Linux Audio

Check our new training course

Loading...
v3.1
 
 
 
  1#include <linux/errno.h>
  2#include <linux/kernel.h>
  3#include <linux/mm.h>
  4#include <linux/smp.h>
  5#include <linux/prctl.h>
  6#include <linux/slab.h>
  7#include <linux/sched.h>
  8#include <linux/module.h>
 
 
 
 
 
  9#include <linux/pm.h>
 10#include <linux/clockchips.h>
 11#include <linux/random.h>
 12#include <linux/user-return-notifier.h>
 13#include <linux/dmi.h>
 14#include <linux/utsname.h>
 
 
 
 
 15#include <trace/events/power.h>
 16#include <linux/hw_breakpoint.h>
 17#include <asm/cpu.h>
 18#include <asm/system.h>
 19#include <asm/apic.h>
 20#include <asm/syscalls.h>
 21#include <asm/idle.h>
 22#include <asm/uaccess.h>
 23#include <asm/i387.h>
 24#include <asm/debugreg.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 25
 26struct kmem_cache *task_xstate_cachep;
 27EXPORT_SYMBOL_GPL(task_xstate_cachep);
 28
 
 
 
 
 29int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 30{
 31	int ret;
 
 
 
 32
 33	*dst = *src;
 34	if (fpu_allocated(&src->thread.fpu)) {
 35		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
 36		ret = fpu_alloc(&dst->thread.fpu);
 37		if (ret)
 38			return ret;
 39		fpu_copy(&dst->thread.fpu, &src->thread.fpu);
 40	}
 41	return 0;
 42}
 43
 44void free_thread_xstate(struct task_struct *tsk)
 
 
 
 45{
 46	fpu_free(&tsk->thread.fpu);
 47}
 48
 49void free_thread_info(struct thread_info *ti)
 50{
 51	free_thread_xstate(ti->task);
 52	free_pages((unsigned long)ti, get_order(THREAD_SIZE));
 
 
 53}
 54
 55void arch_task_cache_init(void)
 56{
 57        task_xstate_cachep =
 58        	kmem_cache_create("task_xstate", xstate_size,
 59				  __alignof__(union thread_xstate),
 60				  SLAB_PANIC | SLAB_NOTRACK, NULL);
 
 
 61}
 62
 63/*
 64 * Free current thread data structures etc..
 65 */
 66void exit_thread(void)
 67{
 68	struct task_struct *me = current;
 69	struct thread_struct *t = &me->thread;
 70	unsigned long *bp = t->io_bitmap_ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 71
 72	if (bp) {
 73		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
 
 
 
 
 
 
 
 
 
 
 74
 75		t->io_bitmap_ptr = NULL;
 76		clear_thread_flag(TIF_IO_BITMAP);
 77		/*
 78		 * Careful, clear this in the TSS too:
 79		 */
 80		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 81		t->io_bitmap_max = 0;
 82		put_cpu();
 83		kfree(bp);
 84	}
 85}
 86
 87void show_regs(struct pt_regs *regs)
 88{
 89	show_registers(regs);
 90	show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
 91}
 92
 93void show_regs_common(void)
 94{
 95	const char *vendor, *product, *board;
 96
 97	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 98	if (!vendor)
 99		vendor = "";
100	product = dmi_get_system_info(DMI_PRODUCT_NAME);
101	if (!product)
102		product = "";
103
104	/* Board Name is optional */
105	board = dmi_get_system_info(DMI_BOARD_NAME);
106
107	printk(KERN_CONT "\n");
108	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109		current->pid, current->comm, print_tainted(),
110		init_utsname()->release,
111		(int)strcspn(init_utsname()->version, " "),
112		init_utsname()->version);
113	printk(KERN_CONT " %s %s", vendor, product);
114	if (board)
115		printk(KERN_CONT "/%s", board);
116	printk(KERN_CONT "\n");
117}
118
119void flush_thread(void)
120{
121	struct task_struct *tsk = current;
122
123	flush_ptrace_hw_breakpoint(tsk);
124	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
125	/*
126	 * Forget coprocessor state..
127	 */
128	tsk->fpu_counter = 0;
129	clear_fpu(tsk);
130	clear_used_math();
131}
132
133static void hard_disable_TSC(void)
134{
135	write_cr4(read_cr4() | X86_CR4_TSD);
136}
137
138void disable_TSC(void)
139{
140	preempt_disable();
141	if (!test_and_set_thread_flag(TIF_NOTSC))
142		/*
143		 * Must flip the CPU state synchronously with
144		 * TIF_NOTSC in the current running context.
145		 */
146		hard_disable_TSC();
147	preempt_enable();
148}
149
150static void hard_enable_TSC(void)
151{
152	write_cr4(read_cr4() & ~X86_CR4_TSD);
153}
154
155static void enable_TSC(void)
156{
157	preempt_disable();
158	if (test_and_clear_thread_flag(TIF_NOTSC))
159		/*
160		 * Must flip the CPU state synchronously with
161		 * TIF_NOTSC in the current running context.
162		 */
163		hard_enable_TSC();
164	preempt_enable();
165}
166
167int get_tsc_mode(unsigned long adr)
168{
169	unsigned int val;
170
171	if (test_thread_flag(TIF_NOTSC))
172		val = PR_TSC_SIGSEGV;
173	else
174		val = PR_TSC_ENABLE;
175
176	return put_user(val, (unsigned int __user *)adr);
177}
178
179int set_tsc_mode(unsigned int val)
180{
181	if (val == PR_TSC_SIGSEGV)
182		disable_TSC();
183	else if (val == PR_TSC_ENABLE)
184		enable_TSC();
185	else
186		return -EINVAL;
187
188	return 0;
189}
190
191void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
192		      struct tss_struct *tss)
193{
194	struct thread_struct *prev, *next;
195
196	prev = &prev_p->thread;
197	next = &next_p->thread;
198
199	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
200	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
201		unsigned long debugctl = get_debugctlmsr();
202
203		debugctl &= ~DEBUGCTLMSR_BTF;
204		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
205			debugctl |= DEBUGCTLMSR_BTF;
206
207		update_debugctlmsr(debugctl);
208	}
 
209
210	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
211	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
212		/* prev and next are different */
213		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
214			hard_disable_TSC();
215		else
216			hard_enable_TSC();
217	}
218
219	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 
 
 
220		/*
221		 * Copy the relevant range of the IO bitmap.
222		 * Normally this is 128 bytes or less:
223		 */
224		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
225		       max(prev->io_bitmap_max, next->io_bitmap_max));
226	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 
 
 
 
 
 
227		/*
228		 * Clear any possible leftover bits:
 
229		 */
230		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
231	}
232	propagate_user_return_notify(prev_p, next_p);
 
 
 
 
 
233}
234
235int sys_fork(struct pt_regs *regs)
236{
237	return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
 
 
 
 
 
 
 
 
238}
239
240/*
241 * This is trivial, and on the face of it looks like it
242 * could equally well be done in user mode.
243 *
244 * Not so, for quite unobvious reasons - register pressure.
245 * In user mode vfork() cannot have a stack frame, and if
246 * done by calling the "clone()" system call directly, you
247 * do not have enough call-clobbered registers to hold all
248 * the information you need.
249 */
250int sys_vfork(struct pt_regs *regs)
251{
252	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
253		       NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
254}
255
256long
257sys_clone(unsigned long clone_flags, unsigned long newsp,
258	  void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
259{
260	if (!newsp)
261		newsp = regs->sp;
262	return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
 
 
 
 
 
 
263}
264
265/*
266 * This gets run with %si containing the
267 * function to call, and %di containing
268 * the "args".
269 */
270extern void kernel_thread_helper(void);
 
 
 
 
 
 
271
272/*
273 * Create a kernel thread
 
 
 
 
 
 
 
 
274 */
275int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
276{
277	struct pt_regs regs;
 
 
278
279	memset(&regs, 0, sizeof(regs));
 
 
 
280
281	regs.si = (unsigned long) fn;
282	regs.di = (unsigned long) arg;
 
 
283
284#ifdef CONFIG_X86_32
285	regs.ds = __USER_DS;
286	regs.es = __USER_DS;
287	regs.fs = __KERNEL_PERCPU;
288	regs.gs = __KERNEL_STACK_CANARY;
289#else
290	regs.ss = __KERNEL_DS;
291#endif
292
293	regs.orig_ax = -1;
294	regs.ip = (unsigned long) kernel_thread_helper;
295	regs.cs = __KERNEL_CS | get_kernel_rpl();
296	regs.flags = X86_EFLAGS_IF | 0x2;
297
298	/* Ok, create the new process.. */
299	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
 
 
 
 
 
300}
301EXPORT_SYMBOL(kernel_thread);
 
 
302
303/*
304 * sys_execve() executes a new program.
305 */
306long sys_execve(const char __user *name,
307		const char __user *const __user *argv,
308		const char __user *const __user *envp, struct pt_regs *regs)
 
 
 
 
 
 
 
 
309{
310	long error;
311	char *filename;
 
312
313	filename = getname(name);
314	error = PTR_ERR(filename);
315	if (IS_ERR(filename))
316		return error;
317	error = do_execve(filename, argv, envp, regs);
318
319#ifdef CONFIG_X86_32
320	if (error == 0) {
321		/* Make sure we don't return using sysenter.. */
322                set_thread_flag(TIF_IRET);
323        }
324#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
325
326	putname(filename);
327	return error;
 
 
 
 
 
 
 
 
 
 
328}
329
330/*
331 * Idle related variables and functions
 
 
 
 
332 */
333unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
334EXPORT_SYMBOL(boot_option_idle_override);
 
 
335
336/*
337 * Powermanagement idle function, if any..
338 */
339void (*pm_idle)(void);
340#ifdef CONFIG_APM_MODULE
341EXPORT_SYMBOL(pm_idle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342#endif
343
344#ifdef CONFIG_X86_32
 
 
 
 
 
 
 
 
345/*
346 * This halt magic was a workaround for ancient floppy DMA
347 * wreckage. It should be safe to remove.
 
 
348 */
349static int hlt_counter;
350void disable_hlt(void)
351{
352	hlt_counter++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353}
354EXPORT_SYMBOL(disable_hlt);
355
356void enable_hlt(void)
357{
358	hlt_counter--;
 
 
 
 
 
 
 
 
 
 
 
 
359}
360EXPORT_SYMBOL(enable_hlt);
361
362static inline int hlt_use_halt(void)
363{
364	return (!hlt_counter && boot_cpu_data.hlt_works_ok);
 
 
 
 
 
365}
366#else
367static inline int hlt_use_halt(void)
 
368{
369	return 1;
 
 
370}
371#endif
372
373/*
374 * We use this if we don't have any better
375 * idle routine..
376 */
377void default_idle(void)
378{
379	if (hlt_use_halt()) {
380		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
381		trace_cpu_idle(1, smp_processor_id());
382		current_thread_info()->status &= ~TS_POLLING;
383		/*
384		 * TS_POLLING-cleared state must be visible before we
385		 * test NEED_RESCHED:
386		 */
387		smp_mb();
388
389		if (!need_resched())
390			safe_halt();	/* enables interrupts racelessly */
391		else
392			local_irq_enable();
393		current_thread_info()->status |= TS_POLLING;
394		trace_power_end(smp_processor_id());
395		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
396	} else {
397		local_irq_enable();
398		/* loop is done by the caller */
399		cpu_relax();
400	}
401}
402#ifdef CONFIG_APM_MODULE
403EXPORT_SYMBOL(default_idle);
404#endif
405
406void stop_this_cpu(void *dummy)
407{
408	local_irq_disable();
409	/*
410	 * Remove this CPU:
411	 */
412	set_cpu_online(smp_processor_id(), false);
413	disable_local_APIC();
414
415	for (;;) {
416		if (hlt_works(smp_processor_id()))
417			halt();
 
 
 
 
 
 
 
 
 
 
 
 
 
418	}
419}
420
421static void do_nothing(void *unused)
422{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423}
424
425/*
426 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
427 * pm_idle and update to new pm_idle value. Required while changing pm_idle
428 * handler on SMP systems.
429 *
430 * Caller must have changed pm_idle to the new value before the call. Old
431 * pm_idle value will not be used by any CPU after the return of this function.
432 */
433void cpu_idle_wait(void)
 
 
 
 
 
 
434{
435	smp_mb();
436	/* kick all the CPUs so that they exit out of pm_idle */
437	smp_call_function(do_nothing, NULL, 1);
438}
439EXPORT_SYMBOL_GPL(cpu_idle_wait);
440
441/* Default MONITOR/MWAIT with no hints, used for default C1 state */
442static void mwait_idle(void)
443{
444	if (!need_resched()) {
445		trace_power_start(POWER_CSTATE, 1, smp_processor_id());
446		trace_cpu_idle(1, smp_processor_id());
447		if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
448			clflush((void *)&current_thread_info()->flags);
449
450		__monitor((void *)&current_thread_info()->flags, 0, 0);
451		smp_mb();
452		if (!need_resched())
453			__sti_mwait(0, 0);
454		else
455			local_irq_enable();
456		trace_power_end(smp_processor_id());
457		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
458	} else
459		local_irq_enable();
460}
461
462/*
463 * On SMP it's slightly faster (but much more power-consuming!)
464 * to poll the ->work.need_resched flag instead of waiting for the
465 * cross-CPU IPI to arrive. Use this option with caution.
466 */
467static void poll_idle(void)
468{
469	trace_power_start(POWER_CSTATE, 0, smp_processor_id());
470	trace_cpu_idle(0, smp_processor_id());
471	local_irq_enable();
472	while (!need_resched())
473		cpu_relax();
474	trace_power_end(smp_processor_id());
475	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
476}
477
478/*
479 * mwait selection logic:
480 *
481 * It depends on the CPU. For AMD CPUs that support MWAIT this is
482 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
483 * then depend on a clock divisor and current Pstate of the core. If
484 * all cores of a processor are in halt state (C1) the processor can
485 * enter the C1E (C1 enhanced) state. If mwait is used this will never
486 * happen.
487 *
488 * idle=mwait overrides this decision and forces the usage of mwait.
489 */
490
491#define MWAIT_INFO			0x05
492#define MWAIT_ECX_EXTENDED_INFO		0x01
493#define MWAIT_EDX_C1			0xf0
494
495int mwait_usable(const struct cpuinfo_x86 *c)
496{
497	u32 eax, ebx, ecx, edx;
 
 
 
 
498
499	if (boot_option_idle_override == IDLE_FORCE_MWAIT)
500		return 1;
 
 
501
502	if (c->cpuid_level < MWAIT_INFO)
503		return 0;
504
505	cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
506	/* Check, whether EDX has extended info about MWAIT */
507	if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
508		return 1;
509
 
 
 
510	/*
511	 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
512	 * C1  supports MWAIT
513	 */
514	return (edx & MWAIT_EDX_C1);
515}
516
517bool amd_e400_c1e_detected;
518EXPORT_SYMBOL(amd_e400_c1e_detected);
519
520static cpumask_var_t amd_e400_c1e_mask;
521
522void amd_e400_remove_cpu(int cpu)
523{
524	if (amd_e400_c1e_mask != NULL)
525		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526}
527
528/*
529 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
530 * pending message MSR. If we detect C1E, then we handle it the same
531 * way as C3 power states (local apic timer and TSC stop)
532 */
533static void amd_e400_idle(void)
534{
535	if (need_resched())
 
 
 
 
 
 
536		return;
 
537
538	if (!amd_e400_c1e_detected) {
539		u32 lo, hi;
540
541		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
542
543		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
544			amd_e400_c1e_detected = true;
545			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
546				mark_tsc_unstable("TSC halt in AMD C1E");
547			printk(KERN_INFO "System has AMD C1E enabled\n");
548		}
549	}
 
550
551	if (amd_e400_c1e_detected) {
552		int cpu = smp_processor_id();
 
 
 
 
 
 
 
 
 
 
 
 
553
554		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
555			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
556			/*
557			 * Force broadcast so ACPI can not interfere.
558			 */
559			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
560					   &cpu);
561			printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
562			       cpu);
563		}
564		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
565
566		default_idle();
 
567
568		/*
569		 * The switch back from broadcast mode needs to be
570		 * called with interrupts disabled.
571		 */
572		 local_irq_disable();
573		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
574		 local_irq_enable();
575	} else
576		default_idle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577}
578
579void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
580{
581#ifdef CONFIG_SMP
582	if (pm_idle == poll_idle && smp_num_siblings > 1) {
583		printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
584			" performance may degrade.\n");
585	}
586#endif
587	if (pm_idle)
588		return;
589
590	if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
591		/*
592		 * One CPU supports mwait => All CPUs supports mwait
593		 */
594		printk(KERN_INFO "using mwait in idle threads.\n");
595		pm_idle = mwait_idle;
596	} else if (cpu_has_amd_erratum(amd_erratum_400)) {
597		/* E400: APIC timer interrupt does not wake up CPU from C1e */
598		printk(KERN_INFO "using AMD E400 aware idle routine\n");
599		pm_idle = amd_e400_idle;
600	} else
601		pm_idle = default_idle;
602}
603
604void __init init_amd_e400_c1e_mask(void)
605{
606	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
607	if (pm_idle == amd_e400_idle)
608		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
609}
610
611static int __init idle_setup(char *str)
612{
613	if (!str)
614		return -EINVAL;
615
616	if (!strcmp(str, "poll")) {
617		printk("using polling idle threads.\n");
618		pm_idle = poll_idle;
619		boot_option_idle_override = IDLE_POLL;
620	} else if (!strcmp(str, "mwait")) {
621		boot_option_idle_override = IDLE_FORCE_MWAIT;
622		WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
623	} else if (!strcmp(str, "halt")) {
624		/*
625		 * When the boot option of idle=halt is added, halt is
626		 * forced to be used for CPU idle. In such case CPU C2/C3
627		 * won't be used again.
628		 * To continue to load the CPU idle driver, don't touch
629		 * the boot_option_idle_override.
630		 */
631		pm_idle = default_idle;
632		boot_option_idle_override = IDLE_HALT;
633	} else if (!strcmp(str, "nomwait")) {
634		/*
635		 * If the boot option of "idle=nomwait" is added,
636		 * it means that mwait will be disabled for CPU C2/C3
637		 * states. In such case it won't touch the variable
638		 * of boot_option_idle_override.
639		 */
640		boot_option_idle_override = IDLE_NOMWAIT;
641	} else
642		return -1;
643
644	return 0;
645}
646early_param("idle", idle_setup);
647
648unsigned long arch_align_stack(unsigned long sp)
649{
650	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
651		sp -= get_random_int() % 8192;
652	return sp & ~0xf;
653}
654
655unsigned long arch_randomize_brk(struct mm_struct *mm)
656{
657	unsigned long range_end = mm->brk + 0x02000000;
658	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
659}
660
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  3
  4#include <linux/errno.h>
  5#include <linux/kernel.h>
  6#include <linux/mm.h>
  7#include <linux/smp.h>
  8#include <linux/prctl.h>
  9#include <linux/slab.h>
 10#include <linux/sched.h>
 11#include <linux/sched/idle.h>
 12#include <linux/sched/debug.h>
 13#include <linux/sched/task.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/init.h>
 16#include <linux/export.h>
 17#include <linux/pm.h>
 18#include <linux/tick.h>
 19#include <linux/random.h>
 20#include <linux/user-return-notifier.h>
 21#include <linux/dmi.h>
 22#include <linux/utsname.h>
 23#include <linux/stackprotector.h>
 24#include <linux/cpuidle.h>
 25#include <linux/acpi.h>
 26#include <linux/elf-randomize.h>
 27#include <trace/events/power.h>
 28#include <linux/hw_breakpoint.h>
 29#include <asm/cpu.h>
 
 30#include <asm/apic.h>
 31#include <linux/uaccess.h>
 32#include <asm/mwait.h>
 33#include <asm/fpu/internal.h>
 
 34#include <asm/debugreg.h>
 35#include <asm/nmi.h>
 36#include <asm/tlbflush.h>
 37#include <asm/mce.h>
 38#include <asm/vm86.h>
 39#include <asm/switch_to.h>
 40#include <asm/desc.h>
 41#include <asm/prctl.h>
 42#include <asm/spec-ctrl.h>
 43#include <asm/io_bitmap.h>
 44#include <asm/proto.h>
 45#include <asm/frame.h>
 46
 47#include "process.h"
 48
 49/*
 50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 52 * so they are allowed to end up in the .data..cacheline_aligned
 53 * section. Since TSS's are completely CPU-local, we want them
 54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 55 */
 56__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
 57	.x86_tss = {
 58		/*
 59		 * .sp0 is only used when entering ring 0 from a lower
 60		 * privilege level.  Since the init task never runs anything
 61		 * but ring 0 code, there is no need for a valid value here.
 62		 * Poison it.
 63		 */
 64		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
 65
 66		/*
 67		 * .sp1 is cpu_current_top_of_stack.  The init task never
 68		 * runs user code, but cpu_current_top_of_stack should still
 69		 * be well defined before the first context switch.
 70		 */
 71		.sp1 = TOP_OF_INIT_STACK,
 72
 73#ifdef CONFIG_X86_32
 74		.ss0 = __KERNEL_DS,
 75		.ss1 = __KERNEL_CS,
 76#endif
 77		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
 78	 },
 79};
 80EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
 81
 82DEFINE_PER_CPU(bool, __tss_limit_invalid);
 83EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
 84
 85/*
 86 * this gets called so that we can store lazy state into memory and copy the
 87 * current task into the new thread.
 88 */
 89int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 90{
 91	memcpy(dst, src, arch_task_struct_size);
 92#ifdef CONFIG_VM86
 93	dst->thread.vm86 = NULL;
 94#endif
 95
 96	return fpu__copy(dst, src);
 
 
 
 
 
 
 
 
 97}
 98
 99/*
100 * Free thread data structures etc..
101 */
102void exit_thread(struct task_struct *tsk)
103{
104	struct thread_struct *t = &tsk->thread;
105	struct fpu *fpu = &t->fpu;
106
107	if (test_thread_flag(TIF_IO_BITMAP))
108		io_bitmap_exit(tsk);
109
110	free_vm86(t);
111
112	fpu__drop(fpu);
113}
114
115static int set_new_tls(struct task_struct *p, unsigned long tls)
116{
117	struct user_desc __user *utls = (struct user_desc __user *)tls;
118
119	if (in_ia32_syscall())
120		return do_set_thread_area(p, -1, utls, 0);
121	else
122		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
123}
124
125int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
126		struct task_struct *p, unsigned long tls)
 
 
127{
128	struct inactive_task_frame *frame;
129	struct fork_frame *fork_frame;
130	struct pt_regs *childregs;
131	int ret = 0;
132
133	childregs = task_pt_regs(p);
134	fork_frame = container_of(childregs, struct fork_frame, regs);
135	frame = &fork_frame->frame;
136
137	frame->bp = encode_frame_pointer(childregs);
138	frame->ret_addr = (unsigned long) ret_from_fork;
139	p->thread.sp = (unsigned long) fork_frame;
140	p->thread.io_bitmap = NULL;
141	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
142
143#ifdef CONFIG_X86_64
144	current_save_fsgs();
145	p->thread.fsindex = current->thread.fsindex;
146	p->thread.fsbase = current->thread.fsbase;
147	p->thread.gsindex = current->thread.gsindex;
148	p->thread.gsbase = current->thread.gsbase;
149
150	savesegment(es, p->thread.es);
151	savesegment(ds, p->thread.ds);
152#else
153	p->thread.sp0 = (unsigned long) (childregs + 1);
154	/*
155	 * Clear all status flags including IF and set fixed bit. 64bit
156	 * does not have this initialization as the frame does not contain
157	 * flags. The flags consistency (especially vs. AC) is there
158	 * ensured via objtool, which lacks 32bit support.
159	 */
160	frame->flags = X86_EFLAGS_FIXED;
161#endif
162
163	/* Kernel thread ? */
164	if (unlikely(p->flags & PF_KTHREAD)) {
165		memset(childregs, 0, sizeof(struct pt_regs));
166		kthread_frame_init(frame, sp, arg);
167		return 0;
 
 
 
 
168	}
 
169
170	frame->bx = 0;
171	*childregs = *current_pt_regs();
172	childregs->ax = 0;
173	if (sp)
174		childregs->sp = sp;
175
176#ifdef CONFIG_X86_32
177	task_user_gs(p) = get_user_gs(current_pt_regs());
178#endif
179
180	/* Set a new TLS for the child thread? */
181	if (clone_flags & CLONE_SETTLS)
182		ret = set_new_tls(p, tls);
 
 
 
183
184	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
185		io_bitmap_share(p);
186
187	return ret;
 
 
 
 
 
 
 
 
 
188}
189
190void flush_thread(void)
191{
192	struct task_struct *tsk = current;
193
194	flush_ptrace_hw_breakpoint(tsk);
195	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 
 
 
 
 
 
 
196
197	fpu__clear_all(&tsk->thread.fpu);
 
 
198}
199
200void disable_TSC(void)
201{
202	preempt_disable();
203	if (!test_and_set_thread_flag(TIF_NOTSC))
204		/*
205		 * Must flip the CPU state synchronously with
206		 * TIF_NOTSC in the current running context.
207		 */
208		cr4_set_bits(X86_CR4_TSD);
209	preempt_enable();
210}
211
 
 
 
 
 
212static void enable_TSC(void)
213{
214	preempt_disable();
215	if (test_and_clear_thread_flag(TIF_NOTSC))
216		/*
217		 * Must flip the CPU state synchronously with
218		 * TIF_NOTSC in the current running context.
219		 */
220		cr4_clear_bits(X86_CR4_TSD);
221	preempt_enable();
222}
223
224int get_tsc_mode(unsigned long adr)
225{
226	unsigned int val;
227
228	if (test_thread_flag(TIF_NOTSC))
229		val = PR_TSC_SIGSEGV;
230	else
231		val = PR_TSC_ENABLE;
232
233	return put_user(val, (unsigned int __user *)adr);
234}
235
236int set_tsc_mode(unsigned int val)
237{
238	if (val == PR_TSC_SIGSEGV)
239		disable_TSC();
240	else if (val == PR_TSC_ENABLE)
241		enable_TSC();
242	else
243		return -EINVAL;
244
245	return 0;
246}
247
248DEFINE_PER_CPU(u64, msr_misc_features_shadow);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249
250static void set_cpuid_faulting(bool on)
251{
252	u64 msrval;
253
254	msrval = this_cpu_read(msr_misc_features_shadow);
255	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
256	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
257	this_cpu_write(msr_misc_features_shadow, msrval);
258	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
259}
 
 
260
261static void disable_cpuid(void)
262{
263	preempt_disable();
264	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
265		/*
266		 * Must flip the CPU state synchronously with
267		 * TIF_NOCPUID in the current running context.
268		 */
269		set_cpuid_faulting(true);
270	}
271	preempt_enable();
272}
273
274static void enable_cpuid(void)
275{
276	preempt_disable();
277	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
278		/*
279		 * Must flip the CPU state synchronously with
280		 * TIF_NOCPUID in the current running context.
281		 */
282		set_cpuid_faulting(false);
283	}
284	preempt_enable();
285}
286
287static int get_cpuid_mode(void)
288{
289	return !test_thread_flag(TIF_NOCPUID);
290}
291
292static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
293{
294	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
295		return -ENODEV;
296
297	if (cpuid_enabled)
298		enable_cpuid();
299	else
300		disable_cpuid();
301
302	return 0;
303}
304
305/*
306 * Called immediately after a successful exec.
 
 
 
 
 
 
 
307 */
308void arch_setup_new_exec(void)
309{
310	/* If cpuid was previously disabled for this task, re-enable it. */
311	if (test_thread_flag(TIF_NOCPUID))
312		enable_cpuid();
313
314	/*
315	 * Don't inherit TIF_SSBD across exec boundary when
316	 * PR_SPEC_DISABLE_NOEXEC is used.
317	 */
318	if (test_thread_flag(TIF_SSBD) &&
319	    task_spec_ssb_noexec(current)) {
320		clear_thread_flag(TIF_SSBD);
321		task_clear_spec_ssb_disable(current);
322		task_clear_spec_ssb_noexec(current);
323		speculation_ctrl_update(task_thread_info(current)->flags);
324	}
325}
326
327#ifdef CONFIG_X86_IOPL_IOPERM
328static inline void switch_to_bitmap(unsigned long tifp)
 
329{
330	/*
331	 * Invalidate I/O bitmap if the previous task used it. This prevents
332	 * any possible leakage of an active I/O bitmap.
333	 *
334	 * If the next task has an I/O bitmap it will handle it on exit to
335	 * user mode.
336	 */
337	if (tifp & _TIF_IO_BITMAP)
338		tss_invalidate_io_bitmap();
339}
340
341static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
342{
343	/*
344	 * Copy at least the byte range of the incoming tasks bitmap which
345	 * covers the permitted I/O ports.
346	 *
347	 * If the previous task which used an I/O bitmap had more bits
348	 * permitted, then the copy needs to cover those as well so they
349	 * get turned off.
350	 */
351	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
352	       max(tss->io_bitmap.prev_max, iobm->max));
353
354	/*
355	 * Store the new max and the sequence number of this bitmap
356	 * and a pointer to the bitmap itself.
357	 */
358	tss->io_bitmap.prev_max = iobm->max;
359	tss->io_bitmap.prev_sequence = iobm->sequence;
360}
361
362/**
363 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
364 */
365void native_tss_update_io_bitmap(void)
366{
367	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
368	struct thread_struct *t = &current->thread;
369	u16 *base = &tss->x86_tss.io_bitmap_base;
370
371	if (!test_thread_flag(TIF_IO_BITMAP)) {
372		native_tss_invalidate_io_bitmap();
373		return;
374	}
375
376	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
377		*base = IO_BITMAP_OFFSET_VALID_ALL;
378	} else {
379		struct io_bitmap *iobm = t->io_bitmap;
380
381		/*
382		 * Only copy bitmap data when the sequence number differs. The
383		 * update time is accounted to the incoming task.
384		 */
385		if (tss->io_bitmap.prev_sequence != iobm->sequence)
386			tss_copy_io_bitmap(tss, iobm);
 
 
387
388		/* Enable the bitmap */
389		*base = IO_BITMAP_OFFSET_VALID_MAP;
390	}
 
391
392	/*
393	 * Make sure that the TSS limit is covering the IO bitmap. It might have
394	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
395	 * access from user space to trigger a #GP because tbe bitmap is outside
396	 * the TSS limit.
397	 */
398	refresh_tss_limit();
399}
400#else /* CONFIG_X86_IOPL_IOPERM */
401static inline void switch_to_bitmap(unsigned long tifp) { }
402#endif
403
404#ifdef CONFIG_SMP
405
406struct ssb_state {
407	struct ssb_state	*shared_state;
408	raw_spinlock_t		lock;
409	unsigned int		disable_state;
410	unsigned long		local_state;
411};
412
413#define LSTATE_SSB	0
414
415static DEFINE_PER_CPU(struct ssb_state, ssb_state);
416
417void speculative_store_bypass_ht_init(void)
418{
419	struct ssb_state *st = this_cpu_ptr(&ssb_state);
420	unsigned int this_cpu = smp_processor_id();
421	unsigned int cpu;
422
423	st->local_state = 0;
 
 
 
 
424
425	/*
426	 * Shared state setup happens once on the first bringup
427	 * of the CPU. It's not destroyed on CPU hotunplug.
428	 */
429	if (st->shared_state)
430		return;
431
432	raw_spin_lock_init(&st->lock);
433
434	/*
435	 * Go over HT siblings and check whether one of them has set up the
436	 * shared state pointer already.
437	 */
438	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
439		if (cpu == this_cpu)
440			continue;
441
442		if (!per_cpu(ssb_state, cpu).shared_state)
443			continue;
444
445		/* Link it to the state of the sibling: */
446		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
447		return;
448	}
449
450	/*
451	 * First HT sibling to come up on the core.  Link shared state of
452	 * the first HT sibling to itself. The siblings on the same core
453	 * which come up later will see the shared state pointer and link
454	 * themself to the state of this CPU.
455	 */
456	st->shared_state = st;
457}
458
459/*
460 * Logic is: First HT sibling enables SSBD for both siblings in the core
461 * and last sibling to disable it, disables it for the whole core. This how
462 * MSR_SPEC_CTRL works in "hardware":
463 *
464 *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
465 */
466static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
467{
468	struct ssb_state *st = this_cpu_ptr(&ssb_state);
469	u64 msr = x86_amd_ls_cfg_base;
470
471	if (!static_cpu_has(X86_FEATURE_ZEN)) {
472		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
473		wrmsrl(MSR_AMD64_LS_CFG, msr);
474		return;
475	}
476
477	if (tifn & _TIF_SSBD) {
478		/*
479		 * Since this can race with prctl(), block reentry on the
480		 * same CPU.
481		 */
482		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
483			return;
484
485		msr |= x86_amd_ls_cfg_ssbd_mask;
486
487		raw_spin_lock(&st->shared_state->lock);
488		/* First sibling enables SSBD: */
489		if (!st->shared_state->disable_state)
490			wrmsrl(MSR_AMD64_LS_CFG, msr);
491		st->shared_state->disable_state++;
492		raw_spin_unlock(&st->shared_state->lock);
493	} else {
494		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
495			return;
496
497		raw_spin_lock(&st->shared_state->lock);
498		st->shared_state->disable_state--;
499		if (!st->shared_state->disable_state)
500			wrmsrl(MSR_AMD64_LS_CFG, msr);
501		raw_spin_unlock(&st->shared_state->lock);
502	}
503}
504#else
505static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
506{
507	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
508
509	wrmsrl(MSR_AMD64_LS_CFG, msr);
510}
511#endif
512
513static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
514{
515	/*
516	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
517	 * so ssbd_tif_to_spec_ctrl() just works.
518	 */
519	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
520}
521
522/*
523 * Update the MSRs managing speculation control, during context switch.
524 *
525 * tifp: Previous task's thread flags
526 * tifn: Next task's thread flags
527 */
528static __always_inline void __speculation_ctrl_update(unsigned long tifp,
529						      unsigned long tifn)
530{
531	unsigned long tif_diff = tifp ^ tifn;
532	u64 msr = x86_spec_ctrl_base;
533	bool updmsr = false;
534
535	lockdep_assert_irqs_disabled();
536
537	/* Handle change of TIF_SSBD depending on the mitigation method. */
538	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
539		if (tif_diff & _TIF_SSBD)
540			amd_set_ssb_virt_state(tifn);
541	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
542		if (tif_diff & _TIF_SSBD)
543			amd_set_core_ssb_state(tifn);
544	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
545		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
546		updmsr |= !!(tif_diff & _TIF_SSBD);
547		msr |= ssbd_tif_to_spec_ctrl(tifn);
548	}
549
550	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
551	if (IS_ENABLED(CONFIG_SMP) &&
552	    static_branch_unlikely(&switch_to_cond_stibp)) {
553		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
554		msr |= stibp_tif_to_spec_ctrl(tifn);
555	}
556
557	if (updmsr)
558		wrmsrl(MSR_IA32_SPEC_CTRL, msr);
559}
 
560
561static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
562{
563	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
564		if (task_spec_ssb_disable(tsk))
565			set_tsk_thread_flag(tsk, TIF_SSBD);
566		else
567			clear_tsk_thread_flag(tsk, TIF_SSBD);
568
569		if (task_spec_ib_disable(tsk))
570			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
571		else
572			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
573	}
574	/* Return the updated threadinfo flags*/
575	return task_thread_info(tsk)->flags;
576}
 
577
578void speculation_ctrl_update(unsigned long tif)
579{
580	unsigned long flags;
581
582	/* Forced update. Make sure all relevant TIF flags are different */
583	local_irq_save(flags);
584	__speculation_ctrl_update(~tif, tif);
585	local_irq_restore(flags);
586}
587
588/* Called from seccomp/prctl update */
589void speculation_ctrl_update_current(void)
590{
591	preempt_disable();
592	speculation_ctrl_update(speculation_ctrl_update_tif(current));
593	preempt_enable();
594}
 
595
596static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
 
 
 
 
597{
598	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 
 
 
 
 
 
 
 
599
600	newval = cr4 ^ mask;
601	if (newval != cr4) {
602		this_cpu_write(cpu_tlbstate.cr4, newval);
603		__write_cr4(newval);
 
 
 
 
 
 
 
604	}
605}
 
 
 
606
607void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
608{
609	unsigned long tifp, tifn;
 
 
 
 
 
610
611	tifn = READ_ONCE(task_thread_info(next_p)->flags);
612	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
613
614	switch_to_bitmap(tifp);
615
616	propagate_user_return_notify(prev_p, next_p);
617
618	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
619	    arch_has_block_step()) {
620		unsigned long debugctl, msk;
621
622		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
623		debugctl &= ~DEBUGCTLMSR_BTF;
624		msk = tifn & _TIF_BLOCKSTEP;
625		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
626		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
627	}
 
628
629	if ((tifp ^ tifn) & _TIF_NOTSC)
630		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
631
632	if ((tifp ^ tifn) & _TIF_NOCPUID)
633		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
634
635	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
636		__speculation_ctrl_update(tifp, tifn);
637	} else {
638		speculation_ctrl_update_tif(prev_p);
639		tifn = speculation_ctrl_update_tif(next_p);
640
641		/* Enforce MSR update to ensure consistent state */
642		__speculation_ctrl_update(~tifn, tifn);
643	}
644
645	if ((tifp ^ tifn) & _TIF_SLD)
646		switch_to_sld(tifn);
647}
648
649/*
650 * Idle related variables and functions
 
 
 
 
 
651 */
652unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
653EXPORT_SYMBOL(boot_option_idle_override);
654
655static void (*x86_idle)(void);
656
657#ifndef CONFIG_SMP
658static inline void play_dead(void)
659{
660	BUG();
 
 
661}
662#endif
663
664void arch_cpu_idle_enter(void)
 
665{
666	tsc_verify_tsc_adjust(false);
667	local_touch_nmi();
668}
 
 
669
670void arch_cpu_idle_dead(void)
671{
672	play_dead();
 
 
 
 
 
 
 
673}
674
675/*
676 * Called from the generic idle code.
 
 
677 */
678void arch_cpu_idle(void)
679{
680	x86_idle();
 
 
 
 
 
 
681}
682
683/*
684 * We use this if we don't have any better idle routine..
 
 
 
 
 
 
 
 
 
685 */
686void __cpuidle default_idle(void)
 
 
 
 
 
687{
688	safe_halt();
689}
690#if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
691EXPORT_SYMBOL(default_idle);
692#endif
693
694#ifdef CONFIG_XEN
695bool xen_set_default_idle(void)
696{
697	bool ret = !!x86_idle;
698
699	x86_idle = default_idle;
 
700
701	return ret;
702}
703#endif
 
704
705void stop_this_cpu(void *dummy)
706{
707	local_irq_disable();
708	/*
709	 * Remove this CPU:
 
710	 */
711	set_cpu_online(smp_processor_id(), false);
712	disable_local_APIC();
713	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
 
 
 
 
714
715	/*
716	 * Use wbinvd on processors that support SME. This provides support
717	 * for performing a successful kexec when going from SME inactive
718	 * to SME active (or vice-versa). The cache must be cleared so that
719	 * if there are entries with the same physical address, both with and
720	 * without the encryption bit, they don't race each other when flushed
721	 * and potentially end up with the wrong entry being committed to
722	 * memory.
723	 */
724	if (boot_cpu_has(X86_FEATURE_SME))
725		native_wbinvd();
726	for (;;) {
727		/*
728		 * Use native_halt() so that memory contents don't change
729		 * (stack usage and variables) after possibly issuing the
730		 * native_wbinvd() above.
731		 */
732		native_halt();
733	}
734}
735
736/*
737 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
738 * states (local apic timer and TSC stop).
 
739 */
740static void amd_e400_idle(void)
741{
742	/*
743	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
744	 * gets set after static_cpu_has() places have been converted via
745	 * alternatives.
746	 */
747	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
748		default_idle();
749		return;
750	}
751
752	tick_broadcast_enter();
 
753
754	default_idle();
755
756	/*
757	 * The switch back from broadcast mode needs to be called with
758	 * interrupts disabled.
759	 */
760	local_irq_disable();
761	tick_broadcast_exit();
762	local_irq_enable();
763}
764
765/*
766 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
767 * We can't rely on cpuidle installing MWAIT, because it will not load
768 * on systems that support only C1 -- so the boot default must be MWAIT.
769 *
770 * Some AMD machines are the opposite, they depend on using HALT.
771 *
772 * So for default C1, which is used during boot until cpuidle loads,
773 * use MWAIT-C1 on Intel HW that has it, else use HALT.
774 */
775static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
776{
777	if (c->x86_vendor != X86_VENDOR_INTEL)
778		return 0;
779
780	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
781		return 0;
 
 
 
 
 
 
 
 
 
782
783	return 1;
784}
785
786/*
787 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
788 * with interrupts enabled and no flags, which is backwards compatible with the
789 * original MWAIT implementation.
790 */
791static __cpuidle void mwait_idle(void)
792{
793	if (!current_set_polling_and_test()) {
794		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
795			mb(); /* quirk */
796			clflush((void *)&current_thread_info()->flags);
797			mb(); /* quirk */
798		}
799
800		__monitor((void *)&current_thread_info()->flags, 0, 0);
801		if (!need_resched())
802			__sti_mwait(0, 0);
803		else
804			local_irq_enable();
805	} else {
806		local_irq_enable();
807	}
808	__current_clr_polling();
809}
810
811void select_idle_routine(const struct cpuinfo_x86 *c)
812{
813#ifdef CONFIG_SMP
814	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
815		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 
 
816#endif
817	if (x86_idle || boot_option_idle_override == IDLE_POLL)
818		return;
819
820	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
821		pr_info("using AMD E400 aware idle routine\n");
822		x86_idle = amd_e400_idle;
823	} else if (prefer_mwait_c1_over_halt(c)) {
824		pr_info("using mwait in idle threads\n");
825		x86_idle = mwait_idle;
 
 
 
 
826	} else
827		x86_idle = default_idle;
828}
829
830void amd_e400_c1e_apic_setup(void)
831{
832	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
833		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
834		local_irq_disable();
835		tick_broadcast_force();
836		local_irq_enable();
837	}
838}
839
840void __init arch_post_acpi_subsys_init(void)
841{
842	u32 lo, hi;
843
844	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
845		return;
846
847	/*
848	 * AMD E400 detection needs to happen after ACPI has been enabled. If
849	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
850	 * MSR_K8_INT_PENDING_MSG.
851	 */
852	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
853	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
854		return;
855
856	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
857
858	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
859		mark_tsc_unstable("TSC halt in AMD C1E");
860	pr_info("System has AMD C1E enabled\n");
861}
862
863static int __init idle_setup(char *str)
864{
865	if (!str)
866		return -EINVAL;
867
868	if (!strcmp(str, "poll")) {
869		pr_info("using polling idle threads\n");
 
870		boot_option_idle_override = IDLE_POLL;
871		cpu_idle_poll_ctrl(true);
 
 
872	} else if (!strcmp(str, "halt")) {
873		/*
874		 * When the boot option of idle=halt is added, halt is
875		 * forced to be used for CPU idle. In such case CPU C2/C3
876		 * won't be used again.
877		 * To continue to load the CPU idle driver, don't touch
878		 * the boot_option_idle_override.
879		 */
880		x86_idle = default_idle;
881		boot_option_idle_override = IDLE_HALT;
882	} else if (!strcmp(str, "nomwait")) {
883		/*
884		 * If the boot option of "idle=nomwait" is added,
885		 * it means that mwait will be disabled for CPU C2/C3
886		 * states. In such case it won't touch the variable
887		 * of boot_option_idle_override.
888		 */
889		boot_option_idle_override = IDLE_NOMWAIT;
890	} else
891		return -1;
892
893	return 0;
894}
895early_param("idle", idle_setup);
896
897unsigned long arch_align_stack(unsigned long sp)
898{
899	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
900		sp -= get_random_int() % 8192;
901	return sp & ~0xf;
902}
903
904unsigned long arch_randomize_brk(struct mm_struct *mm)
905{
906	return randomize_page(mm->brk, 0x02000000);
 
907}
908
909/*
910 * Called from fs/proc with a reference on @p to find the function
911 * which called into schedule(). This needs to be done carefully
912 * because the task might wake up and we might look at a stack
913 * changing under us.
914 */
915unsigned long get_wchan(struct task_struct *p)
916{
917	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
918	int count = 0;
919
920	if (p == current || p->state == TASK_RUNNING)
921		return 0;
922
923	if (!try_get_task_stack(p))
924		return 0;
925
926	start = (unsigned long)task_stack_page(p);
927	if (!start)
928		goto out;
929
930	/*
931	 * Layout of the stack page:
932	 *
933	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
934	 * PADDING
935	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
936	 * stack
937	 * ----------- bottom = start
938	 *
939	 * The tasks stack pointer points at the location where the
940	 * framepointer is stored. The data on the stack is:
941	 * ... IP FP ... IP FP
942	 *
943	 * We need to read FP and IP, so we need to adjust the upper
944	 * bound by another unsigned long.
945	 */
946	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
947	top -= 2 * sizeof(unsigned long);
948	bottom = start;
949
950	sp = READ_ONCE(p->thread.sp);
951	if (sp < bottom || sp > top)
952		goto out;
953
954	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
955	do {
956		if (fp < bottom || fp > top)
957			goto out;
958		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
959		if (!in_sched_functions(ip)) {
960			ret = ip;
961			goto out;
962		}
963		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
964	} while (count++ < 16 && p->state != TASK_RUNNING);
965
966out:
967	put_task_stack(p);
968	return ret;
969}
970
971long do_arch_prctl_common(struct task_struct *task, int option,
972			  unsigned long cpuid_enabled)
973{
974	switch (option) {
975	case ARCH_GET_CPUID:
976		return get_cpuid_mode();
977	case ARCH_SET_CPUID:
978		return set_cpuid_mode(task, cpuid_enabled);
979	}
980
981	return -EINVAL;
982}