Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*:
  3 * Hibernate support specific for ARM64
  4 *
  5 * Derived from work on ARM hibernation support by:
  6 *
  7 * Ubuntu project, hibernation support for mach-dove
  8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
  9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
 10 *  https://lkml.org/lkml/2010/6/18/4
 11 *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
 12 *  https://patchwork.kernel.org/patch/96442/
 13 *
 14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 15 */
 16#define pr_fmt(x) "hibernate: " x
 17#include <linux/cpu.h>
 18#include <linux/kvm_host.h>
 19#include <linux/mm.h>
 20#include <linux/pm.h>
 21#include <linux/sched.h>
 22#include <linux/suspend.h>
 23#include <linux/utsname.h>
 24#include <linux/version.h>
 25
 26#include <asm/barrier.h>
 27#include <asm/cacheflush.h>
 28#include <asm/cputype.h>
 29#include <asm/daifflags.h>
 30#include <asm/irqflags.h>
 31#include <asm/kexec.h>
 32#include <asm/memory.h>
 33#include <asm/mmu_context.h>
 34#include <asm/pgalloc.h>
 35#include <asm/pgtable-hwdef.h>
 36#include <asm/sections.h>
 37#include <asm/smp.h>
 38#include <asm/smp_plat.h>
 39#include <asm/suspend.h>
 40#include <asm/sysreg.h>
 41#include <asm/virt.h>
 42
 43/*
 44 * Hibernate core relies on this value being 0 on resume, and marks it
 45 * __nosavedata assuming it will keep the resume kernel's '0' value. This
 46 * doesn't happen with either KASLR.
 47 *
 48 * defined as "__visible int in_suspend __nosavedata" in
 49 * kernel/power/hibernate.c
 50 */
 51extern int in_suspend;
 52
 53/* Do we need to reset el2? */
 54#define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
 55
 56/* temporary el2 vectors in the __hibernate_exit_text section. */
 57extern char hibernate_el2_vectors[];
 58
 59/* hyp-stub vectors, used to restore el2 during resume from hibernate. */
 60extern char __hyp_stub_vectors[];
 61
 62/*
 63 * The logical cpu number we should resume on, initialised to a non-cpu
 64 * number.
 65 */
 66static int sleep_cpu = -EINVAL;
 67
 68/*
 69 * Values that may not change over hibernate/resume. We put the build number
 70 * and date in here so that we guarantee not to resume with a different
 71 * kernel.
 72 */
 73struct arch_hibernate_hdr_invariants {
 74	char		uts_version[__NEW_UTS_LEN + 1];
 75};
 76
 77/* These values need to be know across a hibernate/restore. */
 78static struct arch_hibernate_hdr {
 79	struct arch_hibernate_hdr_invariants invariants;
 80
 81	/* These are needed to find the relocated kernel if built with kaslr */
 82	phys_addr_t	ttbr1_el1;
 83	void		(*reenter_kernel)(void);
 84
 85	/*
 86	 * We need to know where the __hyp_stub_vectors are after restore to
 87	 * re-configure el2.
 88	 */
 89	phys_addr_t	__hyp_stub_vectors;
 90
 91	u64		sleep_cpu_mpidr;
 92} resume_hdr;
 93
 94static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
 95{
 96	memset(i, 0, sizeof(*i));
 97	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
 98}
 99
100int pfn_is_nosave(unsigned long pfn)
101{
102	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
103	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
104
105	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
106		crash_is_nosave(pfn);
107}
108
109void notrace save_processor_state(void)
110{
111	WARN_ON(num_online_cpus() != 1);
112}
113
114void notrace restore_processor_state(void)
115{
116}
117
118int arch_hibernation_header_save(void *addr, unsigned int max_size)
119{
120	struct arch_hibernate_hdr *hdr = addr;
121
122	if (max_size < sizeof(*hdr))
123		return -EOVERFLOW;
124
125	arch_hdr_invariants(&hdr->invariants);
126	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
127	hdr->reenter_kernel	= _cpu_resume;
128
129	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
130	if (el2_reset_needed())
131		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
132	else
133		hdr->__hyp_stub_vectors = 0;
134
135	/* Save the mpidr of the cpu we called cpu_suspend() on... */
136	if (sleep_cpu < 0) {
137		pr_err("Failing to hibernate on an unknown CPU.\n");
138		return -ENODEV;
139	}
140	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
141	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
142		hdr->sleep_cpu_mpidr);
143
144	return 0;
145}
146EXPORT_SYMBOL(arch_hibernation_header_save);
147
148int arch_hibernation_header_restore(void *addr)
149{
150	int ret;
151	struct arch_hibernate_hdr_invariants invariants;
152	struct arch_hibernate_hdr *hdr = addr;
153
154	arch_hdr_invariants(&invariants);
155	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
156		pr_crit("Hibernate image not generated by this kernel!\n");
157		return -EINVAL;
158	}
159
160	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
161	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
162		hdr->sleep_cpu_mpidr);
163	if (sleep_cpu < 0) {
164		pr_crit("Hibernated on a CPU not known to this kernel!\n");
165		sleep_cpu = -EINVAL;
166		return -EINVAL;
167	}
168
169	ret = bringup_hibernate_cpu(sleep_cpu);
170	if (ret) {
171		sleep_cpu = -EINVAL;
172		return ret;
173	}
174
175	resume_hdr = *hdr;
176
177	return 0;
178}
179EXPORT_SYMBOL(arch_hibernation_header_restore);
180
181static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
182		       unsigned long dst_addr,
183		       pgprot_t pgprot)
184{
185	pgd_t *pgdp;
186	p4d_t *p4dp;
187	pud_t *pudp;
188	pmd_t *pmdp;
189	pte_t *ptep;
190
191	pgdp = pgd_offset_pgd(trans_pgd, dst_addr);
192	if (pgd_none(READ_ONCE(*pgdp))) {
193		pudp = (void *)get_safe_page(GFP_ATOMIC);
194		if (!pudp)
195			return -ENOMEM;
196		pgd_populate(&init_mm, pgdp, pudp);
197	}
198
199	p4dp = p4d_offset(pgdp, dst_addr);
200	if (p4d_none(READ_ONCE(*p4dp))) {
201		pudp = (void *)get_safe_page(GFP_ATOMIC);
202		if (!pudp)
203			return -ENOMEM;
204		p4d_populate(&init_mm, p4dp, pudp);
205	}
206
207	pudp = pud_offset(p4dp, dst_addr);
208	if (pud_none(READ_ONCE(*pudp))) {
209		pmdp = (void *)get_safe_page(GFP_ATOMIC);
210		if (!pmdp)
211			return -ENOMEM;
212		pud_populate(&init_mm, pudp, pmdp);
213	}
214
215	pmdp = pmd_offset(pudp, dst_addr);
216	if (pmd_none(READ_ONCE(*pmdp))) {
217		ptep = (void *)get_safe_page(GFP_ATOMIC);
218		if (!ptep)
219			return -ENOMEM;
220		pmd_populate_kernel(&init_mm, pmdp, ptep);
221	}
222
223	ptep = pte_offset_kernel(pmdp, dst_addr);
224	set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
225
226	return 0;
227}
228
229/*
230 * Copies length bytes, starting at src_start into an new page,
231 * perform cache maintenance, then maps it at the specified address low
232 * address as executable.
233 *
234 * This is used by hibernate to copy the code it needs to execute when
235 * overwriting the kernel text. This function generates a new set of page
236 * tables, which it loads into ttbr0.
237 *
238 * Length is provided as we probably only want 4K of data, even on a 64K
239 * page system.
240 */
241static int create_safe_exec_page(void *src_start, size_t length,
242				 unsigned long dst_addr,
243				 phys_addr_t *phys_dst_addr)
244{
245	void *page = (void *)get_safe_page(GFP_ATOMIC);
246	pgd_t *trans_pgd;
247	int rc;
248
249	if (!page)
250		return -ENOMEM;
251
252	memcpy(page, src_start, length);
253	__flush_icache_range((unsigned long)page, (unsigned long)page + length);
254
255	trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
256	if (!trans_pgd)
257		return -ENOMEM;
258
259	rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
260				PAGE_KERNEL_EXEC);
261	if (rc)
262		return rc;
263
264	/*
265	 * Load our new page tables. A strict BBM approach requires that we
266	 * ensure that TLBs are free of any entries that may overlap with the
267	 * global mappings we are about to install.
268	 *
269	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
270	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
271	 * runtime services), while for a userspace-driven test_resume cycle it
272	 * points to userspace page tables (and we must point it at a zero page
273	 * ourselves). Elsewhere we only (un)install the idmap with preemption
274	 * disabled, so T0SZ should be as required regardless.
275	 */
276	cpu_set_reserved_ttbr0();
277	local_flush_tlb_all();
278	write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
279	isb();
280
281	*phys_dst_addr = virt_to_phys(page);
282
283	return 0;
284}
285
286#define dcache_clean_range(start, end)	__flush_dcache_area(start, (end - start))
287
288int swsusp_arch_suspend(void)
289{
290	int ret = 0;
291	unsigned long flags;
292	struct sleep_stack_data state;
293
294	if (cpus_are_stuck_in_kernel()) {
295		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
296		return -EBUSY;
297	}
298
299	flags = local_daif_save();
300
301	if (__cpu_suspend_enter(&state)) {
302		/* make the crash dump kernel image visible/saveable */
303		crash_prepare_suspend();
304
305		sleep_cpu = smp_processor_id();
306		ret = swsusp_save();
307	} else {
308		/* Clean kernel core startup/idle code to PoC*/
309		dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
310		dcache_clean_range(__idmap_text_start, __idmap_text_end);
311
312		/* Clean kvm setup code to PoC? */
313		if (el2_reset_needed()) {
314			dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
315			dcache_clean_range(__hyp_text_start, __hyp_text_end);
316		}
317
318		/* make the crash dump kernel image protected again */
319		crash_post_resume();
320
321		/*
322		 * Tell the hibernation core that we've just restored
323		 * the memory
324		 */
325		in_suspend = 0;
326
327		sleep_cpu = -EINVAL;
328		__cpu_suspend_exit();
329
330		/*
331		 * Just in case the boot kernel did turn the SSBD
332		 * mitigation off behind our back, let's set the state
333		 * to what we expect it to be.
334		 */
335		switch (arm64_get_ssbd_state()) {
336		case ARM64_SSBD_FORCE_ENABLE:
337		case ARM64_SSBD_KERNEL:
338			arm64_set_ssbd_mitigation(true);
339		}
340	}
341
342	local_daif_restore(flags);
343
344	return ret;
345}
346
347static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
348{
349	pte_t pte = READ_ONCE(*src_ptep);
350
351	if (pte_valid(pte)) {
352		/*
353		 * Resume will overwrite areas that may be marked
354		 * read only (code, rodata). Clear the RDONLY bit from
355		 * the temporary mappings we use during restore.
356		 */
357		set_pte(dst_ptep, pte_mkwrite(pte));
358	} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
359		/*
360		 * debug_pagealloc will removed the PTE_VALID bit if
361		 * the page isn't in use by the resume kernel. It may have
362		 * been in use by the original kernel, in which case we need
363		 * to put it back in our copy to do the restore.
364		 *
365		 * Before marking this entry valid, check the pfn should
366		 * be mapped.
367		 */
368		BUG_ON(!pfn_valid(pte_pfn(pte)));
369
370		set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
371	}
372}
373
374static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
375		    unsigned long end)
376{
377	pte_t *src_ptep;
378	pte_t *dst_ptep;
379	unsigned long addr = start;
380
381	dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
382	if (!dst_ptep)
383		return -ENOMEM;
384	pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
385	dst_ptep = pte_offset_kernel(dst_pmdp, start);
386
387	src_ptep = pte_offset_kernel(src_pmdp, start);
388	do {
389		_copy_pte(dst_ptep, src_ptep, addr);
390	} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
391
392	return 0;
393}
394
395static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
396		    unsigned long end)
397{
398	pmd_t *src_pmdp;
399	pmd_t *dst_pmdp;
400	unsigned long next;
401	unsigned long addr = start;
402
403	if (pud_none(READ_ONCE(*dst_pudp))) {
404		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
405		if (!dst_pmdp)
406			return -ENOMEM;
407		pud_populate(&init_mm, dst_pudp, dst_pmdp);
408	}
409	dst_pmdp = pmd_offset(dst_pudp, start);
410
411	src_pmdp = pmd_offset(src_pudp, start);
412	do {
413		pmd_t pmd = READ_ONCE(*src_pmdp);
414
415		next = pmd_addr_end(addr, end);
416		if (pmd_none(pmd))
417			continue;
418		if (pmd_table(pmd)) {
419			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
420				return -ENOMEM;
421		} else {
422			set_pmd(dst_pmdp,
423				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
424		}
425	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
426
427	return 0;
428}
429
430static int copy_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
431		    unsigned long end)
432{
433	pud_t *dst_pudp;
434	pud_t *src_pudp;
435	unsigned long next;
436	unsigned long addr = start;
437
438	if (p4d_none(READ_ONCE(*dst_p4dp))) {
439		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
440		if (!dst_pudp)
441			return -ENOMEM;
442		p4d_populate(&init_mm, dst_p4dp, dst_pudp);
443	}
444	dst_pudp = pud_offset(dst_p4dp, start);
445
446	src_pudp = pud_offset(src_p4dp, start);
447	do {
448		pud_t pud = READ_ONCE(*src_pudp);
449
450		next = pud_addr_end(addr, end);
451		if (pud_none(pud))
452			continue;
453		if (pud_table(pud)) {
454			if (copy_pmd(dst_pudp, src_pudp, addr, next))
455				return -ENOMEM;
456		} else {
457			set_pud(dst_pudp,
458				__pud(pud_val(pud) & ~PUD_SECT_RDONLY));
459		}
460	} while (dst_pudp++, src_pudp++, addr = next, addr != end);
461
462	return 0;
463}
464
465static int copy_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
466		    unsigned long end)
467{
468	p4d_t *dst_p4dp;
469	p4d_t *src_p4dp;
470	unsigned long next;
471	unsigned long addr = start;
472
473	dst_p4dp = p4d_offset(dst_pgdp, start);
474	src_p4dp = p4d_offset(src_pgdp, start);
475	do {
476		next = p4d_addr_end(addr, end);
477		if (p4d_none(READ_ONCE(*src_p4dp)))
478			continue;
479		if (copy_pud(dst_p4dp, src_p4dp, addr, next))
480			return -ENOMEM;
481	} while (dst_p4dp++, src_p4dp++, addr = next, addr != end);
482
483	return 0;
484}
485
486static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
487			    unsigned long end)
488{
489	unsigned long next;
490	unsigned long addr = start;
491	pgd_t *src_pgdp = pgd_offset_k(start);
492
493	dst_pgdp = pgd_offset_pgd(dst_pgdp, start);
494	do {
495		next = pgd_addr_end(addr, end);
496		if (pgd_none(READ_ONCE(*src_pgdp)))
497			continue;
498		if (copy_p4d(dst_pgdp, src_pgdp, addr, next))
499			return -ENOMEM;
500	} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
501
502	return 0;
503}
504
505static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
506			  unsigned long end)
507{
508	int rc;
509	pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
510
511	if (!trans_pgd) {
512		pr_err("Failed to allocate memory for temporary page tables.\n");
513		return -ENOMEM;
514	}
515
516	rc = copy_page_tables(trans_pgd, start, end);
517	if (!rc)
518		*dst_pgdp = trans_pgd;
519
520	return rc;
521}
522
523/*
524 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
525 *
526 * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
527 * we don't need to free it here.
528 */
529int swsusp_arch_resume(void)
530{
531	int rc;
532	void *zero_page;
533	size_t exit_size;
534	pgd_t *tmp_pg_dir;
535	phys_addr_t phys_hibernate_exit;
536	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
537					  void *, phys_addr_t, phys_addr_t);
538
539	/*
540	 * Restoring the memory image will overwrite the ttbr1 page tables.
541	 * Create a second copy of just the linear map, and use this when
542	 * restoring.
543	 */
544	rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
545	if (rc)
546		return rc;
547
548	/*
549	 * We need a zero page that is zero before & after resume in order to
550	 * to break before make on the ttbr1 page tables.
551	 */
552	zero_page = (void *)get_safe_page(GFP_ATOMIC);
553	if (!zero_page) {
554		pr_err("Failed to allocate zero page.\n");
555		return -ENOMEM;
556	}
557
558	/*
559	 * Locate the exit code in the bottom-but-one page, so that *NULL
560	 * still has disastrous affects.
561	 */
562	hibernate_exit = (void *)PAGE_SIZE;
563	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
564	/*
565	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
566	 * a new set of ttbr0 page tables and load them.
567	 */
568	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
569				   (unsigned long)hibernate_exit,
570				   &phys_hibernate_exit);
571	if (rc) {
572		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
573		return rc;
574	}
575
576	/*
577	 * The hibernate exit text contains a set of el2 vectors, that will
578	 * be executed at el2 with the mmu off in order to reload hyp-stub.
579	 */
580	__flush_dcache_area(hibernate_exit, exit_size);
581
582	/*
583	 * KASLR will cause the el2 vectors to be in a different location in
584	 * the resumed kernel. Load hibernate's temporary copy into el2.
585	 *
586	 * We can skip this step if we booted at EL1, or are running with VHE.
587	 */
588	if (el2_reset_needed()) {
589		phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
590		el2_vectors += hibernate_el2_vectors -
591			       __hibernate_exit_text_start;     /* offset */
592
593		__hyp_set_vectors(el2_vectors);
594	}
595
596	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
597		       resume_hdr.reenter_kernel, restore_pblist,
598		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
599
600	return 0;
601}
602
603int hibernate_resume_nonboot_cpu_disable(void)
604{
605	if (sleep_cpu < 0) {
606		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
607		return -ENODEV;
608	}
609
610	return freeze_secondary_cpus(sleep_cpu);
611}