Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1/*
   2 *	Real Time Clock interface for Linux
   3 *
   4 *	Copyright (C) 1996 Paul Gortmaker
   5 *
   6 *	This driver allows use of the real time clock (built into
   7 *	nearly all computers) from user space. It exports the /dev/rtc
   8 *	interface supporting various ioctl() and also the
   9 *	/proc/driver/rtc pseudo-file for status information.
  10 *
  11 *	The ioctls can be used to set the interrupt behaviour and
  12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
  13 *	interface can be used to make use of these timer interrupts,
  14 *	be they interval or alarm based.
  15 *
  16 *	The /dev/rtc interface will block on reads until an interrupt
  17 *	has been received. If a RTC interrupt has already happened,
  18 *	it will output an unsigned long and then block. The output value
  19 *	contains the interrupt status in the low byte and the number of
  20 *	interrupts since the last read in the remaining high bytes. The
  21 *	/dev/rtc interface can also be used with the select(2) call.
  22 *
  23 *	This program is free software; you can redistribute it and/or
  24 *	modify it under the terms of the GNU General Public License
  25 *	as published by the Free Software Foundation; either version
  26 *	2 of the License, or (at your option) any later version.
  27 *
  28 *	Based on other minimal char device drivers, like Alan's
  29 *	watchdog, Ted's random, etc. etc.
  30 *
  31 *	1.07	Paul Gortmaker.
  32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
  33 *		DEC Alpha as the CMOS clock is also used for other things.
  34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
  35 *	1.09a	Pete Zaitcev: Sun SPARC
  36 *	1.09b	Jeff Garzik: Modularize, init cleanup
  37 *	1.09c	Jeff Garzik: SMP cleanup
  38 *	1.10	Paul Barton-Davis: add support for async I/O
  39 *	1.10a	Andrea Arcangeli: Alpha updates
  40 *	1.10b	Andrew Morton: SMP lock fix
  41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
  42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
  43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
  44 *	1.11	Takashi Iwai: Kernel access functions
  45 *			      rtc_register/rtc_unregister/rtc_control
  46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
  47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
  48 *		CONFIG_HPET_EMULATE_RTC
  49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
  50 *	1.12ac	Alan Cox: Allow read access to the day of week register
  51 *	1.12b	David John: Remove calls to the BKL.
  52 */
  53
  54#define RTC_VERSION		"1.12b"
  55
  56/*
  57 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
  58 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
  59 *	design of the RTC, we don't want two different things trying to
  60 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
  61 *	this driver.)
  62 */
  63
  64#include <linux/interrupt.h>
  65#include <linux/module.h>
  66#include <linux/kernel.h>
  67#include <linux/types.h>
  68#include <linux/miscdevice.h>
  69#include <linux/ioport.h>
  70#include <linux/fcntl.h>
  71#include <linux/mc146818rtc.h>
  72#include <linux/init.h>
  73#include <linux/poll.h>
  74#include <linux/proc_fs.h>
  75#include <linux/seq_file.h>
  76#include <linux/spinlock.h>
  77#include <linux/sched.h>
  78#include <linux/sysctl.h>
  79#include <linux/wait.h>
  80#include <linux/bcd.h>
  81#include <linux/delay.h>
  82#include <linux/uaccess.h>
  83
  84#include <asm/current.h>
  85#include <asm/system.h>
  86
  87#ifdef CONFIG_X86
  88#include <asm/hpet.h>
  89#endif
  90
  91#ifdef CONFIG_SPARC32
  92#include <linux/of.h>
  93#include <linux/of_device.h>
  94#include <asm/io.h>
  95
  96static unsigned long rtc_port;
  97static int rtc_irq;
  98#endif
  99
 100#ifdef	CONFIG_HPET_EMULATE_RTC
 101#undef	RTC_IRQ
 102#endif
 103
 104#ifdef RTC_IRQ
 105static int rtc_has_irq = 1;
 106#endif
 107
 108#ifndef CONFIG_HPET_EMULATE_RTC
 109#define is_hpet_enabled()			0
 110#define hpet_set_alarm_time(hrs, min, sec)	0
 111#define hpet_set_periodic_freq(arg)		0
 112#define hpet_mask_rtc_irq_bit(arg)		0
 113#define hpet_set_rtc_irq_bit(arg)		0
 114#define hpet_rtc_timer_init()			do { } while (0)
 115#define hpet_rtc_dropped_irq()			0
 116#define hpet_register_irq_handler(h)		({ 0; })
 117#define hpet_unregister_irq_handler(h)		({ 0; })
 118#ifdef RTC_IRQ
 119static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
 120{
 121	return 0;
 122}
 123#endif
 124#endif
 125
 126/*
 127 *	We sponge a minor off of the misc major. No need slurping
 128 *	up another valuable major dev number for this. If you add
 129 *	an ioctl, make sure you don't conflict with SPARC's RTC
 130 *	ioctls.
 131 */
 132
 133static struct fasync_struct *rtc_async_queue;
 134
 135static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
 136
 137#ifdef RTC_IRQ
 138static void rtc_dropped_irq(unsigned long data);
 139
 140static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
 141#endif
 142
 143static ssize_t rtc_read(struct file *file, char __user *buf,
 144			size_t count, loff_t *ppos);
 145
 146static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
 148
 149#ifdef RTC_IRQ
 150static unsigned int rtc_poll(struct file *file, poll_table *wait);
 151#endif
 152
 153static void get_rtc_alm_time(struct rtc_time *alm_tm);
 154#ifdef RTC_IRQ
 155static void set_rtc_irq_bit_locked(unsigned char bit);
 156static void mask_rtc_irq_bit_locked(unsigned char bit);
 157
 158static inline void set_rtc_irq_bit(unsigned char bit)
 159{
 160	spin_lock_irq(&rtc_lock);
 161	set_rtc_irq_bit_locked(bit);
 162	spin_unlock_irq(&rtc_lock);
 163}
 164
 165static void mask_rtc_irq_bit(unsigned char bit)
 166{
 167	spin_lock_irq(&rtc_lock);
 168	mask_rtc_irq_bit_locked(bit);
 169	spin_unlock_irq(&rtc_lock);
 170}
 171#endif
 172
 173#ifdef CONFIG_PROC_FS
 174static int rtc_proc_open(struct inode *inode, struct file *file);
 175#endif
 176
 177/*
 178 *	Bits in rtc_status. (6 bits of room for future expansion)
 179 */
 180
 181#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
 182#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
 183
 184/*
 185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
 186 * protected by the spin lock rtc_lock. However, ioctl can still disable the
 187 * timer in rtc_status and then with del_timer after the interrupt has read
 188 * rtc_status but before mod_timer is called, which would then reenable the
 189 * timer (but you would need to have an awful timing before you'd trip on it)
 190 */
 191static unsigned long rtc_status;	/* bitmapped status byte.	*/
 192static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
 193static unsigned long rtc_irq_data;	/* our output to the world	*/
 194static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
 195
 196#ifdef RTC_IRQ
 197/*
 198 * rtc_task_lock nests inside rtc_lock.
 199 */
 200static DEFINE_SPINLOCK(rtc_task_lock);
 201static rtc_task_t *rtc_callback;
 202#endif
 203
 204/*
 205 *	If this driver ever becomes modularised, it will be really nice
 206 *	to make the epoch retain its value across module reload...
 207 */
 208
 209static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
 210
 211static const unsigned char days_in_mo[] =
 212{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 213
 214/*
 215 * Returns true if a clock update is in progress
 216 */
 217static inline unsigned char rtc_is_updating(void)
 218{
 219	unsigned long flags;
 220	unsigned char uip;
 221
 222	spin_lock_irqsave(&rtc_lock, flags);
 223	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 224	spin_unlock_irqrestore(&rtc_lock, flags);
 225	return uip;
 226}
 227
 228#ifdef RTC_IRQ
 229/*
 230 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
 231 *	but there is possibility of conflicting with the set_rtc_mmss()
 232 *	call (the rtc irq and the timer irq can easily run at the same
 233 *	time in two different CPUs). So we need to serialize
 234 *	accesses to the chip with the rtc_lock spinlock that each
 235 *	architecture should implement in the timer code.
 236 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 237 */
 238
 239static irqreturn_t rtc_interrupt(int irq, void *dev_id)
 240{
 241	/*
 242	 *	Can be an alarm interrupt, update complete interrupt,
 243	 *	or a periodic interrupt. We store the status in the
 244	 *	low byte and the number of interrupts received since
 245	 *	the last read in the remainder of rtc_irq_data.
 246	 */
 247
 248	spin_lock(&rtc_lock);
 249	rtc_irq_data += 0x100;
 250	rtc_irq_data &= ~0xff;
 251	if (is_hpet_enabled()) {
 252		/*
 253		 * In this case it is HPET RTC interrupt handler
 254		 * calling us, with the interrupt information
 255		 * passed as arg1, instead of irq.
 256		 */
 257		rtc_irq_data |= (unsigned long)irq & 0xF0;
 258	} else {
 259		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
 260	}
 261
 262	if (rtc_status & RTC_TIMER_ON)
 263		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
 264
 265	spin_unlock(&rtc_lock);
 266
 267	/* Now do the rest of the actions */
 268	spin_lock(&rtc_task_lock);
 269	if (rtc_callback)
 270		rtc_callback->func(rtc_callback->private_data);
 271	spin_unlock(&rtc_task_lock);
 272	wake_up_interruptible(&rtc_wait);
 273
 274	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
 275
 276	return IRQ_HANDLED;
 277}
 278#endif
 279
 280/*
 281 * sysctl-tuning infrastructure.
 282 */
 283static ctl_table rtc_table[] = {
 284	{
 285		.procname	= "max-user-freq",
 286		.data		= &rtc_max_user_freq,
 287		.maxlen		= sizeof(int),
 288		.mode		= 0644,
 289		.proc_handler	= proc_dointvec,
 290	},
 291	{ }
 292};
 293
 294static ctl_table rtc_root[] = {
 295	{
 296		.procname	= "rtc",
 297		.mode		= 0555,
 298		.child		= rtc_table,
 299	},
 300	{ }
 301};
 302
 303static ctl_table dev_root[] = {
 304	{
 305		.procname	= "dev",
 306		.mode		= 0555,
 307		.child		= rtc_root,
 308	},
 309	{ }
 310};
 311
 312static struct ctl_table_header *sysctl_header;
 313
 314static int __init init_sysctl(void)
 315{
 316    sysctl_header = register_sysctl_table(dev_root);
 317    return 0;
 318}
 319
 320static void __exit cleanup_sysctl(void)
 321{
 322    unregister_sysctl_table(sysctl_header);
 323}
 324
 325/*
 326 *	Now all the various file operations that we export.
 327 */
 328
 329static ssize_t rtc_read(struct file *file, char __user *buf,
 330			size_t count, loff_t *ppos)
 331{
 332#ifndef RTC_IRQ
 333	return -EIO;
 334#else
 335	DECLARE_WAITQUEUE(wait, current);
 336	unsigned long data;
 337	ssize_t retval;
 338
 339	if (rtc_has_irq == 0)
 340		return -EIO;
 341
 342	/*
 343	 * Historically this function used to assume that sizeof(unsigned long)
 344	 * is the same in userspace and kernelspace.  This lead to problems
 345	 * for configurations with multiple ABIs such a the MIPS o32 and 64
 346	 * ABIs supported on the same kernel.  So now we support read of both
 347	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
 348	 * userspace ABI.
 349	 */
 350	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
 351		return -EINVAL;
 352
 353	add_wait_queue(&rtc_wait, &wait);
 354
 355	do {
 356		/* First make it right. Then make it fast. Putting this whole
 357		 * block within the parentheses of a while would be too
 358		 * confusing. And no, xchg() is not the answer. */
 359
 360		__set_current_state(TASK_INTERRUPTIBLE);
 361
 362		spin_lock_irq(&rtc_lock);
 363		data = rtc_irq_data;
 364		rtc_irq_data = 0;
 365		spin_unlock_irq(&rtc_lock);
 366
 367		if (data != 0)
 368			break;
 369
 370		if (file->f_flags & O_NONBLOCK) {
 371			retval = -EAGAIN;
 372			goto out;
 373		}
 374		if (signal_pending(current)) {
 375			retval = -ERESTARTSYS;
 376			goto out;
 377		}
 378		schedule();
 379	} while (1);
 380
 381	if (count == sizeof(unsigned int)) {
 382		retval = put_user(data,
 383				  (unsigned int __user *)buf) ?: sizeof(int);
 384	} else {
 385		retval = put_user(data,
 386				  (unsigned long __user *)buf) ?: sizeof(long);
 387	}
 388	if (!retval)
 389		retval = count;
 390 out:
 391	__set_current_state(TASK_RUNNING);
 392	remove_wait_queue(&rtc_wait, &wait);
 393
 394	return retval;
 395#endif
 396}
 397
 398static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
 399{
 400	struct rtc_time wtime;
 401
 402#ifdef RTC_IRQ
 403	if (rtc_has_irq == 0) {
 404		switch (cmd) {
 405		case RTC_AIE_OFF:
 406		case RTC_AIE_ON:
 407		case RTC_PIE_OFF:
 408		case RTC_PIE_ON:
 409		case RTC_UIE_OFF:
 410		case RTC_UIE_ON:
 411		case RTC_IRQP_READ:
 412		case RTC_IRQP_SET:
 413			return -EINVAL;
 414		};
 415	}
 416#endif
 417
 418	switch (cmd) {
 419#ifdef RTC_IRQ
 420	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
 421	{
 422		mask_rtc_irq_bit(RTC_AIE);
 423		return 0;
 424	}
 425	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
 426	{
 427		set_rtc_irq_bit(RTC_AIE);
 428		return 0;
 429	}
 430	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
 431	{
 432		/* can be called from isr via rtc_control() */
 433		unsigned long flags;
 434
 435		spin_lock_irqsave(&rtc_lock, flags);
 436		mask_rtc_irq_bit_locked(RTC_PIE);
 437		if (rtc_status & RTC_TIMER_ON) {
 438			rtc_status &= ~RTC_TIMER_ON;
 439			del_timer(&rtc_irq_timer);
 440		}
 441		spin_unlock_irqrestore(&rtc_lock, flags);
 442
 443		return 0;
 444	}
 445	case RTC_PIE_ON:	/* Allow periodic ints		*/
 446	{
 447		/* can be called from isr via rtc_control() */
 448		unsigned long flags;
 449
 450		/*
 451		 * We don't really want Joe User enabling more
 452		 * than 64Hz of interrupts on a multi-user machine.
 453		 */
 454		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
 455						(!capable(CAP_SYS_RESOURCE)))
 456			return -EACCES;
 457
 458		spin_lock_irqsave(&rtc_lock, flags);
 459		if (!(rtc_status & RTC_TIMER_ON)) {
 460			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
 461					2*HZ/100);
 462			rtc_status |= RTC_TIMER_ON;
 463		}
 464		set_rtc_irq_bit_locked(RTC_PIE);
 465		spin_unlock_irqrestore(&rtc_lock, flags);
 466
 467		return 0;
 468	}
 469	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
 470	{
 471		mask_rtc_irq_bit(RTC_UIE);
 472		return 0;
 473	}
 474	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
 475	{
 476		set_rtc_irq_bit(RTC_UIE);
 477		return 0;
 478	}
 479#endif
 480	case RTC_ALM_READ:	/* Read the present alarm time */
 481	{
 482		/*
 483		 * This returns a struct rtc_time. Reading >= 0xc0
 484		 * means "don't care" or "match all". Only the tm_hour,
 485		 * tm_min, and tm_sec values are filled in.
 486		 */
 487		memset(&wtime, 0, sizeof(struct rtc_time));
 488		get_rtc_alm_time(&wtime);
 489		break;
 490	}
 491	case RTC_ALM_SET:	/* Store a time into the alarm */
 492	{
 493		/*
 494		 * This expects a struct rtc_time. Writing 0xff means
 495		 * "don't care" or "match all". Only the tm_hour,
 496		 * tm_min and tm_sec are used.
 497		 */
 498		unsigned char hrs, min, sec;
 499		struct rtc_time alm_tm;
 500
 501		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
 502				   sizeof(struct rtc_time)))
 503			return -EFAULT;
 504
 505		hrs = alm_tm.tm_hour;
 506		min = alm_tm.tm_min;
 507		sec = alm_tm.tm_sec;
 508
 509		spin_lock_irq(&rtc_lock);
 510		if (hpet_set_alarm_time(hrs, min, sec)) {
 511			/*
 512			 * Fallthru and set alarm time in CMOS too,
 513			 * so that we will get proper value in RTC_ALM_READ
 514			 */
 515		}
 516		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
 517							RTC_ALWAYS_BCD) {
 518			if (sec < 60)
 519				sec = bin2bcd(sec);
 520			else
 521				sec = 0xff;
 522
 523			if (min < 60)
 524				min = bin2bcd(min);
 525			else
 526				min = 0xff;
 527
 528			if (hrs < 24)
 529				hrs = bin2bcd(hrs);
 530			else
 531				hrs = 0xff;
 532		}
 533		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 534		CMOS_WRITE(min, RTC_MINUTES_ALARM);
 535		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 536		spin_unlock_irq(&rtc_lock);
 537
 538		return 0;
 539	}
 540	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
 541	{
 542		memset(&wtime, 0, sizeof(struct rtc_time));
 543		rtc_get_rtc_time(&wtime);
 544		break;
 545	}
 546	case RTC_SET_TIME:	/* Set the RTC */
 547	{
 548		struct rtc_time rtc_tm;
 549		unsigned char mon, day, hrs, min, sec, leap_yr;
 550		unsigned char save_control, save_freq_select;
 551		unsigned int yrs;
 552#ifdef CONFIG_MACH_DECSTATION
 553		unsigned int real_yrs;
 554#endif
 555
 556		if (!capable(CAP_SYS_TIME))
 557			return -EACCES;
 558
 559		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
 560				   sizeof(struct rtc_time)))
 561			return -EFAULT;
 562
 563		yrs = rtc_tm.tm_year + 1900;
 564		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
 565		day = rtc_tm.tm_mday;
 566		hrs = rtc_tm.tm_hour;
 567		min = rtc_tm.tm_min;
 568		sec = rtc_tm.tm_sec;
 569
 570		if (yrs < 1970)
 571			return -EINVAL;
 572
 573		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
 574
 575		if ((mon > 12) || (day == 0))
 576			return -EINVAL;
 577
 578		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
 579			return -EINVAL;
 580
 581		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
 582			return -EINVAL;
 583
 584		yrs -= epoch;
 585		if (yrs > 255)		/* They are unsigned */
 586			return -EINVAL;
 587
 588		spin_lock_irq(&rtc_lock);
 589#ifdef CONFIG_MACH_DECSTATION
 590		real_yrs = yrs;
 591		yrs = 72;
 592
 593		/*
 594		 * We want to keep the year set to 73 until March
 595		 * for non-leap years, so that Feb, 29th is handled
 596		 * correctly.
 597		 */
 598		if (!leap_yr && mon < 3) {
 599			real_yrs--;
 600			yrs = 73;
 601		}
 602#endif
 603		/* These limits and adjustments are independent of
 604		 * whether the chip is in binary mode or not.
 605		 */
 606		if (yrs > 169) {
 607			spin_unlock_irq(&rtc_lock);
 608			return -EINVAL;
 609		}
 610		if (yrs >= 100)
 611			yrs -= 100;
 612
 613		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
 614		    || RTC_ALWAYS_BCD) {
 615			sec = bin2bcd(sec);
 616			min = bin2bcd(min);
 617			hrs = bin2bcd(hrs);
 618			day = bin2bcd(day);
 619			mon = bin2bcd(mon);
 620			yrs = bin2bcd(yrs);
 621		}
 622
 623		save_control = CMOS_READ(RTC_CONTROL);
 624		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 625		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 626		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 627
 628#ifdef CONFIG_MACH_DECSTATION
 629		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
 630#endif
 631		CMOS_WRITE(yrs, RTC_YEAR);
 632		CMOS_WRITE(mon, RTC_MONTH);
 633		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
 634		CMOS_WRITE(hrs, RTC_HOURS);
 635		CMOS_WRITE(min, RTC_MINUTES);
 636		CMOS_WRITE(sec, RTC_SECONDS);
 637
 638		CMOS_WRITE(save_control, RTC_CONTROL);
 639		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 640
 641		spin_unlock_irq(&rtc_lock);
 642		return 0;
 643	}
 644#ifdef RTC_IRQ
 645	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
 646	{
 647		return put_user(rtc_freq, (unsigned long __user *)arg);
 648	}
 649	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
 650	{
 651		int tmp = 0;
 652		unsigned char val;
 653		/* can be called from isr via rtc_control() */
 654		unsigned long flags;
 655
 656		/*
 657		 * The max we can do is 8192Hz.
 658		 */
 659		if ((arg < 2) || (arg > 8192))
 660			return -EINVAL;
 661		/*
 662		 * We don't really want Joe User generating more
 663		 * than 64Hz of interrupts on a multi-user machine.
 664		 */
 665		if (!kernel && (arg > rtc_max_user_freq) &&
 666					!capable(CAP_SYS_RESOURCE))
 667			return -EACCES;
 668
 669		while (arg > (1<<tmp))
 670			tmp++;
 671
 672		/*
 673		 * Check that the input was really a power of 2.
 674		 */
 675		if (arg != (1<<tmp))
 676			return -EINVAL;
 677
 678		rtc_freq = arg;
 679
 680		spin_lock_irqsave(&rtc_lock, flags);
 681		if (hpet_set_periodic_freq(arg)) {
 682			spin_unlock_irqrestore(&rtc_lock, flags);
 683			return 0;
 684		}
 685
 686		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
 687		val |= (16 - tmp);
 688		CMOS_WRITE(val, RTC_FREQ_SELECT);
 689		spin_unlock_irqrestore(&rtc_lock, flags);
 690		return 0;
 691	}
 692#endif
 693	case RTC_EPOCH_READ:	/* Read the epoch.	*/
 694	{
 695		return put_user(epoch, (unsigned long __user *)arg);
 696	}
 697	case RTC_EPOCH_SET:	/* Set the epoch.	*/
 698	{
 699		/*
 700		 * There were no RTC clocks before 1900.
 701		 */
 702		if (arg < 1900)
 703			return -EINVAL;
 704
 705		if (!capable(CAP_SYS_TIME))
 706			return -EACCES;
 707
 708		epoch = arg;
 709		return 0;
 710	}
 711	default:
 712		return -ENOTTY;
 713	}
 714	return copy_to_user((void __user *)arg,
 715			    &wtime, sizeof wtime) ? -EFAULT : 0;
 716}
 717
 718static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 719{
 720	long ret;
 721	ret = rtc_do_ioctl(cmd, arg, 0);
 722	return ret;
 723}
 724
 725/*
 726 *	We enforce only one user at a time here with the open/close.
 727 *	Also clear the previous interrupt data on an open, and clean
 728 *	up things on a close.
 729 */
 730static int rtc_open(struct inode *inode, struct file *file)
 731{
 732	spin_lock_irq(&rtc_lock);
 733
 734	if (rtc_status & RTC_IS_OPEN)
 735		goto out_busy;
 736
 737	rtc_status |= RTC_IS_OPEN;
 738
 739	rtc_irq_data = 0;
 740	spin_unlock_irq(&rtc_lock);
 741	return 0;
 742
 743out_busy:
 744	spin_unlock_irq(&rtc_lock);
 745	return -EBUSY;
 746}
 747
 748static int rtc_fasync(int fd, struct file *filp, int on)
 749{
 750	return fasync_helper(fd, filp, on, &rtc_async_queue);
 751}
 752
 753static int rtc_release(struct inode *inode, struct file *file)
 754{
 755#ifdef RTC_IRQ
 756	unsigned char tmp;
 757
 758	if (rtc_has_irq == 0)
 759		goto no_irq;
 760
 761	/*
 762	 * Turn off all interrupts once the device is no longer
 763	 * in use, and clear the data.
 764	 */
 765
 766	spin_lock_irq(&rtc_lock);
 767	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 768		tmp = CMOS_READ(RTC_CONTROL);
 769		tmp &=  ~RTC_PIE;
 770		tmp &=  ~RTC_AIE;
 771		tmp &=  ~RTC_UIE;
 772		CMOS_WRITE(tmp, RTC_CONTROL);
 773		CMOS_READ(RTC_INTR_FLAGS);
 774	}
 775	if (rtc_status & RTC_TIMER_ON) {
 776		rtc_status &= ~RTC_TIMER_ON;
 777		del_timer(&rtc_irq_timer);
 778	}
 779	spin_unlock_irq(&rtc_lock);
 780
 781no_irq:
 782#endif
 783
 784	spin_lock_irq(&rtc_lock);
 785	rtc_irq_data = 0;
 786	rtc_status &= ~RTC_IS_OPEN;
 787	spin_unlock_irq(&rtc_lock);
 788
 789	return 0;
 790}
 791
 792#ifdef RTC_IRQ
 793static unsigned int rtc_poll(struct file *file, poll_table *wait)
 794{
 795	unsigned long l;
 796
 797	if (rtc_has_irq == 0)
 798		return 0;
 799
 800	poll_wait(file, &rtc_wait, wait);
 801
 802	spin_lock_irq(&rtc_lock);
 803	l = rtc_irq_data;
 804	spin_unlock_irq(&rtc_lock);
 805
 806	if (l != 0)
 807		return POLLIN | POLLRDNORM;
 808	return 0;
 809}
 810#endif
 811
 812int rtc_register(rtc_task_t *task)
 813{
 814#ifndef RTC_IRQ
 815	return -EIO;
 816#else
 817	if (task == NULL || task->func == NULL)
 818		return -EINVAL;
 819	spin_lock_irq(&rtc_lock);
 820	if (rtc_status & RTC_IS_OPEN) {
 821		spin_unlock_irq(&rtc_lock);
 822		return -EBUSY;
 823	}
 824	spin_lock(&rtc_task_lock);
 825	if (rtc_callback) {
 826		spin_unlock(&rtc_task_lock);
 827		spin_unlock_irq(&rtc_lock);
 828		return -EBUSY;
 829	}
 830	rtc_status |= RTC_IS_OPEN;
 831	rtc_callback = task;
 832	spin_unlock(&rtc_task_lock);
 833	spin_unlock_irq(&rtc_lock);
 834	return 0;
 835#endif
 836}
 837EXPORT_SYMBOL(rtc_register);
 838
 839int rtc_unregister(rtc_task_t *task)
 840{
 841#ifndef RTC_IRQ
 842	return -EIO;
 843#else
 844	unsigned char tmp;
 845
 846	spin_lock_irq(&rtc_lock);
 847	spin_lock(&rtc_task_lock);
 848	if (rtc_callback != task) {
 849		spin_unlock(&rtc_task_lock);
 850		spin_unlock_irq(&rtc_lock);
 851		return -ENXIO;
 852	}
 853	rtc_callback = NULL;
 854
 855	/* disable controls */
 856	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
 857		tmp = CMOS_READ(RTC_CONTROL);
 858		tmp &= ~RTC_PIE;
 859		tmp &= ~RTC_AIE;
 860		tmp &= ~RTC_UIE;
 861		CMOS_WRITE(tmp, RTC_CONTROL);
 862		CMOS_READ(RTC_INTR_FLAGS);
 863	}
 864	if (rtc_status & RTC_TIMER_ON) {
 865		rtc_status &= ~RTC_TIMER_ON;
 866		del_timer(&rtc_irq_timer);
 867	}
 868	rtc_status &= ~RTC_IS_OPEN;
 869	spin_unlock(&rtc_task_lock);
 870	spin_unlock_irq(&rtc_lock);
 871	return 0;
 872#endif
 873}
 874EXPORT_SYMBOL(rtc_unregister);
 875
 876int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
 877{
 878#ifndef RTC_IRQ
 879	return -EIO;
 880#else
 881	unsigned long flags;
 882	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
 883		return -EINVAL;
 884	spin_lock_irqsave(&rtc_task_lock, flags);
 885	if (rtc_callback != task) {
 886		spin_unlock_irqrestore(&rtc_task_lock, flags);
 887		return -ENXIO;
 888	}
 889	spin_unlock_irqrestore(&rtc_task_lock, flags);
 890	return rtc_do_ioctl(cmd, arg, 1);
 891#endif
 892}
 893EXPORT_SYMBOL(rtc_control);
 894
 895/*
 896 *	The various file operations we support.
 897 */
 898
 899static const struct file_operations rtc_fops = {
 900	.owner		= THIS_MODULE,
 901	.llseek		= no_llseek,
 902	.read		= rtc_read,
 903#ifdef RTC_IRQ
 904	.poll		= rtc_poll,
 905#endif
 906	.unlocked_ioctl	= rtc_ioctl,
 907	.open		= rtc_open,
 908	.release	= rtc_release,
 909	.fasync		= rtc_fasync,
 910};
 911
 912static struct miscdevice rtc_dev = {
 913	.minor		= RTC_MINOR,
 914	.name		= "rtc",
 915	.fops		= &rtc_fops,
 916};
 917
 918#ifdef CONFIG_PROC_FS
 919static const struct file_operations rtc_proc_fops = {
 920	.owner		= THIS_MODULE,
 921	.open		= rtc_proc_open,
 922	.read		= seq_read,
 923	.llseek		= seq_lseek,
 924	.release	= single_release,
 925};
 926#endif
 927
 928static resource_size_t rtc_size;
 929
 930static struct resource * __init rtc_request_region(resource_size_t size)
 931{
 932	struct resource *r;
 933
 934	if (RTC_IOMAPPED)
 935		r = request_region(RTC_PORT(0), size, "rtc");
 936	else
 937		r = request_mem_region(RTC_PORT(0), size, "rtc");
 938
 939	if (r)
 940		rtc_size = size;
 941
 942	return r;
 943}
 944
 945static void rtc_release_region(void)
 946{
 947	if (RTC_IOMAPPED)
 948		release_region(RTC_PORT(0), rtc_size);
 949	else
 950		release_mem_region(RTC_PORT(0), rtc_size);
 951}
 952
 953static int __init rtc_init(void)
 954{
 955#ifdef CONFIG_PROC_FS
 956	struct proc_dir_entry *ent;
 957#endif
 958#if defined(__alpha__) || defined(__mips__)
 959	unsigned int year, ctrl;
 960	char *guess = NULL;
 961#endif
 962#ifdef CONFIG_SPARC32
 963	struct device_node *ebus_dp;
 964	struct platform_device *op;
 965#else
 966	void *r;
 967#ifdef RTC_IRQ
 968	irq_handler_t rtc_int_handler_ptr;
 969#endif
 970#endif
 971
 972#ifdef CONFIG_SPARC32
 973	for_each_node_by_name(ebus_dp, "ebus") {
 974		struct device_node *dp;
 975		for (dp = ebus_dp; dp; dp = dp->sibling) {
 976			if (!strcmp(dp->name, "rtc")) {
 977				op = of_find_device_by_node(dp);
 978				if (op) {
 979					rtc_port = op->resource[0].start;
 980					rtc_irq = op->irqs[0];
 981					goto found;
 982				}
 983			}
 984		}
 985	}
 986	rtc_has_irq = 0;
 987	printk(KERN_ERR "rtc_init: no PC rtc found\n");
 988	return -EIO;
 989
 990found:
 991	if (!rtc_irq) {
 992		rtc_has_irq = 0;
 993		goto no_irq;
 994	}
 995
 996	/*
 997	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
 998	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
 999	 */
1000	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1001			(void *)&rtc_port)) {
1002		rtc_has_irq = 0;
1003		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1004		return -EIO;
1005	}
1006no_irq:
1007#else
1008	r = rtc_request_region(RTC_IO_EXTENT);
1009
1010	/*
1011	 * If we've already requested a smaller range (for example, because
1012	 * PNPBIOS or ACPI told us how the device is configured), the request
1013	 * above might fail because it's too big.
1014	 *
1015	 * If so, request just the range we actually use.
1016	 */
1017	if (!r)
1018		r = rtc_request_region(RTC_IO_EXTENT_USED);
1019	if (!r) {
1020#ifdef RTC_IRQ
1021		rtc_has_irq = 0;
1022#endif
1023		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1024		       (long)(RTC_PORT(0)));
1025		return -EIO;
1026	}
1027
1028#ifdef RTC_IRQ
1029	if (is_hpet_enabled()) {
1030		int err;
1031
1032		rtc_int_handler_ptr = hpet_rtc_interrupt;
1033		err = hpet_register_irq_handler(rtc_interrupt);
1034		if (err != 0) {
1035			printk(KERN_WARNING "hpet_register_irq_handler failed "
1036					"in rtc_init().");
1037			return err;
1038		}
1039	} else {
1040		rtc_int_handler_ptr = rtc_interrupt;
1041	}
1042
1043	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1044			"rtc", NULL)) {
1045		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1046		rtc_has_irq = 0;
1047		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1048		rtc_release_region();
1049
1050		return -EIO;
1051	}
1052	hpet_rtc_timer_init();
1053
1054#endif
1055
1056#endif /* CONFIG_SPARC32 vs. others */
1057
1058	if (misc_register(&rtc_dev)) {
1059#ifdef RTC_IRQ
1060		free_irq(RTC_IRQ, NULL);
1061		hpet_unregister_irq_handler(rtc_interrupt);
1062		rtc_has_irq = 0;
1063#endif
1064		rtc_release_region();
1065		return -ENODEV;
1066	}
1067
1068#ifdef CONFIG_PROC_FS
1069	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1070	if (!ent)
1071		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1072#endif
1073
1074#if defined(__alpha__) || defined(__mips__)
1075	rtc_freq = HZ;
1076
1077	/* Each operating system on an Alpha uses its own epoch.
1078	   Let's try to guess which one we are using now. */
1079
1080	if (rtc_is_updating() != 0)
1081		msleep(20);
1082
1083	spin_lock_irq(&rtc_lock);
1084	year = CMOS_READ(RTC_YEAR);
1085	ctrl = CMOS_READ(RTC_CONTROL);
1086	spin_unlock_irq(&rtc_lock);
1087
1088	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1089		year = bcd2bin(year);       /* This should never happen... */
1090
1091	if (year < 20) {
1092		epoch = 2000;
1093		guess = "SRM (post-2000)";
1094	} else if (year >= 20 && year < 48) {
1095		epoch = 1980;
1096		guess = "ARC console";
1097	} else if (year >= 48 && year < 72) {
1098		epoch = 1952;
1099		guess = "Digital UNIX";
1100#if defined(__mips__)
1101	} else if (year >= 72 && year < 74) {
1102		epoch = 2000;
1103		guess = "Digital DECstation";
1104#else
1105	} else if (year >= 70) {
1106		epoch = 1900;
1107		guess = "Standard PC (1900)";
1108#endif
1109	}
1110	if (guess)
1111		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1112			guess, epoch);
1113#endif
1114#ifdef RTC_IRQ
1115	if (rtc_has_irq == 0)
1116		goto no_irq2;
1117
1118	spin_lock_irq(&rtc_lock);
1119	rtc_freq = 1024;
1120	if (!hpet_set_periodic_freq(rtc_freq)) {
1121		/*
1122		 * Initialize periodic frequency to CMOS reset default,
1123		 * which is 1024Hz
1124		 */
1125		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1126			   RTC_FREQ_SELECT);
1127	}
1128	spin_unlock_irq(&rtc_lock);
1129no_irq2:
1130#endif
1131
1132	(void) init_sysctl();
1133
1134	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1135
1136	return 0;
1137}
1138
1139static void __exit rtc_exit(void)
1140{
1141	cleanup_sysctl();
1142	remove_proc_entry("driver/rtc", NULL);
1143	misc_deregister(&rtc_dev);
1144
1145#ifdef CONFIG_SPARC32
1146	if (rtc_has_irq)
1147		free_irq(rtc_irq, &rtc_port);
1148#else
1149	rtc_release_region();
1150#ifdef RTC_IRQ
1151	if (rtc_has_irq) {
1152		free_irq(RTC_IRQ, NULL);
1153		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1154	}
1155#endif
1156#endif /* CONFIG_SPARC32 */
1157}
1158
1159module_init(rtc_init);
1160module_exit(rtc_exit);
1161
1162#ifdef RTC_IRQ
1163/*
1164 *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1165 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1166 *	Since the interrupt handler doesn't get called, the IRQ status
1167 *	byte doesn't get read, and the RTC stops generating interrupts.
1168 *	A timer is set, and will call this function if/when that happens.
1169 *	To get it out of this stalled state, we just read the status.
1170 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1171 *	(You *really* shouldn't be trying to use a non-realtime system
1172 *	for something that requires a steady > 1KHz signal anyways.)
1173 */
1174
1175static void rtc_dropped_irq(unsigned long data)
1176{
1177	unsigned long freq;
1178
1179	spin_lock_irq(&rtc_lock);
1180
1181	if (hpet_rtc_dropped_irq()) {
1182		spin_unlock_irq(&rtc_lock);
1183		return;
1184	}
1185
1186	/* Just in case someone disabled the timer from behind our back... */
1187	if (rtc_status & RTC_TIMER_ON)
1188		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1189
1190	rtc_irq_data += ((rtc_freq/HZ)<<8);
1191	rtc_irq_data &= ~0xff;
1192	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1193
1194	freq = rtc_freq;
1195
1196	spin_unlock_irq(&rtc_lock);
1197
1198	if (printk_ratelimit()) {
1199		printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1200			freq);
1201	}
1202
1203	/* Now we have new data */
1204	wake_up_interruptible(&rtc_wait);
1205
1206	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1207}
1208#endif
1209
1210#ifdef CONFIG_PROC_FS
1211/*
1212 *	Info exported via "/proc/driver/rtc".
1213 */
1214
1215static int rtc_proc_show(struct seq_file *seq, void *v)
1216{
1217#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1218#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1219	struct rtc_time tm;
1220	unsigned char batt, ctrl;
1221	unsigned long freq;
1222
1223	spin_lock_irq(&rtc_lock);
1224	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1225	ctrl = CMOS_READ(RTC_CONTROL);
1226	freq = rtc_freq;
1227	spin_unlock_irq(&rtc_lock);
1228
1229
1230	rtc_get_rtc_time(&tm);
1231
1232	/*
1233	 * There is no way to tell if the luser has the RTC set for local
1234	 * time or for Universal Standard Time (GMT). Probably local though.
1235	 */
1236	seq_printf(seq,
1237		   "rtc_time\t: %02d:%02d:%02d\n"
1238		   "rtc_date\t: %04d-%02d-%02d\n"
1239		   "rtc_epoch\t: %04lu\n",
1240		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1241		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1242
1243	get_rtc_alm_time(&tm);
1244
1245	/*
1246	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1247	 * match any value for that particular field. Values that are
1248	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1249	 */
1250	seq_puts(seq, "alarm\t\t: ");
1251	if (tm.tm_hour <= 24)
1252		seq_printf(seq, "%02d:", tm.tm_hour);
1253	else
1254		seq_puts(seq, "**:");
1255
1256	if (tm.tm_min <= 59)
1257		seq_printf(seq, "%02d:", tm.tm_min);
1258	else
1259		seq_puts(seq, "**:");
1260
1261	if (tm.tm_sec <= 59)
1262		seq_printf(seq, "%02d\n", tm.tm_sec);
1263	else
1264		seq_puts(seq, "**\n");
1265
1266	seq_printf(seq,
1267		   "DST_enable\t: %s\n"
1268		   "BCD\t\t: %s\n"
1269		   "24hr\t\t: %s\n"
1270		   "square_wave\t: %s\n"
1271		   "alarm_IRQ\t: %s\n"
1272		   "update_IRQ\t: %s\n"
1273		   "periodic_IRQ\t: %s\n"
1274		   "periodic_freq\t: %ld\n"
1275		   "batt_status\t: %s\n",
1276		   YN(RTC_DST_EN),
1277		   NY(RTC_DM_BINARY),
1278		   YN(RTC_24H),
1279		   YN(RTC_SQWE),
1280		   YN(RTC_AIE),
1281		   YN(RTC_UIE),
1282		   YN(RTC_PIE),
1283		   freq,
1284		   batt ? "okay" : "dead");
1285
1286	return  0;
1287#undef YN
1288#undef NY
1289}
1290
1291static int rtc_proc_open(struct inode *inode, struct file *file)
1292{
1293	return single_open(file, rtc_proc_show, NULL);
1294}
1295#endif
1296
1297static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1298{
1299	unsigned long uip_watchdog = jiffies, flags;
1300	unsigned char ctrl;
1301#ifdef CONFIG_MACH_DECSTATION
1302	unsigned int real_year;
1303#endif
1304
1305	/*
1306	 * read RTC once any update in progress is done. The update
1307	 * can take just over 2ms. We wait 20ms. There is no need to
1308	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1309	 * If you need to know *exactly* when a second has started, enable
1310	 * periodic update complete interrupts, (via ioctl) and then
1311	 * immediately read /dev/rtc which will block until you get the IRQ.
1312	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1313	 */
1314
1315	while (rtc_is_updating() != 0 &&
1316	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1317		cpu_relax();
1318
1319	/*
1320	 * Only the values that we read from the RTC are set. We leave
1321	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1322	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1323	 * only updated by the RTC when initially set to a non-zero value.
1324	 */
1325	spin_lock_irqsave(&rtc_lock, flags);
1326	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1327	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1328	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1329	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1330	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1331	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1332	/* Only set from 2.6.16 onwards */
1333	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1334
1335#ifdef CONFIG_MACH_DECSTATION
1336	real_year = CMOS_READ(RTC_DEC_YEAR);
1337#endif
1338	ctrl = CMOS_READ(RTC_CONTROL);
1339	spin_unlock_irqrestore(&rtc_lock, flags);
1340
1341	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1342		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1343		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1344		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1345		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1346		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1347		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1348		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1349	}
1350
1351#ifdef CONFIG_MACH_DECSTATION
1352	rtc_tm->tm_year += real_year - 72;
1353#endif
1354
1355	/*
1356	 * Account for differences between how the RTC uses the values
1357	 * and how they are defined in a struct rtc_time;
1358	 */
1359	rtc_tm->tm_year += epoch - 1900;
1360	if (rtc_tm->tm_year <= 69)
1361		rtc_tm->tm_year += 100;
1362
1363	rtc_tm->tm_mon--;
1364}
1365
1366static void get_rtc_alm_time(struct rtc_time *alm_tm)
1367{
1368	unsigned char ctrl;
1369
1370	/*
1371	 * Only the values that we read from the RTC are set. That
1372	 * means only tm_hour, tm_min, and tm_sec.
1373	 */
1374	spin_lock_irq(&rtc_lock);
1375	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1376	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1377	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1378	ctrl = CMOS_READ(RTC_CONTROL);
1379	spin_unlock_irq(&rtc_lock);
1380
1381	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1382		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1383		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1384		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1385	}
1386}
1387
1388#ifdef RTC_IRQ
1389/*
1390 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1391 * Rumour has it that if you frob the interrupt enable/disable
1392 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1393 * ensure you actually start getting interrupts. Probably for
1394 * compatibility with older/broken chipset RTC implementations.
1395 * We also clear out any old irq data after an ioctl() that
1396 * meddles with the interrupt enable/disable bits.
1397 */
1398
1399static void mask_rtc_irq_bit_locked(unsigned char bit)
1400{
1401	unsigned char val;
1402
1403	if (hpet_mask_rtc_irq_bit(bit))
1404		return;
1405	val = CMOS_READ(RTC_CONTROL);
1406	val &=  ~bit;
1407	CMOS_WRITE(val, RTC_CONTROL);
1408	CMOS_READ(RTC_INTR_FLAGS);
1409
1410	rtc_irq_data = 0;
1411}
1412
1413static void set_rtc_irq_bit_locked(unsigned char bit)
1414{
1415	unsigned char val;
1416
1417	if (hpet_set_rtc_irq_bit(bit))
1418		return;
1419	val = CMOS_READ(RTC_CONTROL);
1420	val |= bit;
1421	CMOS_WRITE(val, RTC_CONTROL);
1422	CMOS_READ(RTC_INTR_FLAGS);
1423
1424	rtc_irq_data = 0;
1425}
1426#endif
1427
1428MODULE_AUTHOR("Paul Gortmaker");
1429MODULE_LICENSE("GPL");
1430MODULE_ALIAS_MISCDEV(RTC_MINOR);