Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Wireless utility functions
   3 *
   4 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
 
 
 
   5 */
 
   6#include <linux/bitops.h>
   7#include <linux/etherdevice.h>
   8#include <linux/slab.h>
 
   9#include <net/cfg80211.h>
  10#include <net/ip.h>
 
 
 
 
 
 
  11#include "core.h"
 
 
  12
  13struct ieee80211_rate *
  14ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  15			    u32 basic_rates, int bitrate)
  16{
  17	struct ieee80211_rate *result = &sband->bitrates[0];
  18	int i;
  19
  20	for (i = 0; i < sband->n_bitrates; i++) {
  21		if (!(basic_rates & BIT(i)))
  22			continue;
  23		if (sband->bitrates[i].bitrate > bitrate)
  24			continue;
  25		result = &sband->bitrates[i];
  26	}
  27
  28	return result;
  29}
  30EXPORT_SYMBOL(ieee80211_get_response_rate);
  31
  32int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33{
  34	/* see 802.11 17.3.8.3.2 and Annex J
  35	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  36	if (band == IEEE80211_BAND_5GHZ) {
  37		if (chan >= 182 && chan <= 196)
  38			return 4000 + chan * 5;
  39		else
  40			return 5000 + chan * 5;
  41	} else { /* IEEE80211_BAND_2GHZ */
  42		if (chan == 14)
  43			return 2484;
  44		else if (chan < 14)
  45			return 2407 + chan * 5;
 
 
 
 
  46		else
  47			return 0; /* not supported */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48	}
 
  49}
  50EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  51
  52int ieee80211_frequency_to_channel(int freq)
  53{
 
 
 
  54	/* see 802.11 17.3.8.3.2 and Annex J */
  55	if (freq == 2484)
  56		return 14;
  57	else if (freq < 2484)
  58		return (freq - 2407) / 5;
  59	else if (freq >= 4910 && freq <= 4980)
  60		return (freq - 4000) / 5;
  61	else
  62		return (freq - 5000) / 5;
 
 
 
 
 
 
 
 
 
  63}
  64EXPORT_SYMBOL(ieee80211_frequency_to_channel);
  65
  66struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
  67						  int freq)
  68{
  69	enum ieee80211_band band;
  70	struct ieee80211_supported_band *sband;
  71	int i;
  72
  73	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
  74		sband = wiphy->bands[band];
  75
  76		if (!sband)
  77			continue;
  78
  79		for (i = 0; i < sband->n_channels; i++) {
  80			if (sband->channels[i].center_freq == freq)
  81				return &sband->channels[i];
 
 
  82		}
  83	}
  84
  85	return NULL;
  86}
  87EXPORT_SYMBOL(__ieee80211_get_channel);
  88
  89static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
  90				     enum ieee80211_band band)
  91{
  92	int i, want;
  93
  94	switch (band) {
  95	case IEEE80211_BAND_5GHZ:
 
  96		want = 3;
  97		for (i = 0; i < sband->n_bitrates; i++) {
  98			if (sband->bitrates[i].bitrate == 60 ||
  99			    sband->bitrates[i].bitrate == 120 ||
 100			    sband->bitrates[i].bitrate == 240) {
 101				sband->bitrates[i].flags |=
 102					IEEE80211_RATE_MANDATORY_A;
 103				want--;
 104			}
 105		}
 106		WARN_ON(want);
 107		break;
 108	case IEEE80211_BAND_2GHZ:
 109		want = 7;
 110		for (i = 0; i < sband->n_bitrates; i++) {
 111			if (sband->bitrates[i].bitrate == 10) {
 
 
 
 
 112				sband->bitrates[i].flags |=
 113					IEEE80211_RATE_MANDATORY_B |
 114					IEEE80211_RATE_MANDATORY_G;
 115				want--;
 116			}
 117
 118			if (sband->bitrates[i].bitrate == 20 ||
 119			    sband->bitrates[i].bitrate == 55 ||
 120			    sband->bitrates[i].bitrate == 110 ||
 121			    sband->bitrates[i].bitrate == 60 ||
 122			    sband->bitrates[i].bitrate == 120 ||
 123			    sband->bitrates[i].bitrate == 240) {
 124				sband->bitrates[i].flags |=
 125					IEEE80211_RATE_MANDATORY_G;
 126				want--;
 127			}
 128
 129			if (sband->bitrates[i].bitrate != 10 &&
 130			    sband->bitrates[i].bitrate != 20 &&
 131			    sband->bitrates[i].bitrate != 55 &&
 132			    sband->bitrates[i].bitrate != 110)
 133				sband->bitrates[i].flags |=
 134					IEEE80211_RATE_ERP_G;
 
 
 135		}
 136		WARN_ON(want != 0 && want != 3 && want != 6);
 137		break;
 138	case IEEE80211_NUM_BANDS:
 
 
 
 
 
 
 
 
 
 
 
 
 139		WARN_ON(1);
 140		break;
 141	}
 142}
 143
 144void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 145{
 146	enum ieee80211_band band;
 147
 148	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
 149		if (wiphy->bands[band])
 150			set_mandatory_flags_band(wiphy->bands[band], band);
 
 
 
 
 
 
 
 
 
 151}
 152
 153int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 154				   struct key_params *params, int key_idx,
 155				   bool pairwise, const u8 *mac_addr)
 156{
 157	int i;
 158
 159	if (key_idx > 5)
 
 
 
 
 
 160		return -EINVAL;
 161
 162	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 163		return -EINVAL;
 164
 165	if (pairwise && !mac_addr)
 166		return -EINVAL;
 167
 168	/*
 169	 * Disallow pairwise keys with non-zero index unless it's WEP
 170	 * or a vendor specific cipher (because current deployments use
 171	 * pairwise WEP keys with non-zero indices and for vendor specific
 172	 * ciphers this should be validated in the driver or hardware level
 173	 * - but 802.11i clearly specifies to use zero)
 174	 */
 175	if (pairwise && key_idx &&
 176	    ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
 177	     (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
 178	     (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
 179		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180
 181	switch (params->cipher) {
 182	case WLAN_CIPHER_SUITE_WEP40:
 183		if (params->key_len != WLAN_KEY_LEN_WEP40)
 184			return -EINVAL;
 185		break;
 186	case WLAN_CIPHER_SUITE_TKIP:
 187		if (params->key_len != WLAN_KEY_LEN_TKIP)
 188			return -EINVAL;
 189		break;
 190	case WLAN_CIPHER_SUITE_CCMP:
 191		if (params->key_len != WLAN_KEY_LEN_CCMP)
 192			return -EINVAL;
 193		break;
 
 
 
 
 
 
 
 
 
 
 
 
 194	case WLAN_CIPHER_SUITE_WEP104:
 195		if (params->key_len != WLAN_KEY_LEN_WEP104)
 196			return -EINVAL;
 197		break;
 198	case WLAN_CIPHER_SUITE_AES_CMAC:
 199		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 200			return -EINVAL;
 201		break;
 
 
 
 
 
 
 
 
 
 
 
 
 202	default:
 203		/*
 204		 * We don't know anything about this algorithm,
 205		 * allow using it -- but the driver must check
 206		 * all parameters! We still check below whether
 207		 * or not the driver supports this algorithm,
 208		 * of course.
 209		 */
 210		break;
 211	}
 212
 213	if (params->seq) {
 214		switch (params->cipher) {
 215		case WLAN_CIPHER_SUITE_WEP40:
 216		case WLAN_CIPHER_SUITE_WEP104:
 217			/* These ciphers do not use key sequence */
 218			return -EINVAL;
 219		case WLAN_CIPHER_SUITE_TKIP:
 220		case WLAN_CIPHER_SUITE_CCMP:
 
 
 
 221		case WLAN_CIPHER_SUITE_AES_CMAC:
 
 
 
 222			if (params->seq_len != 6)
 223				return -EINVAL;
 224			break;
 225		}
 226	}
 227
 228	for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
 229		if (params->cipher == rdev->wiphy.cipher_suites[i])
 230			break;
 231	if (i == rdev->wiphy.n_cipher_suites)
 232		return -EINVAL;
 233
 234	return 0;
 235}
 236
 237/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
 238/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
 239const unsigned char rfc1042_header[] __aligned(2) =
 240	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
 241EXPORT_SYMBOL(rfc1042_header);
 242
 243/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
 244const unsigned char bridge_tunnel_header[] __aligned(2) =
 245	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
 246EXPORT_SYMBOL(bridge_tunnel_header);
 247
 248unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 249{
 250	unsigned int hdrlen = 24;
 251
 252	if (ieee80211_is_data(fc)) {
 253		if (ieee80211_has_a4(fc))
 254			hdrlen = 30;
 255		if (ieee80211_is_data_qos(fc)) {
 256			hdrlen += IEEE80211_QOS_CTL_LEN;
 257			if (ieee80211_has_order(fc))
 258				hdrlen += IEEE80211_HT_CTL_LEN;
 259		}
 260		goto out;
 261	}
 262
 
 
 
 
 
 
 263	if (ieee80211_is_ctl(fc)) {
 264		/*
 265		 * ACK and CTS are 10 bytes, all others 16. To see how
 266		 * to get this condition consider
 267		 *   subtype mask:   0b0000000011110000 (0x00F0)
 268		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 269		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 270		 *   bits that matter:         ^^^      (0x00E0)
 271		 *   value of those: 0b0000000011000000 (0x00C0)
 272		 */
 273		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 274			hdrlen = 10;
 275		else
 276			hdrlen = 16;
 277	}
 278out:
 279	return hdrlen;
 280}
 281EXPORT_SYMBOL(ieee80211_hdrlen);
 282
 283unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 284{
 285	const struct ieee80211_hdr *hdr =
 286			(const struct ieee80211_hdr *)skb->data;
 287	unsigned int hdrlen;
 288
 289	if (unlikely(skb->len < 10))
 290		return 0;
 291	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 292	if (unlikely(hdrlen > skb->len))
 293		return 0;
 294	return hdrlen;
 295}
 296EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 297
 298static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 299{
 300	int ae = meshhdr->flags & MESH_FLAGS_AE;
 301	/* 7.1.3.5a.2 */
 302	switch (ae) {
 
 303	case 0:
 304		return 6;
 305	case MESH_FLAGS_AE_A4:
 306		return 12;
 307	case MESH_FLAGS_AE_A5_A6:
 308		return 18;
 309	case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
 310		return 24;
 311	default:
 312		return 6;
 313	}
 314}
 315
 316int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
 317			   enum nl80211_iftype iftype)
 
 
 
 
 
 
 
 318{
 319	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 320	u16 hdrlen, ethertype;
 321	u8 *payload;
 322	u8 dst[ETH_ALEN];
 323	u8 src[ETH_ALEN] __aligned(2);
 
 
 
 324
 325	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 326		return -1;
 327
 328	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 
 
 329
 330	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 331	 * header
 332	 * IEEE 802.11 address fields:
 333	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 334	 *   0     0   DA    SA    BSSID n/a
 335	 *   0     1   DA    BSSID SA    n/a
 336	 *   1     0   BSSID SA    DA    n/a
 337	 *   1     1   RA    TA    DA    SA
 338	 */
 339	memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
 340	memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
 
 
 
 
 
 341
 342	switch (hdr->frame_control &
 343		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 344	case cpu_to_le16(IEEE80211_FCTL_TODS):
 345		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 346			     iftype != NL80211_IFTYPE_AP_VLAN &&
 347			     iftype != NL80211_IFTYPE_P2P_GO))
 348			return -1;
 349		break;
 350	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 351		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 352			     iftype != NL80211_IFTYPE_MESH_POINT &&
 353			     iftype != NL80211_IFTYPE_AP_VLAN &&
 354			     iftype != NL80211_IFTYPE_STATION))
 355			return -1;
 356		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 357			struct ieee80211s_hdr *meshdr =
 358				(struct ieee80211s_hdr *) (skb->data + hdrlen);
 359			/* make sure meshdr->flags is on the linear part */
 360			if (!pskb_may_pull(skb, hdrlen + 1))
 361				return -1;
 362			if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
 363				skb_copy_bits(skb, hdrlen +
 364					offsetof(struct ieee80211s_hdr, eaddr1),
 365				       	dst, ETH_ALEN);
 366				skb_copy_bits(skb, hdrlen +
 367					offsetof(struct ieee80211s_hdr, eaddr2),
 368				        src, ETH_ALEN);
 369			}
 370			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
 371		}
 372		break;
 373	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 374		if ((iftype != NL80211_IFTYPE_STATION &&
 375		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 376		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 377		    (is_multicast_ether_addr(dst) &&
 378		     !compare_ether_addr(src, addr)))
 379			return -1;
 380		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 381			struct ieee80211s_hdr *meshdr =
 382				(struct ieee80211s_hdr *) (skb->data + hdrlen);
 383			/* make sure meshdr->flags is on the linear part */
 384			if (!pskb_may_pull(skb, hdrlen + 1))
 385				return -1;
 386			if (meshdr->flags & MESH_FLAGS_AE_A4)
 387				skb_copy_bits(skb, hdrlen +
 388					offsetof(struct ieee80211s_hdr, eaddr1),
 389					src, ETH_ALEN);
 390			hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
 391		}
 392		break;
 393	case cpu_to_le16(0):
 394		if (iftype != NL80211_IFTYPE_ADHOC)
 395			return -1;
 
 
 396		break;
 397	}
 398
 399	if (!pskb_may_pull(skb, hdrlen + 8))
 400		return -1;
 401
 402	payload = skb->data + hdrlen;
 403	ethertype = (payload[6] << 8) | payload[7];
 404
 405	if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
 406		    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 407		   compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
 
 408		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 409		 * replace EtherType */
 410		skb_pull(skb, hdrlen + 6);
 411		memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
 412		memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
 413	} else {
 414		struct ethhdr *ehdr;
 415		__be16 len;
 
 
 
 416
 417		skb_pull(skb, hdrlen);
 418		len = htons(skb->len);
 419		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
 420		memcpy(ehdr->h_dest, dst, ETH_ALEN);
 421		memcpy(ehdr->h_source, src, ETH_ALEN);
 422		ehdr->h_proto = len;
 423	}
 424	return 0;
 425}
 426EXPORT_SYMBOL(ieee80211_data_to_8023);
 427
 428int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
 429			     enum nl80211_iftype iftype, u8 *bssid, bool qos)
 
 430{
 431	struct ieee80211_hdr hdr;
 432	u16 hdrlen, ethertype;
 433	__le16 fc;
 434	const u8 *encaps_data;
 435	int encaps_len, skip_header_bytes;
 436	int nh_pos, h_pos;
 437	int head_need;
 438
 439	if (unlikely(skb->len < ETH_HLEN))
 440		return -EINVAL;
 
 
 441
 442	nh_pos = skb_network_header(skb) - skb->data;
 443	h_pos = skb_transport_header(skb) - skb->data;
 
 
 
 
 
 
 
 
 
 444
 445	/* convert Ethernet header to proper 802.11 header (based on
 446	 * operation mode) */
 447	ethertype = (skb->data[12] << 8) | skb->data[13];
 448	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
 449
 450	switch (iftype) {
 451	case NL80211_IFTYPE_AP:
 452	case NL80211_IFTYPE_AP_VLAN:
 453	case NL80211_IFTYPE_P2P_GO:
 454		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
 455		/* DA BSSID SA */
 456		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 457		memcpy(hdr.addr2, addr, ETH_ALEN);
 458		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
 459		hdrlen = 24;
 460		break;
 461	case NL80211_IFTYPE_STATION:
 462	case NL80211_IFTYPE_P2P_CLIENT:
 463		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
 464		/* BSSID SA DA */
 465		memcpy(hdr.addr1, bssid, ETH_ALEN);
 466		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 467		memcpy(hdr.addr3, skb->data, ETH_ALEN);
 468		hdrlen = 24;
 469		break;
 470	case NL80211_IFTYPE_ADHOC:
 471		/* DA SA BSSID */
 472		memcpy(hdr.addr1, skb->data, ETH_ALEN);
 473		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
 474		memcpy(hdr.addr3, bssid, ETH_ALEN);
 475		hdrlen = 24;
 476		break;
 477	default:
 478		return -EOPNOTSUPP;
 479	}
 480
 481	if (qos) {
 482		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
 483		hdrlen += 2;
 484	}
 485
 486	hdr.frame_control = fc;
 487	hdr.duration_id = 0;
 488	hdr.seq_ctrl = 0;
 489
 490	skip_header_bytes = ETH_HLEN;
 491	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
 492		encaps_data = bridge_tunnel_header;
 493		encaps_len = sizeof(bridge_tunnel_header);
 494		skip_header_bytes -= 2;
 495	} else if (ethertype > 0x600) {
 496		encaps_data = rfc1042_header;
 497		encaps_len = sizeof(rfc1042_header);
 498		skip_header_bytes -= 2;
 499	} else {
 500		encaps_data = NULL;
 501		encaps_len = 0;
 502	}
 503
 504	skb_pull(skb, skip_header_bytes);
 505	nh_pos -= skip_header_bytes;
 506	h_pos -= skip_header_bytes;
 507
 508	head_need = hdrlen + encaps_len - skb_headroom(skb);
 509
 510	if (head_need > 0 || skb_cloned(skb)) {
 511		head_need = max(head_need, 0);
 512		if (head_need)
 513			skb_orphan(skb);
 514
 515		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
 516			pr_err("failed to reallocate Tx buffer\n");
 517			return -ENOMEM;
 518		}
 519		skb->truesize += head_need;
 
 
 520	}
 
 521
 522	if (encaps_data) {
 523		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
 524		nh_pos += encaps_len;
 525		h_pos += encaps_len;
 526	}
 
 527
 528	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
 
 529
 530	nh_pos += hdrlen;
 531	h_pos += hdrlen;
 
 
 
 
 
 532
 533	/* Update skb pointers to various headers since this modified frame
 534	 * is going to go through Linux networking code that may potentially
 535	 * need things like pointer to IP header. */
 536	skb_set_mac_header(skb, 0);
 537	skb_set_network_header(skb, nh_pos);
 538	skb_set_transport_header(skb, h_pos);
 
 539
 540	return 0;
 541}
 542EXPORT_SYMBOL(ieee80211_data_from_8023);
 543
 
 
 
 
 
 
 
 
 
 544
 545void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 546			      const u8 *addr, enum nl80211_iftype iftype,
 547			      const unsigned int extra_headroom,
 548			      bool has_80211_header)
 549{
 
 550	struct sk_buff *frame = NULL;
 551	u16 ethertype;
 552	u8 *payload;
 553	const struct ethhdr *eth;
 554	int remaining, err;
 555	u8 dst[ETH_ALEN], src[ETH_ALEN];
 556
 557	if (has_80211_header) {
 558		err = ieee80211_data_to_8023(skb, addr, iftype);
 559		if (err)
 560			goto out;
 561
 562		/* skip the wrapping header */
 563		eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
 564		if (!eth)
 565			goto out;
 566	} else {
 567		eth = (struct ethhdr *) skb->data;
 568	}
 569
 570	while (skb != frame) {
 571		u8 padding;
 572		__be16 len = eth->h_proto;
 573		unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
 574
 575		remaining = skb->len;
 576		memcpy(dst, eth->h_dest, ETH_ALEN);
 577		memcpy(src, eth->h_source, ETH_ALEN);
 578
 
 
 
 579		padding = (4 - subframe_len) & 0x3;
 
 580		/* the last MSDU has no padding */
 
 581		if (subframe_len > remaining)
 582			goto purge;
 583
 584		skb_pull(skb, sizeof(struct ethhdr));
 
 
 
 
 
 
 
 
 
 
 585		/* reuse skb for the last subframe */
 586		if (remaining <= subframe_len + padding)
 
 587			frame = skb;
 588		else {
 589			unsigned int hlen = ALIGN(extra_headroom, 4);
 590			/*
 591			 * Allocate and reserve two bytes more for payload
 592			 * alignment since sizeof(struct ethhdr) is 14.
 593			 */
 594			frame = dev_alloc_skb(hlen + subframe_len + 2);
 595			if (!frame)
 596				goto purge;
 597
 598			skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 599			memcpy(skb_put(frame, ntohs(len)), skb->data,
 600				ntohs(len));
 601
 602			eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
 603							padding);
 604			if (!eth) {
 605				dev_kfree_skb(frame);
 606				goto purge;
 607			}
 608		}
 609
 610		skb_reset_network_header(frame);
 611		frame->dev = skb->dev;
 612		frame->priority = skb->priority;
 613
 614		payload = frame->data;
 615		ethertype = (payload[6] << 8) | payload[7];
 616
 617		if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
 618			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 619			   compare_ether_addr(payload,
 620					      bridge_tunnel_header) == 0)) {
 621			/* remove RFC1042 or Bridge-Tunnel
 622			 * encapsulation and replace EtherType */
 623			skb_pull(frame, 6);
 624			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
 625			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
 626		} else {
 627			memcpy(skb_push(frame, sizeof(__be16)), &len,
 628				sizeof(__be16));
 629			memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
 630			memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
 631		}
 
 
 632		__skb_queue_tail(list, frame);
 633	}
 634
 
 
 
 635	return;
 636
 637 purge:
 638	__skb_queue_purge(list);
 639 out:
 640	dev_kfree_skb(skb);
 641}
 642EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 643
 644/* Given a data frame determine the 802.1p/1d tag to use. */
 645unsigned int cfg80211_classify8021d(struct sk_buff *skb)
 
 646{
 647	unsigned int dscp;
 
 
 648
 649	/* skb->priority values from 256->263 are magic values to
 650	 * directly indicate a specific 802.1d priority.  This is used
 651	 * to allow 802.1d priority to be passed directly in from VLAN
 652	 * tags, etc.
 653	 */
 654	if (skb->priority >= 256 && skb->priority <= 263)
 655		return skb->priority - 256;
 
 
 
 
 
 
 
 
 
 
 
 656
 657	switch (skb->protocol) {
 658	case htons(ETH_P_IP):
 659		dscp = ip_hdr(skb)->tos & 0xfc;
 
 
 
 660		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661	default:
 662		return 0;
 663	}
 664
 665	return dscp >> 5;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666}
 667EXPORT_SYMBOL(cfg80211_classify8021d);
 668
 669const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
 670{
 671	u8 *end, *pos;
 672
 673	pos = bss->information_elements;
 674	if (pos == NULL)
 675		return NULL;
 676	end = pos + bss->len_information_elements;
 677
 678	while (pos + 1 < end) {
 679		if (pos + 2 + pos[1] > end)
 680			break;
 681		if (pos[0] == ie)
 682			return pos;
 683		pos += 2 + pos[1];
 684	}
 685
 686	return NULL;
 687}
 688EXPORT_SYMBOL(ieee80211_bss_get_ie);
 689
 690void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 691{
 692	struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
 693	struct net_device *dev = wdev->netdev;
 694	int i;
 695
 696	if (!wdev->connect_keys)
 697		return;
 698
 699	for (i = 0; i < 6; i++) {
 700		if (!wdev->connect_keys->params[i].cipher)
 701			continue;
 702		if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL,
 703					&wdev->connect_keys->params[i])) {
 704			netdev_err(dev, "failed to set key %d\n", i);
 705			continue;
 706		}
 707		if (wdev->connect_keys->def == i)
 708			if (rdev->ops->set_default_key(wdev->wiphy, dev,
 709						       i, true, true)) {
 710				netdev_err(dev, "failed to set defkey %d\n", i);
 711				continue;
 712			}
 713		if (wdev->connect_keys->defmgmt == i)
 714			if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
 715				netdev_err(dev, "failed to set mgtdef %d\n", i);
 716	}
 717
 718	kfree(wdev->connect_keys);
 719	wdev->connect_keys = NULL;
 720}
 721
 722static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 723{
 724	struct cfg80211_event *ev;
 725	unsigned long flags;
 726	const u8 *bssid = NULL;
 727
 728	spin_lock_irqsave(&wdev->event_lock, flags);
 729	while (!list_empty(&wdev->event_list)) {
 730		ev = list_first_entry(&wdev->event_list,
 731				      struct cfg80211_event, list);
 732		list_del(&ev->list);
 733		spin_unlock_irqrestore(&wdev->event_lock, flags);
 734
 735		wdev_lock(wdev);
 736		switch (ev->type) {
 737		case EVENT_CONNECT_RESULT:
 738			if (!is_zero_ether_addr(ev->cr.bssid))
 739				bssid = ev->cr.bssid;
 740			__cfg80211_connect_result(
 741				wdev->netdev, bssid,
 742				ev->cr.req_ie, ev->cr.req_ie_len,
 743				ev->cr.resp_ie, ev->cr.resp_ie_len,
 744				ev->cr.status,
 745				ev->cr.status == WLAN_STATUS_SUCCESS,
 746				NULL);
 747			break;
 748		case EVENT_ROAMED:
 749			__cfg80211_roamed(wdev, ev->rm.channel, ev->rm.bssid,
 750					  ev->rm.req_ie, ev->rm.req_ie_len,
 751					  ev->rm.resp_ie, ev->rm.resp_ie_len);
 752			break;
 753		case EVENT_DISCONNECTED:
 754			__cfg80211_disconnected(wdev->netdev,
 755						ev->dc.ie, ev->dc.ie_len,
 756						ev->dc.reason, true);
 
 757			break;
 758		case EVENT_IBSS_JOINED:
 759			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
 
 
 
 
 
 
 
 760			break;
 761		}
 762		wdev_unlock(wdev);
 763
 764		kfree(ev);
 765
 766		spin_lock_irqsave(&wdev->event_lock, flags);
 767	}
 768	spin_unlock_irqrestore(&wdev->event_lock, flags);
 769}
 770
 771void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 772{
 773	struct wireless_dev *wdev;
 774
 775	ASSERT_RTNL();
 776	ASSERT_RDEV_LOCK(rdev);
 777
 778	mutex_lock(&rdev->devlist_mtx);
 779
 780	list_for_each_entry(wdev, &rdev->netdev_list, list)
 781		cfg80211_process_wdev_events(wdev);
 782
 783	mutex_unlock(&rdev->devlist_mtx);
 784}
 785
 786int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 787			  struct net_device *dev, enum nl80211_iftype ntype,
 788			  u32 *flags, struct vif_params *params)
 789{
 790	int err;
 791	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 792
 793	ASSERT_RDEV_LOCK(rdev);
 794
 795	/* don't support changing VLANs, you just re-create them */
 796	if (otype == NL80211_IFTYPE_AP_VLAN)
 797		return -EOPNOTSUPP;
 798
 
 
 
 
 
 799	if (!rdev->ops->change_virtual_intf ||
 800	    !(rdev->wiphy.interface_modes & (1 << ntype)))
 801		return -EOPNOTSUPP;
 802
 803	/* if it's part of a bridge, reject changing type to station/ibss */
 804	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
 805	    (ntype == NL80211_IFTYPE_ADHOC ||
 806	     ntype == NL80211_IFTYPE_STATION ||
 807	     ntype == NL80211_IFTYPE_P2P_CLIENT))
 808		return -EBUSY;
 809
 810	if (ntype != otype) {
 811		err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
 812						    ntype);
 813		if (err)
 814			return err;
 815
 816		dev->ieee80211_ptr->use_4addr = false;
 817		dev->ieee80211_ptr->mesh_id_up_len = 0;
 
 
 
 818
 819		switch (otype) {
 
 
 
 820		case NL80211_IFTYPE_ADHOC:
 821			cfg80211_leave_ibss(rdev, dev, false);
 822			break;
 823		case NL80211_IFTYPE_STATION:
 824		case NL80211_IFTYPE_P2P_CLIENT:
 
 825			cfg80211_disconnect(rdev, dev,
 826					    WLAN_REASON_DEAUTH_LEAVING, true);
 
 827			break;
 828		case NL80211_IFTYPE_MESH_POINT:
 829			/* mesh should be handled? */
 830			break;
 831		default:
 832			break;
 833		}
 834
 835		cfg80211_process_rdev_events(rdev);
 
 836	}
 837
 838	err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
 839					     ntype, flags, params);
 840
 841	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
 842
 843	if (!err && params && params->use_4addr != -1)
 844		dev->ieee80211_ptr->use_4addr = params->use_4addr;
 845
 846	if (!err) {
 847		dev->priv_flags &= ~IFF_DONT_BRIDGE;
 848		switch (ntype) {
 849		case NL80211_IFTYPE_STATION:
 850			if (dev->ieee80211_ptr->use_4addr)
 851				break;
 852			/* fall through */
 
 853		case NL80211_IFTYPE_P2P_CLIENT:
 854		case NL80211_IFTYPE_ADHOC:
 855			dev->priv_flags |= IFF_DONT_BRIDGE;
 856			break;
 857		case NL80211_IFTYPE_P2P_GO:
 858		case NL80211_IFTYPE_AP:
 859		case NL80211_IFTYPE_AP_VLAN:
 860		case NL80211_IFTYPE_WDS:
 861		case NL80211_IFTYPE_MESH_POINT:
 862			/* bridging OK */
 863			break;
 864		case NL80211_IFTYPE_MONITOR:
 865			/* monitor can't bridge anyway */
 866			break;
 867		case NL80211_IFTYPE_UNSPECIFIED:
 868		case NUM_NL80211_IFTYPES:
 869			/* not happening */
 870			break;
 
 
 
 
 871		}
 872	}
 873
 
 
 
 
 
 874	return err;
 875}
 876
 877u16 cfg80211_calculate_bitrate(struct rate_info *rate)
 878{
 879	int modulation, streams, bitrate;
 880
 881	if (!(rate->flags & RATE_INFO_FLAGS_MCS))
 882		return rate->legacy;
 883
 884	/* the formula below does only work for MCS values smaller than 32 */
 885	if (rate->mcs >= 32)
 886		return 0;
 887
 888	modulation = rate->mcs & 7;
 889	streams = (rate->mcs >> 3) + 1;
 890
 891	bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
 892			13500000 : 6500000;
 893
 894	if (modulation < 4)
 895		bitrate *= (modulation + 1);
 896	else if (modulation == 4)
 897		bitrate *= (modulation + 2);
 898	else
 899		bitrate *= (modulation + 3);
 900
 901	bitrate *= streams;
 902
 903	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
 904		bitrate = (bitrate / 9) * 10;
 905
 906	/* do NOT round down here */
 907	return (bitrate + 50000) / 100000;
 908}
 909
 910int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
 911				 u32 beacon_int)
 912{
 913	struct wireless_dev *wdev;
 914	int res = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915
 916	if (!beacon_int)
 917		return -EINVAL;
 918
 919	mutex_lock(&rdev->devlist_mtx);
 
 920
 921	list_for_each_entry(wdev, &rdev->netdev_list, list) {
 922		if (!wdev->beacon_interval)
 923			continue;
 924		if (wdev->beacon_interval != beacon_int) {
 925			res = -EINVAL;
 926			break;
 927		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	}
 929
 930	mutex_unlock(&rdev->devlist_mtx);
 
 931
 932	return res;
 
 
 
 
 
 
 
 
 933}
 934
 935int cfg80211_can_change_interface(struct cfg80211_registered_device *rdev,
 936				  struct wireless_dev *wdev,
 937				  enum nl80211_iftype iftype)
 938{
 939	struct wireless_dev *wdev_iter;
 940	int num[NUM_NL80211_IFTYPES];
 941	int total = 1;
 942	int i, j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944	ASSERT_RTNL();
 
 945
 946	/* Always allow software iftypes */
 947	if (rdev->wiphy.software_iftypes & BIT(iftype))
 
 
 
 
 948		return 0;
 949
 950	/*
 951	 * Drivers will gradually all set this flag, until all
 952	 * have it we only enforce for those that set it.
 953	 */
 954	if (!(rdev->wiphy.flags & WIPHY_FLAG_ENFORCE_COMBINATIONS))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956
 957	memset(num, 0, sizeof(num));
 
 958
 959	num[iftype] = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960
 961	mutex_lock(&rdev->devlist_mtx);
 962	list_for_each_entry(wdev_iter, &rdev->netdev_list, list) {
 963		if (wdev_iter == wdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964			continue;
 965		if (!netif_running(wdev_iter->netdev))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966			continue;
 967
 968		if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
 
 969			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970
 971		num[wdev_iter->iftype]++;
 972		total++;
 
 
 
 973	}
 974	mutex_unlock(&rdev->devlist_mtx);
 975
 976	for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
 977		const struct ieee80211_iface_combination *c;
 978		struct ieee80211_iface_limit *limits;
 
 
 
 979
 980		c = &rdev->wiphy.iface_combinations[i];
 
 
 
 981
 982		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
 983				 GFP_KERNEL);
 984		if (!limits)
 985			return -ENOMEM;
 986		if (total > c->max_interfaces)
 987			goto cont;
 988
 989		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
 990			if (rdev->wiphy.software_iftypes & BIT(iftype))
 991				continue;
 992			for (j = 0; j < c->n_limits; j++) {
 993				if (!(limits[j].types & iftype))
 
 994					continue;
 995				if (limits[j].max < num[iftype])
 996					goto cont;
 997				limits[j].max -= num[iftype];
 998			}
 999		}
1000		/* yay, it fits */
1001		kfree(limits);
1002		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003 cont:
1004		kfree(limits);
1005	}
1006
1007	return -EBUSY;
 
 
 
 
 
 
 
 
 
1008}
1009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1011			   const u8 *rates, unsigned int n_rates,
1012			   u32 *mask)
1013{
1014	int i, j;
1015
1016	if (!sband)
1017		return -EINVAL;
1018
1019	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1020		return -EINVAL;
1021
1022	*mask = 0;
1023
1024	for (i = 0; i < n_rates; i++) {
1025		int rate = (rates[i] & 0x7f) * 5;
1026		bool found = false;
1027
1028		for (j = 0; j < sband->n_bitrates; j++) {
1029			if (sband->bitrates[j].bitrate == rate) {
1030				found = true;
1031				*mask |= BIT(j);
1032				break;
1033			}
1034		}
1035		if (!found)
1036			return -EINVAL;
1037	}
1038
1039	/*
1040	 * mask must have at least one bit set here since we
1041	 * didn't accept a 0-length rates array nor allowed
1042	 * entries in the array that didn't exist
1043	 */
1044
1045	return 0;
1046}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017	Intel Deutschland GmbH
   8 * Copyright (C) 2018-2020 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29			    u32 basic_rates, int bitrate)
  30{
  31	struct ieee80211_rate *result = &sband->bitrates[0];
  32	int i;
  33
  34	for (i = 0; i < sband->n_bitrates; i++) {
  35		if (!(basic_rates & BIT(i)))
  36			continue;
  37		if (sband->bitrates[i].bitrate > bitrate)
  38			continue;
  39		result = &sband->bitrates[i];
  40	}
  41
  42	return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47			      enum nl80211_bss_scan_width scan_width)
  48{
  49	struct ieee80211_rate *bitrates;
  50	u32 mandatory_rates = 0;
  51	enum ieee80211_rate_flags mandatory_flag;
  52	int i;
  53
  54	if (WARN_ON(!sband))
  55		return 1;
  56
  57	if (sband->band == NL80211_BAND_2GHZ) {
  58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61		else
  62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63	} else {
  64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65	}
  66
  67	bitrates = sband->bitrates;
  68	for (i = 0; i < sband->n_bitrates; i++)
  69		if (bitrates[i].flags & mandatory_flag)
  70			mandatory_rates |= BIT(i);
  71	return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  76{
  77	/* see 802.11 17.3.8.3.2 and Annex J
  78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79	if (chan <= 0)
  80		return 0; /* not supported */
  81	switch (band) {
  82	case NL80211_BAND_2GHZ:
 
 
  83		if (chan == 14)
  84			return MHZ_TO_KHZ(2484);
  85		else if (chan < 14)
  86			return MHZ_TO_KHZ(2407 + chan * 5);
  87		break;
  88	case NL80211_BAND_5GHZ:
  89		if (chan >= 182 && chan <= 196)
  90			return MHZ_TO_KHZ(4000 + chan * 5);
  91		else
  92			return MHZ_TO_KHZ(5000 + chan * 5);
  93		break;
  94	case NL80211_BAND_6GHZ:
  95		/* see 802.11ax D6.1 27.3.23.2 */
  96		if (chan == 2)
  97			return MHZ_TO_KHZ(5935);
  98		if (chan <= 233)
  99			return MHZ_TO_KHZ(5950 + chan * 5);
 100		break;
 101	case NL80211_BAND_60GHZ:
 102		if (chan < 7)
 103			return MHZ_TO_KHZ(56160 + chan * 2160);
 104		break;
 105	case NL80211_BAND_S1GHZ:
 106		return 902000 + chan * 500;
 107	default:
 108		;
 109	}
 110	return 0; /* not supported */
 111}
 112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 113
 114int ieee80211_freq_khz_to_channel(u32 freq)
 115{
 116	/* TODO: just handle MHz for now */
 117	freq = KHZ_TO_MHZ(freq);
 118
 119	/* see 802.11 17.3.8.3.2 and Annex J */
 120	if (freq == 2484)
 121		return 14;
 122	else if (freq < 2484)
 123		return (freq - 2407) / 5;
 124	else if (freq >= 4910 && freq <= 4980)
 125		return (freq - 4000) / 5;
 126	else if (freq < 5925)
 127		return (freq - 5000) / 5;
 128	else if (freq == 5935)
 129		return 2;
 130	else if (freq <= 45000) /* DMG band lower limit */
 131		/* see 802.11ax D6.1 27.3.22.2 */
 132		return (freq - 5950) / 5;
 133	else if (freq >= 58320 && freq <= 70200)
 134		return (freq - 56160) / 2160;
 135	else
 136		return 0;
 137}
 138EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 139
 140struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 141						    u32 freq)
 142{
 143	enum nl80211_band band;
 144	struct ieee80211_supported_band *sband;
 145	int i;
 146
 147	for (band = 0; band < NUM_NL80211_BANDS; band++) {
 148		sband = wiphy->bands[band];
 149
 150		if (!sband)
 151			continue;
 152
 153		for (i = 0; i < sband->n_channels; i++) {
 154			struct ieee80211_channel *chan = &sband->channels[i];
 155
 156			if (ieee80211_channel_to_khz(chan) == freq)
 157				return chan;
 158		}
 159	}
 160
 161	return NULL;
 162}
 163EXPORT_SYMBOL(ieee80211_get_channel_khz);
 164
 165static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 
 166{
 167	int i, want;
 168
 169	switch (sband->band) {
 170	case NL80211_BAND_5GHZ:
 171	case NL80211_BAND_6GHZ:
 172		want = 3;
 173		for (i = 0; i < sband->n_bitrates; i++) {
 174			if (sband->bitrates[i].bitrate == 60 ||
 175			    sband->bitrates[i].bitrate == 120 ||
 176			    sband->bitrates[i].bitrate == 240) {
 177				sband->bitrates[i].flags |=
 178					IEEE80211_RATE_MANDATORY_A;
 179				want--;
 180			}
 181		}
 182		WARN_ON(want);
 183		break;
 184	case NL80211_BAND_2GHZ:
 185		want = 7;
 186		for (i = 0; i < sband->n_bitrates; i++) {
 187			switch (sband->bitrates[i].bitrate) {
 188			case 10:
 189			case 20:
 190			case 55:
 191			case 110:
 192				sband->bitrates[i].flags |=
 193					IEEE80211_RATE_MANDATORY_B |
 194					IEEE80211_RATE_MANDATORY_G;
 195				want--;
 196				break;
 197			case 60:
 198			case 120:
 199			case 240:
 
 
 
 
 200				sband->bitrates[i].flags |=
 201					IEEE80211_RATE_MANDATORY_G;
 202				want--;
 203				fallthrough;
 204			default:
 
 
 
 
 205				sband->bitrates[i].flags |=
 206					IEEE80211_RATE_ERP_G;
 207				break;
 208			}
 209		}
 210		WARN_ON(want != 0 && want != 3);
 211		break;
 212	case NL80211_BAND_60GHZ:
 213		/* check for mandatory HT MCS 1..4 */
 214		WARN_ON(!sband->ht_cap.ht_supported);
 215		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 216		break;
 217	case NL80211_BAND_S1GHZ:
 218		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 219		 * mandatory is ok.
 220		 */
 221		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 222		break;
 223	case NUM_NL80211_BANDS:
 224	default:
 225		WARN_ON(1);
 226		break;
 227	}
 228}
 229
 230void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 231{
 232	enum nl80211_band band;
 233
 234	for (band = 0; band < NUM_NL80211_BANDS; band++)
 235		if (wiphy->bands[band])
 236			set_mandatory_flags_band(wiphy->bands[band]);
 237}
 238
 239bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 240{
 241	int i;
 242	for (i = 0; i < wiphy->n_cipher_suites; i++)
 243		if (cipher == wiphy->cipher_suites[i])
 244			return true;
 245	return false;
 246}
 247
 248int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 249				   struct key_params *params, int key_idx,
 250				   bool pairwise, const u8 *mac_addr)
 251{
 252	int max_key_idx = 5;
 253
 254	if (wiphy_ext_feature_isset(&rdev->wiphy,
 255				    NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 256	    wiphy_ext_feature_isset(&rdev->wiphy,
 257				    NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 258		max_key_idx = 7;
 259	if (key_idx < 0 || key_idx > max_key_idx)
 260		return -EINVAL;
 261
 262	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 263		return -EINVAL;
 264
 265	if (pairwise && !mac_addr)
 266		return -EINVAL;
 267
 268	switch (params->cipher) {
 269	case WLAN_CIPHER_SUITE_TKIP:
 270		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
 271		if ((pairwise && key_idx) ||
 272		    params->mode != NL80211_KEY_RX_TX)
 273			return -EINVAL;
 274		break;
 275	case WLAN_CIPHER_SUITE_CCMP:
 276	case WLAN_CIPHER_SUITE_CCMP_256:
 277	case WLAN_CIPHER_SUITE_GCMP:
 278	case WLAN_CIPHER_SUITE_GCMP_256:
 279		/* IEEE802.11-2016 allows only 0 and - when supporting
 280		 * Extended Key ID - 1 as index for pairwise keys.
 281		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 282		 * the driver supports Extended Key ID.
 283		 * @NL80211_KEY_SET_TX can't be set when installing and
 284		 * validating a key.
 285		 */
 286		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 287		    params->mode == NL80211_KEY_SET_TX)
 288			return -EINVAL;
 289		if (wiphy_ext_feature_isset(&rdev->wiphy,
 290					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 291			if (pairwise && (key_idx < 0 || key_idx > 1))
 292				return -EINVAL;
 293		} else if (pairwise && key_idx) {
 294			return -EINVAL;
 295		}
 296		break;
 297	case WLAN_CIPHER_SUITE_AES_CMAC:
 298	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 299	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 300	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 301		/* Disallow BIP (group-only) cipher as pairwise cipher */
 302		if (pairwise)
 303			return -EINVAL;
 304		if (key_idx < 4)
 305			return -EINVAL;
 306		break;
 307	case WLAN_CIPHER_SUITE_WEP40:
 308	case WLAN_CIPHER_SUITE_WEP104:
 309		if (key_idx > 3)
 310			return -EINVAL;
 311	default:
 312		break;
 313	}
 314
 315	switch (params->cipher) {
 316	case WLAN_CIPHER_SUITE_WEP40:
 317		if (params->key_len != WLAN_KEY_LEN_WEP40)
 318			return -EINVAL;
 319		break;
 320	case WLAN_CIPHER_SUITE_TKIP:
 321		if (params->key_len != WLAN_KEY_LEN_TKIP)
 322			return -EINVAL;
 323		break;
 324	case WLAN_CIPHER_SUITE_CCMP:
 325		if (params->key_len != WLAN_KEY_LEN_CCMP)
 326			return -EINVAL;
 327		break;
 328	case WLAN_CIPHER_SUITE_CCMP_256:
 329		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 330			return -EINVAL;
 331		break;
 332	case WLAN_CIPHER_SUITE_GCMP:
 333		if (params->key_len != WLAN_KEY_LEN_GCMP)
 334			return -EINVAL;
 335		break;
 336	case WLAN_CIPHER_SUITE_GCMP_256:
 337		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 338			return -EINVAL;
 339		break;
 340	case WLAN_CIPHER_SUITE_WEP104:
 341		if (params->key_len != WLAN_KEY_LEN_WEP104)
 342			return -EINVAL;
 343		break;
 344	case WLAN_CIPHER_SUITE_AES_CMAC:
 345		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 346			return -EINVAL;
 347		break;
 348	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 349		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 350			return -EINVAL;
 351		break;
 352	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 353		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 354			return -EINVAL;
 355		break;
 356	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 357		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 358			return -EINVAL;
 359		break;
 360	default:
 361		/*
 362		 * We don't know anything about this algorithm,
 363		 * allow using it -- but the driver must check
 364		 * all parameters! We still check below whether
 365		 * or not the driver supports this algorithm,
 366		 * of course.
 367		 */
 368		break;
 369	}
 370
 371	if (params->seq) {
 372		switch (params->cipher) {
 373		case WLAN_CIPHER_SUITE_WEP40:
 374		case WLAN_CIPHER_SUITE_WEP104:
 375			/* These ciphers do not use key sequence */
 376			return -EINVAL;
 377		case WLAN_CIPHER_SUITE_TKIP:
 378		case WLAN_CIPHER_SUITE_CCMP:
 379		case WLAN_CIPHER_SUITE_CCMP_256:
 380		case WLAN_CIPHER_SUITE_GCMP:
 381		case WLAN_CIPHER_SUITE_GCMP_256:
 382		case WLAN_CIPHER_SUITE_AES_CMAC:
 383		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 384		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 385		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 386			if (params->seq_len != 6)
 387				return -EINVAL;
 388			break;
 389		}
 390	}
 391
 392	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 
 
 
 393		return -EINVAL;
 394
 395	return 0;
 396}
 397
 
 
 
 
 
 
 
 
 
 
 
 398unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 399{
 400	unsigned int hdrlen = 24;
 401
 402	if (ieee80211_is_data(fc)) {
 403		if (ieee80211_has_a4(fc))
 404			hdrlen = 30;
 405		if (ieee80211_is_data_qos(fc)) {
 406			hdrlen += IEEE80211_QOS_CTL_LEN;
 407			if (ieee80211_has_order(fc))
 408				hdrlen += IEEE80211_HT_CTL_LEN;
 409		}
 410		goto out;
 411	}
 412
 413	if (ieee80211_is_mgmt(fc)) {
 414		if (ieee80211_has_order(fc))
 415			hdrlen += IEEE80211_HT_CTL_LEN;
 416		goto out;
 417	}
 418
 419	if (ieee80211_is_ctl(fc)) {
 420		/*
 421		 * ACK and CTS are 10 bytes, all others 16. To see how
 422		 * to get this condition consider
 423		 *   subtype mask:   0b0000000011110000 (0x00F0)
 424		 *   ACK subtype:    0b0000000011010000 (0x00D0)
 425		 *   CTS subtype:    0b0000000011000000 (0x00C0)
 426		 *   bits that matter:         ^^^      (0x00E0)
 427		 *   value of those: 0b0000000011000000 (0x00C0)
 428		 */
 429		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 430			hdrlen = 10;
 431		else
 432			hdrlen = 16;
 433	}
 434out:
 435	return hdrlen;
 436}
 437EXPORT_SYMBOL(ieee80211_hdrlen);
 438
 439unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 440{
 441	const struct ieee80211_hdr *hdr =
 442			(const struct ieee80211_hdr *)skb->data;
 443	unsigned int hdrlen;
 444
 445	if (unlikely(skb->len < 10))
 446		return 0;
 447	hdrlen = ieee80211_hdrlen(hdr->frame_control);
 448	if (unlikely(hdrlen > skb->len))
 449		return 0;
 450	return hdrlen;
 451}
 452EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 453
 454static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 455{
 456	int ae = flags & MESH_FLAGS_AE;
 457	/* 802.11-2012, 8.2.4.7.3 */
 458	switch (ae) {
 459	default:
 460	case 0:
 461		return 6;
 462	case MESH_FLAGS_AE_A4:
 463		return 12;
 464	case MESH_FLAGS_AE_A5_A6:
 465		return 18;
 
 
 
 
 466	}
 467}
 468
 469unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 470{
 471	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 472}
 473EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 474
 475int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 476				  const u8 *addr, enum nl80211_iftype iftype,
 477				  u8 data_offset)
 478{
 479	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 480	struct {
 481		u8 hdr[ETH_ALEN] __aligned(2);
 482		__be16 proto;
 483	} payload;
 484	struct ethhdr tmp;
 485	u16 hdrlen;
 486	u8 mesh_flags = 0;
 487
 488	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 489		return -1;
 490
 491	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 492	if (skb->len < hdrlen + 8)
 493		return -1;
 494
 495	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
 496	 * header
 497	 * IEEE 802.11 address fields:
 498	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 499	 *   0     0   DA    SA    BSSID n/a
 500	 *   0     1   DA    BSSID SA    n/a
 501	 *   1     0   BSSID SA    DA    n/a
 502	 *   1     1   RA    TA    DA    SA
 503	 */
 504	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 505	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 506
 507	if (iftype == NL80211_IFTYPE_MESH_POINT)
 508		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 509
 510	mesh_flags &= MESH_FLAGS_AE;
 511
 512	switch (hdr->frame_control &
 513		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 514	case cpu_to_le16(IEEE80211_FCTL_TODS):
 515		if (unlikely(iftype != NL80211_IFTYPE_AP &&
 516			     iftype != NL80211_IFTYPE_AP_VLAN &&
 517			     iftype != NL80211_IFTYPE_P2P_GO))
 518			return -1;
 519		break;
 520	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 521		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 522			     iftype != NL80211_IFTYPE_MESH_POINT &&
 523			     iftype != NL80211_IFTYPE_AP_VLAN &&
 524			     iftype != NL80211_IFTYPE_STATION))
 525			return -1;
 526		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 527			if (mesh_flags == MESH_FLAGS_AE_A4)
 
 
 
 528				return -1;
 529			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 530				skb_copy_bits(skb, hdrlen +
 531					offsetof(struct ieee80211s_hdr, eaddr1),
 532					tmp.h_dest, 2 * ETH_ALEN);
 
 
 
 533			}
 534			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 535		}
 536		break;
 537	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 538		if ((iftype != NL80211_IFTYPE_STATION &&
 539		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 540		     iftype != NL80211_IFTYPE_MESH_POINT) ||
 541		    (is_multicast_ether_addr(tmp.h_dest) &&
 542		     ether_addr_equal(tmp.h_source, addr)))
 543			return -1;
 544		if (iftype == NL80211_IFTYPE_MESH_POINT) {
 545			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 
 
 
 546				return -1;
 547			if (mesh_flags == MESH_FLAGS_AE_A4)
 548				skb_copy_bits(skb, hdrlen +
 549					offsetof(struct ieee80211s_hdr, eaddr1),
 550					tmp.h_source, ETH_ALEN);
 551			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 552		}
 553		break;
 554	case cpu_to_le16(0):
 555		if (iftype != NL80211_IFTYPE_ADHOC &&
 556		    iftype != NL80211_IFTYPE_STATION &&
 557		    iftype != NL80211_IFTYPE_OCB)
 558				return -1;
 559		break;
 560	}
 561
 562	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 563	tmp.h_proto = payload.proto;
 
 
 
 564
 565	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 566		    tmp.h_proto != htons(ETH_P_AARP) &&
 567		    tmp.h_proto != htons(ETH_P_IPX)) ||
 568		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 569		/* remove RFC1042 or Bridge-Tunnel encapsulation and
 570		 * replace EtherType */
 571		hdrlen += ETH_ALEN + 2;
 572	else
 573		tmp.h_proto = htons(skb->len - hdrlen);
 574
 575	pskb_pull(skb, hdrlen);
 576
 577	if (!ehdr)
 578		ehdr = skb_push(skb, sizeof(struct ethhdr));
 579	memcpy(ehdr, &tmp, sizeof(tmp));
 580
 
 
 
 
 
 
 
 581	return 0;
 582}
 583EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 584
 585static void
 586__frame_add_frag(struct sk_buff *skb, struct page *page,
 587		 void *ptr, int len, int size)
 588{
 589	struct skb_shared_info *sh = skb_shinfo(skb);
 590	int page_offset;
 
 
 
 
 
 591
 592	get_page(page);
 593	page_offset = ptr - page_address(page);
 594	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 595}
 596
 597static void
 598__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 599			    int offset, int len)
 600{
 601	struct skb_shared_info *sh = skb_shinfo(skb);
 602	const skb_frag_t *frag = &sh->frags[0];
 603	struct page *frag_page;
 604	void *frag_ptr;
 605	int frag_len, frag_size;
 606	int head_size = skb->len - skb->data_len;
 607	int cur_len;
 608
 609	frag_page = virt_to_head_page(skb->head);
 610	frag_ptr = skb->data;
 611	frag_size = head_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612
 613	while (offset >= frag_size) {
 614		offset -= frag_size;
 615		frag_page = skb_frag_page(frag);
 616		frag_ptr = skb_frag_address(frag);
 617		frag_size = skb_frag_size(frag);
 618		frag++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619	}
 620
 621	frag_ptr += offset;
 622	frag_len = frag_size - offset;
 
 623
 624	cur_len = min(len, frag_len);
 625
 626	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 627	len -= cur_len;
 
 
 628
 629	while (len > 0) {
 630		frag_len = skb_frag_size(frag);
 631		cur_len = min(len, frag_len);
 632		__frame_add_frag(frame, skb_frag_page(frag),
 633				 skb_frag_address(frag), cur_len, frag_len);
 634		len -= cur_len;
 635		frag++;
 636	}
 637}
 638
 639static struct sk_buff *
 640__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 641		       int offset, int len, bool reuse_frag)
 642{
 643	struct sk_buff *frame;
 644	int cur_len = len;
 645
 646	if (skb->len - offset < len)
 647		return NULL;
 648
 649	/*
 650	 * When reusing framents, copy some data to the head to simplify
 651	 * ethernet header handling and speed up protocol header processing
 652	 * in the stack later.
 653	 */
 654	if (reuse_frag)
 655		cur_len = min_t(int, len, 32);
 656
 657	/*
 658	 * Allocate and reserve two bytes more for payload
 659	 * alignment since sizeof(struct ethhdr) is 14.
 660	 */
 661	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 662	if (!frame)
 663		return NULL;
 664
 665	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 666	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 
 667
 668	len -= cur_len;
 669	if (!len)
 670		return frame;
 671
 672	offset += cur_len;
 673	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 674
 675	return frame;
 676}
 677
 678void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 679			      const u8 *addr, enum nl80211_iftype iftype,
 680			      const unsigned int extra_headroom,
 681			      const u8 *check_da, const u8 *check_sa)
 682{
 683	unsigned int hlen = ALIGN(extra_headroom, 4);
 684	struct sk_buff *frame = NULL;
 685	u16 ethertype;
 686	u8 *payload;
 687	int offset = 0, remaining;
 688	struct ethhdr eth;
 689	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 690	bool reuse_skb = false;
 691	bool last = false;
 692
 693	while (!last) {
 694		unsigned int subframe_len;
 695		int len;
 
 
 
 
 
 
 
 
 
 696		u8 padding;
 
 
 
 
 
 
 697
 698		skb_copy_bits(skb, offset, &eth, sizeof(eth));
 699		len = ntohs(eth.h_proto);
 700		subframe_len = sizeof(struct ethhdr) + len;
 701		padding = (4 - subframe_len) & 0x3;
 702
 703		/* the last MSDU has no padding */
 704		remaining = skb->len - offset;
 705		if (subframe_len > remaining)
 706			goto purge;
 707
 708		offset += sizeof(struct ethhdr);
 709		last = remaining <= subframe_len + padding;
 710
 711		/* FIXME: should we really accept multicast DA? */
 712		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 713		     !ether_addr_equal(check_da, eth.h_dest)) ||
 714		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 715			offset += len + padding;
 716			continue;
 717		}
 718
 719		/* reuse skb for the last subframe */
 720		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 721			skb_pull(skb, offset);
 722			frame = skb;
 723			reuse_skb = true;
 724		} else {
 725			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 726						       reuse_frag);
 
 
 
 727			if (!frame)
 728				goto purge;
 729
 730			offset += len + padding;
 
 
 
 
 
 
 
 
 
 731		}
 732
 733		skb_reset_network_header(frame);
 734		frame->dev = skb->dev;
 735		frame->priority = skb->priority;
 736
 737		payload = frame->data;
 738		ethertype = (payload[6] << 8) | payload[7];
 739		if (likely((ether_addr_equal(payload, rfc1042_header) &&
 
 740			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 741			   ether_addr_equal(payload, bridge_tunnel_header))) {
 742			eth.h_proto = htons(ethertype);
 743			skb_pull(frame, ETH_ALEN + 2);
 
 
 
 
 
 
 
 
 
 744		}
 745
 746		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 747		__skb_queue_tail(list, frame);
 748	}
 749
 750	if (!reuse_skb)
 751		dev_kfree_skb(skb);
 752
 753	return;
 754
 755 purge:
 756	__skb_queue_purge(list);
 
 757	dev_kfree_skb(skb);
 758}
 759EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 760
 761/* Given a data frame determine the 802.1p/1d tag to use. */
 762unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 763				    struct cfg80211_qos_map *qos_map)
 764{
 765	unsigned int dscp;
 766	unsigned char vlan_priority;
 767	unsigned int ret;
 768
 769	/* skb->priority values from 256->263 are magic values to
 770	 * directly indicate a specific 802.1d priority.  This is used
 771	 * to allow 802.1d priority to be passed directly in from VLAN
 772	 * tags, etc.
 773	 */
 774	if (skb->priority >= 256 && skb->priority <= 263) {
 775		ret = skb->priority - 256;
 776		goto out;
 777	}
 778
 779	if (skb_vlan_tag_present(skb)) {
 780		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 781			>> VLAN_PRIO_SHIFT;
 782		if (vlan_priority > 0) {
 783			ret = vlan_priority;
 784			goto out;
 785		}
 786	}
 787
 788	switch (skb->protocol) {
 789	case htons(ETH_P_IP):
 790		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 791		break;
 792	case htons(ETH_P_IPV6):
 793		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 794		break;
 795	case htons(ETH_P_MPLS_UC):
 796	case htons(ETH_P_MPLS_MC): {
 797		struct mpls_label mpls_tmp, *mpls;
 798
 799		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 800					  sizeof(*mpls), &mpls_tmp);
 801		if (!mpls)
 802			return 0;
 803
 804		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 805			>> MPLS_LS_TC_SHIFT;
 806		goto out;
 807	}
 808	case htons(ETH_P_80221):
 809		/* 802.21 is always network control traffic */
 810		return 7;
 811	default:
 812		return 0;
 813	}
 814
 815	if (qos_map) {
 816		unsigned int i, tmp_dscp = dscp >> 2;
 817
 818		for (i = 0; i < qos_map->num_des; i++) {
 819			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 820				ret = qos_map->dscp_exception[i].up;
 821				goto out;
 822			}
 823		}
 824
 825		for (i = 0; i < 8; i++) {
 826			if (tmp_dscp >= qos_map->up[i].low &&
 827			    tmp_dscp <= qos_map->up[i].high) {
 828				ret = i;
 829				goto out;
 830			}
 831		}
 832	}
 833
 834	ret = dscp >> 5;
 835out:
 836	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 837}
 838EXPORT_SYMBOL(cfg80211_classify8021d);
 839
 840const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 841{
 842	const struct cfg80211_bss_ies *ies;
 843
 844	ies = rcu_dereference(bss->ies);
 845	if (!ies)
 846		return NULL;
 
 847
 848	return cfg80211_find_elem(id, ies->data, ies->len);
 
 
 
 
 
 
 
 
 849}
 850EXPORT_SYMBOL(ieee80211_bss_get_elem);
 851
 852void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 853{
 854	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 855	struct net_device *dev = wdev->netdev;
 856	int i;
 857
 858	if (!wdev->connect_keys)
 859		return;
 860
 861	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 862		if (!wdev->connect_keys->params[i].cipher)
 863			continue;
 864		if (rdev_add_key(rdev, dev, i, false, NULL,
 865				 &wdev->connect_keys->params[i])) {
 866			netdev_err(dev, "failed to set key %d\n", i);
 867			continue;
 868		}
 869		if (wdev->connect_keys->def == i &&
 870		    rdev_set_default_key(rdev, dev, i, true, true)) {
 871			netdev_err(dev, "failed to set defkey %d\n", i);
 872			continue;
 873		}
 
 
 
 
 874	}
 875
 876	kfree_sensitive(wdev->connect_keys);
 877	wdev->connect_keys = NULL;
 878}
 879
 880void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 881{
 882	struct cfg80211_event *ev;
 883	unsigned long flags;
 
 884
 885	spin_lock_irqsave(&wdev->event_lock, flags);
 886	while (!list_empty(&wdev->event_list)) {
 887		ev = list_first_entry(&wdev->event_list,
 888				      struct cfg80211_event, list);
 889		list_del(&ev->list);
 890		spin_unlock_irqrestore(&wdev->event_lock, flags);
 891
 892		wdev_lock(wdev);
 893		switch (ev->type) {
 894		case EVENT_CONNECT_RESULT:
 
 
 895			__cfg80211_connect_result(
 896				wdev->netdev,
 897				&ev->cr,
 898				ev->cr.status == WLAN_STATUS_SUCCESS);
 
 
 
 899			break;
 900		case EVENT_ROAMED:
 901			__cfg80211_roamed(wdev, &ev->rm);
 
 
 902			break;
 903		case EVENT_DISCONNECTED:
 904			__cfg80211_disconnected(wdev->netdev,
 905						ev->dc.ie, ev->dc.ie_len,
 906						ev->dc.reason,
 907						!ev->dc.locally_generated);
 908			break;
 909		case EVENT_IBSS_JOINED:
 910			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 911					       ev->ij.channel);
 912			break;
 913		case EVENT_STOPPED:
 914			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 915			break;
 916		case EVENT_PORT_AUTHORIZED:
 917			__cfg80211_port_authorized(wdev, ev->pa.bssid);
 918			break;
 919		}
 920		wdev_unlock(wdev);
 921
 922		kfree(ev);
 923
 924		spin_lock_irqsave(&wdev->event_lock, flags);
 925	}
 926	spin_unlock_irqrestore(&wdev->event_lock, flags);
 927}
 928
 929void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 930{
 931	struct wireless_dev *wdev;
 932
 933	ASSERT_RTNL();
 
 934
 935	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 
 
 936		cfg80211_process_wdev_events(wdev);
 
 
 937}
 938
 939int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 940			  struct net_device *dev, enum nl80211_iftype ntype,
 941			  struct vif_params *params)
 942{
 943	int err;
 944	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 945
 946	ASSERT_RTNL();
 947
 948	/* don't support changing VLANs, you just re-create them */
 949	if (otype == NL80211_IFTYPE_AP_VLAN)
 950		return -EOPNOTSUPP;
 951
 952	/* cannot change into P2P device or NAN */
 953	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 954	    ntype == NL80211_IFTYPE_NAN)
 955		return -EOPNOTSUPP;
 956
 957	if (!rdev->ops->change_virtual_intf ||
 958	    !(rdev->wiphy.interface_modes & (1 << ntype)))
 959		return -EOPNOTSUPP;
 960
 961	/* if it's part of a bridge, reject changing type to station/ibss */
 962	if (netif_is_bridge_port(dev) &&
 963	    (ntype == NL80211_IFTYPE_ADHOC ||
 964	     ntype == NL80211_IFTYPE_STATION ||
 965	     ntype == NL80211_IFTYPE_P2P_CLIENT))
 966		return -EBUSY;
 967
 968	if (ntype != otype) {
 
 
 
 
 
 969		dev->ieee80211_ptr->use_4addr = false;
 970		dev->ieee80211_ptr->mesh_id_up_len = 0;
 971		wdev_lock(dev->ieee80211_ptr);
 972		rdev_set_qos_map(rdev, dev, NULL);
 973		wdev_unlock(dev->ieee80211_ptr);
 974
 975		switch (otype) {
 976		case NL80211_IFTYPE_AP:
 977			cfg80211_stop_ap(rdev, dev, true);
 978			break;
 979		case NL80211_IFTYPE_ADHOC:
 980			cfg80211_leave_ibss(rdev, dev, false);
 981			break;
 982		case NL80211_IFTYPE_STATION:
 983		case NL80211_IFTYPE_P2P_CLIENT:
 984			wdev_lock(dev->ieee80211_ptr);
 985			cfg80211_disconnect(rdev, dev,
 986					    WLAN_REASON_DEAUTH_LEAVING, true);
 987			wdev_unlock(dev->ieee80211_ptr);
 988			break;
 989		case NL80211_IFTYPE_MESH_POINT:
 990			/* mesh should be handled? */
 991			break;
 992		default:
 993			break;
 994		}
 995
 996		cfg80211_process_rdev_events(rdev);
 997		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
 998	}
 999
1000	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
 
1001
1002	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1003
1004	if (!err && params && params->use_4addr != -1)
1005		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1006
1007	if (!err) {
1008		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1009		switch (ntype) {
1010		case NL80211_IFTYPE_STATION:
1011			if (dev->ieee80211_ptr->use_4addr)
1012				break;
1013			fallthrough;
1014		case NL80211_IFTYPE_OCB:
1015		case NL80211_IFTYPE_P2P_CLIENT:
1016		case NL80211_IFTYPE_ADHOC:
1017			dev->priv_flags |= IFF_DONT_BRIDGE;
1018			break;
1019		case NL80211_IFTYPE_P2P_GO:
1020		case NL80211_IFTYPE_AP:
1021		case NL80211_IFTYPE_AP_VLAN:
1022		case NL80211_IFTYPE_WDS:
1023		case NL80211_IFTYPE_MESH_POINT:
1024			/* bridging OK */
1025			break;
1026		case NL80211_IFTYPE_MONITOR:
1027			/* monitor can't bridge anyway */
1028			break;
1029		case NL80211_IFTYPE_UNSPECIFIED:
1030		case NUM_NL80211_IFTYPES:
1031			/* not happening */
1032			break;
1033		case NL80211_IFTYPE_P2P_DEVICE:
1034		case NL80211_IFTYPE_NAN:
1035			WARN_ON(1);
1036			break;
1037		}
1038	}
1039
1040	if (!err && ntype != otype && netif_running(dev)) {
1041		cfg80211_update_iface_num(rdev, ntype, 1);
1042		cfg80211_update_iface_num(rdev, otype, -1);
1043	}
1044
1045	return err;
1046}
1047
1048static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1049{
1050	int modulation, streams, bitrate;
1051
 
 
 
1052	/* the formula below does only work for MCS values smaller than 32 */
1053	if (WARN_ON_ONCE(rate->mcs >= 32))
1054		return 0;
1055
1056	modulation = rate->mcs & 7;
1057	streams = (rate->mcs >> 3) + 1;
1058
1059	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
 
1060
1061	if (modulation < 4)
1062		bitrate *= (modulation + 1);
1063	else if (modulation == 4)
1064		bitrate *= (modulation + 2);
1065	else
1066		bitrate *= (modulation + 3);
1067
1068	bitrate *= streams;
1069
1070	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1071		bitrate = (bitrate / 9) * 10;
1072
1073	/* do NOT round down here */
1074	return (bitrate + 50000) / 100000;
1075}
1076
1077static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
 
1078{
1079	static const u32 __mcs2bitrate[] = {
1080		/* control PHY */
1081		[0] =   275,
1082		/* SC PHY */
1083		[1] =  3850,
1084		[2] =  7700,
1085		[3] =  9625,
1086		[4] = 11550,
1087		[5] = 12512, /* 1251.25 mbps */
1088		[6] = 15400,
1089		[7] = 19250,
1090		[8] = 23100,
1091		[9] = 25025,
1092		[10] = 30800,
1093		[11] = 38500,
1094		[12] = 46200,
1095		/* OFDM PHY */
1096		[13] =  6930,
1097		[14] =  8662, /* 866.25 mbps */
1098		[15] = 13860,
1099		[16] = 17325,
1100		[17] = 20790,
1101		[18] = 27720,
1102		[19] = 34650,
1103		[20] = 41580,
1104		[21] = 45045,
1105		[22] = 51975,
1106		[23] = 62370,
1107		[24] = 67568, /* 6756.75 mbps */
1108		/* LP-SC PHY */
1109		[25] =  6260,
1110		[26] =  8340,
1111		[27] = 11120,
1112		[28] = 12510,
1113		[29] = 16680,
1114		[30] = 22240,
1115		[31] = 25030,
1116	};
1117
1118	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1119		return 0;
1120
1121	return __mcs2bitrate[rate->mcs];
1122}
1123
1124static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1125{
1126	static const u32 __mcs2bitrate[] = {
1127		/* control PHY */
1128		[0] =   275,
1129		/* SC PHY */
1130		[1] =  3850,
1131		[2] =  7700,
1132		[3] =  9625,
1133		[4] = 11550,
1134		[5] = 12512, /* 1251.25 mbps */
1135		[6] = 13475,
1136		[7] = 15400,
1137		[8] = 19250,
1138		[9] = 23100,
1139		[10] = 25025,
1140		[11] = 26950,
1141		[12] = 30800,
1142		[13] = 38500,
1143		[14] = 46200,
1144		[15] = 50050,
1145		[16] = 53900,
1146		[17] = 57750,
1147		[18] = 69300,
1148		[19] = 75075,
1149		[20] = 80850,
1150	};
1151
1152	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1153		return 0;
1154
1155	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1156}
1157
1158static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1159{
1160	static const u32 base[4][10] = {
1161		{   6500000,
1162		   13000000,
1163		   19500000,
1164		   26000000,
1165		   39000000,
1166		   52000000,
1167		   58500000,
1168		   65000000,
1169		   78000000,
1170		/* not in the spec, but some devices use this: */
1171		   86500000,
1172		},
1173		{  13500000,
1174		   27000000,
1175		   40500000,
1176		   54000000,
1177		   81000000,
1178		  108000000,
1179		  121500000,
1180		  135000000,
1181		  162000000,
1182		  180000000,
1183		},
1184		{  29300000,
1185		   58500000,
1186		   87800000,
1187		  117000000,
1188		  175500000,
1189		  234000000,
1190		  263300000,
1191		  292500000,
1192		  351000000,
1193		  390000000,
1194		},
1195		{  58500000,
1196		  117000000,
1197		  175500000,
1198		  234000000,
1199		  351000000,
1200		  468000000,
1201		  526500000,
1202		  585000000,
1203		  702000000,
1204		  780000000,
1205		},
1206	};
1207	u32 bitrate;
1208	int idx;
1209
1210	if (rate->mcs > 9)
1211		goto warn;
1212
1213	switch (rate->bw) {
1214	case RATE_INFO_BW_160:
1215		idx = 3;
1216		break;
1217	case RATE_INFO_BW_80:
1218		idx = 2;
1219		break;
1220	case RATE_INFO_BW_40:
1221		idx = 1;
1222		break;
1223	case RATE_INFO_BW_5:
1224	case RATE_INFO_BW_10:
1225	default:
1226		goto warn;
1227	case RATE_INFO_BW_20:
1228		idx = 0;
1229	}
1230
1231	bitrate = base[idx][rate->mcs];
1232	bitrate *= rate->nss;
1233
1234	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1235		bitrate = (bitrate / 9) * 10;
1236
1237	/* do NOT round down here */
1238	return (bitrate + 50000) / 100000;
1239 warn:
1240	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1241		  rate->bw, rate->mcs, rate->nss);
1242	return 0;
1243}
1244
1245static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
 
 
1246{
1247#define SCALE 2048
1248	u16 mcs_divisors[12] = {
1249		34133, /* 16.666666... */
1250		17067, /*  8.333333... */
1251		11378, /*  5.555555... */
1252		 8533, /*  4.166666... */
1253		 5689, /*  2.777777... */
1254		 4267, /*  2.083333... */
1255		 3923, /*  1.851851... */
1256		 3413, /*  1.666666... */
1257		 2844, /*  1.388888... */
1258		 2560, /*  1.250000... */
1259		 2276, /*  1.111111... */
1260		 2048, /*  1.000000... */
1261	};
1262	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1263	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1264	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1265	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1266	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1267	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1268	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1269	u64 tmp;
1270	u32 result;
1271
1272	if (WARN_ON_ONCE(rate->mcs > 11))
1273		return 0;
1274
1275	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1276		return 0;
1277	if (WARN_ON_ONCE(rate->he_ru_alloc >
1278			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1279		return 0;
1280	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1281		return 0;
1282
1283	if (rate->bw == RATE_INFO_BW_160)
1284		result = rates_160M[rate->he_gi];
1285	else if (rate->bw == RATE_INFO_BW_80 ||
1286		 (rate->bw == RATE_INFO_BW_HE_RU &&
1287		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1288		result = rates_969[rate->he_gi];
1289	else if (rate->bw == RATE_INFO_BW_40 ||
1290		 (rate->bw == RATE_INFO_BW_HE_RU &&
1291		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1292		result = rates_484[rate->he_gi];
1293	else if (rate->bw == RATE_INFO_BW_20 ||
1294		 (rate->bw == RATE_INFO_BW_HE_RU &&
1295		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1296		result = rates_242[rate->he_gi];
1297	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1298		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1299		result = rates_106[rate->he_gi];
1300	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1301		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1302		result = rates_52[rate->he_gi];
1303	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1304		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1305		result = rates_26[rate->he_gi];
1306	else {
1307		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1308		     rate->bw, rate->he_ru_alloc);
1309		return 0;
1310	}
1311
1312	/* now scale to the appropriate MCS */
1313	tmp = result;
1314	tmp *= SCALE;
1315	do_div(tmp, mcs_divisors[rate->mcs]);
1316	result = tmp;
1317
1318	/* and take NSS, DCM into account */
1319	result = (result * rate->nss) / 8;
1320	if (rate->he_dcm)
1321		result /= 2;
1322
1323	return result / 10000;
1324}
1325
1326u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1327{
1328	if (rate->flags & RATE_INFO_FLAGS_MCS)
1329		return cfg80211_calculate_bitrate_ht(rate);
1330	if (rate->flags & RATE_INFO_FLAGS_DMG)
1331		return cfg80211_calculate_bitrate_dmg(rate);
1332	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1333		return cfg80211_calculate_bitrate_edmg(rate);
1334	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1335		return cfg80211_calculate_bitrate_vht(rate);
1336	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1337		return cfg80211_calculate_bitrate_he(rate);
1338
1339	return rate->legacy;
1340}
1341EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1342
1343int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1344			  enum ieee80211_p2p_attr_id attr,
1345			  u8 *buf, unsigned int bufsize)
1346{
1347	u8 *out = buf;
1348	u16 attr_remaining = 0;
1349	bool desired_attr = false;
1350	u16 desired_len = 0;
1351
1352	while (len > 0) {
1353		unsigned int iedatalen;
1354		unsigned int copy;
1355		const u8 *iedata;
1356
1357		if (len < 2)
1358			return -EILSEQ;
1359		iedatalen = ies[1];
1360		if (iedatalen + 2 > len)
1361			return -EILSEQ;
1362
1363		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1364			goto cont;
1365
1366		if (iedatalen < 4)
1367			goto cont;
1368
1369		iedata = ies + 2;
1370
1371		/* check WFA OUI, P2P subtype */
1372		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1373		    iedata[2] != 0x9a || iedata[3] != 0x09)
1374			goto cont;
1375
1376		iedatalen -= 4;
1377		iedata += 4;
1378
1379		/* check attribute continuation into this IE */
1380		copy = min_t(unsigned int, attr_remaining, iedatalen);
1381		if (copy && desired_attr) {
1382			desired_len += copy;
1383			if (out) {
1384				memcpy(out, iedata, min(bufsize, copy));
1385				out += min(bufsize, copy);
1386				bufsize -= min(bufsize, copy);
1387			}
1388
1389
1390			if (copy == attr_remaining)
1391				return desired_len;
1392		}
1393
1394		attr_remaining -= copy;
1395		if (attr_remaining)
1396			goto cont;
1397
1398		iedatalen -= copy;
1399		iedata += copy;
1400
1401		while (iedatalen > 0) {
1402			u16 attr_len;
1403
1404			/* P2P attribute ID & size must fit */
1405			if (iedatalen < 3)
1406				return -EILSEQ;
1407			desired_attr = iedata[0] == attr;
1408			attr_len = get_unaligned_le16(iedata + 1);
1409			iedatalen -= 3;
1410			iedata += 3;
1411
1412			copy = min_t(unsigned int, attr_len, iedatalen);
1413
1414			if (desired_attr) {
1415				desired_len += copy;
1416				if (out) {
1417					memcpy(out, iedata, min(bufsize, copy));
1418					out += min(bufsize, copy);
1419					bufsize -= min(bufsize, copy);
1420				}
1421
1422				if (copy == attr_len)
1423					return desired_len;
1424			}
1425
1426			iedata += copy;
1427			iedatalen -= copy;
1428			attr_remaining = attr_len - copy;
1429		}
1430
1431 cont:
1432		len -= ies[1] + 2;
1433		ies += ies[1] + 2;
1434	}
1435
1436	if (attr_remaining && desired_attr)
1437		return -EILSEQ;
1438
1439	return -ENOENT;
1440}
1441EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1442
1443static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1444{
1445	int i;
1446
1447	/* Make sure array values are legal */
1448	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1449		return false;
1450
1451	i = 0;
1452	while (i < n_ids) {
1453		if (ids[i] == WLAN_EID_EXTENSION) {
1454			if (id_ext && (ids[i + 1] == id))
1455				return true;
1456
1457			i += 2;
1458			continue;
1459		}
1460
1461		if (ids[i] == id && !id_ext)
1462			return true;
1463
1464		i++;
1465	}
1466	return false;
1467}
1468
1469static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1470{
1471	/* we assume a validly formed IEs buffer */
1472	u8 len = ies[pos + 1];
1473
1474	pos += 2 + len;
1475
1476	/* the IE itself must have 255 bytes for fragments to follow */
1477	if (len < 255)
1478		return pos;
1479
1480	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1481		len = ies[pos + 1];
1482		pos += 2 + len;
1483	}
1484
1485	return pos;
1486}
1487
1488size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1489			      const u8 *ids, int n_ids,
1490			      const u8 *after_ric, int n_after_ric,
1491			      size_t offset)
1492{
1493	size_t pos = offset;
1494
1495	while (pos < ielen) {
1496		u8 ext = 0;
1497
1498		if (ies[pos] == WLAN_EID_EXTENSION)
1499			ext = 2;
1500		if ((pos + ext) >= ielen)
1501			break;
1502
1503		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1504					  ies[pos] == WLAN_EID_EXTENSION))
1505			break;
1506
1507		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1508			pos = skip_ie(ies, ielen, pos);
1509
1510			while (pos < ielen) {
1511				if (ies[pos] == WLAN_EID_EXTENSION)
1512					ext = 2;
1513				else
1514					ext = 0;
1515
1516				if ((pos + ext) >= ielen)
1517					break;
1518
1519				if (!ieee80211_id_in_list(after_ric,
1520							  n_after_ric,
1521							  ies[pos + ext],
1522							  ext == 2))
1523					pos = skip_ie(ies, ielen, pos);
1524				else
1525					break;
1526			}
1527		} else {
1528			pos = skip_ie(ies, ielen, pos);
1529		}
1530	}
1531
1532	return pos;
1533}
1534EXPORT_SYMBOL(ieee80211_ie_split_ric);
1535
1536bool ieee80211_operating_class_to_band(u8 operating_class,
1537				       enum nl80211_band *band)
1538{
1539	switch (operating_class) {
1540	case 112:
1541	case 115 ... 127:
1542	case 128 ... 130:
1543		*band = NL80211_BAND_5GHZ;
1544		return true;
1545	case 131 ... 135:
1546		*band = NL80211_BAND_6GHZ;
1547		return true;
1548	case 81:
1549	case 82:
1550	case 83:
1551	case 84:
1552		*band = NL80211_BAND_2GHZ;
1553		return true;
1554	case 180:
1555		*band = NL80211_BAND_60GHZ;
1556		return true;
1557	}
1558
1559	return false;
1560}
1561EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1562
1563bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1564					  u8 *op_class)
1565{
1566	u8 vht_opclass;
1567	u32 freq = chandef->center_freq1;
1568
1569	if (freq >= 2412 && freq <= 2472) {
1570		if (chandef->width > NL80211_CHAN_WIDTH_40)
1571			return false;
1572
1573		/* 2.407 GHz, channels 1..13 */
1574		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1575			if (freq > chandef->chan->center_freq)
1576				*op_class = 83; /* HT40+ */
1577			else
1578				*op_class = 84; /* HT40- */
1579		} else {
1580			*op_class = 81;
1581		}
1582
1583		return true;
1584	}
1585
1586	if (freq == 2484) {
1587		/* channel 14 is only for IEEE 802.11b */
1588		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1589			return false;
1590
1591		*op_class = 82; /* channel 14 */
1592		return true;
1593	}
1594
1595	switch (chandef->width) {
1596	case NL80211_CHAN_WIDTH_80:
1597		vht_opclass = 128;
1598		break;
1599	case NL80211_CHAN_WIDTH_160:
1600		vht_opclass = 129;
1601		break;
1602	case NL80211_CHAN_WIDTH_80P80:
1603		vht_opclass = 130;
1604		break;
1605	case NL80211_CHAN_WIDTH_10:
1606	case NL80211_CHAN_WIDTH_5:
1607		return false; /* unsupported for now */
1608	default:
1609		vht_opclass = 0;
1610		break;
1611	}
1612
1613	/* 5 GHz, channels 36..48 */
1614	if (freq >= 5180 && freq <= 5240) {
1615		if (vht_opclass) {
1616			*op_class = vht_opclass;
1617		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1618			if (freq > chandef->chan->center_freq)
1619				*op_class = 116;
1620			else
1621				*op_class = 117;
1622		} else {
1623			*op_class = 115;
1624		}
1625
1626		return true;
1627	}
1628
1629	/* 5 GHz, channels 52..64 */
1630	if (freq >= 5260 && freq <= 5320) {
1631		if (vht_opclass) {
1632			*op_class = vht_opclass;
1633		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1634			if (freq > chandef->chan->center_freq)
1635				*op_class = 119;
1636			else
1637				*op_class = 120;
1638		} else {
1639			*op_class = 118;
1640		}
1641
1642		return true;
1643	}
1644
1645	/* 5 GHz, channels 100..144 */
1646	if (freq >= 5500 && freq <= 5720) {
1647		if (vht_opclass) {
1648			*op_class = vht_opclass;
1649		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650			if (freq > chandef->chan->center_freq)
1651				*op_class = 122;
1652			else
1653				*op_class = 123;
1654		} else {
1655			*op_class = 121;
1656		}
1657
1658		return true;
1659	}
1660
1661	/* 5 GHz, channels 149..169 */
1662	if (freq >= 5745 && freq <= 5845) {
1663		if (vht_opclass) {
1664			*op_class = vht_opclass;
1665		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666			if (freq > chandef->chan->center_freq)
1667				*op_class = 126;
1668			else
1669				*op_class = 127;
1670		} else if (freq <= 5805) {
1671			*op_class = 124;
1672		} else {
1673			*op_class = 125;
1674		}
1675
1676		return true;
1677	}
1678
1679	/* 56.16 GHz, channel 1..4 */
1680	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1681		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1682			return false;
1683
1684		*op_class = 180;
1685		return true;
1686	}
1687
1688	/* not supported yet */
1689	return false;
1690}
1691EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1692
1693static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1694				       u32 *beacon_int_gcd,
1695				       bool *beacon_int_different)
1696{
1697	struct wireless_dev *wdev;
1698
1699	*beacon_int_gcd = 0;
1700	*beacon_int_different = false;
1701
1702	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1703		if (!wdev->beacon_interval)
1704			continue;
1705
1706		if (!*beacon_int_gcd) {
1707			*beacon_int_gcd = wdev->beacon_interval;
1708			continue;
1709		}
1710
1711		if (wdev->beacon_interval == *beacon_int_gcd)
1712			continue;
1713
1714		*beacon_int_different = true;
1715		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1716	}
1717
1718	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1719		if (*beacon_int_gcd)
1720			*beacon_int_different = true;
1721		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1722	}
1723}
1724
1725int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1726				 enum nl80211_iftype iftype, u32 beacon_int)
1727{
1728	/*
1729	 * This is just a basic pre-condition check; if interface combinations
1730	 * are possible the driver must already be checking those with a call
1731	 * to cfg80211_check_combinations(), in which case we'll validate more
1732	 * through the cfg80211_calculate_bi_data() call and code in
1733	 * cfg80211_iter_combinations().
1734	 */
1735
1736	if (beacon_int < 10 || beacon_int > 10000)
1737		return -EINVAL;
1738
1739	return 0;
1740}
1741
1742int cfg80211_iter_combinations(struct wiphy *wiphy,
1743			       struct iface_combination_params *params,
1744			       void (*iter)(const struct ieee80211_iface_combination *c,
1745					    void *data),
1746			       void *data)
1747{
1748	const struct ieee80211_regdomain *regdom;
1749	enum nl80211_dfs_regions region = 0;
1750	int i, j, iftype;
1751	int num_interfaces = 0;
1752	u32 used_iftypes = 0;
1753	u32 beacon_int_gcd;
1754	bool beacon_int_different;
1755
1756	/*
1757	 * This is a bit strange, since the iteration used to rely only on
1758	 * the data given by the driver, but here it now relies on context,
1759	 * in form of the currently operating interfaces.
1760	 * This is OK for all current users, and saves us from having to
1761	 * push the GCD calculations into all the drivers.
1762	 * In the future, this should probably rely more on data that's in
1763	 * cfg80211 already - the only thing not would appear to be any new
1764	 * interfaces (while being brought up) and channel/radar data.
1765	 */
1766	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1767				   &beacon_int_gcd, &beacon_int_different);
1768
1769	if (params->radar_detect) {
1770		rcu_read_lock();
1771		regdom = rcu_dereference(cfg80211_regdomain);
1772		if (regdom)
1773			region = regdom->dfs_region;
1774		rcu_read_unlock();
1775	}
1776
1777	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1778		num_interfaces += params->iftype_num[iftype];
1779		if (params->iftype_num[iftype] > 0 &&
1780		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1781			used_iftypes |= BIT(iftype);
1782	}
 
1783
1784	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1785		const struct ieee80211_iface_combination *c;
1786		struct ieee80211_iface_limit *limits;
1787		u32 all_iftypes = 0;
1788
1789		c = &wiphy->iface_combinations[i];
1790
1791		if (num_interfaces > c->max_interfaces)
1792			continue;
1793		if (params->num_different_channels > c->num_different_channels)
1794			continue;
1795
1796		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1797				 GFP_KERNEL);
1798		if (!limits)
1799			return -ENOMEM;
 
 
1800
1801		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1802			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1803				continue;
1804			for (j = 0; j < c->n_limits; j++) {
1805				all_iftypes |= limits[j].types;
1806				if (!(limits[j].types & BIT(iftype)))
1807					continue;
1808				if (limits[j].max < params->iftype_num[iftype])
1809					goto cont;
1810				limits[j].max -= params->iftype_num[iftype];
1811			}
1812		}
1813
1814		if (params->radar_detect !=
1815			(c->radar_detect_widths & params->radar_detect))
1816			goto cont;
1817
1818		if (params->radar_detect && c->radar_detect_regions &&
1819		    !(c->radar_detect_regions & BIT(region)))
1820			goto cont;
1821
1822		/* Finally check that all iftypes that we're currently
1823		 * using are actually part of this combination. If they
1824		 * aren't then we can't use this combination and have
1825		 * to continue to the next.
1826		 */
1827		if ((all_iftypes & used_iftypes) != used_iftypes)
1828			goto cont;
1829
1830		if (beacon_int_gcd) {
1831			if (c->beacon_int_min_gcd &&
1832			    beacon_int_gcd < c->beacon_int_min_gcd)
1833				goto cont;
1834			if (!c->beacon_int_min_gcd && beacon_int_different)
1835				goto cont;
1836		}
1837
1838		/* This combination covered all interface types and
1839		 * supported the requested numbers, so we're good.
1840		 */
1841
1842		(*iter)(c, data);
1843 cont:
1844		kfree(limits);
1845	}
1846
1847	return 0;
1848}
1849EXPORT_SYMBOL(cfg80211_iter_combinations);
1850
1851static void
1852cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1853			  void *data)
1854{
1855	int *num = data;
1856	(*num)++;
1857}
1858
1859int cfg80211_check_combinations(struct wiphy *wiphy,
1860				struct iface_combination_params *params)
1861{
1862	int err, num = 0;
1863
1864	err = cfg80211_iter_combinations(wiphy, params,
1865					 cfg80211_iter_sum_ifcombs, &num);
1866	if (err)
1867		return err;
1868	if (num == 0)
1869		return -EBUSY;
1870
1871	return 0;
1872}
1873EXPORT_SYMBOL(cfg80211_check_combinations);
1874
1875int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1876			   const u8 *rates, unsigned int n_rates,
1877			   u32 *mask)
1878{
1879	int i, j;
1880
1881	if (!sband)
1882		return -EINVAL;
1883
1884	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1885		return -EINVAL;
1886
1887	*mask = 0;
1888
1889	for (i = 0; i < n_rates; i++) {
1890		int rate = (rates[i] & 0x7f) * 5;
1891		bool found = false;
1892
1893		for (j = 0; j < sband->n_bitrates; j++) {
1894			if (sband->bitrates[j].bitrate == rate) {
1895				found = true;
1896				*mask |= BIT(j);
1897				break;
1898			}
1899		}
1900		if (!found)
1901			return -EINVAL;
1902	}
1903
1904	/*
1905	 * mask must have at least one bit set here since we
1906	 * didn't accept a 0-length rates array nor allowed
1907	 * entries in the array that didn't exist
1908	 */
1909
1910	return 0;
1911}
1912
1913unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1914{
1915	enum nl80211_band band;
1916	unsigned int n_channels = 0;
1917
1918	for (band = 0; band < NUM_NL80211_BANDS; band++)
1919		if (wiphy->bands[band])
1920			n_channels += wiphy->bands[band]->n_channels;
1921
1922	return n_channels;
1923}
1924EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1925
1926int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1927			 struct station_info *sinfo)
1928{
1929	struct cfg80211_registered_device *rdev;
1930	struct wireless_dev *wdev;
1931
1932	wdev = dev->ieee80211_ptr;
1933	if (!wdev)
1934		return -EOPNOTSUPP;
1935
1936	rdev = wiphy_to_rdev(wdev->wiphy);
1937	if (!rdev->ops->get_station)
1938		return -EOPNOTSUPP;
1939
1940	memset(sinfo, 0, sizeof(*sinfo));
1941
1942	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1943}
1944EXPORT_SYMBOL(cfg80211_get_station);
1945
1946void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1947{
1948	int i;
1949
1950	if (!f)
1951		return;
1952
1953	kfree(f->serv_spec_info);
1954	kfree(f->srf_bf);
1955	kfree(f->srf_macs);
1956	for (i = 0; i < f->num_rx_filters; i++)
1957		kfree(f->rx_filters[i].filter);
1958
1959	for (i = 0; i < f->num_tx_filters; i++)
1960		kfree(f->tx_filters[i].filter);
1961
1962	kfree(f->rx_filters);
1963	kfree(f->tx_filters);
1964	kfree(f);
1965}
1966EXPORT_SYMBOL(cfg80211_free_nan_func);
1967
1968bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1969				u32 center_freq_khz, u32 bw_khz)
1970{
1971	u32 start_freq_khz, end_freq_khz;
1972
1973	start_freq_khz = center_freq_khz - (bw_khz / 2);
1974	end_freq_khz = center_freq_khz + (bw_khz / 2);
1975
1976	if (start_freq_khz >= freq_range->start_freq_khz &&
1977	    end_freq_khz <= freq_range->end_freq_khz)
1978		return true;
1979
1980	return false;
1981}
1982
1983int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1984{
1985	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1986				sizeof(*(sinfo->pertid)),
1987				gfp);
1988	if (!sinfo->pertid)
1989		return -ENOMEM;
1990
1991	return 0;
1992}
1993EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1994
1995/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1996/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1997const unsigned char rfc1042_header[] __aligned(2) =
1998	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1999EXPORT_SYMBOL(rfc1042_header);
2000
2001/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2002const unsigned char bridge_tunnel_header[] __aligned(2) =
2003	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2004EXPORT_SYMBOL(bridge_tunnel_header);
2005
2006/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2007struct iapp_layer2_update {
2008	u8 da[ETH_ALEN];	/* broadcast */
2009	u8 sa[ETH_ALEN];	/* STA addr */
2010	__be16 len;		/* 6 */
2011	u8 dsap;		/* 0 */
2012	u8 ssap;		/* 0 */
2013	u8 control;
2014	u8 xid_info[3];
2015} __packed;
2016
2017void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2018{
2019	struct iapp_layer2_update *msg;
2020	struct sk_buff *skb;
2021
2022	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2023	 * bridge devices */
2024
2025	skb = dev_alloc_skb(sizeof(*msg));
2026	if (!skb)
2027		return;
2028	msg = skb_put(skb, sizeof(*msg));
2029
2030	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2031	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2032
2033	eth_broadcast_addr(msg->da);
2034	ether_addr_copy(msg->sa, addr);
2035	msg->len = htons(6);
2036	msg->dsap = 0;
2037	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2038	msg->control = 0xaf;	/* XID response lsb.1111F101.
2039				 * F=0 (no poll command; unsolicited frame) */
2040	msg->xid_info[0] = 0x81;	/* XID format identifier */
2041	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2042	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2043
2044	skb->dev = dev;
2045	skb->protocol = eth_type_trans(skb, dev);
2046	memset(skb->cb, 0, sizeof(skb->cb));
2047	netif_rx_ni(skb);
2048}
2049EXPORT_SYMBOL(cfg80211_send_layer2_update);
2050
2051int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2052			      enum ieee80211_vht_chanwidth bw,
2053			      int mcs, bool ext_nss_bw_capable,
2054			      unsigned int max_vht_nss)
2055{
2056	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2057	int ext_nss_bw;
2058	int supp_width;
2059	int i, mcs_encoding;
2060
2061	if (map == 0xffff)
2062		return 0;
2063
2064	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2065		return 0;
2066	if (mcs <= 7)
2067		mcs_encoding = 0;
2068	else if (mcs == 8)
2069		mcs_encoding = 1;
2070	else
2071		mcs_encoding = 2;
2072
2073	if (!max_vht_nss) {
2074		/* find max_vht_nss for the given MCS */
2075		for (i = 7; i >= 0; i--) {
2076			int supp = (map >> (2 * i)) & 3;
2077
2078			if (supp == 3)
2079				continue;
2080
2081			if (supp >= mcs_encoding) {
2082				max_vht_nss = i + 1;
2083				break;
2084			}
2085		}
2086	}
2087
2088	if (!(cap->supp_mcs.tx_mcs_map &
2089			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2090		return max_vht_nss;
2091
2092	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2093				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2094	supp_width = le32_get_bits(cap->vht_cap_info,
2095				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2096
2097	/* if not capable, treat ext_nss_bw as 0 */
2098	if (!ext_nss_bw_capable)
2099		ext_nss_bw = 0;
2100
2101	/* This is invalid */
2102	if (supp_width == 3)
2103		return 0;
2104
2105	/* This is an invalid combination so pretend nothing is supported */
2106	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2107		return 0;
2108
2109	/*
2110	 * Cover all the special cases according to IEEE 802.11-2016
2111	 * Table 9-250. All other cases are either factor of 1 or not
2112	 * valid/supported.
2113	 */
2114	switch (bw) {
2115	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2116	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2117		if ((supp_width == 1 || supp_width == 2) &&
2118		    ext_nss_bw == 3)
2119			return 2 * max_vht_nss;
2120		break;
2121	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2122		if (supp_width == 0 &&
2123		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2124			return max_vht_nss / 2;
2125		if (supp_width == 0 &&
2126		    ext_nss_bw == 3)
2127			return (3 * max_vht_nss) / 4;
2128		if (supp_width == 1 &&
2129		    ext_nss_bw == 3)
2130			return 2 * max_vht_nss;
2131		break;
2132	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2133		if (supp_width == 0 && ext_nss_bw == 1)
2134			return 0; /* not possible */
2135		if (supp_width == 0 &&
2136		    ext_nss_bw == 2)
2137			return max_vht_nss / 2;
2138		if (supp_width == 0 &&
2139		    ext_nss_bw == 3)
2140			return (3 * max_vht_nss) / 4;
2141		if (supp_width == 1 &&
2142		    ext_nss_bw == 0)
2143			return 0; /* not possible */
2144		if (supp_width == 1 &&
2145		    ext_nss_bw == 1)
2146			return max_vht_nss / 2;
2147		if (supp_width == 1 &&
2148		    ext_nss_bw == 2)
2149			return (3 * max_vht_nss) / 4;
2150		break;
2151	}
2152
2153	/* not covered or invalid combination received */
2154	return max_vht_nss;
2155}
2156EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2157
2158bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2159			     bool is_4addr, u8 check_swif)
2160
2161{
2162	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2163
2164	switch (check_swif) {
2165	case 0:
2166		if (is_vlan && is_4addr)
2167			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2168		return wiphy->interface_modes & BIT(iftype);
2169	case 1:
2170		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2171			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2172		return wiphy->software_iftypes & BIT(iftype);
2173	default:
2174		break;
2175	}
2176
2177	return false;
2178}
2179EXPORT_SYMBOL(cfg80211_iftype_allowed);