Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * GTT virtualization
   3 *
   4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the "Software"),
   8 * to deal in the Software without restriction, including without limitation
   9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10 * and/or sell copies of the Software, and to permit persons to whom the
  11 * Software is furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice (including the next
  14 * paragraph) shall be included in all copies or substantial portions of the
  15 * Software.
  16 *
  17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  23 * SOFTWARE.
  24 *
  25 * Authors:
  26 *    Zhi Wang <zhi.a.wang@intel.com>
  27 *    Zhenyu Wang <zhenyuw@linux.intel.com>
  28 *    Xiao Zheng <xiao.zheng@intel.com>
  29 *
  30 * Contributors:
  31 *    Min He <min.he@intel.com>
  32 *    Bing Niu <bing.niu@intel.com>
  33 *
  34 */
  35
  36#include "i915_drv.h"
  37#include "gvt.h"
  38#include "i915_pvinfo.h"
  39#include "trace.h"
  40
  41#if defined(VERBOSE_DEBUG)
  42#define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
  43#else
  44#define gvt_vdbg_mm(fmt, args...)
  45#endif
  46
  47static bool enable_out_of_sync = false;
  48static int preallocated_oos_pages = 8192;
  49
  50/*
  51 * validate a gm address and related range size,
  52 * translate it to host gm address
  53 */
  54bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
  55{
  56	if (size == 0)
  57		return vgpu_gmadr_is_valid(vgpu, addr);
  58
  59	if (vgpu_gmadr_is_aperture(vgpu, addr) &&
  60	    vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
  61		return true;
  62	else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
  63		 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
  64		return true;
  65
  66	gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
  67		     addr, size);
  68	return false;
  69}
  70
  71/* translate a guest gmadr to host gmadr */
  72int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
  73{
  74	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  75
  76	if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
  77		     "invalid guest gmadr %llx\n", g_addr))
  78		return -EACCES;
  79
  80	if (vgpu_gmadr_is_aperture(vgpu, g_addr))
  81		*h_addr = vgpu_aperture_gmadr_base(vgpu)
  82			  + (g_addr - vgpu_aperture_offset(vgpu));
  83	else
  84		*h_addr = vgpu_hidden_gmadr_base(vgpu)
  85			  + (g_addr - vgpu_hidden_offset(vgpu));
  86	return 0;
  87}
  88
  89/* translate a host gmadr to guest gmadr */
  90int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
  91{
  92	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  93
  94	if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
  95		     "invalid host gmadr %llx\n", h_addr))
  96		return -EACCES;
  97
  98	if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
  99		*g_addr = vgpu_aperture_gmadr_base(vgpu)
 100			+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
 101	else
 102		*g_addr = vgpu_hidden_gmadr_base(vgpu)
 103			+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
 104	return 0;
 105}
 106
 107int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
 108			     unsigned long *h_index)
 109{
 110	u64 h_addr;
 111	int ret;
 112
 113	ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
 114				       &h_addr);
 115	if (ret)
 116		return ret;
 117
 118	*h_index = h_addr >> I915_GTT_PAGE_SHIFT;
 119	return 0;
 120}
 121
 122int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
 123			     unsigned long *g_index)
 124{
 125	u64 g_addr;
 126	int ret;
 127
 128	ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
 129				       &g_addr);
 130	if (ret)
 131		return ret;
 132
 133	*g_index = g_addr >> I915_GTT_PAGE_SHIFT;
 134	return 0;
 135}
 136
 137#define gtt_type_is_entry(type) \
 138	(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
 139	 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
 140	 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
 141
 142#define gtt_type_is_pt(type) \
 143	(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
 144
 145#define gtt_type_is_pte_pt(type) \
 146	(type == GTT_TYPE_PPGTT_PTE_PT)
 147
 148#define gtt_type_is_root_pointer(type) \
 149	(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
 150
 151#define gtt_init_entry(e, t, p, v) do { \
 152	(e)->type = t; \
 153	(e)->pdev = p; \
 154	memcpy(&(e)->val64, &v, sizeof(v)); \
 155} while (0)
 156
 157/*
 158 * Mappings between GTT_TYPE* enumerations.
 159 * Following information can be found according to the given type:
 160 * - type of next level page table
 161 * - type of entry inside this level page table
 162 * - type of entry with PSE set
 163 *
 164 * If the given type doesn't have such a kind of information,
 165 * e.g. give a l4 root entry type, then request to get its PSE type,
 166 * give a PTE page table type, then request to get its next level page
 167 * table type, as we know l4 root entry doesn't have a PSE bit,
 168 * and a PTE page table doesn't have a next level page table type,
 169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
 170 * page table.
 171 */
 172
 173struct gtt_type_table_entry {
 174	int entry_type;
 175	int pt_type;
 176	int next_pt_type;
 177	int pse_entry_type;
 178};
 179
 180#define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
 181	[type] = { \
 182		.entry_type = e_type, \
 183		.pt_type = cpt_type, \
 184		.next_pt_type = npt_type, \
 185		.pse_entry_type = pse_type, \
 186	}
 187
 188static struct gtt_type_table_entry gtt_type_table[] = {
 189	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
 190			GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
 191			GTT_TYPE_INVALID,
 192			GTT_TYPE_PPGTT_PML4_PT,
 193			GTT_TYPE_INVALID),
 194	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
 195			GTT_TYPE_PPGTT_PML4_ENTRY,
 196			GTT_TYPE_PPGTT_PML4_PT,
 197			GTT_TYPE_PPGTT_PDP_PT,
 198			GTT_TYPE_INVALID),
 199	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
 200			GTT_TYPE_PPGTT_PML4_ENTRY,
 201			GTT_TYPE_PPGTT_PML4_PT,
 202			GTT_TYPE_PPGTT_PDP_PT,
 203			GTT_TYPE_INVALID),
 204	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
 205			GTT_TYPE_PPGTT_PDP_ENTRY,
 206			GTT_TYPE_PPGTT_PDP_PT,
 207			GTT_TYPE_PPGTT_PDE_PT,
 208			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 209	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
 210			GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
 211			GTT_TYPE_INVALID,
 212			GTT_TYPE_PPGTT_PDE_PT,
 213			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 214	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
 215			GTT_TYPE_PPGTT_PDP_ENTRY,
 216			GTT_TYPE_PPGTT_PDP_PT,
 217			GTT_TYPE_PPGTT_PDE_PT,
 218			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 219	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
 220			GTT_TYPE_PPGTT_PDE_ENTRY,
 221			GTT_TYPE_PPGTT_PDE_PT,
 222			GTT_TYPE_PPGTT_PTE_PT,
 223			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 224	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
 225			GTT_TYPE_PPGTT_PDE_ENTRY,
 226			GTT_TYPE_PPGTT_PDE_PT,
 227			GTT_TYPE_PPGTT_PTE_PT,
 228			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 229	/* We take IPS bit as 'PSE' for PTE level. */
 230	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
 231			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 232			GTT_TYPE_PPGTT_PTE_PT,
 233			GTT_TYPE_INVALID,
 234			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 235	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 236			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 237			GTT_TYPE_PPGTT_PTE_PT,
 238			GTT_TYPE_INVALID,
 239			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 240	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
 241			GTT_TYPE_PPGTT_PTE_4K_ENTRY,
 242			GTT_TYPE_PPGTT_PTE_PT,
 243			GTT_TYPE_INVALID,
 244			GTT_TYPE_PPGTT_PTE_64K_ENTRY),
 245	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
 246			GTT_TYPE_PPGTT_PDE_ENTRY,
 247			GTT_TYPE_PPGTT_PDE_PT,
 248			GTT_TYPE_INVALID,
 249			GTT_TYPE_PPGTT_PTE_2M_ENTRY),
 250	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
 251			GTT_TYPE_PPGTT_PDP_ENTRY,
 252			GTT_TYPE_PPGTT_PDP_PT,
 253			GTT_TYPE_INVALID,
 254			GTT_TYPE_PPGTT_PTE_1G_ENTRY),
 255	GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
 256			GTT_TYPE_GGTT_PTE,
 257			GTT_TYPE_INVALID,
 258			GTT_TYPE_INVALID,
 259			GTT_TYPE_INVALID),
 260};
 261
 262static inline int get_next_pt_type(int type)
 263{
 264	return gtt_type_table[type].next_pt_type;
 265}
 266
 267static inline int get_pt_type(int type)
 268{
 269	return gtt_type_table[type].pt_type;
 270}
 271
 272static inline int get_entry_type(int type)
 273{
 274	return gtt_type_table[type].entry_type;
 275}
 276
 277static inline int get_pse_type(int type)
 278{
 279	return gtt_type_table[type].pse_entry_type;
 280}
 281
 282static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
 283{
 284	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
 285
 286	return readq(addr);
 287}
 288
 289static void ggtt_invalidate(struct intel_gt *gt)
 290{
 291	mmio_hw_access_pre(gt);
 292	intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
 293	mmio_hw_access_post(gt);
 294}
 295
 296static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
 297{
 298	void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
 299
 300	writeq(pte, addr);
 301}
 302
 303static inline int gtt_get_entry64(void *pt,
 304		struct intel_gvt_gtt_entry *e,
 305		unsigned long index, bool hypervisor_access, unsigned long gpa,
 306		struct intel_vgpu *vgpu)
 307{
 308	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
 309	int ret;
 310
 311	if (WARN_ON(info->gtt_entry_size != 8))
 312		return -EINVAL;
 313
 314	if (hypervisor_access) {
 315		ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
 316				(index << info->gtt_entry_size_shift),
 317				&e->val64, 8);
 318		if (WARN_ON(ret))
 319			return ret;
 320	} else if (!pt) {
 321		e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
 322	} else {
 323		e->val64 = *((u64 *)pt + index);
 324	}
 325	return 0;
 326}
 327
 328static inline int gtt_set_entry64(void *pt,
 329		struct intel_gvt_gtt_entry *e,
 330		unsigned long index, bool hypervisor_access, unsigned long gpa,
 331		struct intel_vgpu *vgpu)
 332{
 333	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
 334	int ret;
 335
 336	if (WARN_ON(info->gtt_entry_size != 8))
 337		return -EINVAL;
 338
 339	if (hypervisor_access) {
 340		ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
 341				(index << info->gtt_entry_size_shift),
 342				&e->val64, 8);
 343		if (WARN_ON(ret))
 344			return ret;
 345	} else if (!pt) {
 346		write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
 347	} else {
 348		*((u64 *)pt + index) = e->val64;
 349	}
 350	return 0;
 351}
 352
 353#define GTT_HAW 46
 354
 355#define ADDR_1G_MASK	GENMASK_ULL(GTT_HAW - 1, 30)
 356#define ADDR_2M_MASK	GENMASK_ULL(GTT_HAW - 1, 21)
 357#define ADDR_64K_MASK	GENMASK_ULL(GTT_HAW - 1, 16)
 358#define ADDR_4K_MASK	GENMASK_ULL(GTT_HAW - 1, 12)
 359
 360#define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
 361#define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
 362
 363#define GTT_64K_PTE_STRIDE 16
 364
 365static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
 366{
 367	unsigned long pfn;
 368
 369	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
 370		pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
 371	else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
 372		pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
 373	else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
 374		pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
 375	else
 376		pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
 377	return pfn;
 378}
 379
 380static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
 381{
 382	if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
 383		e->val64 &= ~ADDR_1G_MASK;
 384		pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
 385	} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
 386		e->val64 &= ~ADDR_2M_MASK;
 387		pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
 388	} else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
 389		e->val64 &= ~ADDR_64K_MASK;
 390		pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
 391	} else {
 392		e->val64 &= ~ADDR_4K_MASK;
 393		pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
 394	}
 395
 396	e->val64 |= (pfn << PAGE_SHIFT);
 397}
 398
 399static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
 400{
 401	return !!(e->val64 & _PAGE_PSE);
 402}
 403
 404static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
 405{
 406	if (gen8_gtt_test_pse(e)) {
 407		switch (e->type) {
 408		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
 409			e->val64 &= ~_PAGE_PSE;
 410			e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
 411			break;
 412		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
 413			e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
 414			e->val64 &= ~_PAGE_PSE;
 415			break;
 416		default:
 417			WARN_ON(1);
 418		}
 419	}
 420}
 421
 422static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
 423{
 424	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
 425		return false;
 426
 427	return !!(e->val64 & GEN8_PDE_IPS_64K);
 428}
 429
 430static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
 431{
 432	if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
 433		return;
 434
 435	e->val64 &= ~GEN8_PDE_IPS_64K;
 436}
 437
 438static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
 439{
 440	/*
 441	 * i915 writes PDP root pointer registers without present bit,
 442	 * it also works, so we need to treat root pointer entry
 443	 * specifically.
 444	 */
 445	if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
 446			|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
 447		return (e->val64 != 0);
 448	else
 449		return (e->val64 & _PAGE_PRESENT);
 450}
 451
 452static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
 453{
 454	e->val64 &= ~_PAGE_PRESENT;
 455}
 456
 457static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
 458{
 459	e->val64 |= _PAGE_PRESENT;
 460}
 461
 462static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
 463{
 464	return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
 465}
 466
 467static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
 468{
 469	e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
 470}
 471
 472static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
 473{
 474	e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
 475}
 476
 477/*
 478 * Per-platform GMA routines.
 479 */
 480static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
 481{
 482	unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
 483
 484	trace_gma_index(__func__, gma, x);
 485	return x;
 486}
 487
 488#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
 489static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
 490{ \
 491	unsigned long x = (exp); \
 492	trace_gma_index(__func__, gma, x); \
 493	return x; \
 494}
 495
 496DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
 497DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
 498DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
 499DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
 500DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
 501
 502static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
 503	.get_entry = gtt_get_entry64,
 504	.set_entry = gtt_set_entry64,
 505	.clear_present = gtt_entry_clear_present,
 506	.set_present = gtt_entry_set_present,
 507	.test_present = gen8_gtt_test_present,
 508	.test_pse = gen8_gtt_test_pse,
 509	.clear_pse = gen8_gtt_clear_pse,
 510	.clear_ips = gen8_gtt_clear_ips,
 511	.test_ips = gen8_gtt_test_ips,
 512	.clear_64k_splited = gen8_gtt_clear_64k_splited,
 513	.set_64k_splited = gen8_gtt_set_64k_splited,
 514	.test_64k_splited = gen8_gtt_test_64k_splited,
 515	.get_pfn = gen8_gtt_get_pfn,
 516	.set_pfn = gen8_gtt_set_pfn,
 517};
 518
 519static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
 520	.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
 521	.gma_to_pte_index = gen8_gma_to_pte_index,
 522	.gma_to_pde_index = gen8_gma_to_pde_index,
 523	.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
 524	.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
 525	.gma_to_pml4_index = gen8_gma_to_pml4_index,
 526};
 527
 528/* Update entry type per pse and ips bit. */
 529static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
 530	struct intel_gvt_gtt_entry *entry, bool ips)
 531{
 532	switch (entry->type) {
 533	case GTT_TYPE_PPGTT_PDE_ENTRY:
 534	case GTT_TYPE_PPGTT_PDP_ENTRY:
 535		if (pte_ops->test_pse(entry))
 536			entry->type = get_pse_type(entry->type);
 537		break;
 538	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
 539		if (ips)
 540			entry->type = get_pse_type(entry->type);
 541		break;
 542	default:
 543		GEM_BUG_ON(!gtt_type_is_entry(entry->type));
 544	}
 545
 546	GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
 547}
 548
 549/*
 550 * MM helpers.
 551 */
 552static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
 553		struct intel_gvt_gtt_entry *entry, unsigned long index,
 554		bool guest)
 555{
 556	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 557
 558	GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
 559
 560	entry->type = mm->ppgtt_mm.root_entry_type;
 561	pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
 562			   mm->ppgtt_mm.shadow_pdps,
 563			   entry, index, false, 0, mm->vgpu);
 564	update_entry_type_for_real(pte_ops, entry, false);
 565}
 566
 567static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
 568		struct intel_gvt_gtt_entry *entry, unsigned long index)
 569{
 570	_ppgtt_get_root_entry(mm, entry, index, true);
 571}
 572
 573static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
 574		struct intel_gvt_gtt_entry *entry, unsigned long index)
 575{
 576	_ppgtt_get_root_entry(mm, entry, index, false);
 577}
 578
 579static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
 580		struct intel_gvt_gtt_entry *entry, unsigned long index,
 581		bool guest)
 582{
 583	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 584
 585	pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
 586			   mm->ppgtt_mm.shadow_pdps,
 587			   entry, index, false, 0, mm->vgpu);
 588}
 589
 590static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
 591		struct intel_gvt_gtt_entry *entry, unsigned long index)
 592{
 593	_ppgtt_set_root_entry(mm, entry, index, true);
 594}
 595
 596static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
 597		struct intel_gvt_gtt_entry *entry, unsigned long index)
 598{
 599	_ppgtt_set_root_entry(mm, entry, index, false);
 600}
 601
 602static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
 603		struct intel_gvt_gtt_entry *entry, unsigned long index)
 604{
 605	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 606
 607	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 608
 609	entry->type = GTT_TYPE_GGTT_PTE;
 610	pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
 611			   false, 0, mm->vgpu);
 612}
 613
 614static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
 615		struct intel_gvt_gtt_entry *entry, unsigned long index)
 616{
 617	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 618
 619	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 620
 621	pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
 622			   false, 0, mm->vgpu);
 623}
 624
 625static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
 626		struct intel_gvt_gtt_entry *entry, unsigned long index)
 627{
 628	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 629
 630	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 631
 632	pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
 633}
 634
 635static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
 636		struct intel_gvt_gtt_entry *entry, unsigned long index)
 637{
 638	struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
 639
 640	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
 641
 642	pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
 643}
 644
 645/*
 646 * PPGTT shadow page table helpers.
 647 */
 648static inline int ppgtt_spt_get_entry(
 649		struct intel_vgpu_ppgtt_spt *spt,
 650		void *page_table, int type,
 651		struct intel_gvt_gtt_entry *e, unsigned long index,
 652		bool guest)
 653{
 654	struct intel_gvt *gvt = spt->vgpu->gvt;
 655	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 656	int ret;
 657
 658	e->type = get_entry_type(type);
 659
 660	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
 661		return -EINVAL;
 662
 663	ret = ops->get_entry(page_table, e, index, guest,
 664			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
 665			spt->vgpu);
 666	if (ret)
 667		return ret;
 668
 669	update_entry_type_for_real(ops, e, guest ?
 670				   spt->guest_page.pde_ips : false);
 671
 672	gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
 673		    type, e->type, index, e->val64);
 674	return 0;
 675}
 676
 677static inline int ppgtt_spt_set_entry(
 678		struct intel_vgpu_ppgtt_spt *spt,
 679		void *page_table, int type,
 680		struct intel_gvt_gtt_entry *e, unsigned long index,
 681		bool guest)
 682{
 683	struct intel_gvt *gvt = spt->vgpu->gvt;
 684	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
 685
 686	if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
 687		return -EINVAL;
 688
 689	gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
 690		    type, e->type, index, e->val64);
 691
 692	return ops->set_entry(page_table, e, index, guest,
 693			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
 694			spt->vgpu);
 695}
 696
 697#define ppgtt_get_guest_entry(spt, e, index) \
 698	ppgtt_spt_get_entry(spt, NULL, \
 699		spt->guest_page.type, e, index, true)
 700
 701#define ppgtt_set_guest_entry(spt, e, index) \
 702	ppgtt_spt_set_entry(spt, NULL, \
 703		spt->guest_page.type, e, index, true)
 704
 705#define ppgtt_get_shadow_entry(spt, e, index) \
 706	ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
 707		spt->shadow_page.type, e, index, false)
 708
 709#define ppgtt_set_shadow_entry(spt, e, index) \
 710	ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
 711		spt->shadow_page.type, e, index, false)
 712
 713static void *alloc_spt(gfp_t gfp_mask)
 714{
 715	struct intel_vgpu_ppgtt_spt *spt;
 716
 717	spt = kzalloc(sizeof(*spt), gfp_mask);
 718	if (!spt)
 719		return NULL;
 720
 721	spt->shadow_page.page = alloc_page(gfp_mask);
 722	if (!spt->shadow_page.page) {
 723		kfree(spt);
 724		return NULL;
 725	}
 726	return spt;
 727}
 728
 729static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
 730{
 731	__free_page(spt->shadow_page.page);
 732	kfree(spt);
 733}
 734
 735static int detach_oos_page(struct intel_vgpu *vgpu,
 736		struct intel_vgpu_oos_page *oos_page);
 737
 738static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
 739{
 740	struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
 741
 742	trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
 743
 744	dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
 745		       PCI_DMA_BIDIRECTIONAL);
 746
 747	radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
 748
 749	if (spt->guest_page.gfn) {
 750		if (spt->guest_page.oos_page)
 751			detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
 752
 753		intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
 754	}
 755
 756	list_del_init(&spt->post_shadow_list);
 757	free_spt(spt);
 758}
 759
 760static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
 761{
 762	struct intel_vgpu_ppgtt_spt *spt, *spn;
 763	struct radix_tree_iter iter;
 764	LIST_HEAD(all_spt);
 765	void __rcu **slot;
 766
 767	rcu_read_lock();
 768	radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
 769		spt = radix_tree_deref_slot(slot);
 770		list_move(&spt->post_shadow_list, &all_spt);
 771	}
 772	rcu_read_unlock();
 773
 774	list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
 775		ppgtt_free_spt(spt);
 776}
 777
 778static int ppgtt_handle_guest_write_page_table_bytes(
 779		struct intel_vgpu_ppgtt_spt *spt,
 780		u64 pa, void *p_data, int bytes);
 781
 782static int ppgtt_write_protection_handler(
 783		struct intel_vgpu_page_track *page_track,
 784		u64 gpa, void *data, int bytes)
 785{
 786	struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
 787
 788	int ret;
 789
 790	if (bytes != 4 && bytes != 8)
 791		return -EINVAL;
 792
 793	ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
 794	if (ret)
 795		return ret;
 796	return ret;
 797}
 798
 799/* Find a spt by guest gfn. */
 800static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
 801		struct intel_vgpu *vgpu, unsigned long gfn)
 802{
 803	struct intel_vgpu_page_track *track;
 804
 805	track = intel_vgpu_find_page_track(vgpu, gfn);
 806	if (track && track->handler == ppgtt_write_protection_handler)
 807		return track->priv_data;
 808
 809	return NULL;
 810}
 811
 812/* Find the spt by shadow page mfn. */
 813static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
 814		struct intel_vgpu *vgpu, unsigned long mfn)
 815{
 816	return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
 817}
 818
 819static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
 820
 821/* Allocate shadow page table without guest page. */
 822static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
 823		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
 824{
 825	struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
 826	struct intel_vgpu_ppgtt_spt *spt = NULL;
 827	dma_addr_t daddr;
 828	int ret;
 829
 830retry:
 831	spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
 832	if (!spt) {
 833		if (reclaim_one_ppgtt_mm(vgpu->gvt))
 834			goto retry;
 835
 836		gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
 837		return ERR_PTR(-ENOMEM);
 838	}
 839
 840	spt->vgpu = vgpu;
 841	atomic_set(&spt->refcount, 1);
 842	INIT_LIST_HEAD(&spt->post_shadow_list);
 843
 844	/*
 845	 * Init shadow_page.
 846	 */
 847	spt->shadow_page.type = type;
 848	daddr = dma_map_page(kdev, spt->shadow_page.page,
 849			     0, 4096, PCI_DMA_BIDIRECTIONAL);
 850	if (dma_mapping_error(kdev, daddr)) {
 851		gvt_vgpu_err("fail to map dma addr\n");
 852		ret = -EINVAL;
 853		goto err_free_spt;
 854	}
 855	spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
 856	spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
 857
 858	ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
 859	if (ret)
 860		goto err_unmap_dma;
 861
 862	return spt;
 863
 864err_unmap_dma:
 865	dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
 866err_free_spt:
 867	free_spt(spt);
 868	return ERR_PTR(ret);
 869}
 870
 871/* Allocate shadow page table associated with specific gfn. */
 872static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
 873		struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
 874		unsigned long gfn, bool guest_pde_ips)
 875{
 876	struct intel_vgpu_ppgtt_spt *spt;
 877	int ret;
 878
 879	spt = ppgtt_alloc_spt(vgpu, type);
 880	if (IS_ERR(spt))
 881		return spt;
 882
 883	/*
 884	 * Init guest_page.
 885	 */
 886	ret = intel_vgpu_register_page_track(vgpu, gfn,
 887			ppgtt_write_protection_handler, spt);
 888	if (ret) {
 889		ppgtt_free_spt(spt);
 890		return ERR_PTR(ret);
 891	}
 892
 893	spt->guest_page.type = type;
 894	spt->guest_page.gfn = gfn;
 895	spt->guest_page.pde_ips = guest_pde_ips;
 896
 897	trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
 898
 899	return spt;
 900}
 901
 902#define pt_entry_size_shift(spt) \
 903	((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
 904
 905#define pt_entries(spt) \
 906	(I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
 907
 908#define for_each_present_guest_entry(spt, e, i) \
 909	for (i = 0; i < pt_entries(spt); \
 910	     i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
 911		if (!ppgtt_get_guest_entry(spt, e, i) && \
 912		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
 913
 914#define for_each_present_shadow_entry(spt, e, i) \
 915	for (i = 0; i < pt_entries(spt); \
 916	     i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
 917		if (!ppgtt_get_shadow_entry(spt, e, i) && \
 918		    spt->vgpu->gvt->gtt.pte_ops->test_present(e))
 919
 920#define for_each_shadow_entry(spt, e, i) \
 921	for (i = 0; i < pt_entries(spt); \
 922	     i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
 923		if (!ppgtt_get_shadow_entry(spt, e, i))
 924
 925static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
 926{
 927	int v = atomic_read(&spt->refcount);
 928
 929	trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
 930	atomic_inc(&spt->refcount);
 931}
 932
 933static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
 934{
 935	int v = atomic_read(&spt->refcount);
 936
 937	trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
 938	return atomic_dec_return(&spt->refcount);
 939}
 940
 941static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
 942
 943static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
 944		struct intel_gvt_gtt_entry *e)
 945{
 946	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
 947	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 948	struct intel_vgpu_ppgtt_spt *s;
 949	enum intel_gvt_gtt_type cur_pt_type;
 950
 951	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
 952
 953	if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
 954		&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
 955		cur_pt_type = get_next_pt_type(e->type);
 956
 957		if (!gtt_type_is_pt(cur_pt_type) ||
 958				!gtt_type_is_pt(cur_pt_type + 1)) {
 959			drm_WARN(&i915->drm, 1,
 960				 "Invalid page table type, cur_pt_type is: %d\n",
 961				 cur_pt_type);
 962			return -EINVAL;
 963		}
 964
 965		cur_pt_type += 1;
 966
 967		if (ops->get_pfn(e) ==
 968			vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
 969			return 0;
 970	}
 971	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
 972	if (!s) {
 973		gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
 974				ops->get_pfn(e));
 975		return -ENXIO;
 976	}
 977	return ppgtt_invalidate_spt(s);
 978}
 979
 980static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
 981		struct intel_gvt_gtt_entry *entry)
 982{
 983	struct intel_vgpu *vgpu = spt->vgpu;
 984	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
 985	unsigned long pfn;
 986	int type;
 987
 988	pfn = ops->get_pfn(entry);
 989	type = spt->shadow_page.type;
 990
 991	/* Uninitialized spte or unshadowed spte. */
 992	if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
 993		return;
 994
 995	intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
 996}
 997
 998static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
 999{
1000	struct intel_vgpu *vgpu = spt->vgpu;
1001	struct intel_gvt_gtt_entry e;
1002	unsigned long index;
1003	int ret;
1004
1005	trace_spt_change(spt->vgpu->id, "die", spt,
1006			spt->guest_page.gfn, spt->shadow_page.type);
1007
1008	if (ppgtt_put_spt(spt) > 0)
1009		return 0;
1010
1011	for_each_present_shadow_entry(spt, &e, index) {
1012		switch (e.type) {
1013		case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014			gvt_vdbg_mm("invalidate 4K entry\n");
1015			ppgtt_invalidate_pte(spt, &e);
1016			break;
1017		case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018			/* We don't setup 64K shadow entry so far. */
1019			WARN(1, "suspicious 64K gtt entry\n");
1020			continue;
1021		case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022			gvt_vdbg_mm("invalidate 2M entry\n");
1023			continue;
1024		case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025			WARN(1, "GVT doesn't support 1GB page\n");
1026			continue;
1027		case GTT_TYPE_PPGTT_PML4_ENTRY:
1028		case GTT_TYPE_PPGTT_PDP_ENTRY:
1029		case GTT_TYPE_PPGTT_PDE_ENTRY:
1030			gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031			ret = ppgtt_invalidate_spt_by_shadow_entry(
1032					spt->vgpu, &e);
1033			if (ret)
1034				goto fail;
1035			break;
1036		default:
1037			GEM_BUG_ON(1);
1038		}
1039	}
1040
1041	trace_spt_change(spt->vgpu->id, "release", spt,
1042			 spt->guest_page.gfn, spt->shadow_page.type);
1043	ppgtt_free_spt(spt);
1044	return 0;
1045fail:
1046	gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047			spt, e.val64, e.type);
1048	return ret;
1049}
1050
1051static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1052{
1053	struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1054
1055	if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1056		u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057			GAMW_ECO_ENABLE_64K_IPS_FIELD;
1058
1059		return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060	} else if (INTEL_GEN(dev_priv) >= 11) {
1061		/* 64K paging only controlled by IPS bit in PTE now. */
1062		return true;
1063	} else
1064		return false;
1065}
1066
1067static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1068
1069static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070		struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1071{
1072	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073	struct intel_vgpu_ppgtt_spt *spt = NULL;
1074	bool ips = false;
1075	int ret;
1076
1077	GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1078
1079	if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080		ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1081
1082	spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1083	if (spt) {
1084		ppgtt_get_spt(spt);
1085
1086		if (ips != spt->guest_page.pde_ips) {
1087			spt->guest_page.pde_ips = ips;
1088
1089			gvt_dbg_mm("reshadow PDE since ips changed\n");
1090			clear_page(spt->shadow_page.vaddr);
1091			ret = ppgtt_populate_spt(spt);
1092			if (ret) {
1093				ppgtt_put_spt(spt);
1094				goto err;
1095			}
1096		}
1097	} else {
1098		int type = get_next_pt_type(we->type);
1099
1100		if (!gtt_type_is_pt(type)) {
1101			ret = -EINVAL;
1102			goto err;
1103		}
1104
1105		spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1106		if (IS_ERR(spt)) {
1107			ret = PTR_ERR(spt);
1108			goto err;
1109		}
1110
1111		ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1112		if (ret)
1113			goto err_free_spt;
1114
1115		ret = ppgtt_populate_spt(spt);
1116		if (ret)
1117			goto err_free_spt;
1118
1119		trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120				 spt->shadow_page.type);
1121	}
1122	return spt;
1123
1124err_free_spt:
1125	ppgtt_free_spt(spt);
1126	spt = NULL;
1127err:
1128	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129		     spt, we->val64, we->type);
1130	return ERR_PTR(ret);
1131}
1132
1133static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134		struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1135{
1136	struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1137
1138	se->type = ge->type;
1139	se->val64 = ge->val64;
1140
1141	/* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142	if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1143		ops->clear_ips(se);
1144
1145	ops->set_pfn(se, s->shadow_page.mfn);
1146}
1147
1148/**
1149 * Check if can do 2M page
1150 * @vgpu: target vgpu
1151 * @entry: target pfn's gtt entry
1152 *
1153 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1154 * negtive if found err.
1155 */
1156static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1157	struct intel_gvt_gtt_entry *entry)
1158{
1159	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1160	unsigned long pfn;
1161
1162	if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1163		return 0;
1164
1165	pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1166	if (pfn == INTEL_GVT_INVALID_ADDR)
1167		return -EINVAL;
1168
1169	return PageTransHuge(pfn_to_page(pfn));
1170}
1171
1172static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1173	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1174	struct intel_gvt_gtt_entry *se)
1175{
1176	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1177	struct intel_vgpu_ppgtt_spt *sub_spt;
1178	struct intel_gvt_gtt_entry sub_se;
1179	unsigned long start_gfn;
1180	dma_addr_t dma_addr;
1181	unsigned long sub_index;
1182	int ret;
1183
1184	gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1185
1186	start_gfn = ops->get_pfn(se);
1187
1188	sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1189	if (IS_ERR(sub_spt))
1190		return PTR_ERR(sub_spt);
1191
1192	for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1193		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1194				start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1195		if (ret) {
1196			ppgtt_invalidate_spt(spt);
1197			return ret;
1198		}
1199		sub_se.val64 = se->val64;
1200
1201		/* Copy the PAT field from PDE. */
1202		sub_se.val64 &= ~_PAGE_PAT;
1203		sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1204
1205		ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1206		ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1207	}
1208
1209	/* Clear dirty field. */
1210	se->val64 &= ~_PAGE_DIRTY;
1211
1212	ops->clear_pse(se);
1213	ops->clear_ips(se);
1214	ops->set_pfn(se, sub_spt->shadow_page.mfn);
1215	ppgtt_set_shadow_entry(spt, se, index);
1216	return 0;
1217}
1218
1219static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1220	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1221	struct intel_gvt_gtt_entry *se)
1222{
1223	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1224	struct intel_gvt_gtt_entry entry = *se;
1225	unsigned long start_gfn;
1226	dma_addr_t dma_addr;
1227	int i, ret;
1228
1229	gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1230
1231	GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1232
1233	start_gfn = ops->get_pfn(se);
1234
1235	entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1236	ops->set_64k_splited(&entry);
1237
1238	for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1239		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1240					start_gfn + i, PAGE_SIZE, &dma_addr);
1241		if (ret)
1242			return ret;
1243
1244		ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1245		ppgtt_set_shadow_entry(spt, &entry, index + i);
1246	}
1247	return 0;
1248}
1249
1250static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1251	struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1252	struct intel_gvt_gtt_entry *ge)
1253{
1254	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1255	struct intel_gvt_gtt_entry se = *ge;
1256	unsigned long gfn, page_size = PAGE_SIZE;
1257	dma_addr_t dma_addr;
1258	int ret;
1259
1260	if (!pte_ops->test_present(ge))
1261		return 0;
1262
1263	gfn = pte_ops->get_pfn(ge);
1264
1265	switch (ge->type) {
1266	case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1267		gvt_vdbg_mm("shadow 4K gtt entry\n");
1268		break;
1269	case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1270		gvt_vdbg_mm("shadow 64K gtt entry\n");
1271		/*
1272		 * The layout of 64K page is special, the page size is
1273		 * controlled by uper PDE. To be simple, we always split
1274		 * 64K page to smaller 4K pages in shadow PT.
1275		 */
1276		return split_64KB_gtt_entry(vgpu, spt, index, &se);
1277	case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1278		gvt_vdbg_mm("shadow 2M gtt entry\n");
1279		ret = is_2MB_gtt_possible(vgpu, ge);
1280		if (ret == 0)
1281			return split_2MB_gtt_entry(vgpu, spt, index, &se);
1282		else if (ret < 0)
1283			return ret;
1284		page_size = I915_GTT_PAGE_SIZE_2M;
1285		break;
1286	case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1287		gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1288		return -EINVAL;
1289	default:
1290		GEM_BUG_ON(1);
1291	}
1292
1293	/* direct shadow */
1294	ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1295						      &dma_addr);
1296	if (ret)
1297		return -ENXIO;
1298
1299	pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1300	ppgtt_set_shadow_entry(spt, &se, index);
1301	return 0;
1302}
1303
1304static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1305{
1306	struct intel_vgpu *vgpu = spt->vgpu;
1307	struct intel_gvt *gvt = vgpu->gvt;
1308	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1309	struct intel_vgpu_ppgtt_spt *s;
1310	struct intel_gvt_gtt_entry se, ge;
1311	unsigned long gfn, i;
1312	int ret;
1313
1314	trace_spt_change(spt->vgpu->id, "born", spt,
1315			 spt->guest_page.gfn, spt->shadow_page.type);
1316
1317	for_each_present_guest_entry(spt, &ge, i) {
1318		if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1319			s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1320			if (IS_ERR(s)) {
1321				ret = PTR_ERR(s);
1322				goto fail;
1323			}
1324			ppgtt_get_shadow_entry(spt, &se, i);
1325			ppgtt_generate_shadow_entry(&se, s, &ge);
1326			ppgtt_set_shadow_entry(spt, &se, i);
1327		} else {
1328			gfn = ops->get_pfn(&ge);
1329			if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1330				ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1331				ppgtt_set_shadow_entry(spt, &se, i);
1332				continue;
1333			}
1334
1335			ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1336			if (ret)
1337				goto fail;
1338		}
1339	}
1340	return 0;
1341fail:
1342	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1343			spt, ge.val64, ge.type);
1344	return ret;
1345}
1346
1347static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1348		struct intel_gvt_gtt_entry *se, unsigned long index)
1349{
1350	struct intel_vgpu *vgpu = spt->vgpu;
1351	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1352	int ret;
1353
1354	trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1355			       spt->shadow_page.type, se->val64, index);
1356
1357	gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1358		    se->type, index, se->val64);
1359
1360	if (!ops->test_present(se))
1361		return 0;
1362
1363	if (ops->get_pfn(se) ==
1364	    vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1365		return 0;
1366
1367	if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1368		struct intel_vgpu_ppgtt_spt *s =
1369			intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1370		if (!s) {
1371			gvt_vgpu_err("fail to find guest page\n");
1372			ret = -ENXIO;
1373			goto fail;
1374		}
1375		ret = ppgtt_invalidate_spt(s);
1376		if (ret)
1377			goto fail;
1378	} else {
1379		/* We don't setup 64K shadow entry so far. */
1380		WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1381		     "suspicious 64K entry\n");
1382		ppgtt_invalidate_pte(spt, se);
1383	}
1384
1385	return 0;
1386fail:
1387	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1388			spt, se->val64, se->type);
1389	return ret;
1390}
1391
1392static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1393		struct intel_gvt_gtt_entry *we, unsigned long index)
1394{
1395	struct intel_vgpu *vgpu = spt->vgpu;
1396	struct intel_gvt_gtt_entry m;
1397	struct intel_vgpu_ppgtt_spt *s;
1398	int ret;
1399
1400	trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1401			       we->val64, index);
1402
1403	gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1404		    we->type, index, we->val64);
1405
1406	if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1407		s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1408		if (IS_ERR(s)) {
1409			ret = PTR_ERR(s);
1410			goto fail;
1411		}
1412		ppgtt_get_shadow_entry(spt, &m, index);
1413		ppgtt_generate_shadow_entry(&m, s, we);
1414		ppgtt_set_shadow_entry(spt, &m, index);
1415	} else {
1416		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1417		if (ret)
1418			goto fail;
1419	}
1420	return 0;
1421fail:
1422	gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1423		spt, we->val64, we->type);
1424	return ret;
1425}
1426
1427static int sync_oos_page(struct intel_vgpu *vgpu,
1428		struct intel_vgpu_oos_page *oos_page)
1429{
1430	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1431	struct intel_gvt *gvt = vgpu->gvt;
1432	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1433	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1434	struct intel_gvt_gtt_entry old, new;
1435	int index;
1436	int ret;
1437
1438	trace_oos_change(vgpu->id, "sync", oos_page->id,
1439			 spt, spt->guest_page.type);
1440
1441	old.type = new.type = get_entry_type(spt->guest_page.type);
1442	old.val64 = new.val64 = 0;
1443
1444	for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1445				info->gtt_entry_size_shift); index++) {
1446		ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1447		ops->get_entry(NULL, &new, index, true,
1448			       spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1449
1450		if (old.val64 == new.val64
1451			&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
1452			continue;
1453
1454		trace_oos_sync(vgpu->id, oos_page->id,
1455				spt, spt->guest_page.type,
1456				new.val64, index);
1457
1458		ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1459		if (ret)
1460			return ret;
1461
1462		ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1463	}
1464
1465	spt->guest_page.write_cnt = 0;
1466	list_del_init(&spt->post_shadow_list);
1467	return 0;
1468}
1469
1470static int detach_oos_page(struct intel_vgpu *vgpu,
1471		struct intel_vgpu_oos_page *oos_page)
1472{
1473	struct intel_gvt *gvt = vgpu->gvt;
1474	struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1475
1476	trace_oos_change(vgpu->id, "detach", oos_page->id,
1477			 spt, spt->guest_page.type);
1478
1479	spt->guest_page.write_cnt = 0;
1480	spt->guest_page.oos_page = NULL;
1481	oos_page->spt = NULL;
1482
1483	list_del_init(&oos_page->vm_list);
1484	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1485
1486	return 0;
1487}
1488
1489static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1490		struct intel_vgpu_ppgtt_spt *spt)
1491{
1492	struct intel_gvt *gvt = spt->vgpu->gvt;
1493	int ret;
1494
1495	ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1496			spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1497			oos_page->mem, I915_GTT_PAGE_SIZE);
1498	if (ret)
1499		return ret;
1500
1501	oos_page->spt = spt;
1502	spt->guest_page.oos_page = oos_page;
1503
1504	list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1505
1506	trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1507			 spt, spt->guest_page.type);
1508	return 0;
1509}
1510
1511static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1512{
1513	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1514	int ret;
1515
1516	ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1517	if (ret)
1518		return ret;
1519
1520	trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1521			 spt, spt->guest_page.type);
1522
1523	list_del_init(&oos_page->vm_list);
1524	return sync_oos_page(spt->vgpu, oos_page);
1525}
1526
1527static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1528{
1529	struct intel_gvt *gvt = spt->vgpu->gvt;
1530	struct intel_gvt_gtt *gtt = &gvt->gtt;
1531	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1532	int ret;
1533
1534	WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1535
1536	if (list_empty(&gtt->oos_page_free_list_head)) {
1537		oos_page = container_of(gtt->oos_page_use_list_head.next,
1538			struct intel_vgpu_oos_page, list);
1539		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1540		if (ret)
1541			return ret;
1542		ret = detach_oos_page(spt->vgpu, oos_page);
1543		if (ret)
1544			return ret;
1545	} else
1546		oos_page = container_of(gtt->oos_page_free_list_head.next,
1547			struct intel_vgpu_oos_page, list);
1548	return attach_oos_page(oos_page, spt);
1549}
1550
1551static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1552{
1553	struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1554
1555	if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1556		return -EINVAL;
1557
1558	trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1559			 spt, spt->guest_page.type);
1560
1561	list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1562	return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1563}
1564
1565/**
1566 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1567 * @vgpu: a vGPU
1568 *
1569 * This function is called before submitting a guest workload to host,
1570 * to sync all the out-of-synced shadow for vGPU
1571 *
1572 * Returns:
1573 * Zero on success, negative error code if failed.
1574 */
1575int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1576{
1577	struct list_head *pos, *n;
1578	struct intel_vgpu_oos_page *oos_page;
1579	int ret;
1580
1581	if (!enable_out_of_sync)
1582		return 0;
1583
1584	list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1585		oos_page = container_of(pos,
1586				struct intel_vgpu_oos_page, vm_list);
1587		ret = ppgtt_set_guest_page_sync(oos_page->spt);
1588		if (ret)
1589			return ret;
1590	}
1591	return 0;
1592}
1593
1594/*
1595 * The heart of PPGTT shadow page table.
1596 */
1597static int ppgtt_handle_guest_write_page_table(
1598		struct intel_vgpu_ppgtt_spt *spt,
1599		struct intel_gvt_gtt_entry *we, unsigned long index)
1600{
1601	struct intel_vgpu *vgpu = spt->vgpu;
1602	int type = spt->shadow_page.type;
1603	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1604	struct intel_gvt_gtt_entry old_se;
1605	int new_present;
1606	int i, ret;
1607
1608	new_present = ops->test_present(we);
1609
1610	/*
1611	 * Adding the new entry first and then removing the old one, that can
1612	 * guarantee the ppgtt table is validated during the window between
1613	 * adding and removal.
1614	 */
1615	ppgtt_get_shadow_entry(spt, &old_se, index);
1616
1617	if (new_present) {
1618		ret = ppgtt_handle_guest_entry_add(spt, we, index);
1619		if (ret)
1620			goto fail;
1621	}
1622
1623	ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1624	if (ret)
1625		goto fail;
1626
1627	if (!new_present) {
1628		/* For 64KB splited entries, we need clear them all. */
1629		if (ops->test_64k_splited(&old_se) &&
1630		    !(index % GTT_64K_PTE_STRIDE)) {
1631			gvt_vdbg_mm("remove splited 64K shadow entries\n");
1632			for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1633				ops->clear_64k_splited(&old_se);
1634				ops->set_pfn(&old_se,
1635					vgpu->gtt.scratch_pt[type].page_mfn);
1636				ppgtt_set_shadow_entry(spt, &old_se, index + i);
1637			}
1638		} else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1639			   old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1640			ops->clear_pse(&old_se);
1641			ops->set_pfn(&old_se,
1642				     vgpu->gtt.scratch_pt[type].page_mfn);
1643			ppgtt_set_shadow_entry(spt, &old_se, index);
1644		} else {
1645			ops->set_pfn(&old_se,
1646				     vgpu->gtt.scratch_pt[type].page_mfn);
1647			ppgtt_set_shadow_entry(spt, &old_se, index);
1648		}
1649	}
1650
1651	return 0;
1652fail:
1653	gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1654			spt, we->val64, we->type);
1655	return ret;
1656}
1657
1658
1659
1660static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1661{
1662	return enable_out_of_sync
1663		&& gtt_type_is_pte_pt(spt->guest_page.type)
1664		&& spt->guest_page.write_cnt >= 2;
1665}
1666
1667static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1668		unsigned long index)
1669{
1670	set_bit(index, spt->post_shadow_bitmap);
1671	if (!list_empty(&spt->post_shadow_list))
1672		return;
1673
1674	list_add_tail(&spt->post_shadow_list,
1675			&spt->vgpu->gtt.post_shadow_list_head);
1676}
1677
1678/**
1679 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1680 * @vgpu: a vGPU
1681 *
1682 * This function is called before submitting a guest workload to host,
1683 * to flush all the post shadows for a vGPU.
1684 *
1685 * Returns:
1686 * Zero on success, negative error code if failed.
1687 */
1688int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1689{
1690	struct list_head *pos, *n;
1691	struct intel_vgpu_ppgtt_spt *spt;
1692	struct intel_gvt_gtt_entry ge;
1693	unsigned long index;
1694	int ret;
1695
1696	list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1697		spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1698				post_shadow_list);
1699
1700		for_each_set_bit(index, spt->post_shadow_bitmap,
1701				GTT_ENTRY_NUM_IN_ONE_PAGE) {
1702			ppgtt_get_guest_entry(spt, &ge, index);
1703
1704			ret = ppgtt_handle_guest_write_page_table(spt,
1705							&ge, index);
1706			if (ret)
1707				return ret;
1708			clear_bit(index, spt->post_shadow_bitmap);
1709		}
1710		list_del_init(&spt->post_shadow_list);
1711	}
1712	return 0;
1713}
1714
1715static int ppgtt_handle_guest_write_page_table_bytes(
1716		struct intel_vgpu_ppgtt_spt *spt,
1717		u64 pa, void *p_data, int bytes)
1718{
1719	struct intel_vgpu *vgpu = spt->vgpu;
1720	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1721	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1722	struct intel_gvt_gtt_entry we, se;
1723	unsigned long index;
1724	int ret;
1725
1726	index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1727
1728	ppgtt_get_guest_entry(spt, &we, index);
1729
1730	/*
1731	 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1732	 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1733	 * ignored.
1734	 */
1735	if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1736	    (index % GTT_64K_PTE_STRIDE)) {
1737		gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1738			    index);
1739		return 0;
1740	}
1741
1742	if (bytes == info->gtt_entry_size) {
1743		ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1744		if (ret)
1745			return ret;
1746	} else {
1747		if (!test_bit(index, spt->post_shadow_bitmap)) {
1748			int type = spt->shadow_page.type;
1749
1750			ppgtt_get_shadow_entry(spt, &se, index);
1751			ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1752			if (ret)
1753				return ret;
1754			ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1755			ppgtt_set_shadow_entry(spt, &se, index);
1756		}
1757		ppgtt_set_post_shadow(spt, index);
1758	}
1759
1760	if (!enable_out_of_sync)
1761		return 0;
1762
1763	spt->guest_page.write_cnt++;
1764
1765	if (spt->guest_page.oos_page)
1766		ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1767				false, 0, vgpu);
1768
1769	if (can_do_out_of_sync(spt)) {
1770		if (!spt->guest_page.oos_page)
1771			ppgtt_allocate_oos_page(spt);
1772
1773		ret = ppgtt_set_guest_page_oos(spt);
1774		if (ret < 0)
1775			return ret;
1776	}
1777	return 0;
1778}
1779
1780static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1781{
1782	struct intel_vgpu *vgpu = mm->vgpu;
1783	struct intel_gvt *gvt = vgpu->gvt;
1784	struct intel_gvt_gtt *gtt = &gvt->gtt;
1785	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1786	struct intel_gvt_gtt_entry se;
1787	int index;
1788
1789	if (!mm->ppgtt_mm.shadowed)
1790		return;
1791
1792	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1793		ppgtt_get_shadow_root_entry(mm, &se, index);
1794
1795		if (!ops->test_present(&se))
1796			continue;
1797
1798		ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1799		se.val64 = 0;
1800		ppgtt_set_shadow_root_entry(mm, &se, index);
1801
1802		trace_spt_guest_change(vgpu->id, "destroy root pointer",
1803				       NULL, se.type, se.val64, index);
1804	}
1805
1806	mm->ppgtt_mm.shadowed = false;
1807}
1808
1809
1810static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1811{
1812	struct intel_vgpu *vgpu = mm->vgpu;
1813	struct intel_gvt *gvt = vgpu->gvt;
1814	struct intel_gvt_gtt *gtt = &gvt->gtt;
1815	struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1816	struct intel_vgpu_ppgtt_spt *spt;
1817	struct intel_gvt_gtt_entry ge, se;
1818	int index, ret;
1819
1820	if (mm->ppgtt_mm.shadowed)
1821		return 0;
1822
1823	mm->ppgtt_mm.shadowed = true;
1824
1825	for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1826		ppgtt_get_guest_root_entry(mm, &ge, index);
1827
1828		if (!ops->test_present(&ge))
1829			continue;
1830
1831		trace_spt_guest_change(vgpu->id, __func__, NULL,
1832				       ge.type, ge.val64, index);
1833
1834		spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1835		if (IS_ERR(spt)) {
1836			gvt_vgpu_err("fail to populate guest root pointer\n");
1837			ret = PTR_ERR(spt);
1838			goto fail;
1839		}
1840		ppgtt_generate_shadow_entry(&se, spt, &ge);
1841		ppgtt_set_shadow_root_entry(mm, &se, index);
1842
1843		trace_spt_guest_change(vgpu->id, "populate root pointer",
1844				       NULL, se.type, se.val64, index);
1845	}
1846
1847	return 0;
1848fail:
1849	invalidate_ppgtt_mm(mm);
1850	return ret;
1851}
1852
1853static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1854{
1855	struct intel_vgpu_mm *mm;
1856
1857	mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1858	if (!mm)
1859		return NULL;
1860
1861	mm->vgpu = vgpu;
1862	kref_init(&mm->ref);
1863	atomic_set(&mm->pincount, 0);
1864
1865	return mm;
1866}
1867
1868static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1869{
1870	kfree(mm);
1871}
1872
1873/**
1874 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1875 * @vgpu: a vGPU
1876 * @root_entry_type: ppgtt root entry type
1877 * @pdps: guest pdps.
1878 *
1879 * This function is used to create a ppgtt mm object for a vGPU.
1880 *
1881 * Returns:
1882 * Zero on success, negative error code in pointer if failed.
1883 */
1884struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1885		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1886{
1887	struct intel_gvt *gvt = vgpu->gvt;
1888	struct intel_vgpu_mm *mm;
1889	int ret;
1890
1891	mm = vgpu_alloc_mm(vgpu);
1892	if (!mm)
1893		return ERR_PTR(-ENOMEM);
1894
1895	mm->type = INTEL_GVT_MM_PPGTT;
1896
1897	GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1898		   root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1899	mm->ppgtt_mm.root_entry_type = root_entry_type;
1900
1901	INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1902	INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1903	INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1904
1905	if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1906		mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1907	else
1908		memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1909		       sizeof(mm->ppgtt_mm.guest_pdps));
1910
1911	ret = shadow_ppgtt_mm(mm);
1912	if (ret) {
1913		gvt_vgpu_err("failed to shadow ppgtt mm\n");
1914		vgpu_free_mm(mm);
1915		return ERR_PTR(ret);
1916	}
1917
1918	list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1919
1920	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1921	list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1922	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1923
1924	return mm;
1925}
1926
1927static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1928{
1929	struct intel_vgpu_mm *mm;
1930	unsigned long nr_entries;
1931
1932	mm = vgpu_alloc_mm(vgpu);
1933	if (!mm)
1934		return ERR_PTR(-ENOMEM);
1935
1936	mm->type = INTEL_GVT_MM_GGTT;
1937
1938	nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1939	mm->ggtt_mm.virtual_ggtt =
1940		vzalloc(array_size(nr_entries,
1941				   vgpu->gvt->device_info.gtt_entry_size));
1942	if (!mm->ggtt_mm.virtual_ggtt) {
1943		vgpu_free_mm(mm);
1944		return ERR_PTR(-ENOMEM);
1945	}
1946
1947	return mm;
1948}
1949
1950/**
1951 * _intel_vgpu_mm_release - destroy a mm object
1952 * @mm_ref: a kref object
1953 *
1954 * This function is used to destroy a mm object for vGPU
1955 *
1956 */
1957void _intel_vgpu_mm_release(struct kref *mm_ref)
1958{
1959	struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1960
1961	if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1962		gvt_err("vgpu mm pin count bug detected\n");
1963
1964	if (mm->type == INTEL_GVT_MM_PPGTT) {
1965		list_del(&mm->ppgtt_mm.list);
1966
1967		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1968		list_del(&mm->ppgtt_mm.lru_list);
1969		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1970
1971		invalidate_ppgtt_mm(mm);
1972	} else {
1973		vfree(mm->ggtt_mm.virtual_ggtt);
1974	}
1975
1976	vgpu_free_mm(mm);
1977}
1978
1979/**
1980 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1981 * @mm: a vGPU mm object
1982 *
1983 * This function is called when user doesn't want to use a vGPU mm object
1984 */
1985void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1986{
1987	atomic_dec_if_positive(&mm->pincount);
1988}
1989
1990/**
1991 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1992 * @mm: target vgpu mm
1993 *
1994 * This function is called when user wants to use a vGPU mm object. If this
1995 * mm object hasn't been shadowed yet, the shadow will be populated at this
1996 * time.
1997 *
1998 * Returns:
1999 * Zero on success, negative error code if failed.
2000 */
2001int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2002{
2003	int ret;
2004
2005	atomic_inc(&mm->pincount);
2006
2007	if (mm->type == INTEL_GVT_MM_PPGTT) {
2008		ret = shadow_ppgtt_mm(mm);
2009		if (ret)
2010			return ret;
2011
2012		mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2013		list_move_tail(&mm->ppgtt_mm.lru_list,
2014			       &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2015		mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2016	}
2017
2018	return 0;
2019}
2020
2021static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2022{
2023	struct intel_vgpu_mm *mm;
2024	struct list_head *pos, *n;
2025
2026	mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2027
2028	list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2029		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2030
2031		if (atomic_read(&mm->pincount))
2032			continue;
2033
2034		list_del_init(&mm->ppgtt_mm.lru_list);
2035		mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2036		invalidate_ppgtt_mm(mm);
2037		return 1;
2038	}
2039	mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2040	return 0;
2041}
2042
2043/*
2044 * GMA translation APIs.
2045 */
2046static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2047		struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2048{
2049	struct intel_vgpu *vgpu = mm->vgpu;
2050	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2051	struct intel_vgpu_ppgtt_spt *s;
2052
2053	s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2054	if (!s)
2055		return -ENXIO;
2056
2057	if (!guest)
2058		ppgtt_get_shadow_entry(s, e, index);
2059	else
2060		ppgtt_get_guest_entry(s, e, index);
2061	return 0;
2062}
2063
2064/**
2065 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2066 * @mm: mm object. could be a PPGTT or GGTT mm object
2067 * @gma: graphics memory address in this mm object
2068 *
2069 * This function is used to translate a graphics memory address in specific
2070 * graphics memory space to guest physical address.
2071 *
2072 * Returns:
2073 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2074 */
2075unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2076{
2077	struct intel_vgpu *vgpu = mm->vgpu;
2078	struct intel_gvt *gvt = vgpu->gvt;
2079	struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2080	struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2081	unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2082	unsigned long gma_index[4];
2083	struct intel_gvt_gtt_entry e;
2084	int i, levels = 0;
2085	int ret;
2086
2087	GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2088		   mm->type != INTEL_GVT_MM_PPGTT);
2089
2090	if (mm->type == INTEL_GVT_MM_GGTT) {
2091		if (!vgpu_gmadr_is_valid(vgpu, gma))
2092			goto err;
2093
2094		ggtt_get_guest_entry(mm, &e,
2095			gma_ops->gma_to_ggtt_pte_index(gma));
2096
2097		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2098			+ (gma & ~I915_GTT_PAGE_MASK);
2099
2100		trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2101	} else {
2102		switch (mm->ppgtt_mm.root_entry_type) {
2103		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2104			ppgtt_get_shadow_root_entry(mm, &e, 0);
2105
2106			gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2107			gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2108			gma_index[2] = gma_ops->gma_to_pde_index(gma);
2109			gma_index[3] = gma_ops->gma_to_pte_index(gma);
2110			levels = 4;
2111			break;
2112		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2113			ppgtt_get_shadow_root_entry(mm, &e,
2114					gma_ops->gma_to_l3_pdp_index(gma));
2115
2116			gma_index[0] = gma_ops->gma_to_pde_index(gma);
2117			gma_index[1] = gma_ops->gma_to_pte_index(gma);
2118			levels = 2;
2119			break;
2120		default:
2121			GEM_BUG_ON(1);
2122		}
2123
2124		/* walk the shadow page table and get gpa from guest entry */
2125		for (i = 0; i < levels; i++) {
2126			ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2127				(i == levels - 1));
2128			if (ret)
2129				goto err;
2130
2131			if (!pte_ops->test_present(&e)) {
2132				gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2133				goto err;
2134			}
2135		}
2136
2137		gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2138					(gma & ~I915_GTT_PAGE_MASK);
2139		trace_gma_translate(vgpu->id, "ppgtt", 0,
2140				    mm->ppgtt_mm.root_entry_type, gma, gpa);
2141	}
2142
2143	return gpa;
2144err:
2145	gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2146	return INTEL_GVT_INVALID_ADDR;
2147}
2148
2149static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2150	unsigned int off, void *p_data, unsigned int bytes)
2151{
2152	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2153	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2154	unsigned long index = off >> info->gtt_entry_size_shift;
2155	unsigned long gma;
2156	struct intel_gvt_gtt_entry e;
2157
2158	if (bytes != 4 && bytes != 8)
2159		return -EINVAL;
2160
2161	gma = index << I915_GTT_PAGE_SHIFT;
2162	if (!intel_gvt_ggtt_validate_range(vgpu,
2163					   gma, 1 << I915_GTT_PAGE_SHIFT)) {
2164		gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2165		memset(p_data, 0, bytes);
2166		return 0;
2167	}
2168
2169	ggtt_get_guest_entry(ggtt_mm, &e, index);
2170	memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2171			bytes);
2172	return 0;
2173}
2174
2175/**
2176 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2177 * @vgpu: a vGPU
2178 * @off: register offset
2179 * @p_data: data will be returned to guest
2180 * @bytes: data length
2181 *
2182 * This function is used to emulate the GTT MMIO register read
2183 *
2184 * Returns:
2185 * Zero on success, error code if failed.
2186 */
2187int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2188	void *p_data, unsigned int bytes)
2189{
2190	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2191	int ret;
2192
2193	if (bytes != 4 && bytes != 8)
2194		return -EINVAL;
2195
2196	off -= info->gtt_start_offset;
2197	ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2198	return ret;
2199}
2200
2201static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2202		struct intel_gvt_gtt_entry *entry)
2203{
2204	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2205	unsigned long pfn;
2206
2207	pfn = pte_ops->get_pfn(entry);
2208	if (pfn != vgpu->gvt->gtt.scratch_mfn)
2209		intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2210						pfn << PAGE_SHIFT);
2211}
2212
2213static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2214	void *p_data, unsigned int bytes)
2215{
2216	struct intel_gvt *gvt = vgpu->gvt;
2217	const struct intel_gvt_device_info *info = &gvt->device_info;
2218	struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2219	struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2220	unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2221	unsigned long gma, gfn;
2222	struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2223	struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2224	dma_addr_t dma_addr;
2225	int ret;
2226	struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2227	bool partial_update = false;
2228
2229	if (bytes != 4 && bytes != 8)
2230		return -EINVAL;
2231
2232	gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2233
2234	/* the VM may configure the whole GM space when ballooning is used */
2235	if (!vgpu_gmadr_is_valid(vgpu, gma))
2236		return 0;
2237
2238	e.type = GTT_TYPE_GGTT_PTE;
2239	memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2240			bytes);
2241
2242	/* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2243	 * write, save the first 4 bytes in a list and update virtual
2244	 * PTE. Only update shadow PTE when the second 4 bytes comes.
2245	 */
2246	if (bytes < info->gtt_entry_size) {
2247		bool found = false;
2248
2249		list_for_each_entry_safe(pos, n,
2250				&ggtt_mm->ggtt_mm.partial_pte_list, list) {
2251			if (g_gtt_index == pos->offset >>
2252					info->gtt_entry_size_shift) {
2253				if (off != pos->offset) {
2254					/* the second partial part*/
2255					int last_off = pos->offset &
2256						(info->gtt_entry_size - 1);
2257
2258					memcpy((void *)&e.val64 + last_off,
2259						(void *)&pos->data + last_off,
2260						bytes);
2261
2262					list_del(&pos->list);
2263					kfree(pos);
2264					found = true;
2265					break;
2266				}
2267
2268				/* update of the first partial part */
2269				pos->data = e.val64;
2270				ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2271				return 0;
2272			}
2273		}
2274
2275		if (!found) {
2276			/* the first partial part */
2277			partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2278			if (!partial_pte)
2279				return -ENOMEM;
2280			partial_pte->offset = off;
2281			partial_pte->data = e.val64;
2282			list_add_tail(&partial_pte->list,
2283				&ggtt_mm->ggtt_mm.partial_pte_list);
2284			partial_update = true;
2285		}
2286	}
2287
2288	if (!partial_update && (ops->test_present(&e))) {
2289		gfn = ops->get_pfn(&e);
2290		m.val64 = e.val64;
2291		m.type = e.type;
2292
2293		/* one PTE update may be issued in multiple writes and the
2294		 * first write may not construct a valid gfn
2295		 */
2296		if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2297			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2298			goto out;
2299		}
2300
2301		ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2302							PAGE_SIZE, &dma_addr);
2303		if (ret) {
2304			gvt_vgpu_err("fail to populate guest ggtt entry\n");
2305			/* guest driver may read/write the entry when partial
2306			 * update the entry in this situation p2m will fail
2307			 * settting the shadow entry to point to a scratch page
2308			 */
2309			ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2310		} else
2311			ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2312	} else {
2313		ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2314		ops->clear_present(&m);
2315	}
2316
2317out:
2318	ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2319
2320	ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2321	ggtt_invalidate_pte(vgpu, &e);
2322
2323	ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2324	ggtt_invalidate(gvt->gt);
2325	return 0;
2326}
2327
2328/*
2329 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2330 * @vgpu: a vGPU
2331 * @off: register offset
2332 * @p_data: data from guest write
2333 * @bytes: data length
2334 *
2335 * This function is used to emulate the GTT MMIO register write
2336 *
2337 * Returns:
2338 * Zero on success, error code if failed.
2339 */
2340int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2341		unsigned int off, void *p_data, unsigned int bytes)
2342{
2343	const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2344	int ret;
2345	struct intel_vgpu_submission *s = &vgpu->submission;
2346	struct intel_engine_cs *engine;
2347	int i;
2348
2349	if (bytes != 4 && bytes != 8)
2350		return -EINVAL;
2351
2352	off -= info->gtt_start_offset;
2353	ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2354
2355	/* if ggtt of last submitted context is written,
2356	 * that context is probably got unpinned.
2357	 * Set last shadowed ctx to invalid.
2358	 */
2359	for_each_engine(engine, vgpu->gvt->gt, i) {
2360		if (!s->last_ctx[i].valid)
2361			continue;
2362
2363		if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2364			s->last_ctx[i].valid = false;
2365	}
2366	return ret;
2367}
2368
2369static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2370		enum intel_gvt_gtt_type type)
2371{
2372	struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2373	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2374	struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2375	int page_entry_num = I915_GTT_PAGE_SIZE >>
2376				vgpu->gvt->device_info.gtt_entry_size_shift;
2377	void *scratch_pt;
2378	int i;
2379	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2380	dma_addr_t daddr;
2381
2382	if (drm_WARN_ON(&i915->drm,
2383			type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2384		return -EINVAL;
2385
2386	scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2387	if (!scratch_pt) {
2388		gvt_vgpu_err("fail to allocate scratch page\n");
2389		return -ENOMEM;
2390	}
2391
2392	daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2393			4096, PCI_DMA_BIDIRECTIONAL);
2394	if (dma_mapping_error(dev, daddr)) {
2395		gvt_vgpu_err("fail to dmamap scratch_pt\n");
2396		__free_page(virt_to_page(scratch_pt));
2397		return -ENOMEM;
2398	}
2399	gtt->scratch_pt[type].page_mfn =
2400		(unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2401	gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2402	gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2403			vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2404
2405	/* Build the tree by full filled the scratch pt with the entries which
2406	 * point to the next level scratch pt or scratch page. The
2407	 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2408	 * 'type' pt.
2409	 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2410	 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2411	 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2412	 */
2413	if (type > GTT_TYPE_PPGTT_PTE_PT) {
2414		struct intel_gvt_gtt_entry se;
2415
2416		memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2417		se.type = get_entry_type(type - 1);
2418		ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2419
2420		/* The entry parameters like present/writeable/cache type
2421		 * set to the same as i915's scratch page tree.
2422		 */
2423		se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2424		if (type == GTT_TYPE_PPGTT_PDE_PT)
2425			se.val64 |= PPAT_CACHED;
2426
2427		for (i = 0; i < page_entry_num; i++)
2428			ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2429	}
2430
2431	return 0;
2432}
2433
2434static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2435{
2436	int i;
2437	struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2438	dma_addr_t daddr;
2439
2440	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2441		if (vgpu->gtt.scratch_pt[i].page != NULL) {
2442			daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2443					I915_GTT_PAGE_SHIFT);
2444			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2445			__free_page(vgpu->gtt.scratch_pt[i].page);
2446			vgpu->gtt.scratch_pt[i].page = NULL;
2447			vgpu->gtt.scratch_pt[i].page_mfn = 0;
2448		}
2449	}
2450
2451	return 0;
2452}
2453
2454static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2455{
2456	int i, ret;
2457
2458	for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2459		ret = alloc_scratch_pages(vgpu, i);
2460		if (ret)
2461			goto err;
2462	}
2463
2464	return 0;
2465
2466err:
2467	release_scratch_page_tree(vgpu);
2468	return ret;
2469}
2470
2471/**
2472 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2473 * @vgpu: a vGPU
2474 *
2475 * This function is used to initialize per-vGPU graphics memory virtualization
2476 * components.
2477 *
2478 * Returns:
2479 * Zero on success, error code if failed.
2480 */
2481int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2482{
2483	struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2484
2485	INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2486
2487	INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2488	INIT_LIST_HEAD(&gtt->oos_page_list_head);
2489	INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2490
2491	gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2492	if (IS_ERR(gtt->ggtt_mm)) {
2493		gvt_vgpu_err("fail to create mm for ggtt.\n");
2494		return PTR_ERR(gtt->ggtt_mm);
2495	}
2496
2497	intel_vgpu_reset_ggtt(vgpu, false);
2498
2499	INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2500
2501	return create_scratch_page_tree(vgpu);
2502}
2503
2504void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2505{
2506	struct list_head *pos, *n;
2507	struct intel_vgpu_mm *mm;
2508
2509	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2510		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2511		intel_vgpu_destroy_mm(mm);
2512	}
2513
2514	if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2515		gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2516
2517	if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2518		gvt_err("Why we still has spt not freed?\n");
2519		ppgtt_free_all_spt(vgpu);
2520	}
2521}
2522
2523static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2524{
2525	struct intel_gvt_partial_pte *pos, *next;
2526
2527	list_for_each_entry_safe(pos, next,
2528				 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2529				 list) {
2530		gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2531			pos->offset, pos->data);
2532		kfree(pos);
2533	}
2534	intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2535	vgpu->gtt.ggtt_mm = NULL;
2536}
2537
2538/**
2539 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2540 * @vgpu: a vGPU
2541 *
2542 * This function is used to clean up per-vGPU graphics memory virtualization
2543 * components.
2544 *
2545 * Returns:
2546 * Zero on success, error code if failed.
2547 */
2548void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2549{
2550	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2551	intel_vgpu_destroy_ggtt_mm(vgpu);
2552	release_scratch_page_tree(vgpu);
2553}
2554
2555static void clean_spt_oos(struct intel_gvt *gvt)
2556{
2557	struct intel_gvt_gtt *gtt = &gvt->gtt;
2558	struct list_head *pos, *n;
2559	struct intel_vgpu_oos_page *oos_page;
2560
2561	WARN(!list_empty(&gtt->oos_page_use_list_head),
2562		"someone is still using oos page\n");
2563
2564	list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2565		oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2566		list_del(&oos_page->list);
2567		free_page((unsigned long)oos_page->mem);
2568		kfree(oos_page);
2569	}
2570}
2571
2572static int setup_spt_oos(struct intel_gvt *gvt)
2573{
2574	struct intel_gvt_gtt *gtt = &gvt->gtt;
2575	struct intel_vgpu_oos_page *oos_page;
2576	int i;
2577	int ret;
2578
2579	INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2580	INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2581
2582	for (i = 0; i < preallocated_oos_pages; i++) {
2583		oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2584		if (!oos_page) {
2585			ret = -ENOMEM;
2586			goto fail;
2587		}
2588		oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2589		if (!oos_page->mem) {
2590			ret = -ENOMEM;
2591			kfree(oos_page);
2592			goto fail;
2593		}
2594
2595		INIT_LIST_HEAD(&oos_page->list);
2596		INIT_LIST_HEAD(&oos_page->vm_list);
2597		oos_page->id = i;
2598		list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2599	}
2600
2601	gvt_dbg_mm("%d oos pages preallocated\n", i);
2602
2603	return 0;
2604fail:
2605	clean_spt_oos(gvt);
2606	return ret;
2607}
2608
2609/**
2610 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2611 * @vgpu: a vGPU
2612 * @pdps: pdp root array
2613 *
2614 * This function is used to find a PPGTT mm object from mm object pool
2615 *
2616 * Returns:
2617 * pointer to mm object on success, NULL if failed.
2618 */
2619struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2620		u64 pdps[])
2621{
2622	struct intel_vgpu_mm *mm;
2623	struct list_head *pos;
2624
2625	list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2626		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2627
2628		switch (mm->ppgtt_mm.root_entry_type) {
2629		case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2630			if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2631				return mm;
2632			break;
2633		case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2634			if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2635				    sizeof(mm->ppgtt_mm.guest_pdps)))
2636				return mm;
2637			break;
2638		default:
2639			GEM_BUG_ON(1);
2640		}
2641	}
2642	return NULL;
2643}
2644
2645/**
2646 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2647 * @vgpu: a vGPU
2648 * @root_entry_type: ppgtt root entry type
2649 * @pdps: guest pdps
2650 *
2651 * This function is used to find or create a PPGTT mm object from a guest.
2652 *
2653 * Returns:
2654 * Zero on success, negative error code if failed.
2655 */
2656struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2657		enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2658{
2659	struct intel_vgpu_mm *mm;
2660
2661	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2662	if (mm) {
2663		intel_vgpu_mm_get(mm);
2664	} else {
2665		mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2666		if (IS_ERR(mm))
2667			gvt_vgpu_err("fail to create mm\n");
2668	}
2669	return mm;
2670}
2671
2672/**
2673 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2674 * @vgpu: a vGPU
2675 * @pdps: guest pdps
2676 *
2677 * This function is used to find a PPGTT mm object from a guest and destroy it.
2678 *
2679 * Returns:
2680 * Zero on success, negative error code if failed.
2681 */
2682int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2683{
2684	struct intel_vgpu_mm *mm;
2685
2686	mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2687	if (!mm) {
2688		gvt_vgpu_err("fail to find ppgtt instance.\n");
2689		return -EINVAL;
2690	}
2691	intel_vgpu_mm_put(mm);
2692	return 0;
2693}
2694
2695/**
2696 * intel_gvt_init_gtt - initialize mm components of a GVT device
2697 * @gvt: GVT device
2698 *
2699 * This function is called at the initialization stage, to initialize
2700 * the mm components of a GVT device.
2701 *
2702 * Returns:
2703 * zero on success, negative error code if failed.
2704 */
2705int intel_gvt_init_gtt(struct intel_gvt *gvt)
2706{
2707	int ret;
2708	void *page;
2709	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2710	dma_addr_t daddr;
2711
2712	gvt_dbg_core("init gtt\n");
2713
2714	gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2715	gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2716
2717	page = (void *)get_zeroed_page(GFP_KERNEL);
2718	if (!page) {
2719		gvt_err("fail to allocate scratch ggtt page\n");
2720		return -ENOMEM;
2721	}
2722
2723	daddr = dma_map_page(dev, virt_to_page(page), 0,
2724			4096, PCI_DMA_BIDIRECTIONAL);
2725	if (dma_mapping_error(dev, daddr)) {
2726		gvt_err("fail to dmamap scratch ggtt page\n");
2727		__free_page(virt_to_page(page));
2728		return -ENOMEM;
2729	}
2730
2731	gvt->gtt.scratch_page = virt_to_page(page);
2732	gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2733
2734	if (enable_out_of_sync) {
2735		ret = setup_spt_oos(gvt);
2736		if (ret) {
2737			gvt_err("fail to initialize SPT oos\n");
2738			dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2739			__free_page(gvt->gtt.scratch_page);
2740			return ret;
2741		}
2742	}
2743	INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2744	mutex_init(&gvt->gtt.ppgtt_mm_lock);
2745	return 0;
2746}
2747
2748/**
2749 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2750 * @gvt: GVT device
2751 *
2752 * This function is called at the driver unloading stage, to clean up the
2753 * the mm components of a GVT device.
2754 *
2755 */
2756void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2757{
2758	struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2759	dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2760					I915_GTT_PAGE_SHIFT);
2761
2762	dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2763
2764	__free_page(gvt->gtt.scratch_page);
2765
2766	if (enable_out_of_sync)
2767		clean_spt_oos(gvt);
2768}
2769
2770/**
2771 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2772 * @vgpu: a vGPU
2773 *
2774 * This function is called when invalidate all PPGTT instances of a vGPU.
2775 *
2776 */
2777void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2778{
2779	struct list_head *pos, *n;
2780	struct intel_vgpu_mm *mm;
2781
2782	list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2783		mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2784		if (mm->type == INTEL_GVT_MM_PPGTT) {
2785			mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2786			list_del_init(&mm->ppgtt_mm.lru_list);
2787			mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2788			if (mm->ppgtt_mm.shadowed)
2789				invalidate_ppgtt_mm(mm);
2790		}
2791	}
2792}
2793
2794/**
2795 * intel_vgpu_reset_ggtt - reset the GGTT entry
2796 * @vgpu: a vGPU
2797 * @invalidate_old: invalidate old entries
2798 *
2799 * This function is called at the vGPU create stage
2800 * to reset all the GGTT entries.
2801 *
2802 */
2803void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2804{
2805	struct intel_gvt *gvt = vgpu->gvt;
2806	struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2807	struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2808	struct intel_gvt_gtt_entry old_entry;
2809	u32 index;
2810	u32 num_entries;
2811
2812	pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2813	pte_ops->set_present(&entry);
2814
2815	index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2816	num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2817	while (num_entries--) {
2818		if (invalidate_old) {
2819			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2820			ggtt_invalidate_pte(vgpu, &old_entry);
2821		}
2822		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2823	}
2824
2825	index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2826	num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2827	while (num_entries--) {
2828		if (invalidate_old) {
2829			ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2830			ggtt_invalidate_pte(vgpu, &old_entry);
2831		}
2832		ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2833	}
2834
2835	ggtt_invalidate(gvt->gt);
2836}
2837
2838/**
2839 * intel_vgpu_reset_gtt - reset the all GTT related status
2840 * @vgpu: a vGPU
2841 *
2842 * This function is called from vfio core to reset reset all
2843 * GTT related status, including GGTT, PPGTT, scratch page.
2844 *
2845 */
2846void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2847{
2848	/* Shadow pages are only created when there is no page
2849	 * table tracking data, so remove page tracking data after
2850	 * removing the shadow pages.
2851	 */
2852	intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2853	intel_vgpu_reset_ggtt(vgpu, true);
2854}