Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *	This program is free software; you can redistribute it and/or modify
   9 *	it under the terms of the GNU General Public License as published by
  10 *	the Free Software Foundation; either version 2 of the License, or
  11 *	(at your option) any later version.
  12 */
  13
 
 
 
  14#include <linux/capability.h>
  15#include <linux/module.h>
 
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/security.h>
 
  19#include <linux/ima.h>
 
 
 
 
 
 
 
 
 
  20
  21/* Boot-time LSM user choice */
  22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  23	CONFIG_DEFAULT_SECURITY;
  24
  25/* things that live in capability.c */
  26extern void __init security_fixup_ops(struct security_operations *ops);
  27
  28static struct security_operations *security_ops;
  29static struct security_operations default_security_ops = {
  30	.name	= "default",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31};
  32
  33static inline int __init verify(struct security_operations *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  34{
  35	/* verify the security_operations structure exists */
  36	if (!ops)
  37		return -EINVAL;
  38	security_fixup_ops(ops);
  39	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40}
  41
  42static void __init do_security_initcalls(void)
 
 
 
 
 
  43{
  44	initcall_t *call;
  45	call = __security_initcall_start;
  46	while (call < __security_initcall_end) {
  47		(*call) ();
  48		call++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49	}
 
 
  50}
  51
  52/**
  53 * security_init - initializes the security framework
  54 *
  55 * This should be called early in the kernel initialization sequence.
  56 */
  57int __init security_init(void)
  58{
  59	printk(KERN_INFO "Security Framework initialized\n");
 
 
 
 
 
 
 
 
 
 
 
  60
  61	security_fixup_ops(&default_security_ops);
  62	security_ops = &default_security_ops;
  63	do_security_initcalls();
  64
  65	return 0;
  66}
  67
  68void reset_security_ops(void)
 
  69{
  70	security_ops = &default_security_ops;
 
  71}
 
  72
  73/* Save user chosen LSM */
  74static int __init choose_lsm(char *str)
 
 
 
 
 
 
 
 
  75{
  76	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  77	return 1;
  78}
  79__setup("security=", choose_lsm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80
  81/**
  82 * security_module_enable - Load given security module on boot ?
  83 * @ops: a pointer to the struct security_operations that is to be checked.
  84 *
  85 * Each LSM must pass this method before registering its own operations
  86 * to avoid security registration races. This method may also be used
  87 * to check if your LSM is currently loaded during kernel initialization.
  88 *
  89 * Return true if:
  90 *	-The passed LSM is the one chosen by user at boot time,
  91 *	-or the passed LSM is configured as the default and the user did not
  92 *	 choose an alternate LSM at boot time.
  93 * Otherwise, return false.
  94 */
  95int __init security_module_enable(struct security_operations *ops)
  96{
  97	return !strcmp(ops->name, chosen_lsm);
 
 
 
  98}
  99
 100/**
 101 * register_security - registers a security framework with the kernel
 102 * @ops: a pointer to the struct security_options that is to be registered
 103 *
 104 * This function allows a security module to register itself with the
 105 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 106 * value passed to this function. You'll need to check first if your LSM
 107 * is allowed to register its @ops by calling security_module_enable(@ops).
 108 *
 109 * If there is already a security module registered with the kernel,
 110 * an error will be returned.  Otherwise %0 is returned on success.
 111 */
 112int __init register_security(struct security_operations *ops)
 113{
 114	if (verify(ops)) {
 115		printk(KERN_DEBUG "%s could not verify "
 116		       "security_operations structure.\n", __func__);
 117		return -EINVAL;
 118	}
 119
 120	if (security_ops != &default_security_ops)
 121		return -EAGAIN;
 
 
 
 122
 123	security_ops = ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 124
 
 
 
 125	return 0;
 126}
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128/* Security operations */
 129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 130int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 131{
 132	return security_ops->ptrace_access_check(child, mode);
 133}
 134
 135int security_ptrace_traceme(struct task_struct *parent)
 136{
 137	return security_ops->ptrace_traceme(parent);
 138}
 139
 140int security_capget(struct task_struct *target,
 141		     kernel_cap_t *effective,
 142		     kernel_cap_t *inheritable,
 143		     kernel_cap_t *permitted)
 144{
 145	return security_ops->capget(target, effective, inheritable, permitted);
 
 146}
 147
 148int security_capset(struct cred *new, const struct cred *old,
 149		    const kernel_cap_t *effective,
 150		    const kernel_cap_t *inheritable,
 151		    const kernel_cap_t *permitted)
 152{
 153	return security_ops->capset(new, old,
 154				    effective, inheritable, permitted);
 155}
 156
 157int security_capable(struct user_namespace *ns, const struct cred *cred,
 158		     int cap)
 
 
 159{
 160	return security_ops->capable(current, cred, ns, cap,
 161				     SECURITY_CAP_AUDIT);
 162}
 163
 164int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
 165			  int cap)
 166{
 167	const struct cred *cred;
 168	int ret;
 169
 170	cred = get_task_cred(tsk);
 171	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
 172	put_cred(cred);
 173	return ret;
 174}
 175
 176int security_real_capable_noaudit(struct task_struct *tsk,
 177				  struct user_namespace *ns, int cap)
 178{
 179	const struct cred *cred;
 180	int ret;
 181
 182	cred = get_task_cred(tsk);
 183	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
 184	put_cred(cred);
 185	return ret;
 186}
 187
 188int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 189{
 190	return security_ops->quotactl(cmds, type, id, sb);
 191}
 192
 193int security_quota_on(struct dentry *dentry)
 194{
 195	return security_ops->quota_on(dentry);
 196}
 197
 198int security_syslog(int type)
 199{
 200	return security_ops->syslog(type);
 201}
 202
 203int security_settime(const struct timespec *ts, const struct timezone *tz)
 204{
 205	return security_ops->settime(ts, tz);
 206}
 207
 208int security_vm_enough_memory(long pages)
 209{
 210	WARN_ON(current->mm == NULL);
 211	return security_ops->vm_enough_memory(current->mm, pages);
 212}
 213
 214int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 215{
 216	WARN_ON(mm == NULL);
 217	return security_ops->vm_enough_memory(mm, pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218}
 219
 220int security_vm_enough_memory_kern(long pages)
 221{
 222	/* If current->mm is a kernel thread then we will pass NULL,
 223	   for this specific case that is fine */
 224	return security_ops->vm_enough_memory(current->mm, pages);
 225}
 226
 227int security_bprm_set_creds(struct linux_binprm *bprm)
 228{
 229	return security_ops->bprm_set_creds(bprm);
 230}
 231
 232int security_bprm_check(struct linux_binprm *bprm)
 233{
 234	int ret;
 235
 236	ret = security_ops->bprm_check_security(bprm);
 237	if (ret)
 238		return ret;
 239	return ima_bprm_check(bprm);
 240}
 241
 242void security_bprm_committing_creds(struct linux_binprm *bprm)
 243{
 244	security_ops->bprm_committing_creds(bprm);
 245}
 246
 247void security_bprm_committed_creds(struct linux_binprm *bprm)
 248{
 249	security_ops->bprm_committed_creds(bprm);
 250}
 251
 252int security_bprm_secureexec(struct linux_binprm *bprm)
 253{
 254	return security_ops->bprm_secureexec(bprm);
 
 
 
 
 
 255}
 256
 257int security_sb_alloc(struct super_block *sb)
 258{
 259	return security_ops->sb_alloc_security(sb);
 260}
 261
 262void security_sb_free(struct super_block *sb)
 263{
 264	security_ops->sb_free_security(sb);
 
 
 
 
 
 
 
 
 265}
 
 266
 267int security_sb_copy_data(char *orig, char *copy)
 268{
 269	return security_ops->sb_copy_data(orig, copy);
 270}
 271EXPORT_SYMBOL(security_sb_copy_data);
 272
 273int security_sb_remount(struct super_block *sb, void *data)
 
 274{
 275	return security_ops->sb_remount(sb, data);
 276}
 
 277
 278int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 279{
 280	return security_ops->sb_kern_mount(sb, flags, data);
 281}
 282
 283int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 284{
 285	return security_ops->sb_show_options(m, sb);
 286}
 287
 288int security_sb_statfs(struct dentry *dentry)
 289{
 290	return security_ops->sb_statfs(dentry);
 291}
 292
 293int security_sb_mount(char *dev_name, struct path *path,
 294                       char *type, unsigned long flags, void *data)
 295{
 296	return security_ops->sb_mount(dev_name, path, type, flags, data);
 297}
 298
 299int security_sb_umount(struct vfsmount *mnt, int flags)
 300{
 301	return security_ops->sb_umount(mnt, flags);
 302}
 303
 304int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 305{
 306	return security_ops->sb_pivotroot(old_path, new_path);
 307}
 308
 309int security_sb_set_mnt_opts(struct super_block *sb,
 310				struct security_mnt_opts *opts)
 311{
 312	return security_ops->sb_set_mnt_opts(sb, opts);
 
 
 
 
 313}
 314EXPORT_SYMBOL(security_sb_set_mnt_opts);
 315
 316void security_sb_clone_mnt_opts(const struct super_block *oldsb,
 317				struct super_block *newsb)
 
 
 318{
 319	security_ops->sb_clone_mnt_opts(oldsb, newsb);
 
 320}
 321EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 322
 323int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 
 
 
 
 
 
 
 
 324{
 325	return security_ops->sb_parse_opts_str(options, opts);
 
 
 
 
 
 
 326}
 327EXPORT_SYMBOL(security_sb_parse_opts_str);
 328
 329int security_inode_alloc(struct inode *inode)
 330{
 331	inode->i_security = NULL;
 332	return security_ops->inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333}
 334
 335void security_inode_free(struct inode *inode)
 336{
 337	ima_inode_free(inode);
 338	security_ops->inode_free_security(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339}
 
 340
 341int security_inode_init_security(struct inode *inode, struct inode *dir,
 342				 const struct qstr *qstr, char **name,
 343				 void **value, size_t *len)
 344{
 
 
 
 
 345	if (unlikely(IS_PRIVATE(inode)))
 346		return -EOPNOTSUPP;
 347	return security_ops->inode_init_security(inode, dir, qstr, name, value,
 348						 len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 349}
 350EXPORT_SYMBOL(security_inode_init_security);
 351
 
 
 
 
 
 
 
 
 
 
 
 352#ifdef CONFIG_SECURITY_PATH
 353int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
 354			unsigned int dev)
 355{
 356	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 357		return 0;
 358	return security_ops->path_mknod(dir, dentry, mode, dev);
 359}
 360EXPORT_SYMBOL(security_path_mknod);
 361
 362int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
 363{
 364	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 365		return 0;
 366	return security_ops->path_mkdir(dir, dentry, mode);
 367}
 368EXPORT_SYMBOL(security_path_mkdir);
 369
 370int security_path_rmdir(struct path *dir, struct dentry *dentry)
 371{
 372	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 373		return 0;
 374	return security_ops->path_rmdir(dir, dentry);
 375}
 376
 377int security_path_unlink(struct path *dir, struct dentry *dentry)
 378{
 379	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 380		return 0;
 381	return security_ops->path_unlink(dir, dentry);
 382}
 383EXPORT_SYMBOL(security_path_unlink);
 384
 385int security_path_symlink(struct path *dir, struct dentry *dentry,
 386			  const char *old_name)
 387{
 388	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 389		return 0;
 390	return security_ops->path_symlink(dir, dentry, old_name);
 391}
 392
 393int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 394		       struct dentry *new_dentry)
 395{
 396	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 397		return 0;
 398	return security_ops->path_link(old_dentry, new_dir, new_dentry);
 399}
 400
 401int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 402			 struct path *new_dir, struct dentry *new_dentry)
 
 403{
 404	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 405		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 406		return 0;
 407	return security_ops->path_rename(old_dir, old_dentry, new_dir,
 408					 new_dentry);
 
 
 
 
 
 
 
 
 409}
 410EXPORT_SYMBOL(security_path_rename);
 411
 412int security_path_truncate(struct path *path)
 413{
 414	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 415		return 0;
 416	return security_ops->path_truncate(path);
 417}
 418
 419int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
 420			mode_t mode)
 421{
 422	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 423		return 0;
 424	return security_ops->path_chmod(dentry, mnt, mode);
 425}
 426
 427int security_path_chown(struct path *path, uid_t uid, gid_t gid)
 428{
 429	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 430		return 0;
 431	return security_ops->path_chown(path, uid, gid);
 432}
 433
 434int security_path_chroot(struct path *path)
 435{
 436	return security_ops->path_chroot(path);
 437}
 438#endif
 439
 440int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
 441{
 442	if (unlikely(IS_PRIVATE(dir)))
 443		return 0;
 444	return security_ops->inode_create(dir, dentry, mode);
 445}
 446EXPORT_SYMBOL_GPL(security_inode_create);
 447
 448int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 449			 struct dentry *new_dentry)
 450{
 451	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 452		return 0;
 453	return security_ops->inode_link(old_dentry, dir, new_dentry);
 454}
 455
 456int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 457{
 458	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 459		return 0;
 460	return security_ops->inode_unlink(dir, dentry);
 461}
 462
 463int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 464			    const char *old_name)
 465{
 466	if (unlikely(IS_PRIVATE(dir)))
 467		return 0;
 468	return security_ops->inode_symlink(dir, dentry, old_name);
 469}
 470
 471int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
 472{
 473	if (unlikely(IS_PRIVATE(dir)))
 474		return 0;
 475	return security_ops->inode_mkdir(dir, dentry, mode);
 476}
 477EXPORT_SYMBOL_GPL(security_inode_mkdir);
 478
 479int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 480{
 481	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 482		return 0;
 483	return security_ops->inode_rmdir(dir, dentry);
 484}
 485
 486int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
 487{
 488	if (unlikely(IS_PRIVATE(dir)))
 489		return 0;
 490	return security_ops->inode_mknod(dir, dentry, mode, dev);
 491}
 492
 493int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 494			   struct inode *new_dir, struct dentry *new_dentry)
 
 495{
 496        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 497            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 498		return 0;
 499	return security_ops->inode_rename(old_dir, old_dentry,
 
 
 
 
 
 
 
 
 500					   new_dir, new_dentry);
 501}
 502
 503int security_inode_readlink(struct dentry *dentry)
 504{
 505	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 506		return 0;
 507	return security_ops->inode_readlink(dentry);
 508}
 509
 510int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 511{
 512	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 513		return 0;
 514	return security_ops->inode_follow_link(dentry, nd);
 515}
 516
 517int security_inode_permission(struct inode *inode, int mask)
 518{
 519	if (unlikely(IS_PRIVATE(inode)))
 520		return 0;
 521	return security_ops->inode_permission(inode, mask);
 522}
 523
 524int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 525{
 526	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 
 
 527		return 0;
 528	return security_ops->inode_setattr(dentry, attr);
 
 
 
 529}
 530EXPORT_SYMBOL_GPL(security_inode_setattr);
 531
 532int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 533{
 534	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 535		return 0;
 536	return security_ops->inode_getattr(mnt, dentry);
 537}
 538
 539int security_inode_setxattr(struct dentry *dentry, const char *name,
 540			    const void *value, size_t size, int flags)
 541{
 542	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 
 
 543		return 0;
 544	return security_ops->inode_setxattr(dentry, name, value, size, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545}
 546
 547void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 548				  const void *value, size_t size, int flags)
 549{
 550	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 551		return;
 552	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 
 553}
 554
 555int security_inode_getxattr(struct dentry *dentry, const char *name)
 556{
 557	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 558		return 0;
 559	return security_ops->inode_getxattr(dentry, name);
 560}
 561
 562int security_inode_listxattr(struct dentry *dentry)
 563{
 564	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 565		return 0;
 566	return security_ops->inode_listxattr(dentry);
 567}
 568
 569int security_inode_removexattr(struct dentry *dentry, const char *name)
 570{
 571	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 
 
 572		return 0;
 573	return security_ops->inode_removexattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
 
 
 574}
 575
 576int security_inode_need_killpriv(struct dentry *dentry)
 577{
 578	return security_ops->inode_need_killpriv(dentry);
 579}
 580
 581int security_inode_killpriv(struct dentry *dentry)
 582{
 583	return security_ops->inode_killpriv(dentry);
 584}
 585
 586int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 587{
 
 
 
 588	if (unlikely(IS_PRIVATE(inode)))
 589		return -EOPNOTSUPP;
 590	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 
 
 
 
 
 
 
 
 591}
 592
 593int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 594{
 
 
 
 595	if (unlikely(IS_PRIVATE(inode)))
 596		return -EOPNOTSUPP;
 597	return security_ops->inode_setsecurity(inode, name, value, size, flags);
 
 
 
 
 
 
 
 
 
 598}
 599
 600int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 601{
 602	if (unlikely(IS_PRIVATE(inode)))
 603		return 0;
 604	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605}
 
 606
 607void security_inode_getsecid(const struct inode *inode, u32 *secid)
 
 608{
 609	security_ops->inode_getsecid(inode, secid);
 610}
 611
 612int security_file_permission(struct file *file, int mask)
 613{
 614	int ret;
 615
 616	ret = security_ops->file_permission(file, mask);
 617	if (ret)
 618		return ret;
 619
 620	return fsnotify_perm(file, mask);
 621}
 622
 623int security_file_alloc(struct file *file)
 624{
 625	return security_ops->file_alloc_security(file);
 
 
 
 
 
 
 
 626}
 627
 628void security_file_free(struct file *file)
 629{
 630	security_ops->file_free_security(file);
 
 
 
 
 
 
 
 
 631}
 632
 633int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 634{
 635	return security_ops->file_ioctl(file, cmd, arg);
 636}
 
 637
 638int security_file_mmap(struct file *file, unsigned long reqprot,
 639			unsigned long prot, unsigned long flags,
 640			unsigned long addr, unsigned long addr_only)
 641{
 642	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 644	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
 
 
 
 
 
 645	if (ret)
 646		return ret;
 647	return ima_file_mmap(file, prot);
 648}
 649
 
 
 
 
 
 650int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 651			    unsigned long prot)
 652{
 653	return security_ops->file_mprotect(vma, reqprot, prot);
 
 
 
 
 
 654}
 655
 656int security_file_lock(struct file *file, unsigned int cmd)
 657{
 658	return security_ops->file_lock(file, cmd);
 659}
 660
 661int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 662{
 663	return security_ops->file_fcntl(file, cmd, arg);
 664}
 665
 666int security_file_set_fowner(struct file *file)
 667{
 668	return security_ops->file_set_fowner(file);
 669}
 670
 671int security_file_send_sigiotask(struct task_struct *tsk,
 672				  struct fown_struct *fown, int sig)
 673{
 674	return security_ops->file_send_sigiotask(tsk, fown, sig);
 675}
 676
 677int security_file_receive(struct file *file)
 678{
 679	return security_ops->file_receive(file);
 680}
 681
 682int security_dentry_open(struct file *file, const struct cred *cred)
 683{
 684	int ret;
 685
 686	ret = security_ops->dentry_open(file, cred);
 687	if (ret)
 688		return ret;
 689
 690	return fsnotify_perm(file, MAY_OPEN);
 691}
 692
 693int security_task_create(unsigned long clone_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 694{
 695	return security_ops->task_create(clone_flags);
 
 
 
 696}
 697
 698int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 699{
 700	return security_ops->cred_alloc_blank(cred, gfp);
 
 
 
 
 
 
 
 
 701}
 702
 703void security_cred_free(struct cred *cred)
 704{
 705	security_ops->cred_free(cred);
 
 
 
 
 
 
 
 
 
 
 706}
 707
 708int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 709{
 710	return security_ops->cred_prepare(new, old, gfp);
 
 
 
 
 
 
 
 
 711}
 712
 713void security_transfer_creds(struct cred *new, const struct cred *old)
 714{
 715	security_ops->cred_transfer(new, old);
 
 
 
 
 
 
 716}
 
 717
 718int security_kernel_act_as(struct cred *new, u32 secid)
 719{
 720	return security_ops->kernel_act_as(new, secid);
 721}
 722
 723int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 724{
 725	return security_ops->kernel_create_files_as(new, inode);
 726}
 727
 728int security_kernel_module_request(char *kmod_name)
 729{
 730	return security_ops->kernel_module_request(kmod_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731}
 
 732
 733int security_task_fix_setuid(struct cred *new, const struct cred *old,
 734			     int flags)
 735{
 736	return security_ops->task_fix_setuid(new, old, flags);
 
 
 
 
 
 
 737}
 738
 739int security_task_setpgid(struct task_struct *p, pid_t pgid)
 740{
 741	return security_ops->task_setpgid(p, pgid);
 742}
 743
 744int security_task_getpgid(struct task_struct *p)
 745{
 746	return security_ops->task_getpgid(p);
 747}
 748
 749int security_task_getsid(struct task_struct *p)
 750{
 751	return security_ops->task_getsid(p);
 752}
 753
 754void security_task_getsecid(struct task_struct *p, u32 *secid)
 755{
 756	security_ops->task_getsecid(p, secid);
 
 757}
 758EXPORT_SYMBOL(security_task_getsecid);
 759
 760int security_task_setnice(struct task_struct *p, int nice)
 761{
 762	return security_ops->task_setnice(p, nice);
 763}
 764
 765int security_task_setioprio(struct task_struct *p, int ioprio)
 766{
 767	return security_ops->task_setioprio(p, ioprio);
 768}
 769
 770int security_task_getioprio(struct task_struct *p)
 771{
 772	return security_ops->task_getioprio(p);
 
 
 
 
 
 
 773}
 774
 775int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 776		struct rlimit *new_rlim)
 777{
 778	return security_ops->task_setrlimit(p, resource, new_rlim);
 779}
 780
 781int security_task_setscheduler(struct task_struct *p)
 782{
 783	return security_ops->task_setscheduler(p);
 784}
 785
 786int security_task_getscheduler(struct task_struct *p)
 787{
 788	return security_ops->task_getscheduler(p);
 789}
 790
 791int security_task_movememory(struct task_struct *p)
 792{
 793	return security_ops->task_movememory(p);
 794}
 795
 796int security_task_kill(struct task_struct *p, struct siginfo *info,
 797			int sig, u32 secid)
 798{
 799	return security_ops->task_kill(p, info, sig, secid);
 800}
 801
 802int security_task_wait(struct task_struct *p)
 803{
 804	return security_ops->task_wait(p);
 805}
 806
 807int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 808			 unsigned long arg4, unsigned long arg5)
 809{
 810	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 
 
 
 
 
 
 
 
 
 
 
 
 811}
 812
 813void security_task_to_inode(struct task_struct *p, struct inode *inode)
 814{
 815	security_ops->task_to_inode(p, inode);
 816}
 817
 818int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 819{
 820	return security_ops->ipc_permission(ipcp, flag);
 821}
 822
 823void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 824{
 825	security_ops->ipc_getsecid(ipcp, secid);
 
 826}
 827
 828int security_msg_msg_alloc(struct msg_msg *msg)
 829{
 830	return security_ops->msg_msg_alloc_security(msg);
 
 
 
 
 
 
 
 831}
 832
 833void security_msg_msg_free(struct msg_msg *msg)
 834{
 835	security_ops->msg_msg_free_security(msg);
 
 
 836}
 837
 838int security_msg_queue_alloc(struct msg_queue *msq)
 839{
 840	return security_ops->msg_queue_alloc_security(msq);
 
 
 
 
 
 
 
 841}
 842
 843void security_msg_queue_free(struct msg_queue *msq)
 844{
 845	security_ops->msg_queue_free_security(msq);
 
 
 846}
 847
 848int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 849{
 850	return security_ops->msg_queue_associate(msq, msqflg);
 851}
 852
 853int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 854{
 855	return security_ops->msg_queue_msgctl(msq, cmd);
 856}
 857
 858int security_msg_queue_msgsnd(struct msg_queue *msq,
 859			       struct msg_msg *msg, int msqflg)
 860{
 861	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 862}
 863
 864int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 865			       struct task_struct *target, long type, int mode)
 866{
 867	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 868}
 869
 870int security_shm_alloc(struct shmid_kernel *shp)
 871{
 872	return security_ops->shm_alloc_security(shp);
 
 
 
 
 
 
 
 873}
 874
 875void security_shm_free(struct shmid_kernel *shp)
 876{
 877	security_ops->shm_free_security(shp);
 
 
 878}
 879
 880int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 881{
 882	return security_ops->shm_associate(shp, shmflg);
 883}
 884
 885int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
 886{
 887	return security_ops->shm_shmctl(shp, cmd);
 888}
 889
 890int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
 891{
 892	return security_ops->shm_shmat(shp, shmaddr, shmflg);
 893}
 894
 895int security_sem_alloc(struct sem_array *sma)
 896{
 897	return security_ops->sem_alloc_security(sma);
 
 
 
 
 
 
 
 898}
 899
 900void security_sem_free(struct sem_array *sma)
 901{
 902	security_ops->sem_free_security(sma);
 
 
 903}
 904
 905int security_sem_associate(struct sem_array *sma, int semflg)
 906{
 907	return security_ops->sem_associate(sma, semflg);
 908}
 909
 910int security_sem_semctl(struct sem_array *sma, int cmd)
 911{
 912	return security_ops->sem_semctl(sma, cmd);
 913}
 914
 915int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
 916			unsigned nsops, int alter)
 917{
 918	return security_ops->sem_semop(sma, sops, nsops, alter);
 919}
 920
 921void security_d_instantiate(struct dentry *dentry, struct inode *inode)
 922{
 923	if (unlikely(inode && IS_PRIVATE(inode)))
 924		return;
 925	security_ops->d_instantiate(dentry, inode);
 926}
 927EXPORT_SYMBOL(security_d_instantiate);
 928
 929int security_getprocattr(struct task_struct *p, char *name, char **value)
 
 930{
 931	return security_ops->getprocattr(p, name, value);
 
 
 
 
 
 
 
 932}
 933
 934int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
 
 935{
 936	return security_ops->setprocattr(p, name, value, size);
 
 
 
 
 
 
 
 937}
 938
 939int security_netlink_send(struct sock *sk, struct sk_buff *skb)
 940{
 941	return security_ops->netlink_send(sk, skb);
 942}
 943
 944int security_netlink_recv(struct sk_buff *skb, int cap)
 945{
 946	return security_ops->netlink_recv(skb, cap);
 947}
 948EXPORT_SYMBOL(security_netlink_recv);
 949
 950int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
 951{
 952	return security_ops->secid_to_secctx(secid, secdata, seclen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 953}
 954EXPORT_SYMBOL(security_secid_to_secctx);
 955
 956int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
 957{
 958	return security_ops->secctx_to_secid(secdata, seclen, secid);
 
 959}
 960EXPORT_SYMBOL(security_secctx_to_secid);
 961
 962void security_release_secctx(char *secdata, u32 seclen)
 963{
 964	security_ops->release_secctx(secdata, seclen);
 965}
 966EXPORT_SYMBOL(security_release_secctx);
 967
 
 
 
 
 
 
 968int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
 969{
 970	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
 971}
 972EXPORT_SYMBOL(security_inode_notifysecctx);
 973
 974int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
 975{
 976	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
 977}
 978EXPORT_SYMBOL(security_inode_setsecctx);
 979
 980int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
 981{
 982	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
 983}
 984EXPORT_SYMBOL(security_inode_getsecctx);
 985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986#ifdef CONFIG_SECURITY_NETWORK
 987
 988int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
 989{
 990	return security_ops->unix_stream_connect(sock, other, newsk);
 991}
 992EXPORT_SYMBOL(security_unix_stream_connect);
 993
 994int security_unix_may_send(struct socket *sock,  struct socket *other)
 995{
 996	return security_ops->unix_may_send(sock, other);
 997}
 998EXPORT_SYMBOL(security_unix_may_send);
 999
1000int security_socket_create(int family, int type, int protocol, int kern)
1001{
1002	return security_ops->socket_create(family, type, protocol, kern);
1003}
1004
1005int security_socket_post_create(struct socket *sock, int family,
1006				int type, int protocol, int kern)
1007{
1008	return security_ops->socket_post_create(sock, family, type,
1009						protocol, kern);
1010}
1011
 
 
 
 
 
 
1012int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1013{
1014	return security_ops->socket_bind(sock, address, addrlen);
1015}
1016
1017int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1018{
1019	return security_ops->socket_connect(sock, address, addrlen);
1020}
1021
1022int security_socket_listen(struct socket *sock, int backlog)
1023{
1024	return security_ops->socket_listen(sock, backlog);
1025}
1026
1027int security_socket_accept(struct socket *sock, struct socket *newsock)
1028{
1029	return security_ops->socket_accept(sock, newsock);
1030}
1031
1032int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1033{
1034	return security_ops->socket_sendmsg(sock, msg, size);
1035}
1036
1037int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1038			    int size, int flags)
1039{
1040	return security_ops->socket_recvmsg(sock, msg, size, flags);
1041}
1042
1043int security_socket_getsockname(struct socket *sock)
1044{
1045	return security_ops->socket_getsockname(sock);
1046}
1047
1048int security_socket_getpeername(struct socket *sock)
1049{
1050	return security_ops->socket_getpeername(sock);
1051}
1052
1053int security_socket_getsockopt(struct socket *sock, int level, int optname)
1054{
1055	return security_ops->socket_getsockopt(sock, level, optname);
1056}
1057
1058int security_socket_setsockopt(struct socket *sock, int level, int optname)
1059{
1060	return security_ops->socket_setsockopt(sock, level, optname);
1061}
1062
1063int security_socket_shutdown(struct socket *sock, int how)
1064{
1065	return security_ops->socket_shutdown(sock, how);
1066}
1067
1068int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1069{
1070	return security_ops->socket_sock_rcv_skb(sk, skb);
1071}
1072EXPORT_SYMBOL(security_sock_rcv_skb);
1073
1074int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1075				      int __user *optlen, unsigned len)
1076{
1077	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
 
1078}
1079
1080int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1081{
1082	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
 
1083}
1084EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1085
1086int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1087{
1088	return security_ops->sk_alloc_security(sk, family, priority);
1089}
1090
1091void security_sk_free(struct sock *sk)
1092{
1093	security_ops->sk_free_security(sk);
1094}
1095
1096void security_sk_clone(const struct sock *sk, struct sock *newsk)
1097{
1098	security_ops->sk_clone_security(sk, newsk);
1099}
1100EXPORT_SYMBOL(security_sk_clone);
1101
1102void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1103{
1104	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1105}
1106EXPORT_SYMBOL(security_sk_classify_flow);
1107
1108void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1109{
1110	security_ops->req_classify_flow(req, fl);
1111}
1112EXPORT_SYMBOL(security_req_classify_flow);
1113
1114void security_sock_graft(struct sock *sk, struct socket *parent)
1115{
1116	security_ops->sock_graft(sk, parent);
1117}
1118EXPORT_SYMBOL(security_sock_graft);
1119
1120int security_inet_conn_request(struct sock *sk,
1121			struct sk_buff *skb, struct request_sock *req)
1122{
1123	return security_ops->inet_conn_request(sk, skb, req);
1124}
1125EXPORT_SYMBOL(security_inet_conn_request);
1126
1127void security_inet_csk_clone(struct sock *newsk,
1128			const struct request_sock *req)
1129{
1130	security_ops->inet_csk_clone(newsk, req);
1131}
1132
1133void security_inet_conn_established(struct sock *sk,
1134			struct sk_buff *skb)
1135{
1136	security_ops->inet_conn_established(sk, skb);
1137}
 
1138
1139int security_secmark_relabel_packet(u32 secid)
1140{
1141	return security_ops->secmark_relabel_packet(secid);
1142}
1143EXPORT_SYMBOL(security_secmark_relabel_packet);
1144
1145void security_secmark_refcount_inc(void)
1146{
1147	security_ops->secmark_refcount_inc();
1148}
1149EXPORT_SYMBOL(security_secmark_refcount_inc);
1150
1151void security_secmark_refcount_dec(void)
1152{
1153	security_ops->secmark_refcount_dec();
1154}
1155EXPORT_SYMBOL(security_secmark_refcount_dec);
1156
 
 
 
 
 
 
 
 
 
 
 
 
1157int security_tun_dev_create(void)
1158{
1159	return security_ops->tun_dev_create();
1160}
1161EXPORT_SYMBOL(security_tun_dev_create);
1162
1163void security_tun_dev_post_create(struct sock *sk)
1164{
1165	return security_ops->tun_dev_post_create(sk);
1166}
1167EXPORT_SYMBOL(security_tun_dev_post_create);
1168
1169int security_tun_dev_attach(struct sock *sk)
1170{
1171	return security_ops->tun_dev_attach(sk);
1172}
1173EXPORT_SYMBOL(security_tun_dev_attach);
1174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175#endif	/* CONFIG_SECURITY_NETWORK */
1176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177#ifdef CONFIG_SECURITY_NETWORK_XFRM
1178
1179int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
 
 
1180{
1181	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1182}
1183EXPORT_SYMBOL(security_xfrm_policy_alloc);
1184
1185int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1186			      struct xfrm_sec_ctx **new_ctxp)
1187{
1188	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1189}
1190
1191void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1192{
1193	security_ops->xfrm_policy_free_security(ctx);
1194}
1195EXPORT_SYMBOL(security_xfrm_policy_free);
1196
1197int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1198{
1199	return security_ops->xfrm_policy_delete_security(ctx);
1200}
1201
1202int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
 
1203{
1204	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1205}
1206EXPORT_SYMBOL(security_xfrm_state_alloc);
1207
1208int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1209				      struct xfrm_sec_ctx *polsec, u32 secid)
1210{
1211	if (!polsec)
1212		return 0;
1213	/*
1214	 * We want the context to be taken from secid which is usually
1215	 * from the sock.
1216	 */
1217	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1218}
1219
1220int security_xfrm_state_delete(struct xfrm_state *x)
1221{
1222	return security_ops->xfrm_state_delete_security(x);
1223}
1224EXPORT_SYMBOL(security_xfrm_state_delete);
1225
1226void security_xfrm_state_free(struct xfrm_state *x)
1227{
1228	security_ops->xfrm_state_free_security(x);
1229}
1230
1231int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1232{
1233	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1234}
1235
1236int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1237				       struct xfrm_policy *xp,
1238				       const struct flowi *fl)
1239{
1240	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241}
1242
1243int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1244{
1245	return security_ops->xfrm_decode_session(skb, secid, 1);
1246}
1247
1248void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1249{
1250	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
 
1251
1252	BUG_ON(rc);
1253}
1254EXPORT_SYMBOL(security_skb_classify_flow);
1255
1256#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1257
1258#ifdef CONFIG_KEYS
1259
1260int security_key_alloc(struct key *key, const struct cred *cred,
1261		       unsigned long flags)
1262{
1263	return security_ops->key_alloc(key, cred, flags);
1264}
1265
1266void security_key_free(struct key *key)
1267{
1268	security_ops->key_free(key);
1269}
1270
1271int security_key_permission(key_ref_t key_ref,
1272			    const struct cred *cred, key_perm_t perm)
1273{
1274	return security_ops->key_permission(key_ref, cred, perm);
1275}
1276
1277int security_key_getsecurity(struct key *key, char **_buffer)
1278{
1279	return security_ops->key_getsecurity(key, _buffer);
 
1280}
1281
1282#endif	/* CONFIG_KEYS */
1283
1284#ifdef CONFIG_AUDIT
1285
1286int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1287{
1288	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1289}
1290
1291int security_audit_rule_known(struct audit_krule *krule)
1292{
1293	return security_ops->audit_rule_known(krule);
1294}
1295
1296void security_audit_rule_free(void *lsmrule)
1297{
1298	security_ops->audit_rule_free(lsmrule);
1299}
1300
1301int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1302			      struct audit_context *actx)
1303{
1304	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1305}
1306
1307#endif /* CONFIG_AUDIT */
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/lsm_hooks.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <linux/string.h>
  29#include <linux/msg.h>
  30#include <net/flow.h>
  31
  32#define MAX_LSM_EVM_XATTR	2
 
 
  33
  34/* How many LSMs were built into the kernel? */
  35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  36
  37/*
  38 * These are descriptions of the reasons that can be passed to the
  39 * security_locked_down() LSM hook. Placing this array here allows
  40 * all security modules to use the same descriptions for auditing
  41 * purposes.
  42 */
  43const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
  44	[LOCKDOWN_NONE] = "none",
  45	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  46	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  47	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  48	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  49	[LOCKDOWN_HIBERNATION] = "hibernation",
  50	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  51	[LOCKDOWN_IOPORT] = "raw io port access",
  52	[LOCKDOWN_MSR] = "raw MSR access",
  53	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  54	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  55	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  56	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  57	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  58	[LOCKDOWN_DEBUGFS] = "debugfs access",
  59	[LOCKDOWN_XMON_WR] = "xmon write access",
  60	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  61	[LOCKDOWN_KCORE] = "/proc/kcore access",
  62	[LOCKDOWN_KPROBES] = "use of kprobes",
  63	[LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
  64	[LOCKDOWN_PERF] = "unsafe use of perf",
  65	[LOCKDOWN_TRACEFS] = "use of tracefs",
  66	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  67	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  68};
  69
  70struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  71static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  72
  73static struct kmem_cache *lsm_file_cache;
  74static struct kmem_cache *lsm_inode_cache;
  75
  76char *lsm_names;
  77static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  78
  79/* Boot-time LSM user choice */
  80static __initdata const char *chosen_lsm_order;
  81static __initdata const char *chosen_major_lsm;
  82
  83static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  84
  85/* Ordered list of LSMs to initialize. */
  86static __initdata struct lsm_info **ordered_lsms;
  87static __initdata struct lsm_info *exclusive;
  88
  89static __initdata bool debug;
  90#define init_debug(...)						\
  91	do {							\
  92		if (debug)					\
  93			pr_info(__VA_ARGS__);			\
  94	} while (0)
  95
  96static bool __init is_enabled(struct lsm_info *lsm)
  97{
  98	if (!lsm->enabled)
  99		return false;
 100
 101	return *lsm->enabled;
 102}
 103
 104/* Mark an LSM's enabled flag. */
 105static int lsm_enabled_true __initdata = 1;
 106static int lsm_enabled_false __initdata = 0;
 107static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 108{
 109	/*
 110	 * When an LSM hasn't configured an enable variable, we can use
 111	 * a hard-coded location for storing the default enabled state.
 112	 */
 113	if (!lsm->enabled) {
 114		if (enabled)
 115			lsm->enabled = &lsm_enabled_true;
 116		else
 117			lsm->enabled = &lsm_enabled_false;
 118	} else if (lsm->enabled == &lsm_enabled_true) {
 119		if (!enabled)
 120			lsm->enabled = &lsm_enabled_false;
 121	} else if (lsm->enabled == &lsm_enabled_false) {
 122		if (enabled)
 123			lsm->enabled = &lsm_enabled_true;
 124	} else {
 125		*lsm->enabled = enabled;
 126	}
 127}
 128
 129/* Is an LSM already listed in the ordered LSMs list? */
 130static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 131{
 132	struct lsm_info **check;
 133
 134	for (check = ordered_lsms; *check; check++)
 135		if (*check == lsm)
 136			return true;
 137
 138	return false;
 139}
 140
 141/* Append an LSM to the list of ordered LSMs to initialize. */
 142static int last_lsm __initdata;
 143static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 144{
 145	/* Ignore duplicate selections. */
 146	if (exists_ordered_lsm(lsm))
 147		return;
 148
 149	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 150		return;
 151
 152	/* Enable this LSM, if it is not already set. */
 153	if (!lsm->enabled)
 154		lsm->enabled = &lsm_enabled_true;
 155	ordered_lsms[last_lsm++] = lsm;
 156
 157	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 158		   is_enabled(lsm) ? "en" : "dis");
 159}
 160
 161/* Is an LSM allowed to be initialized? */
 162static bool __init lsm_allowed(struct lsm_info *lsm)
 163{
 164	/* Skip if the LSM is disabled. */
 165	if (!is_enabled(lsm))
 166		return false;
 167
 168	/* Not allowed if another exclusive LSM already initialized. */
 169	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 170		init_debug("exclusive disabled: %s\n", lsm->name);
 171		return false;
 172	}
 173
 174	return true;
 175}
 176
 177static void __init lsm_set_blob_size(int *need, int *lbs)
 178{
 179	int offset;
 180
 181	if (*need > 0) {
 182		offset = *lbs;
 183		*lbs += *need;
 184		*need = offset;
 185	}
 186}
 187
 188static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 189{
 190	if (!needed)
 191		return;
 192
 193	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 194	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 195	/*
 196	 * The inode blob gets an rcu_head in addition to
 197	 * what the modules might need.
 198	 */
 199	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 200		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 201	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 202	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 203	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 204	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 205}
 206
 207/* Prepare LSM for initialization. */
 208static void __init prepare_lsm(struct lsm_info *lsm)
 209{
 210	int enabled = lsm_allowed(lsm);
 211
 212	/* Record enablement (to handle any following exclusive LSMs). */
 213	set_enabled(lsm, enabled);
 214
 215	/* If enabled, do pre-initialization work. */
 216	if (enabled) {
 217		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 218			exclusive = lsm;
 219			init_debug("exclusive chosen: %s\n", lsm->name);
 220		}
 221
 222		lsm_set_blob_sizes(lsm->blobs);
 223	}
 224}
 225
 226/* Initialize a given LSM, if it is enabled. */
 227static void __init initialize_lsm(struct lsm_info *lsm)
 228{
 229	if (is_enabled(lsm)) {
 230		int ret;
 231
 232		init_debug("initializing %s\n", lsm->name);
 233		ret = lsm->init();
 234		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 235	}
 236}
 237
 238/* Populate ordered LSMs list from comma-separated LSM name list. */
 239static void __init ordered_lsm_parse(const char *order, const char *origin)
 240{
 241	struct lsm_info *lsm;
 242	char *sep, *name, *next;
 243
 244	/* LSM_ORDER_FIRST is always first. */
 245	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 246		if (lsm->order == LSM_ORDER_FIRST)
 247			append_ordered_lsm(lsm, "first");
 248	}
 249
 250	/* Process "security=", if given. */
 251	if (chosen_major_lsm) {
 252		struct lsm_info *major;
 253
 254		/*
 255		 * To match the original "security=" behavior, this
 256		 * explicitly does NOT fallback to another Legacy Major
 257		 * if the selected one was separately disabled: disable
 258		 * all non-matching Legacy Major LSMs.
 259		 */
 260		for (major = __start_lsm_info; major < __end_lsm_info;
 261		     major++) {
 262			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 263			    strcmp(major->name, chosen_major_lsm) != 0) {
 264				set_enabled(major, false);
 265				init_debug("security=%s disabled: %s\n",
 266					   chosen_major_lsm, major->name);
 267			}
 268		}
 269	}
 270
 271	sep = kstrdup(order, GFP_KERNEL);
 272	next = sep;
 273	/* Walk the list, looking for matching LSMs. */
 274	while ((name = strsep(&next, ",")) != NULL) {
 275		bool found = false;
 276
 277		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 278			if (lsm->order == LSM_ORDER_MUTABLE &&
 279			    strcmp(lsm->name, name) == 0) {
 280				append_ordered_lsm(lsm, origin);
 281				found = true;
 282			}
 283		}
 284
 285		if (!found)
 286			init_debug("%s ignored: %s\n", origin, name);
 287	}
 288
 289	/* Process "security=", if given. */
 290	if (chosen_major_lsm) {
 291		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 292			if (exists_ordered_lsm(lsm))
 293				continue;
 294			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 295				append_ordered_lsm(lsm, "security=");
 296		}
 297	}
 298
 299	/* Disable all LSMs not in the ordered list. */
 300	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 301		if (exists_ordered_lsm(lsm))
 302			continue;
 303		set_enabled(lsm, false);
 304		init_debug("%s disabled: %s\n", origin, lsm->name);
 305	}
 306
 307	kfree(sep);
 308}
 309
 310static void __init lsm_early_cred(struct cred *cred);
 311static void __init lsm_early_task(struct task_struct *task);
 312
 313static int lsm_append(const char *new, char **result);
 314
 315static void __init ordered_lsm_init(void)
 316{
 317	struct lsm_info **lsm;
 318
 319	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 320				GFP_KERNEL);
 321
 322	if (chosen_lsm_order) {
 323		if (chosen_major_lsm) {
 324			pr_info("security= is ignored because it is superseded by lsm=\n");
 325			chosen_major_lsm = NULL;
 326		}
 327		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 328	} else
 329		ordered_lsm_parse(builtin_lsm_order, "builtin");
 330
 331	for (lsm = ordered_lsms; *lsm; lsm++)
 332		prepare_lsm(*lsm);
 333
 334	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
 335	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
 336	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
 337	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
 338	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
 339	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
 340
 341	/*
 342	 * Create any kmem_caches needed for blobs
 343	 */
 344	if (blob_sizes.lbs_file)
 345		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 346						   blob_sizes.lbs_file, 0,
 347						   SLAB_PANIC, NULL);
 348	if (blob_sizes.lbs_inode)
 349		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 350						    blob_sizes.lbs_inode, 0,
 351						    SLAB_PANIC, NULL);
 352
 353	lsm_early_cred((struct cred *) current->cred);
 354	lsm_early_task(current);
 355	for (lsm = ordered_lsms; *lsm; lsm++)
 356		initialize_lsm(*lsm);
 357
 358	kfree(ordered_lsms);
 359}
 360
 361int __init early_security_init(void)
 362{
 363	int i;
 364	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 365	struct lsm_info *lsm;
 366
 367	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 368	     i++)
 369		INIT_HLIST_HEAD(&list[i]);
 370
 371	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 372		if (!lsm->enabled)
 373			lsm->enabled = &lsm_enabled_true;
 374		prepare_lsm(lsm);
 375		initialize_lsm(lsm);
 376	}
 377
 378	return 0;
 379}
 380
 381/**
 382 * security_init - initializes the security framework
 383 *
 384 * This should be called early in the kernel initialization sequence.
 385 */
 386int __init security_init(void)
 387{
 388	struct lsm_info *lsm;
 389
 390	pr_info("Security Framework initializing\n");
 391
 392	/*
 393	 * Append the names of the early LSM modules now that kmalloc() is
 394	 * available
 395	 */
 396	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 397		if (lsm->enabled)
 398			lsm_append(lsm->name, &lsm_names);
 399	}
 400
 401	/* Load LSMs in specified order. */
 402	ordered_lsm_init();
 
 403
 404	return 0;
 405}
 406
 407/* Save user chosen LSM */
 408static int __init choose_major_lsm(char *str)
 409{
 410	chosen_major_lsm = str;
 411	return 1;
 412}
 413__setup("security=", choose_major_lsm);
 414
 415/* Explicitly choose LSM initialization order. */
 416static int __init choose_lsm_order(char *str)
 417{
 418	chosen_lsm_order = str;
 419	return 1;
 420}
 421__setup("lsm=", choose_lsm_order);
 422
 423/* Enable LSM order debugging. */
 424static int __init enable_debug(char *str)
 425{
 426	debug = true;
 427	return 1;
 428}
 429__setup("lsm.debug", enable_debug);
 430
 431static bool match_last_lsm(const char *list, const char *lsm)
 432{
 433	const char *last;
 434
 435	if (WARN_ON(!list || !lsm))
 436		return false;
 437	last = strrchr(list, ',');
 438	if (last)
 439		/* Pass the comma, strcmp() will check for '\0' */
 440		last++;
 441	else
 442		last = list;
 443	return !strcmp(last, lsm);
 444}
 445
 446static int lsm_append(const char *new, char **result)
 447{
 448	char *cp;
 449
 450	if (*result == NULL) {
 451		*result = kstrdup(new, GFP_KERNEL);
 452		if (*result == NULL)
 453			return -ENOMEM;
 454	} else {
 455		/* Check if it is the last registered name */
 456		if (match_last_lsm(*result, new))
 457			return 0;
 458		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 459		if (cp == NULL)
 460			return -ENOMEM;
 461		kfree(*result);
 462		*result = cp;
 463	}
 464	return 0;
 465}
 466
 467/**
 468 * security_add_hooks - Add a modules hooks to the hook lists.
 469 * @hooks: the hooks to add
 470 * @count: the number of hooks to add
 471 * @lsm: the name of the security module
 472 *
 473 * Each LSM has to register its hooks with the infrastructure.
 474 */
 475void __init security_add_hooks(struct security_hook_list *hooks, int count,
 476				char *lsm)
 477{
 478	int i;
 479
 480	for (i = 0; i < count; i++) {
 481		hooks[i].lsm = lsm;
 482		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 483	}
 484
 485	/*
 486	 * Don't try to append during early_security_init(), we'll come back
 487	 * and fix this up afterwards.
 488	 */
 489	if (slab_is_available()) {
 490		if (lsm_append(lsm, &lsm_names) < 0)
 491			panic("%s - Cannot get early memory.\n", __func__);
 492	}
 493}
 494
 495int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 496{
 497	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 498					    event, data);
 499}
 500EXPORT_SYMBOL(call_blocking_lsm_notifier);
 501
 502int register_blocking_lsm_notifier(struct notifier_block *nb)
 503{
 504	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 505						nb);
 506}
 507EXPORT_SYMBOL(register_blocking_lsm_notifier);
 508
 509int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 510{
 511	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 512						  nb);
 513}
 514EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 515
 516/**
 517 * lsm_cred_alloc - allocate a composite cred blob
 518 * @cred: the cred that needs a blob
 519 * @gfp: allocation type
 520 *
 521 * Allocate the cred blob for all the modules
 522 *
 523 * Returns 0, or -ENOMEM if memory can't be allocated.
 524 */
 525static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 526{
 527	if (blob_sizes.lbs_cred == 0) {
 528		cred->security = NULL;
 529		return 0;
 530	}
 531
 532	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 533	if (cred->security == NULL)
 534		return -ENOMEM;
 535	return 0;
 536}
 537
 538/**
 539 * lsm_early_cred - during initialization allocate a composite cred blob
 540 * @cred: the cred that needs a blob
 541 *
 542 * Allocate the cred blob for all the modules
 
 
 
 
 
 
 
 
 543 */
 544static void __init lsm_early_cred(struct cred *cred)
 545{
 546	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 547
 548	if (rc)
 549		panic("%s: Early cred alloc failed.\n", __func__);
 550}
 551
 552/**
 553 * lsm_file_alloc - allocate a composite file blob
 554 * @file: the file that needs a blob
 555 *
 556 * Allocate the file blob for all the modules
 
 
 
 557 *
 558 * Returns 0, or -ENOMEM if memory can't be allocated.
 
 559 */
 560static int lsm_file_alloc(struct file *file)
 561{
 562	if (!lsm_file_cache) {
 563		file->f_security = NULL;
 564		return 0;
 
 565	}
 566
 567	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 568	if (file->f_security == NULL)
 569		return -ENOMEM;
 570	return 0;
 571}
 572
 573/**
 574 * lsm_inode_alloc - allocate a composite inode blob
 575 * @inode: the inode that needs a blob
 576 *
 577 * Allocate the inode blob for all the modules
 578 *
 579 * Returns 0, or -ENOMEM if memory can't be allocated.
 580 */
 581int lsm_inode_alloc(struct inode *inode)
 582{
 583	if (!lsm_inode_cache) {
 584		inode->i_security = NULL;
 585		return 0;
 586	}
 587
 588	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 589	if (inode->i_security == NULL)
 590		return -ENOMEM;
 591	return 0;
 592}
 593
 594/**
 595 * lsm_task_alloc - allocate a composite task blob
 596 * @task: the task that needs a blob
 597 *
 598 * Allocate the task blob for all the modules
 599 *
 600 * Returns 0, or -ENOMEM if memory can't be allocated.
 601 */
 602static int lsm_task_alloc(struct task_struct *task)
 603{
 604	if (blob_sizes.lbs_task == 0) {
 605		task->security = NULL;
 606		return 0;
 607	}
 608
 609	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 610	if (task->security == NULL)
 611		return -ENOMEM;
 612	return 0;
 613}
 614
 615/**
 616 * lsm_ipc_alloc - allocate a composite ipc blob
 617 * @kip: the ipc that needs a blob
 618 *
 619 * Allocate the ipc blob for all the modules
 620 *
 621 * Returns 0, or -ENOMEM if memory can't be allocated.
 622 */
 623static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 624{
 625	if (blob_sizes.lbs_ipc == 0) {
 626		kip->security = NULL;
 627		return 0;
 628	}
 629
 630	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 631	if (kip->security == NULL)
 632		return -ENOMEM;
 633	return 0;
 634}
 635
 636/**
 637 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 638 * @mp: the msg_msg that needs a blob
 639 *
 640 * Allocate the ipc blob for all the modules
 641 *
 642 * Returns 0, or -ENOMEM if memory can't be allocated.
 643 */
 644static int lsm_msg_msg_alloc(struct msg_msg *mp)
 645{
 646	if (blob_sizes.lbs_msg_msg == 0) {
 647		mp->security = NULL;
 648		return 0;
 649	}
 650
 651	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 652	if (mp->security == NULL)
 653		return -ENOMEM;
 654	return 0;
 655}
 656
 657/**
 658 * lsm_early_task - during initialization allocate a composite task blob
 659 * @task: the task that needs a blob
 660 *
 661 * Allocate the task blob for all the modules
 662 */
 663static void __init lsm_early_task(struct task_struct *task)
 664{
 665	int rc = lsm_task_alloc(task);
 666
 667	if (rc)
 668		panic("%s: Early task alloc failed.\n", __func__);
 669}
 670
 671/*
 672 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 673 * can be accessed with:
 674 *
 675 *	LSM_RET_DEFAULT(<hook_name>)
 676 *
 677 * The macros below define static constants for the default value of each
 678 * LSM hook.
 679 */
 680#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 681#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 682#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 683	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
 684#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 685	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 686
 687#include <linux/lsm_hook_defs.h>
 688#undef LSM_HOOK
 689
 690/*
 691 * Hook list operation macros.
 692 *
 693 * call_void_hook:
 694 *	This is a hook that does not return a value.
 695 *
 696 * call_int_hook:
 697 *	This is a hook that returns a value.
 698 */
 699
 700#define call_void_hook(FUNC, ...)				\
 701	do {							\
 702		struct security_hook_list *P;			\
 703								\
 704		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 705			P->hook.FUNC(__VA_ARGS__);		\
 706	} while (0)
 707
 708#define call_int_hook(FUNC, IRC, ...) ({			\
 709	int RC = IRC;						\
 710	do {							\
 711		struct security_hook_list *P;			\
 712								\
 713		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 714			RC = P->hook.FUNC(__VA_ARGS__);		\
 715			if (RC != 0)				\
 716				break;				\
 717		}						\
 718	} while (0);						\
 719	RC;							\
 720})
 721
 722/* Security operations */
 723
 724int security_binder_set_context_mgr(struct task_struct *mgr)
 725{
 726	return call_int_hook(binder_set_context_mgr, 0, mgr);
 727}
 728
 729int security_binder_transaction(struct task_struct *from,
 730				struct task_struct *to)
 731{
 732	return call_int_hook(binder_transaction, 0, from, to);
 733}
 734
 735int security_binder_transfer_binder(struct task_struct *from,
 736				    struct task_struct *to)
 737{
 738	return call_int_hook(binder_transfer_binder, 0, from, to);
 739}
 740
 741int security_binder_transfer_file(struct task_struct *from,
 742				  struct task_struct *to, struct file *file)
 743{
 744	return call_int_hook(binder_transfer_file, 0, from, to, file);
 745}
 746
 747int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 748{
 749	return call_int_hook(ptrace_access_check, 0, child, mode);
 750}
 751
 752int security_ptrace_traceme(struct task_struct *parent)
 753{
 754	return call_int_hook(ptrace_traceme, 0, parent);
 755}
 756
 757int security_capget(struct task_struct *target,
 758		     kernel_cap_t *effective,
 759		     kernel_cap_t *inheritable,
 760		     kernel_cap_t *permitted)
 761{
 762	return call_int_hook(capget, 0, target,
 763				effective, inheritable, permitted);
 764}
 765
 766int security_capset(struct cred *new, const struct cred *old,
 767		    const kernel_cap_t *effective,
 768		    const kernel_cap_t *inheritable,
 769		    const kernel_cap_t *permitted)
 770{
 771	return call_int_hook(capset, 0, new, old,
 772				effective, inheritable, permitted);
 773}
 774
 775int security_capable(const struct cred *cred,
 776		     struct user_namespace *ns,
 777		     int cap,
 778		     unsigned int opts)
 779{
 780	return call_int_hook(capable, 0, cred, ns, cap, opts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781}
 782
 783int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 784{
 785	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 786}
 787
 788int security_quota_on(struct dentry *dentry)
 789{
 790	return call_int_hook(quota_on, 0, dentry);
 791}
 792
 793int security_syslog(int type)
 794{
 795	return call_int_hook(syslog, 0, type);
 
 
 
 
 
 796}
 797
 798int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 799{
 800	return call_int_hook(settime, 0, ts, tz);
 
 801}
 802
 803int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 804{
 805	struct security_hook_list *hp;
 806	int cap_sys_admin = 1;
 807	int rc;
 808
 809	/*
 810	 * The module will respond with a positive value if
 811	 * it thinks the __vm_enough_memory() call should be
 812	 * made with the cap_sys_admin set. If all of the modules
 813	 * agree that it should be set it will. If any module
 814	 * thinks it should not be set it won't.
 815	 */
 816	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 817		rc = hp->hook.vm_enough_memory(mm, pages);
 818		if (rc <= 0) {
 819			cap_sys_admin = 0;
 820			break;
 821		}
 822	}
 823	return __vm_enough_memory(mm, pages, cap_sys_admin);
 824}
 825
 826int security_bprm_creds_for_exec(struct linux_binprm *bprm)
 827{
 828	return call_int_hook(bprm_creds_for_exec, 0, bprm);
 
 
 829}
 830
 831int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
 832{
 833	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
 834}
 835
 836int security_bprm_check(struct linux_binprm *bprm)
 837{
 838	int ret;
 839
 840	ret = call_int_hook(bprm_check_security, 0, bprm);
 841	if (ret)
 842		return ret;
 843	return ima_bprm_check(bprm);
 844}
 845
 846void security_bprm_committing_creds(struct linux_binprm *bprm)
 847{
 848	call_void_hook(bprm_committing_creds, bprm);
 849}
 850
 851void security_bprm_committed_creds(struct linux_binprm *bprm)
 852{
 853	call_void_hook(bprm_committed_creds, bprm);
 854}
 855
 856int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 857{
 858	return call_int_hook(fs_context_dup, 0, fc, src_fc);
 859}
 860
 861int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 862{
 863	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 864}
 865
 866int security_sb_alloc(struct super_block *sb)
 867{
 868	return call_int_hook(sb_alloc_security, 0, sb);
 869}
 870
 871void security_sb_free(struct super_block *sb)
 872{
 873	call_void_hook(sb_free_security, sb);
 874}
 875
 876void security_free_mnt_opts(void **mnt_opts)
 877{
 878	if (!*mnt_opts)
 879		return;
 880	call_void_hook(sb_free_mnt_opts, *mnt_opts);
 881	*mnt_opts = NULL;
 882}
 883EXPORT_SYMBOL(security_free_mnt_opts);
 884
 885int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 886{
 887	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 888}
 889EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 890
 891int security_sb_remount(struct super_block *sb,
 892			void *mnt_opts)
 893{
 894	return call_int_hook(sb_remount, 0, sb, mnt_opts);
 895}
 896EXPORT_SYMBOL(security_sb_remount);
 897
 898int security_sb_kern_mount(struct super_block *sb)
 899{
 900	return call_int_hook(sb_kern_mount, 0, sb);
 901}
 902
 903int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 904{
 905	return call_int_hook(sb_show_options, 0, m, sb);
 906}
 907
 908int security_sb_statfs(struct dentry *dentry)
 909{
 910	return call_int_hook(sb_statfs, 0, dentry);
 911}
 912
 913int security_sb_mount(const char *dev_name, const struct path *path,
 914                       const char *type, unsigned long flags, void *data)
 915{
 916	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 917}
 918
 919int security_sb_umount(struct vfsmount *mnt, int flags)
 920{
 921	return call_int_hook(sb_umount, 0, mnt, flags);
 922}
 923
 924int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 925{
 926	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 927}
 928
 929int security_sb_set_mnt_opts(struct super_block *sb,
 930				void *mnt_opts,
 931				unsigned long kern_flags,
 932				unsigned long *set_kern_flags)
 933{
 934	return call_int_hook(sb_set_mnt_opts,
 935				mnt_opts ? -EOPNOTSUPP : 0, sb,
 936				mnt_opts, kern_flags, set_kern_flags);
 937}
 938EXPORT_SYMBOL(security_sb_set_mnt_opts);
 939
 940int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 941				struct super_block *newsb,
 942				unsigned long kern_flags,
 943				unsigned long *set_kern_flags)
 944{
 945	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 946				kern_flags, set_kern_flags);
 947}
 948EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 949
 950int security_add_mnt_opt(const char *option, const char *val, int len,
 951			 void **mnt_opts)
 952{
 953	return call_int_hook(sb_add_mnt_opt, -EINVAL,
 954					option, val, len, mnt_opts);
 955}
 956EXPORT_SYMBOL(security_add_mnt_opt);
 957
 958int security_move_mount(const struct path *from_path, const struct path *to_path)
 959{
 960	return call_int_hook(move_mount, 0, from_path, to_path);
 961}
 962
 963int security_path_notify(const struct path *path, u64 mask,
 964				unsigned int obj_type)
 965{
 966	return call_int_hook(path_notify, 0, path, mask, obj_type);
 967}
 
 968
 969int security_inode_alloc(struct inode *inode)
 970{
 971	int rc = lsm_inode_alloc(inode);
 972
 973	if (unlikely(rc))
 974		return rc;
 975	rc = call_int_hook(inode_alloc_security, 0, inode);
 976	if (unlikely(rc))
 977		security_inode_free(inode);
 978	return rc;
 979}
 980
 981static void inode_free_by_rcu(struct rcu_head *head)
 982{
 983	/*
 984	 * The rcu head is at the start of the inode blob
 985	 */
 986	kmem_cache_free(lsm_inode_cache, head);
 987}
 988
 989void security_inode_free(struct inode *inode)
 990{
 991	integrity_inode_free(inode);
 992	call_void_hook(inode_free_security, inode);
 993	/*
 994	 * The inode may still be referenced in a path walk and
 995	 * a call to security_inode_permission() can be made
 996	 * after inode_free_security() is called. Ideally, the VFS
 997	 * wouldn't do this, but fixing that is a much harder
 998	 * job. For now, simply free the i_security via RCU, and
 999	 * leave the current inode->i_security pointer intact.
1000	 * The inode will be freed after the RCU grace period too.
1001	 */
1002	if (inode->i_security)
1003		call_rcu((struct rcu_head *)inode->i_security,
1004				inode_free_by_rcu);
1005}
1006
1007int security_dentry_init_security(struct dentry *dentry, int mode,
1008					const struct qstr *name, void **ctx,
1009					u32 *ctxlen)
1010{
1011	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1012				name, ctx, ctxlen);
1013}
1014EXPORT_SYMBOL(security_dentry_init_security);
1015
1016int security_dentry_create_files_as(struct dentry *dentry, int mode,
1017				    struct qstr *name,
1018				    const struct cred *old, struct cred *new)
1019{
1020	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1021				name, old, new);
1022}
1023EXPORT_SYMBOL(security_dentry_create_files_as);
1024
1025int security_inode_init_security(struct inode *inode, struct inode *dir,
1026				 const struct qstr *qstr,
1027				 const initxattrs initxattrs, void *fs_data)
1028{
1029	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1030	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1031	int ret;
1032
1033	if (unlikely(IS_PRIVATE(inode)))
1034		return 0;
1035
1036	if (!initxattrs)
1037		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1038				     dir, qstr, NULL, NULL, NULL);
1039	memset(new_xattrs, 0, sizeof(new_xattrs));
1040	lsm_xattr = new_xattrs;
1041	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1042						&lsm_xattr->name,
1043						&lsm_xattr->value,
1044						&lsm_xattr->value_len);
1045	if (ret)
1046		goto out;
1047
1048	evm_xattr = lsm_xattr + 1;
1049	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1050	if (ret)
1051		goto out;
1052	ret = initxattrs(inode, new_xattrs, fs_data);
1053out:
1054	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1055		kfree(xattr->value);
1056	return (ret == -EOPNOTSUPP) ? 0 : ret;
1057}
1058EXPORT_SYMBOL(security_inode_init_security);
1059
1060int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1061				     const struct qstr *qstr, const char **name,
1062				     void **value, size_t *len)
1063{
1064	if (unlikely(IS_PRIVATE(inode)))
1065		return -EOPNOTSUPP;
1066	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1067			     qstr, name, value, len);
1068}
1069EXPORT_SYMBOL(security_old_inode_init_security);
1070
1071#ifdef CONFIG_SECURITY_PATH
1072int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1073			unsigned int dev)
1074{
1075	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1076		return 0;
1077	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1078}
1079EXPORT_SYMBOL(security_path_mknod);
1080
1081int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1082{
1083	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1084		return 0;
1085	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1086}
1087EXPORT_SYMBOL(security_path_mkdir);
1088
1089int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1090{
1091	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1092		return 0;
1093	return call_int_hook(path_rmdir, 0, dir, dentry);
1094}
1095
1096int security_path_unlink(const struct path *dir, struct dentry *dentry)
1097{
1098	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1099		return 0;
1100	return call_int_hook(path_unlink, 0, dir, dentry);
1101}
1102EXPORT_SYMBOL(security_path_unlink);
1103
1104int security_path_symlink(const struct path *dir, struct dentry *dentry,
1105			  const char *old_name)
1106{
1107	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1108		return 0;
1109	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1110}
1111
1112int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1113		       struct dentry *new_dentry)
1114{
1115	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1116		return 0;
1117	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1118}
1119
1120int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1121			 const struct path *new_dir, struct dentry *new_dentry,
1122			 unsigned int flags)
1123{
1124	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1125		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1126		return 0;
1127
1128	if (flags & RENAME_EXCHANGE) {
1129		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1130					old_dir, old_dentry);
1131		if (err)
1132			return err;
1133	}
1134
1135	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1136				new_dentry);
1137}
1138EXPORT_SYMBOL(security_path_rename);
1139
1140int security_path_truncate(const struct path *path)
1141{
1142	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1143		return 0;
1144	return call_int_hook(path_truncate, 0, path);
1145}
1146
1147int security_path_chmod(const struct path *path, umode_t mode)
 
1148{
1149	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1150		return 0;
1151	return call_int_hook(path_chmod, 0, path, mode);
1152}
1153
1154int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1155{
1156	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1157		return 0;
1158	return call_int_hook(path_chown, 0, path, uid, gid);
1159}
1160
1161int security_path_chroot(const struct path *path)
1162{
1163	return call_int_hook(path_chroot, 0, path);
1164}
1165#endif
1166
1167int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1168{
1169	if (unlikely(IS_PRIVATE(dir)))
1170		return 0;
1171	return call_int_hook(inode_create, 0, dir, dentry, mode);
1172}
1173EXPORT_SYMBOL_GPL(security_inode_create);
1174
1175int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1176			 struct dentry *new_dentry)
1177{
1178	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1179		return 0;
1180	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1181}
1182
1183int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1184{
1185	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186		return 0;
1187	return call_int_hook(inode_unlink, 0, dir, dentry);
1188}
1189
1190int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1191			    const char *old_name)
1192{
1193	if (unlikely(IS_PRIVATE(dir)))
1194		return 0;
1195	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1196}
1197
1198int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1199{
1200	if (unlikely(IS_PRIVATE(dir)))
1201		return 0;
1202	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1203}
1204EXPORT_SYMBOL_GPL(security_inode_mkdir);
1205
1206int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1207{
1208	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209		return 0;
1210	return call_int_hook(inode_rmdir, 0, dir, dentry);
1211}
1212
1213int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1214{
1215	if (unlikely(IS_PRIVATE(dir)))
1216		return 0;
1217	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1218}
1219
1220int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1221			   struct inode *new_dir, struct dentry *new_dentry,
1222			   unsigned int flags)
1223{
1224        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1225            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1226		return 0;
1227
1228	if (flags & RENAME_EXCHANGE) {
1229		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1230						     old_dir, old_dentry);
1231		if (err)
1232			return err;
1233	}
1234
1235	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1236					   new_dir, new_dentry);
1237}
1238
1239int security_inode_readlink(struct dentry *dentry)
1240{
1241	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242		return 0;
1243	return call_int_hook(inode_readlink, 0, dentry);
1244}
1245
1246int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1247			       bool rcu)
1248{
1249	if (unlikely(IS_PRIVATE(inode)))
1250		return 0;
1251	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1252}
1253
1254int security_inode_permission(struct inode *inode, int mask)
1255{
1256	if (unlikely(IS_PRIVATE(inode)))
1257		return 0;
1258	return call_int_hook(inode_permission, 0, inode, mask);
1259}
1260
1261int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1262{
1263	int ret;
1264
1265	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1266		return 0;
1267	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1268	if (ret)
1269		return ret;
1270	return evm_inode_setattr(dentry, attr);
1271}
1272EXPORT_SYMBOL_GPL(security_inode_setattr);
1273
1274int security_inode_getattr(const struct path *path)
1275{
1276	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1277		return 0;
1278	return call_int_hook(inode_getattr, 0, path);
1279}
1280
1281int security_inode_setxattr(struct dentry *dentry, const char *name,
1282			    const void *value, size_t size, int flags)
1283{
1284	int ret;
1285
1286	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1287		return 0;
1288	/*
1289	 * SELinux and Smack integrate the cap call,
1290	 * so assume that all LSMs supplying this call do so.
1291	 */
1292	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1293				flags);
1294
1295	if (ret == 1)
1296		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1297	if (ret)
1298		return ret;
1299	ret = ima_inode_setxattr(dentry, name, value, size);
1300	if (ret)
1301		return ret;
1302	return evm_inode_setxattr(dentry, name, value, size);
1303}
1304
1305void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1306				  const void *value, size_t size, int flags)
1307{
1308	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1309		return;
1310	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1311	evm_inode_post_setxattr(dentry, name, value, size);
1312}
1313
1314int security_inode_getxattr(struct dentry *dentry, const char *name)
1315{
1316	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1317		return 0;
1318	return call_int_hook(inode_getxattr, 0, dentry, name);
1319}
1320
1321int security_inode_listxattr(struct dentry *dentry)
1322{
1323	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1324		return 0;
1325	return call_int_hook(inode_listxattr, 0, dentry);
1326}
1327
1328int security_inode_removexattr(struct dentry *dentry, const char *name)
1329{
1330	int ret;
1331
1332	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1333		return 0;
1334	/*
1335	 * SELinux and Smack integrate the cap call,
1336	 * so assume that all LSMs supplying this call do so.
1337	 */
1338	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1339	if (ret == 1)
1340		ret = cap_inode_removexattr(dentry, name);
1341	if (ret)
1342		return ret;
1343	ret = ima_inode_removexattr(dentry, name);
1344	if (ret)
1345		return ret;
1346	return evm_inode_removexattr(dentry, name);
1347}
1348
1349int security_inode_need_killpriv(struct dentry *dentry)
1350{
1351	return call_int_hook(inode_need_killpriv, 0, dentry);
1352}
1353
1354int security_inode_killpriv(struct dentry *dentry)
1355{
1356	return call_int_hook(inode_killpriv, 0, dentry);
1357}
1358
1359int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1360{
1361	struct security_hook_list *hp;
1362	int rc;
1363
1364	if (unlikely(IS_PRIVATE(inode)))
1365		return LSM_RET_DEFAULT(inode_getsecurity);
1366	/*
1367	 * Only one module will provide an attribute with a given name.
1368	 */
1369	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1370		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1371		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1372			return rc;
1373	}
1374	return LSM_RET_DEFAULT(inode_getsecurity);
1375}
1376
1377int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1378{
1379	struct security_hook_list *hp;
1380	int rc;
1381
1382	if (unlikely(IS_PRIVATE(inode)))
1383		return LSM_RET_DEFAULT(inode_setsecurity);
1384	/*
1385	 * Only one module will provide an attribute with a given name.
1386	 */
1387	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1388		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1389								flags);
1390		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1391			return rc;
1392	}
1393	return LSM_RET_DEFAULT(inode_setsecurity);
1394}
1395
1396int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1397{
1398	if (unlikely(IS_PRIVATE(inode)))
1399		return 0;
1400	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1401}
1402EXPORT_SYMBOL(security_inode_listsecurity);
1403
1404void security_inode_getsecid(struct inode *inode, u32 *secid)
1405{
1406	call_void_hook(inode_getsecid, inode, secid);
1407}
1408
1409int security_inode_copy_up(struct dentry *src, struct cred **new)
1410{
1411	return call_int_hook(inode_copy_up, 0, src, new);
1412}
1413EXPORT_SYMBOL(security_inode_copy_up);
1414
1415int security_inode_copy_up_xattr(const char *name)
1416{
1417	struct security_hook_list *hp;
1418	int rc;
1419
1420	/*
1421	 * The implementation can return 0 (accept the xattr), 1 (discard the
1422	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1423	 * any other error code incase of an error.
1424	 */
1425	hlist_for_each_entry(hp,
1426		&security_hook_heads.inode_copy_up_xattr, list) {
1427		rc = hp->hook.inode_copy_up_xattr(name);
1428		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1429			return rc;
1430	}
1431
1432	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1433}
1434EXPORT_SYMBOL(security_inode_copy_up_xattr);
1435
1436int security_kernfs_init_security(struct kernfs_node *kn_dir,
1437				  struct kernfs_node *kn)
1438{
1439	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1440}
1441
1442int security_file_permission(struct file *file, int mask)
1443{
1444	int ret;
1445
1446	ret = call_int_hook(file_permission, 0, file, mask);
1447	if (ret)
1448		return ret;
1449
1450	return fsnotify_perm(file, mask);
1451}
1452
1453int security_file_alloc(struct file *file)
1454{
1455	int rc = lsm_file_alloc(file);
1456
1457	if (rc)
1458		return rc;
1459	rc = call_int_hook(file_alloc_security, 0, file);
1460	if (unlikely(rc))
1461		security_file_free(file);
1462	return rc;
1463}
1464
1465void security_file_free(struct file *file)
1466{
1467	void *blob;
1468
1469	call_void_hook(file_free_security, file);
1470
1471	blob = file->f_security;
1472	if (blob) {
1473		file->f_security = NULL;
1474		kmem_cache_free(lsm_file_cache, blob);
1475	}
1476}
1477
1478int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1479{
1480	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1481}
1482EXPORT_SYMBOL_GPL(security_file_ioctl);
1483
1484static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 
 
1485{
1486	/*
1487	 * Does we have PROT_READ and does the application expect
1488	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1489	 */
1490	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1491		return prot;
1492	if (!(current->personality & READ_IMPLIES_EXEC))
1493		return prot;
1494	/*
1495	 * if that's an anonymous mapping, let it.
1496	 */
1497	if (!file)
1498		return prot | PROT_EXEC;
1499	/*
1500	 * ditto if it's not on noexec mount, except that on !MMU we need
1501	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1502	 */
1503	if (!path_noexec(&file->f_path)) {
1504#ifndef CONFIG_MMU
1505		if (file->f_op->mmap_capabilities) {
1506			unsigned caps = file->f_op->mmap_capabilities(file);
1507			if (!(caps & NOMMU_MAP_EXEC))
1508				return prot;
1509		}
1510#endif
1511		return prot | PROT_EXEC;
1512	}
1513	/* anything on noexec mount won't get PROT_EXEC */
1514	return prot;
1515}
1516
1517int security_mmap_file(struct file *file, unsigned long prot,
1518			unsigned long flags)
1519{
1520	int ret;
1521	ret = call_int_hook(mmap_file, 0, file, prot,
1522					mmap_prot(file, prot), flags);
1523	if (ret)
1524		return ret;
1525	return ima_file_mmap(file, prot);
1526}
1527
1528int security_mmap_addr(unsigned long addr)
1529{
1530	return call_int_hook(mmap_addr, 0, addr);
1531}
1532
1533int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1534			    unsigned long prot)
1535{
1536	int ret;
1537
1538	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1539	if (ret)
1540		return ret;
1541	return ima_file_mprotect(vma, prot);
1542}
1543
1544int security_file_lock(struct file *file, unsigned int cmd)
1545{
1546	return call_int_hook(file_lock, 0, file, cmd);
1547}
1548
1549int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1550{
1551	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1552}
1553
1554void security_file_set_fowner(struct file *file)
1555{
1556	call_void_hook(file_set_fowner, file);
1557}
1558
1559int security_file_send_sigiotask(struct task_struct *tsk,
1560				  struct fown_struct *fown, int sig)
1561{
1562	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1563}
1564
1565int security_file_receive(struct file *file)
1566{
1567	return call_int_hook(file_receive, 0, file);
1568}
1569
1570int security_file_open(struct file *file)
1571{
1572	int ret;
1573
1574	ret = call_int_hook(file_open, 0, file);
1575	if (ret)
1576		return ret;
1577
1578	return fsnotify_perm(file, MAY_OPEN);
1579}
1580
1581int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1582{
1583	int rc = lsm_task_alloc(task);
1584
1585	if (rc)
1586		return rc;
1587	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1588	if (unlikely(rc))
1589		security_task_free(task);
1590	return rc;
1591}
1592
1593void security_task_free(struct task_struct *task)
1594{
1595	call_void_hook(task_free, task);
1596
1597	kfree(task->security);
1598	task->security = NULL;
1599}
1600
1601int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1602{
1603	int rc = lsm_cred_alloc(cred, gfp);
1604
1605	if (rc)
1606		return rc;
1607
1608	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1609	if (unlikely(rc))
1610		security_cred_free(cred);
1611	return rc;
1612}
1613
1614void security_cred_free(struct cred *cred)
1615{
1616	/*
1617	 * There is a failure case in prepare_creds() that
1618	 * may result in a call here with ->security being NULL.
1619	 */
1620	if (unlikely(cred->security == NULL))
1621		return;
1622
1623	call_void_hook(cred_free, cred);
1624
1625	kfree(cred->security);
1626	cred->security = NULL;
1627}
1628
1629int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1630{
1631	int rc = lsm_cred_alloc(new, gfp);
1632
1633	if (rc)
1634		return rc;
1635
1636	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1637	if (unlikely(rc))
1638		security_cred_free(new);
1639	return rc;
1640}
1641
1642void security_transfer_creds(struct cred *new, const struct cred *old)
1643{
1644	call_void_hook(cred_transfer, new, old);
1645}
1646
1647void security_cred_getsecid(const struct cred *c, u32 *secid)
1648{
1649	*secid = 0;
1650	call_void_hook(cred_getsecid, c, secid);
1651}
1652EXPORT_SYMBOL(security_cred_getsecid);
1653
1654int security_kernel_act_as(struct cred *new, u32 secid)
1655{
1656	return call_int_hook(kernel_act_as, 0, new, secid);
1657}
1658
1659int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1660{
1661	return call_int_hook(kernel_create_files_as, 0, new, inode);
1662}
1663
1664int security_kernel_module_request(char *kmod_name)
1665{
1666	int ret;
1667
1668	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1669	if (ret)
1670		return ret;
1671	return integrity_kernel_module_request(kmod_name);
1672}
1673
1674int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1675{
1676	int ret;
1677
1678	ret = call_int_hook(kernel_read_file, 0, file, id);
1679	if (ret)
1680		return ret;
1681	return ima_read_file(file, id);
1682}
1683EXPORT_SYMBOL_GPL(security_kernel_read_file);
1684
1685int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1686				   enum kernel_read_file_id id)
1687{
1688	int ret;
1689
1690	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1691	if (ret)
1692		return ret;
1693	return ima_post_read_file(file, buf, size, id);
1694}
1695EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1696
1697int security_kernel_load_data(enum kernel_load_data_id id)
1698{
1699	int ret;
1700
1701	ret = call_int_hook(kernel_load_data, 0, id);
1702	if (ret)
1703		return ret;
1704	return ima_load_data(id);
1705}
1706EXPORT_SYMBOL_GPL(security_kernel_load_data);
1707
1708int security_task_fix_setuid(struct cred *new, const struct cred *old,
1709			     int flags)
1710{
1711	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1712}
1713
1714int security_task_fix_setgid(struct cred *new, const struct cred *old,
1715				 int flags)
1716{
1717	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1718}
1719
1720int security_task_setpgid(struct task_struct *p, pid_t pgid)
1721{
1722	return call_int_hook(task_setpgid, 0, p, pgid);
1723}
1724
1725int security_task_getpgid(struct task_struct *p)
1726{
1727	return call_int_hook(task_getpgid, 0, p);
1728}
1729
1730int security_task_getsid(struct task_struct *p)
1731{
1732	return call_int_hook(task_getsid, 0, p);
1733}
1734
1735void security_task_getsecid(struct task_struct *p, u32 *secid)
1736{
1737	*secid = 0;
1738	call_void_hook(task_getsecid, p, secid);
1739}
1740EXPORT_SYMBOL(security_task_getsecid);
1741
1742int security_task_setnice(struct task_struct *p, int nice)
1743{
1744	return call_int_hook(task_setnice, 0, p, nice);
1745}
1746
1747int security_task_setioprio(struct task_struct *p, int ioprio)
1748{
1749	return call_int_hook(task_setioprio, 0, p, ioprio);
1750}
1751
1752int security_task_getioprio(struct task_struct *p)
1753{
1754	return call_int_hook(task_getioprio, 0, p);
1755}
1756
1757int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1758			  unsigned int flags)
1759{
1760	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1761}
1762
1763int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1764		struct rlimit *new_rlim)
1765{
1766	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1767}
1768
1769int security_task_setscheduler(struct task_struct *p)
1770{
1771	return call_int_hook(task_setscheduler, 0, p);
1772}
1773
1774int security_task_getscheduler(struct task_struct *p)
1775{
1776	return call_int_hook(task_getscheduler, 0, p);
1777}
1778
1779int security_task_movememory(struct task_struct *p)
1780{
1781	return call_int_hook(task_movememory, 0, p);
1782}
1783
1784int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1785			int sig, const struct cred *cred)
1786{
1787	return call_int_hook(task_kill, 0, p, info, sig, cred);
 
 
 
 
 
1788}
1789
1790int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1791			 unsigned long arg4, unsigned long arg5)
1792{
1793	int thisrc;
1794	int rc = LSM_RET_DEFAULT(task_prctl);
1795	struct security_hook_list *hp;
1796
1797	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1798		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1799		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1800			rc = thisrc;
1801			if (thisrc != 0)
1802				break;
1803		}
1804	}
1805	return rc;
1806}
1807
1808void security_task_to_inode(struct task_struct *p, struct inode *inode)
1809{
1810	call_void_hook(task_to_inode, p, inode);
1811}
1812
1813int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1814{
1815	return call_int_hook(ipc_permission, 0, ipcp, flag);
1816}
1817
1818void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1819{
1820	*secid = 0;
1821	call_void_hook(ipc_getsecid, ipcp, secid);
1822}
1823
1824int security_msg_msg_alloc(struct msg_msg *msg)
1825{
1826	int rc = lsm_msg_msg_alloc(msg);
1827
1828	if (unlikely(rc))
1829		return rc;
1830	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1831	if (unlikely(rc))
1832		security_msg_msg_free(msg);
1833	return rc;
1834}
1835
1836void security_msg_msg_free(struct msg_msg *msg)
1837{
1838	call_void_hook(msg_msg_free_security, msg);
1839	kfree(msg->security);
1840	msg->security = NULL;
1841}
1842
1843int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1844{
1845	int rc = lsm_ipc_alloc(msq);
1846
1847	if (unlikely(rc))
1848		return rc;
1849	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1850	if (unlikely(rc))
1851		security_msg_queue_free(msq);
1852	return rc;
1853}
1854
1855void security_msg_queue_free(struct kern_ipc_perm *msq)
1856{
1857	call_void_hook(msg_queue_free_security, msq);
1858	kfree(msq->security);
1859	msq->security = NULL;
1860}
1861
1862int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1863{
1864	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1865}
1866
1867int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1868{
1869	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1870}
1871
1872int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1873			       struct msg_msg *msg, int msqflg)
1874{
1875	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1876}
1877
1878int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1879			       struct task_struct *target, long type, int mode)
1880{
1881	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1882}
1883
1884int security_shm_alloc(struct kern_ipc_perm *shp)
1885{
1886	int rc = lsm_ipc_alloc(shp);
1887
1888	if (unlikely(rc))
1889		return rc;
1890	rc = call_int_hook(shm_alloc_security, 0, shp);
1891	if (unlikely(rc))
1892		security_shm_free(shp);
1893	return rc;
1894}
1895
1896void security_shm_free(struct kern_ipc_perm *shp)
1897{
1898	call_void_hook(shm_free_security, shp);
1899	kfree(shp->security);
1900	shp->security = NULL;
1901}
1902
1903int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1904{
1905	return call_int_hook(shm_associate, 0, shp, shmflg);
1906}
1907
1908int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1909{
1910	return call_int_hook(shm_shmctl, 0, shp, cmd);
1911}
1912
1913int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1914{
1915	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1916}
1917
1918int security_sem_alloc(struct kern_ipc_perm *sma)
1919{
1920	int rc = lsm_ipc_alloc(sma);
1921
1922	if (unlikely(rc))
1923		return rc;
1924	rc = call_int_hook(sem_alloc_security, 0, sma);
1925	if (unlikely(rc))
1926		security_sem_free(sma);
1927	return rc;
1928}
1929
1930void security_sem_free(struct kern_ipc_perm *sma)
1931{
1932	call_void_hook(sem_free_security, sma);
1933	kfree(sma->security);
1934	sma->security = NULL;
1935}
1936
1937int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1938{
1939	return call_int_hook(sem_associate, 0, sma, semflg);
1940}
1941
1942int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1943{
1944	return call_int_hook(sem_semctl, 0, sma, cmd);
1945}
1946
1947int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1948			unsigned nsops, int alter)
1949{
1950	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1951}
1952
1953void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1954{
1955	if (unlikely(inode && IS_PRIVATE(inode)))
1956		return;
1957	call_void_hook(d_instantiate, dentry, inode);
1958}
1959EXPORT_SYMBOL(security_d_instantiate);
1960
1961int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1962				char **value)
1963{
1964	struct security_hook_list *hp;
1965
1966	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1967		if (lsm != NULL && strcmp(lsm, hp->lsm))
1968			continue;
1969		return hp->hook.getprocattr(p, name, value);
1970	}
1971	return LSM_RET_DEFAULT(getprocattr);
1972}
1973
1974int security_setprocattr(const char *lsm, const char *name, void *value,
1975			 size_t size)
1976{
1977	struct security_hook_list *hp;
1978
1979	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1980		if (lsm != NULL && strcmp(lsm, hp->lsm))
1981			continue;
1982		return hp->hook.setprocattr(name, value, size);
1983	}
1984	return LSM_RET_DEFAULT(setprocattr);
1985}
1986
1987int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1988{
1989	return call_int_hook(netlink_send, 0, sk, skb);
1990}
1991
1992int security_ismaclabel(const char *name)
1993{
1994	return call_int_hook(ismaclabel, 0, name);
1995}
1996EXPORT_SYMBOL(security_ismaclabel);
1997
1998int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1999{
2000	struct security_hook_list *hp;
2001	int rc;
2002
2003	/*
2004	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2005	 * LSM hook is not "stackable").
2006	 */
2007	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2008		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2009		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2010			return rc;
2011	}
2012
2013	return LSM_RET_DEFAULT(secid_to_secctx);
2014}
2015EXPORT_SYMBOL(security_secid_to_secctx);
2016
2017int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2018{
2019	*secid = 0;
2020	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2021}
2022EXPORT_SYMBOL(security_secctx_to_secid);
2023
2024void security_release_secctx(char *secdata, u32 seclen)
2025{
2026	call_void_hook(release_secctx, secdata, seclen);
2027}
2028EXPORT_SYMBOL(security_release_secctx);
2029
2030void security_inode_invalidate_secctx(struct inode *inode)
2031{
2032	call_void_hook(inode_invalidate_secctx, inode);
2033}
2034EXPORT_SYMBOL(security_inode_invalidate_secctx);
2035
2036int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2037{
2038	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2039}
2040EXPORT_SYMBOL(security_inode_notifysecctx);
2041
2042int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2043{
2044	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2045}
2046EXPORT_SYMBOL(security_inode_setsecctx);
2047
2048int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2049{
2050	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2051}
2052EXPORT_SYMBOL(security_inode_getsecctx);
2053
2054#ifdef CONFIG_WATCH_QUEUE
2055int security_post_notification(const struct cred *w_cred,
2056			       const struct cred *cred,
2057			       struct watch_notification *n)
2058{
2059	return call_int_hook(post_notification, 0, w_cred, cred, n);
2060}
2061#endif /* CONFIG_WATCH_QUEUE */
2062
2063#ifdef CONFIG_KEY_NOTIFICATIONS
2064int security_watch_key(struct key *key)
2065{
2066	return call_int_hook(watch_key, 0, key);
2067}
2068#endif
2069
2070#ifdef CONFIG_SECURITY_NETWORK
2071
2072int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2073{
2074	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2075}
2076EXPORT_SYMBOL(security_unix_stream_connect);
2077
2078int security_unix_may_send(struct socket *sock,  struct socket *other)
2079{
2080	return call_int_hook(unix_may_send, 0, sock, other);
2081}
2082EXPORT_SYMBOL(security_unix_may_send);
2083
2084int security_socket_create(int family, int type, int protocol, int kern)
2085{
2086	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2087}
2088
2089int security_socket_post_create(struct socket *sock, int family,
2090				int type, int protocol, int kern)
2091{
2092	return call_int_hook(socket_post_create, 0, sock, family, type,
2093						protocol, kern);
2094}
2095
2096int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2097{
2098	return call_int_hook(socket_socketpair, 0, socka, sockb);
2099}
2100EXPORT_SYMBOL(security_socket_socketpair);
2101
2102int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2103{
2104	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2105}
2106
2107int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2108{
2109	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2110}
2111
2112int security_socket_listen(struct socket *sock, int backlog)
2113{
2114	return call_int_hook(socket_listen, 0, sock, backlog);
2115}
2116
2117int security_socket_accept(struct socket *sock, struct socket *newsock)
2118{
2119	return call_int_hook(socket_accept, 0, sock, newsock);
2120}
2121
2122int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2123{
2124	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2125}
2126
2127int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2128			    int size, int flags)
2129{
2130	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2131}
2132
2133int security_socket_getsockname(struct socket *sock)
2134{
2135	return call_int_hook(socket_getsockname, 0, sock);
2136}
2137
2138int security_socket_getpeername(struct socket *sock)
2139{
2140	return call_int_hook(socket_getpeername, 0, sock);
2141}
2142
2143int security_socket_getsockopt(struct socket *sock, int level, int optname)
2144{
2145	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2146}
2147
2148int security_socket_setsockopt(struct socket *sock, int level, int optname)
2149{
2150	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2151}
2152
2153int security_socket_shutdown(struct socket *sock, int how)
2154{
2155	return call_int_hook(socket_shutdown, 0, sock, how);
2156}
2157
2158int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2159{
2160	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2161}
2162EXPORT_SYMBOL(security_sock_rcv_skb);
2163
2164int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2165				      int __user *optlen, unsigned len)
2166{
2167	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2168				optval, optlen, len);
2169}
2170
2171int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2172{
2173	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2174			     skb, secid);
2175}
2176EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2177
2178int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2179{
2180	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2181}
2182
2183void security_sk_free(struct sock *sk)
2184{
2185	call_void_hook(sk_free_security, sk);
2186}
2187
2188void security_sk_clone(const struct sock *sk, struct sock *newsk)
2189{
2190	call_void_hook(sk_clone_security, sk, newsk);
2191}
2192EXPORT_SYMBOL(security_sk_clone);
2193
2194void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2195{
2196	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2197}
2198EXPORT_SYMBOL(security_sk_classify_flow);
2199
2200void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2201{
2202	call_void_hook(req_classify_flow, req, fl);
2203}
2204EXPORT_SYMBOL(security_req_classify_flow);
2205
2206void security_sock_graft(struct sock *sk, struct socket *parent)
2207{
2208	call_void_hook(sock_graft, sk, parent);
2209}
2210EXPORT_SYMBOL(security_sock_graft);
2211
2212int security_inet_conn_request(struct sock *sk,
2213			struct sk_buff *skb, struct request_sock *req)
2214{
2215	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2216}
2217EXPORT_SYMBOL(security_inet_conn_request);
2218
2219void security_inet_csk_clone(struct sock *newsk,
2220			const struct request_sock *req)
2221{
2222	call_void_hook(inet_csk_clone, newsk, req);
2223}
2224
2225void security_inet_conn_established(struct sock *sk,
2226			struct sk_buff *skb)
2227{
2228	call_void_hook(inet_conn_established, sk, skb);
2229}
2230EXPORT_SYMBOL(security_inet_conn_established);
2231
2232int security_secmark_relabel_packet(u32 secid)
2233{
2234	return call_int_hook(secmark_relabel_packet, 0, secid);
2235}
2236EXPORT_SYMBOL(security_secmark_relabel_packet);
2237
2238void security_secmark_refcount_inc(void)
2239{
2240	call_void_hook(secmark_refcount_inc);
2241}
2242EXPORT_SYMBOL(security_secmark_refcount_inc);
2243
2244void security_secmark_refcount_dec(void)
2245{
2246	call_void_hook(secmark_refcount_dec);
2247}
2248EXPORT_SYMBOL(security_secmark_refcount_dec);
2249
2250int security_tun_dev_alloc_security(void **security)
2251{
2252	return call_int_hook(tun_dev_alloc_security, 0, security);
2253}
2254EXPORT_SYMBOL(security_tun_dev_alloc_security);
2255
2256void security_tun_dev_free_security(void *security)
2257{
2258	call_void_hook(tun_dev_free_security, security);
2259}
2260EXPORT_SYMBOL(security_tun_dev_free_security);
2261
2262int security_tun_dev_create(void)
2263{
2264	return call_int_hook(tun_dev_create, 0);
2265}
2266EXPORT_SYMBOL(security_tun_dev_create);
2267
2268int security_tun_dev_attach_queue(void *security)
2269{
2270	return call_int_hook(tun_dev_attach_queue, 0, security);
2271}
2272EXPORT_SYMBOL(security_tun_dev_attach_queue);
2273
2274int security_tun_dev_attach(struct sock *sk, void *security)
2275{
2276	return call_int_hook(tun_dev_attach, 0, sk, security);
2277}
2278EXPORT_SYMBOL(security_tun_dev_attach);
2279
2280int security_tun_dev_open(void *security)
2281{
2282	return call_int_hook(tun_dev_open, 0, security);
2283}
2284EXPORT_SYMBOL(security_tun_dev_open);
2285
2286int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2287{
2288	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2289}
2290EXPORT_SYMBOL(security_sctp_assoc_request);
2291
2292int security_sctp_bind_connect(struct sock *sk, int optname,
2293			       struct sockaddr *address, int addrlen)
2294{
2295	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2296			     address, addrlen);
2297}
2298EXPORT_SYMBOL(security_sctp_bind_connect);
2299
2300void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2301			    struct sock *newsk)
2302{
2303	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2304}
2305EXPORT_SYMBOL(security_sctp_sk_clone);
2306
2307#endif	/* CONFIG_SECURITY_NETWORK */
2308
2309#ifdef CONFIG_SECURITY_INFINIBAND
2310
2311int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2312{
2313	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2314}
2315EXPORT_SYMBOL(security_ib_pkey_access);
2316
2317int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2318{
2319	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2320}
2321EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2322
2323int security_ib_alloc_security(void **sec)
2324{
2325	return call_int_hook(ib_alloc_security, 0, sec);
2326}
2327EXPORT_SYMBOL(security_ib_alloc_security);
2328
2329void security_ib_free_security(void *sec)
2330{
2331	call_void_hook(ib_free_security, sec);
2332}
2333EXPORT_SYMBOL(security_ib_free_security);
2334#endif	/* CONFIG_SECURITY_INFINIBAND */
2335
2336#ifdef CONFIG_SECURITY_NETWORK_XFRM
2337
2338int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2339			       struct xfrm_user_sec_ctx *sec_ctx,
2340			       gfp_t gfp)
2341{
2342	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2343}
2344EXPORT_SYMBOL(security_xfrm_policy_alloc);
2345
2346int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2347			      struct xfrm_sec_ctx **new_ctxp)
2348{
2349	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2350}
2351
2352void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2353{
2354	call_void_hook(xfrm_policy_free_security, ctx);
2355}
2356EXPORT_SYMBOL(security_xfrm_policy_free);
2357
2358int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2359{
2360	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2361}
2362
2363int security_xfrm_state_alloc(struct xfrm_state *x,
2364			      struct xfrm_user_sec_ctx *sec_ctx)
2365{
2366	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2367}
2368EXPORT_SYMBOL(security_xfrm_state_alloc);
2369
2370int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2371				      struct xfrm_sec_ctx *polsec, u32 secid)
2372{
2373	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
 
 
 
 
 
 
2374}
2375
2376int security_xfrm_state_delete(struct xfrm_state *x)
2377{
2378	return call_int_hook(xfrm_state_delete_security, 0, x);
2379}
2380EXPORT_SYMBOL(security_xfrm_state_delete);
2381
2382void security_xfrm_state_free(struct xfrm_state *x)
2383{
2384	call_void_hook(xfrm_state_free_security, x);
2385}
2386
2387int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2388{
2389	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2390}
2391
2392int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2393				       struct xfrm_policy *xp,
2394				       const struct flowi *fl)
2395{
2396	struct security_hook_list *hp;
2397	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2398
2399	/*
2400	 * Since this function is expected to return 0 or 1, the judgment
2401	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2402	 * we can use the first LSM's judgment because currently only SELinux
2403	 * supplies this call.
2404	 *
2405	 * For speed optimization, we explicitly break the loop rather than
2406	 * using the macro
2407	 */
2408	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2409				list) {
2410		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2411		break;
2412	}
2413	return rc;
2414}
2415
2416int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2417{
2418	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2419}
2420
2421void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2422{
2423	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2424				0);
2425
2426	BUG_ON(rc);
2427}
2428EXPORT_SYMBOL(security_skb_classify_flow);
2429
2430#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2431
2432#ifdef CONFIG_KEYS
2433
2434int security_key_alloc(struct key *key, const struct cred *cred,
2435		       unsigned long flags)
2436{
2437	return call_int_hook(key_alloc, 0, key, cred, flags);
2438}
2439
2440void security_key_free(struct key *key)
2441{
2442	call_void_hook(key_free, key);
2443}
2444
2445int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2446			    enum key_need_perm need_perm)
2447{
2448	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2449}
2450
2451int security_key_getsecurity(struct key *key, char **_buffer)
2452{
2453	*_buffer = NULL;
2454	return call_int_hook(key_getsecurity, 0, key, _buffer);
2455}
2456
2457#endif	/* CONFIG_KEYS */
2458
2459#ifdef CONFIG_AUDIT
2460
2461int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2462{
2463	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2464}
2465
2466int security_audit_rule_known(struct audit_krule *krule)
2467{
2468	return call_int_hook(audit_rule_known, 0, krule);
2469}
2470
2471void security_audit_rule_free(void *lsmrule)
2472{
2473	call_void_hook(audit_rule_free, lsmrule);
2474}
2475
2476int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
 
2477{
2478	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2479}
 
2480#endif /* CONFIG_AUDIT */
2481
2482#ifdef CONFIG_BPF_SYSCALL
2483int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2484{
2485	return call_int_hook(bpf, 0, cmd, attr, size);
2486}
2487int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2488{
2489	return call_int_hook(bpf_map, 0, map, fmode);
2490}
2491int security_bpf_prog(struct bpf_prog *prog)
2492{
2493	return call_int_hook(bpf_prog, 0, prog);
2494}
2495int security_bpf_map_alloc(struct bpf_map *map)
2496{
2497	return call_int_hook(bpf_map_alloc_security, 0, map);
2498}
2499int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2500{
2501	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2502}
2503void security_bpf_map_free(struct bpf_map *map)
2504{
2505	call_void_hook(bpf_map_free_security, map);
2506}
2507void security_bpf_prog_free(struct bpf_prog_aux *aux)
2508{
2509	call_void_hook(bpf_prog_free_security, aux);
2510}
2511#endif /* CONFIG_BPF_SYSCALL */
2512
2513int security_locked_down(enum lockdown_reason what)
2514{
2515	return call_int_hook(locked_down, 0, what);
2516}
2517EXPORT_SYMBOL(security_locked_down);
2518
2519#ifdef CONFIG_PERF_EVENTS
2520int security_perf_event_open(struct perf_event_attr *attr, int type)
2521{
2522	return call_int_hook(perf_event_open, 0, attr, type);
2523}
2524
2525int security_perf_event_alloc(struct perf_event *event)
2526{
2527	return call_int_hook(perf_event_alloc, 0, event);
2528}
2529
2530void security_perf_event_free(struct perf_event *event)
2531{
2532	call_void_hook(perf_event_free, event);
2533}
2534
2535int security_perf_event_read(struct perf_event *event)
2536{
2537	return call_int_hook(perf_event_read, 0, event);
2538}
2539
2540int security_perf_event_write(struct perf_event *event)
2541{
2542	return call_int_hook(perf_event_write, 0, event);
2543}
2544#endif /* CONFIG_PERF_EVENTS */