
1141	.get_crc_sources = rcar_du_crtc_get_crc_sources,
1142	.gamma_set = drm_atomic_helper_legacy_gamma_set,
1143};
1144
1145/* -----------------------------------------------------------------------------
1146 * Interrupt Handling
1147 */
1148
1149static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
1150{
1151	struct rcar_du_crtc *rcrtc = arg;
1152	struct rcar_du_device *rcdu = rcrtc->dev;
1153	irqreturn_t ret = IRQ_NONE;
1154	u32 status;
1155
1156	spin_lock(&rcrtc->vblank_lock);
1157
1158	status = rcar_du_crtc_read(rcrtc, DSSR);
1159	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
1160
1161	if (status & DSSR_VBK) {
1162		/*
1163		 * Wake up the vblank wait if the counter reaches 0. This must
1164		 * be protected by the vblank_lock to avoid races in
1165		 * rcar_du_crtc_disable_planes().
1166		 */
1167		if (rcrtc->vblank_count) {
1168			if (--rcrtc->vblank_count == 0)
1169				wake_up(&rcrtc->vblank_wait);
1170		}
1171	}
1172
1173	spin_unlock(&rcrtc->vblank_lock);
1174
1175	if (status & DSSR_VBK) {
1176		if (rcdu->info->gen < 3) {
1177			drm_crtc_handle_vblank(&rcrtc->crtc);
1178			rcar_du_crtc_finish_page_flip(rcrtc);
1179		}
1180
1181		ret = IRQ_HANDLED;
1182	}
1183
1184	return ret;
1185}
1186
1187/* -----------------------------------------------------------------------------
1188 * Initialization
1189 */
1190
1191int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
1192			unsigned int hwindex)
1193{
1194	static const unsigned int mmio_offsets[] = {
1195		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
1196	};
1197
1198	struct rcar_du_device *rcdu = rgrp->dev;
1199	struct platform_device *pdev = to_platform_device(rcdu->dev);
1200	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
1201	struct drm_crtc *crtc = &rcrtc->crtc;
1202	struct drm_plane *primary;
1203	unsigned int irqflags;
1204	struct clk *clk;
1205	char clk_name[9];
1206	char *name;
1207	int irq;
1208	int ret;
1209
1210	/* Get the CRTC clock and the optional external clock. */
1211	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1212		sprintf(clk_name, "du.%u", hwindex);
1213		name = clk_name;
1214	} else {
1215		name = NULL;
1216	}
1217
1218	rcrtc->clock = devm_clk_get(rcdu->dev, name);
1219	if (IS_ERR(rcrtc->clock)) {
1220		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
1221		return PTR_ERR(rcrtc->clock);
1222	}
1223
1224	sprintf(clk_name, "dclkin.%u", hwindex);
1225	clk = devm_clk_get(rcdu->dev, clk_name);
1226	if (!IS_ERR(clk)) {
1227		rcrtc->extclock = clk;
1228	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
1229		return -EPROBE_DEFER;
1230	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
1231		/*
1232		 * DU channels that have a display PLL can't use the internal
1233		 * system clock and thus require an external clock.
1234		 */
1235		ret = PTR_ERR(clk);
1236		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
1237		return ret;
1238	}
1239
1240	init_waitqueue_head(&rcrtc->flip_wait);
1241	init_waitqueue_head(&rcrtc->vblank_wait);
1242	spin_lock_init(&rcrtc->vblank_lock);
1243
1244	rcrtc->dev = rcdu;
1245	rcrtc->group = rgrp;
1246	rcrtc->mmio_offset = mmio_offsets[hwindex];
1247	rcrtc->index = hwindex;
1248	rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
1249
1250	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
1251		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
1252	else
1253		primary = &rgrp->planes[swindex % 2].plane;
1254
1255	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
1256					rcdu->info->gen <= 2 ?
1257					&crtc_funcs_gen2 : &crtc_funcs_gen3,
1258					NULL);
1259	if (ret < 0)
1260		return ret;
1261
1262	/* CMM might be disabled for this CRTC. */
1263	if (rcdu->cmms[swindex]) {
1264		rcrtc->cmm = rcdu->cmms[swindex];
1265		rgrp->cmms_mask |= BIT(hwindex % 2);
1266
1267		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
1268		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
1269	}
1270
1271	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
1272
1273	/* Register the interrupt handler. */
1274	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
1275		/* The IRQ's are associated with the CRTC (sw)index. */
1276		irq = platform_get_irq(pdev, swindex);
1277		irqflags = 0;
1278	} else {
1279		irq = platform_get_irq(pdev, 0);
1280		irqflags = IRQF_SHARED;
1281	}
1282
1283	if (irq < 0) {
1284		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
1285		return irq;
1286	}
1287
1288	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
1289			       dev_name(rcdu->dev), rcrtc);
1290	if (ret < 0) {
1291		dev_err(rcdu->dev,
1292			"failed to register IRQ for CRTC %u\n", swindex);
1293		return ret;
1294	}
1295
1296	rcar_du_crtc_crc_init(rcrtc);
1297
1298	return 0;
1299}