Loading...
1/*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 */
6#include <linux/bitops.h>
7#include <linux/etherdevice.h>
8#include <linux/slab.h>
9#include <net/cfg80211.h>
10#include <net/ip.h>
11#include "core.h"
12
13struct ieee80211_rate *
14ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
15 u32 basic_rates, int bitrate)
16{
17 struct ieee80211_rate *result = &sband->bitrates[0];
18 int i;
19
20 for (i = 0; i < sband->n_bitrates; i++) {
21 if (!(basic_rates & BIT(i)))
22 continue;
23 if (sband->bitrates[i].bitrate > bitrate)
24 continue;
25 result = &sband->bitrates[i];
26 }
27
28 return result;
29}
30EXPORT_SYMBOL(ieee80211_get_response_rate);
31
32int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
33{
34 /* see 802.11 17.3.8.3.2 and Annex J
35 * there are overlapping channel numbers in 5GHz and 2GHz bands */
36 if (band == IEEE80211_BAND_5GHZ) {
37 if (chan >= 182 && chan <= 196)
38 return 4000 + chan * 5;
39 else
40 return 5000 + chan * 5;
41 } else { /* IEEE80211_BAND_2GHZ */
42 if (chan == 14)
43 return 2484;
44 else if (chan < 14)
45 return 2407 + chan * 5;
46 else
47 return 0; /* not supported */
48 }
49}
50EXPORT_SYMBOL(ieee80211_channel_to_frequency);
51
52int ieee80211_frequency_to_channel(int freq)
53{
54 /* see 802.11 17.3.8.3.2 and Annex J */
55 if (freq == 2484)
56 return 14;
57 else if (freq < 2484)
58 return (freq - 2407) / 5;
59 else if (freq >= 4910 && freq <= 4980)
60 return (freq - 4000) / 5;
61 else
62 return (freq - 5000) / 5;
63}
64EXPORT_SYMBOL(ieee80211_frequency_to_channel);
65
66struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
67 int freq)
68{
69 enum ieee80211_band band;
70 struct ieee80211_supported_band *sband;
71 int i;
72
73 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
74 sband = wiphy->bands[band];
75
76 if (!sband)
77 continue;
78
79 for (i = 0; i < sband->n_channels; i++) {
80 if (sband->channels[i].center_freq == freq)
81 return &sband->channels[i];
82 }
83 }
84
85 return NULL;
86}
87EXPORT_SYMBOL(__ieee80211_get_channel);
88
89static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
90 enum ieee80211_band band)
91{
92 int i, want;
93
94 switch (band) {
95 case IEEE80211_BAND_5GHZ:
96 want = 3;
97 for (i = 0; i < sband->n_bitrates; i++) {
98 if (sband->bitrates[i].bitrate == 60 ||
99 sband->bitrates[i].bitrate == 120 ||
100 sband->bitrates[i].bitrate == 240) {
101 sband->bitrates[i].flags |=
102 IEEE80211_RATE_MANDATORY_A;
103 want--;
104 }
105 }
106 WARN_ON(want);
107 break;
108 case IEEE80211_BAND_2GHZ:
109 want = 7;
110 for (i = 0; i < sband->n_bitrates; i++) {
111 if (sband->bitrates[i].bitrate == 10) {
112 sband->bitrates[i].flags |=
113 IEEE80211_RATE_MANDATORY_B |
114 IEEE80211_RATE_MANDATORY_G;
115 want--;
116 }
117
118 if (sband->bitrates[i].bitrate == 20 ||
119 sband->bitrates[i].bitrate == 55 ||
120 sband->bitrates[i].bitrate == 110 ||
121 sband->bitrates[i].bitrate == 60 ||
122 sband->bitrates[i].bitrate == 120 ||
123 sband->bitrates[i].bitrate == 240) {
124 sband->bitrates[i].flags |=
125 IEEE80211_RATE_MANDATORY_G;
126 want--;
127 }
128
129 if (sband->bitrates[i].bitrate != 10 &&
130 sband->bitrates[i].bitrate != 20 &&
131 sband->bitrates[i].bitrate != 55 &&
132 sband->bitrates[i].bitrate != 110)
133 sband->bitrates[i].flags |=
134 IEEE80211_RATE_ERP_G;
135 }
136 WARN_ON(want != 0 && want != 3 && want != 6);
137 break;
138 case IEEE80211_NUM_BANDS:
139 WARN_ON(1);
140 break;
141 }
142}
143
144void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
145{
146 enum ieee80211_band band;
147
148 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
149 if (wiphy->bands[band])
150 set_mandatory_flags_band(wiphy->bands[band], band);
151}
152
153int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
154 struct key_params *params, int key_idx,
155 bool pairwise, const u8 *mac_addr)
156{
157 int i;
158
159 if (key_idx > 5)
160 return -EINVAL;
161
162 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
163 return -EINVAL;
164
165 if (pairwise && !mac_addr)
166 return -EINVAL;
167
168 /*
169 * Disallow pairwise keys with non-zero index unless it's WEP
170 * or a vendor specific cipher (because current deployments use
171 * pairwise WEP keys with non-zero indices and for vendor specific
172 * ciphers this should be validated in the driver or hardware level
173 * - but 802.11i clearly specifies to use zero)
174 */
175 if (pairwise && key_idx &&
176 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
177 (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
178 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
179 return -EINVAL;
180
181 switch (params->cipher) {
182 case WLAN_CIPHER_SUITE_WEP40:
183 if (params->key_len != WLAN_KEY_LEN_WEP40)
184 return -EINVAL;
185 break;
186 case WLAN_CIPHER_SUITE_TKIP:
187 if (params->key_len != WLAN_KEY_LEN_TKIP)
188 return -EINVAL;
189 break;
190 case WLAN_CIPHER_SUITE_CCMP:
191 if (params->key_len != WLAN_KEY_LEN_CCMP)
192 return -EINVAL;
193 break;
194 case WLAN_CIPHER_SUITE_WEP104:
195 if (params->key_len != WLAN_KEY_LEN_WEP104)
196 return -EINVAL;
197 break;
198 case WLAN_CIPHER_SUITE_AES_CMAC:
199 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
200 return -EINVAL;
201 break;
202 default:
203 /*
204 * We don't know anything about this algorithm,
205 * allow using it -- but the driver must check
206 * all parameters! We still check below whether
207 * or not the driver supports this algorithm,
208 * of course.
209 */
210 break;
211 }
212
213 if (params->seq) {
214 switch (params->cipher) {
215 case WLAN_CIPHER_SUITE_WEP40:
216 case WLAN_CIPHER_SUITE_WEP104:
217 /* These ciphers do not use key sequence */
218 return -EINVAL;
219 case WLAN_CIPHER_SUITE_TKIP:
220 case WLAN_CIPHER_SUITE_CCMP:
221 case WLAN_CIPHER_SUITE_AES_CMAC:
222 if (params->seq_len != 6)
223 return -EINVAL;
224 break;
225 }
226 }
227
228 for (i = 0; i < rdev->wiphy.n_cipher_suites; i++)
229 if (params->cipher == rdev->wiphy.cipher_suites[i])
230 break;
231 if (i == rdev->wiphy.n_cipher_suites)
232 return -EINVAL;
233
234 return 0;
235}
236
237/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
238/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
239const unsigned char rfc1042_header[] __aligned(2) =
240 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
241EXPORT_SYMBOL(rfc1042_header);
242
243/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
244const unsigned char bridge_tunnel_header[] __aligned(2) =
245 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
246EXPORT_SYMBOL(bridge_tunnel_header);
247
248unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
249{
250 unsigned int hdrlen = 24;
251
252 if (ieee80211_is_data(fc)) {
253 if (ieee80211_has_a4(fc))
254 hdrlen = 30;
255 if (ieee80211_is_data_qos(fc)) {
256 hdrlen += IEEE80211_QOS_CTL_LEN;
257 if (ieee80211_has_order(fc))
258 hdrlen += IEEE80211_HT_CTL_LEN;
259 }
260 goto out;
261 }
262
263 if (ieee80211_is_ctl(fc)) {
264 /*
265 * ACK and CTS are 10 bytes, all others 16. To see how
266 * to get this condition consider
267 * subtype mask: 0b0000000011110000 (0x00F0)
268 * ACK subtype: 0b0000000011010000 (0x00D0)
269 * CTS subtype: 0b0000000011000000 (0x00C0)
270 * bits that matter: ^^^ (0x00E0)
271 * value of those: 0b0000000011000000 (0x00C0)
272 */
273 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
274 hdrlen = 10;
275 else
276 hdrlen = 16;
277 }
278out:
279 return hdrlen;
280}
281EXPORT_SYMBOL(ieee80211_hdrlen);
282
283unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
284{
285 const struct ieee80211_hdr *hdr =
286 (const struct ieee80211_hdr *)skb->data;
287 unsigned int hdrlen;
288
289 if (unlikely(skb->len < 10))
290 return 0;
291 hdrlen = ieee80211_hdrlen(hdr->frame_control);
292 if (unlikely(hdrlen > skb->len))
293 return 0;
294 return hdrlen;
295}
296EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
297
298static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
299{
300 int ae = meshhdr->flags & MESH_FLAGS_AE;
301 /* 7.1.3.5a.2 */
302 switch (ae) {
303 case 0:
304 return 6;
305 case MESH_FLAGS_AE_A4:
306 return 12;
307 case MESH_FLAGS_AE_A5_A6:
308 return 18;
309 case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
310 return 24;
311 default:
312 return 6;
313 }
314}
315
316int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
317 enum nl80211_iftype iftype)
318{
319 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
320 u16 hdrlen, ethertype;
321 u8 *payload;
322 u8 dst[ETH_ALEN];
323 u8 src[ETH_ALEN] __aligned(2);
324
325 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
326 return -1;
327
328 hdrlen = ieee80211_hdrlen(hdr->frame_control);
329
330 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
331 * header
332 * IEEE 802.11 address fields:
333 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
334 * 0 0 DA SA BSSID n/a
335 * 0 1 DA BSSID SA n/a
336 * 1 0 BSSID SA DA n/a
337 * 1 1 RA TA DA SA
338 */
339 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
340 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
341
342 switch (hdr->frame_control &
343 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
344 case cpu_to_le16(IEEE80211_FCTL_TODS):
345 if (unlikely(iftype != NL80211_IFTYPE_AP &&
346 iftype != NL80211_IFTYPE_AP_VLAN &&
347 iftype != NL80211_IFTYPE_P2P_GO))
348 return -1;
349 break;
350 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
351 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
352 iftype != NL80211_IFTYPE_MESH_POINT &&
353 iftype != NL80211_IFTYPE_AP_VLAN &&
354 iftype != NL80211_IFTYPE_STATION))
355 return -1;
356 if (iftype == NL80211_IFTYPE_MESH_POINT) {
357 struct ieee80211s_hdr *meshdr =
358 (struct ieee80211s_hdr *) (skb->data + hdrlen);
359 /* make sure meshdr->flags is on the linear part */
360 if (!pskb_may_pull(skb, hdrlen + 1))
361 return -1;
362 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
363 skb_copy_bits(skb, hdrlen +
364 offsetof(struct ieee80211s_hdr, eaddr1),
365 dst, ETH_ALEN);
366 skb_copy_bits(skb, hdrlen +
367 offsetof(struct ieee80211s_hdr, eaddr2),
368 src, ETH_ALEN);
369 }
370 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
371 }
372 break;
373 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
374 if ((iftype != NL80211_IFTYPE_STATION &&
375 iftype != NL80211_IFTYPE_P2P_CLIENT &&
376 iftype != NL80211_IFTYPE_MESH_POINT) ||
377 (is_multicast_ether_addr(dst) &&
378 !compare_ether_addr(src, addr)))
379 return -1;
380 if (iftype == NL80211_IFTYPE_MESH_POINT) {
381 struct ieee80211s_hdr *meshdr =
382 (struct ieee80211s_hdr *) (skb->data + hdrlen);
383 /* make sure meshdr->flags is on the linear part */
384 if (!pskb_may_pull(skb, hdrlen + 1))
385 return -1;
386 if (meshdr->flags & MESH_FLAGS_AE_A4)
387 skb_copy_bits(skb, hdrlen +
388 offsetof(struct ieee80211s_hdr, eaddr1),
389 src, ETH_ALEN);
390 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
391 }
392 break;
393 case cpu_to_le16(0):
394 if (iftype != NL80211_IFTYPE_ADHOC)
395 return -1;
396 break;
397 }
398
399 if (!pskb_may_pull(skb, hdrlen + 8))
400 return -1;
401
402 payload = skb->data + hdrlen;
403 ethertype = (payload[6] << 8) | payload[7];
404
405 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
406 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
407 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
408 /* remove RFC1042 or Bridge-Tunnel encapsulation and
409 * replace EtherType */
410 skb_pull(skb, hdrlen + 6);
411 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
412 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
413 } else {
414 struct ethhdr *ehdr;
415 __be16 len;
416
417 skb_pull(skb, hdrlen);
418 len = htons(skb->len);
419 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
420 memcpy(ehdr->h_dest, dst, ETH_ALEN);
421 memcpy(ehdr->h_source, src, ETH_ALEN);
422 ehdr->h_proto = len;
423 }
424 return 0;
425}
426EXPORT_SYMBOL(ieee80211_data_to_8023);
427
428int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
429 enum nl80211_iftype iftype, u8 *bssid, bool qos)
430{
431 struct ieee80211_hdr hdr;
432 u16 hdrlen, ethertype;
433 __le16 fc;
434 const u8 *encaps_data;
435 int encaps_len, skip_header_bytes;
436 int nh_pos, h_pos;
437 int head_need;
438
439 if (unlikely(skb->len < ETH_HLEN))
440 return -EINVAL;
441
442 nh_pos = skb_network_header(skb) - skb->data;
443 h_pos = skb_transport_header(skb) - skb->data;
444
445 /* convert Ethernet header to proper 802.11 header (based on
446 * operation mode) */
447 ethertype = (skb->data[12] << 8) | skb->data[13];
448 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
449
450 switch (iftype) {
451 case NL80211_IFTYPE_AP:
452 case NL80211_IFTYPE_AP_VLAN:
453 case NL80211_IFTYPE_P2P_GO:
454 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
455 /* DA BSSID SA */
456 memcpy(hdr.addr1, skb->data, ETH_ALEN);
457 memcpy(hdr.addr2, addr, ETH_ALEN);
458 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
459 hdrlen = 24;
460 break;
461 case NL80211_IFTYPE_STATION:
462 case NL80211_IFTYPE_P2P_CLIENT:
463 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
464 /* BSSID SA DA */
465 memcpy(hdr.addr1, bssid, ETH_ALEN);
466 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
467 memcpy(hdr.addr3, skb->data, ETH_ALEN);
468 hdrlen = 24;
469 break;
470 case NL80211_IFTYPE_ADHOC:
471 /* DA SA BSSID */
472 memcpy(hdr.addr1, skb->data, ETH_ALEN);
473 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
474 memcpy(hdr.addr3, bssid, ETH_ALEN);
475 hdrlen = 24;
476 break;
477 default:
478 return -EOPNOTSUPP;
479 }
480
481 if (qos) {
482 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
483 hdrlen += 2;
484 }
485
486 hdr.frame_control = fc;
487 hdr.duration_id = 0;
488 hdr.seq_ctrl = 0;
489
490 skip_header_bytes = ETH_HLEN;
491 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
492 encaps_data = bridge_tunnel_header;
493 encaps_len = sizeof(bridge_tunnel_header);
494 skip_header_bytes -= 2;
495 } else if (ethertype > 0x600) {
496 encaps_data = rfc1042_header;
497 encaps_len = sizeof(rfc1042_header);
498 skip_header_bytes -= 2;
499 } else {
500 encaps_data = NULL;
501 encaps_len = 0;
502 }
503
504 skb_pull(skb, skip_header_bytes);
505 nh_pos -= skip_header_bytes;
506 h_pos -= skip_header_bytes;
507
508 head_need = hdrlen + encaps_len - skb_headroom(skb);
509
510 if (head_need > 0 || skb_cloned(skb)) {
511 head_need = max(head_need, 0);
512 if (head_need)
513 skb_orphan(skb);
514
515 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC)) {
516 pr_err("failed to reallocate Tx buffer\n");
517 return -ENOMEM;
518 }
519 skb->truesize += head_need;
520 }
521
522 if (encaps_data) {
523 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
524 nh_pos += encaps_len;
525 h_pos += encaps_len;
526 }
527
528 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
529
530 nh_pos += hdrlen;
531 h_pos += hdrlen;
532
533 /* Update skb pointers to various headers since this modified frame
534 * is going to go through Linux networking code that may potentially
535 * need things like pointer to IP header. */
536 skb_set_mac_header(skb, 0);
537 skb_set_network_header(skb, nh_pos);
538 skb_set_transport_header(skb, h_pos);
539
540 return 0;
541}
542EXPORT_SYMBOL(ieee80211_data_from_8023);
543
544
545void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
546 const u8 *addr, enum nl80211_iftype iftype,
547 const unsigned int extra_headroom,
548 bool has_80211_header)
549{
550 struct sk_buff *frame = NULL;
551 u16 ethertype;
552 u8 *payload;
553 const struct ethhdr *eth;
554 int remaining, err;
555 u8 dst[ETH_ALEN], src[ETH_ALEN];
556
557 if (has_80211_header) {
558 err = ieee80211_data_to_8023(skb, addr, iftype);
559 if (err)
560 goto out;
561
562 /* skip the wrapping header */
563 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
564 if (!eth)
565 goto out;
566 } else {
567 eth = (struct ethhdr *) skb->data;
568 }
569
570 while (skb != frame) {
571 u8 padding;
572 __be16 len = eth->h_proto;
573 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
574
575 remaining = skb->len;
576 memcpy(dst, eth->h_dest, ETH_ALEN);
577 memcpy(src, eth->h_source, ETH_ALEN);
578
579 padding = (4 - subframe_len) & 0x3;
580 /* the last MSDU has no padding */
581 if (subframe_len > remaining)
582 goto purge;
583
584 skb_pull(skb, sizeof(struct ethhdr));
585 /* reuse skb for the last subframe */
586 if (remaining <= subframe_len + padding)
587 frame = skb;
588 else {
589 unsigned int hlen = ALIGN(extra_headroom, 4);
590 /*
591 * Allocate and reserve two bytes more for payload
592 * alignment since sizeof(struct ethhdr) is 14.
593 */
594 frame = dev_alloc_skb(hlen + subframe_len + 2);
595 if (!frame)
596 goto purge;
597
598 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
599 memcpy(skb_put(frame, ntohs(len)), skb->data,
600 ntohs(len));
601
602 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
603 padding);
604 if (!eth) {
605 dev_kfree_skb(frame);
606 goto purge;
607 }
608 }
609
610 skb_reset_network_header(frame);
611 frame->dev = skb->dev;
612 frame->priority = skb->priority;
613
614 payload = frame->data;
615 ethertype = (payload[6] << 8) | payload[7];
616
617 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
618 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
619 compare_ether_addr(payload,
620 bridge_tunnel_header) == 0)) {
621 /* remove RFC1042 or Bridge-Tunnel
622 * encapsulation and replace EtherType */
623 skb_pull(frame, 6);
624 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
625 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
626 } else {
627 memcpy(skb_push(frame, sizeof(__be16)), &len,
628 sizeof(__be16));
629 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
630 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
631 }
632 __skb_queue_tail(list, frame);
633 }
634
635 return;
636
637 purge:
638 __skb_queue_purge(list);
639 out:
640 dev_kfree_skb(skb);
641}
642EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
643
644/* Given a data frame determine the 802.1p/1d tag to use. */
645unsigned int cfg80211_classify8021d(struct sk_buff *skb)
646{
647 unsigned int dscp;
648
649 /* skb->priority values from 256->263 are magic values to
650 * directly indicate a specific 802.1d priority. This is used
651 * to allow 802.1d priority to be passed directly in from VLAN
652 * tags, etc.
653 */
654 if (skb->priority >= 256 && skb->priority <= 263)
655 return skb->priority - 256;
656
657 switch (skb->protocol) {
658 case htons(ETH_P_IP):
659 dscp = ip_hdr(skb)->tos & 0xfc;
660 break;
661 default:
662 return 0;
663 }
664
665 return dscp >> 5;
666}
667EXPORT_SYMBOL(cfg80211_classify8021d);
668
669const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
670{
671 u8 *end, *pos;
672
673 pos = bss->information_elements;
674 if (pos == NULL)
675 return NULL;
676 end = pos + bss->len_information_elements;
677
678 while (pos + 1 < end) {
679 if (pos + 2 + pos[1] > end)
680 break;
681 if (pos[0] == ie)
682 return pos;
683 pos += 2 + pos[1];
684 }
685
686 return NULL;
687}
688EXPORT_SYMBOL(ieee80211_bss_get_ie);
689
690void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
691{
692 struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
693 struct net_device *dev = wdev->netdev;
694 int i;
695
696 if (!wdev->connect_keys)
697 return;
698
699 for (i = 0; i < 6; i++) {
700 if (!wdev->connect_keys->params[i].cipher)
701 continue;
702 if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL,
703 &wdev->connect_keys->params[i])) {
704 netdev_err(dev, "failed to set key %d\n", i);
705 continue;
706 }
707 if (wdev->connect_keys->def == i)
708 if (rdev->ops->set_default_key(wdev->wiphy, dev,
709 i, true, true)) {
710 netdev_err(dev, "failed to set defkey %d\n", i);
711 continue;
712 }
713 if (wdev->connect_keys->defmgmt == i)
714 if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
715 netdev_err(dev, "failed to set mgtdef %d\n", i);
716 }
717
718 kfree(wdev->connect_keys);
719 wdev->connect_keys = NULL;
720}
721
722static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
723{
724 struct cfg80211_event *ev;
725 unsigned long flags;
726 const u8 *bssid = NULL;
727
728 spin_lock_irqsave(&wdev->event_lock, flags);
729 while (!list_empty(&wdev->event_list)) {
730 ev = list_first_entry(&wdev->event_list,
731 struct cfg80211_event, list);
732 list_del(&ev->list);
733 spin_unlock_irqrestore(&wdev->event_lock, flags);
734
735 wdev_lock(wdev);
736 switch (ev->type) {
737 case EVENT_CONNECT_RESULT:
738 if (!is_zero_ether_addr(ev->cr.bssid))
739 bssid = ev->cr.bssid;
740 __cfg80211_connect_result(
741 wdev->netdev, bssid,
742 ev->cr.req_ie, ev->cr.req_ie_len,
743 ev->cr.resp_ie, ev->cr.resp_ie_len,
744 ev->cr.status,
745 ev->cr.status == WLAN_STATUS_SUCCESS,
746 NULL);
747 break;
748 case EVENT_ROAMED:
749 __cfg80211_roamed(wdev, ev->rm.channel, ev->rm.bssid,
750 ev->rm.req_ie, ev->rm.req_ie_len,
751 ev->rm.resp_ie, ev->rm.resp_ie_len);
752 break;
753 case EVENT_DISCONNECTED:
754 __cfg80211_disconnected(wdev->netdev,
755 ev->dc.ie, ev->dc.ie_len,
756 ev->dc.reason, true);
757 break;
758 case EVENT_IBSS_JOINED:
759 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
760 break;
761 }
762 wdev_unlock(wdev);
763
764 kfree(ev);
765
766 spin_lock_irqsave(&wdev->event_lock, flags);
767 }
768 spin_unlock_irqrestore(&wdev->event_lock, flags);
769}
770
771void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
772{
773 struct wireless_dev *wdev;
774
775 ASSERT_RTNL();
776 ASSERT_RDEV_LOCK(rdev);
777
778 mutex_lock(&rdev->devlist_mtx);
779
780 list_for_each_entry(wdev, &rdev->netdev_list, list)
781 cfg80211_process_wdev_events(wdev);
782
783 mutex_unlock(&rdev->devlist_mtx);
784}
785
786int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
787 struct net_device *dev, enum nl80211_iftype ntype,
788 u32 *flags, struct vif_params *params)
789{
790 int err;
791 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
792
793 ASSERT_RDEV_LOCK(rdev);
794
795 /* don't support changing VLANs, you just re-create them */
796 if (otype == NL80211_IFTYPE_AP_VLAN)
797 return -EOPNOTSUPP;
798
799 if (!rdev->ops->change_virtual_intf ||
800 !(rdev->wiphy.interface_modes & (1 << ntype)))
801 return -EOPNOTSUPP;
802
803 /* if it's part of a bridge, reject changing type to station/ibss */
804 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
805 (ntype == NL80211_IFTYPE_ADHOC ||
806 ntype == NL80211_IFTYPE_STATION ||
807 ntype == NL80211_IFTYPE_P2P_CLIENT))
808 return -EBUSY;
809
810 if (ntype != otype) {
811 err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
812 ntype);
813 if (err)
814 return err;
815
816 dev->ieee80211_ptr->use_4addr = false;
817 dev->ieee80211_ptr->mesh_id_up_len = 0;
818
819 switch (otype) {
820 case NL80211_IFTYPE_ADHOC:
821 cfg80211_leave_ibss(rdev, dev, false);
822 break;
823 case NL80211_IFTYPE_STATION:
824 case NL80211_IFTYPE_P2P_CLIENT:
825 cfg80211_disconnect(rdev, dev,
826 WLAN_REASON_DEAUTH_LEAVING, true);
827 break;
828 case NL80211_IFTYPE_MESH_POINT:
829 /* mesh should be handled? */
830 break;
831 default:
832 break;
833 }
834
835 cfg80211_process_rdev_events(rdev);
836 }
837
838 err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
839 ntype, flags, params);
840
841 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
842
843 if (!err && params && params->use_4addr != -1)
844 dev->ieee80211_ptr->use_4addr = params->use_4addr;
845
846 if (!err) {
847 dev->priv_flags &= ~IFF_DONT_BRIDGE;
848 switch (ntype) {
849 case NL80211_IFTYPE_STATION:
850 if (dev->ieee80211_ptr->use_4addr)
851 break;
852 /* fall through */
853 case NL80211_IFTYPE_P2P_CLIENT:
854 case NL80211_IFTYPE_ADHOC:
855 dev->priv_flags |= IFF_DONT_BRIDGE;
856 break;
857 case NL80211_IFTYPE_P2P_GO:
858 case NL80211_IFTYPE_AP:
859 case NL80211_IFTYPE_AP_VLAN:
860 case NL80211_IFTYPE_WDS:
861 case NL80211_IFTYPE_MESH_POINT:
862 /* bridging OK */
863 break;
864 case NL80211_IFTYPE_MONITOR:
865 /* monitor can't bridge anyway */
866 break;
867 case NL80211_IFTYPE_UNSPECIFIED:
868 case NUM_NL80211_IFTYPES:
869 /* not happening */
870 break;
871 }
872 }
873
874 return err;
875}
876
877u16 cfg80211_calculate_bitrate(struct rate_info *rate)
878{
879 int modulation, streams, bitrate;
880
881 if (!(rate->flags & RATE_INFO_FLAGS_MCS))
882 return rate->legacy;
883
884 /* the formula below does only work for MCS values smaller than 32 */
885 if (rate->mcs >= 32)
886 return 0;
887
888 modulation = rate->mcs & 7;
889 streams = (rate->mcs >> 3) + 1;
890
891 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
892 13500000 : 6500000;
893
894 if (modulation < 4)
895 bitrate *= (modulation + 1);
896 else if (modulation == 4)
897 bitrate *= (modulation + 2);
898 else
899 bitrate *= (modulation + 3);
900
901 bitrate *= streams;
902
903 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
904 bitrate = (bitrate / 9) * 10;
905
906 /* do NOT round down here */
907 return (bitrate + 50000) / 100000;
908}
909
910int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
911 u32 beacon_int)
912{
913 struct wireless_dev *wdev;
914 int res = 0;
915
916 if (!beacon_int)
917 return -EINVAL;
918
919 mutex_lock(&rdev->devlist_mtx);
920
921 list_for_each_entry(wdev, &rdev->netdev_list, list) {
922 if (!wdev->beacon_interval)
923 continue;
924 if (wdev->beacon_interval != beacon_int) {
925 res = -EINVAL;
926 break;
927 }
928 }
929
930 mutex_unlock(&rdev->devlist_mtx);
931
932 return res;
933}
934
935int cfg80211_can_change_interface(struct cfg80211_registered_device *rdev,
936 struct wireless_dev *wdev,
937 enum nl80211_iftype iftype)
938{
939 struct wireless_dev *wdev_iter;
940 int num[NUM_NL80211_IFTYPES];
941 int total = 1;
942 int i, j;
943
944 ASSERT_RTNL();
945
946 /* Always allow software iftypes */
947 if (rdev->wiphy.software_iftypes & BIT(iftype))
948 return 0;
949
950 /*
951 * Drivers will gradually all set this flag, until all
952 * have it we only enforce for those that set it.
953 */
954 if (!(rdev->wiphy.flags & WIPHY_FLAG_ENFORCE_COMBINATIONS))
955 return 0;
956
957 memset(num, 0, sizeof(num));
958
959 num[iftype] = 1;
960
961 mutex_lock(&rdev->devlist_mtx);
962 list_for_each_entry(wdev_iter, &rdev->netdev_list, list) {
963 if (wdev_iter == wdev)
964 continue;
965 if (!netif_running(wdev_iter->netdev))
966 continue;
967
968 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
969 continue;
970
971 num[wdev_iter->iftype]++;
972 total++;
973 }
974 mutex_unlock(&rdev->devlist_mtx);
975
976 for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
977 const struct ieee80211_iface_combination *c;
978 struct ieee80211_iface_limit *limits;
979
980 c = &rdev->wiphy.iface_combinations[i];
981
982 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
983 GFP_KERNEL);
984 if (!limits)
985 return -ENOMEM;
986 if (total > c->max_interfaces)
987 goto cont;
988
989 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
990 if (rdev->wiphy.software_iftypes & BIT(iftype))
991 continue;
992 for (j = 0; j < c->n_limits; j++) {
993 if (!(limits[j].types & iftype))
994 continue;
995 if (limits[j].max < num[iftype])
996 goto cont;
997 limits[j].max -= num[iftype];
998 }
999 }
1000 /* yay, it fits */
1001 kfree(limits);
1002 return 0;
1003 cont:
1004 kfree(limits);
1005 }
1006
1007 return -EBUSY;
1008}
1009
1010int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1011 const u8 *rates, unsigned int n_rates,
1012 u32 *mask)
1013{
1014 int i, j;
1015
1016 if (!sband)
1017 return -EINVAL;
1018
1019 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1020 return -EINVAL;
1021
1022 *mask = 0;
1023
1024 for (i = 0; i < n_rates; i++) {
1025 int rate = (rates[i] & 0x7f) * 5;
1026 bool found = false;
1027
1028 for (j = 0; j < sband->n_bitrates; j++) {
1029 if (sband->bitrates[j].bitrate == rate) {
1030 found = true;
1031 *mask |= BIT(j);
1032 break;
1033 }
1034 }
1035 if (!found)
1036 return -EINVAL;
1037 }
1038
1039 /*
1040 * mask must have at least one bit set here since we
1041 * didn't accept a 0-length rates array nor allowed
1042 * entries in the array that didn't exist
1043 */
1044
1045 return 0;
1046}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2020 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48{
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72}
73EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76{
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 if (chan == 14)
84 return MHZ_TO_KHZ(2484);
85 else if (chan < 14)
86 return MHZ_TO_KHZ(2407 + chan * 5);
87 break;
88 case NL80211_BAND_5GHZ:
89 if (chan >= 182 && chan <= 196)
90 return MHZ_TO_KHZ(4000 + chan * 5);
91 else
92 return MHZ_TO_KHZ(5000 + chan * 5);
93 break;
94 case NL80211_BAND_6GHZ:
95 /* see 802.11ax D6.1 27.3.23.2 */
96 if (chan == 2)
97 return MHZ_TO_KHZ(5935);
98 if (chan <= 233)
99 return MHZ_TO_KHZ(5950 + chan * 5);
100 break;
101 case NL80211_BAND_60GHZ:
102 if (chan < 7)
103 return MHZ_TO_KHZ(56160 + chan * 2160);
104 break;
105 case NL80211_BAND_S1GHZ:
106 return 902000 + chan * 500;
107 default:
108 ;
109 }
110 return 0; /* not supported */
111}
112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
113
114int ieee80211_freq_khz_to_channel(u32 freq)
115{
116 /* TODO: just handle MHz for now */
117 freq = KHZ_TO_MHZ(freq);
118
119 /* see 802.11 17.3.8.3.2 and Annex J */
120 if (freq == 2484)
121 return 14;
122 else if (freq < 2484)
123 return (freq - 2407) / 5;
124 else if (freq >= 4910 && freq <= 4980)
125 return (freq - 4000) / 5;
126 else if (freq < 5925)
127 return (freq - 5000) / 5;
128 else if (freq == 5935)
129 return 2;
130 else if (freq <= 45000) /* DMG band lower limit */
131 /* see 802.11ax D6.1 27.3.22.2 */
132 return (freq - 5950) / 5;
133 else if (freq >= 58320 && freq <= 70200)
134 return (freq - 56160) / 2160;
135 else
136 return 0;
137}
138EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
139
140struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
141 u32 freq)
142{
143 enum nl80211_band band;
144 struct ieee80211_supported_band *sband;
145 int i;
146
147 for (band = 0; band < NUM_NL80211_BANDS; band++) {
148 sband = wiphy->bands[band];
149
150 if (!sband)
151 continue;
152
153 for (i = 0; i < sband->n_channels; i++) {
154 struct ieee80211_channel *chan = &sband->channels[i];
155
156 if (ieee80211_channel_to_khz(chan) == freq)
157 return chan;
158 }
159 }
160
161 return NULL;
162}
163EXPORT_SYMBOL(ieee80211_get_channel_khz);
164
165static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
166{
167 int i, want;
168
169 switch (sband->band) {
170 case NL80211_BAND_5GHZ:
171 case NL80211_BAND_6GHZ:
172 want = 3;
173 for (i = 0; i < sband->n_bitrates; i++) {
174 if (sband->bitrates[i].bitrate == 60 ||
175 sband->bitrates[i].bitrate == 120 ||
176 sband->bitrates[i].bitrate == 240) {
177 sband->bitrates[i].flags |=
178 IEEE80211_RATE_MANDATORY_A;
179 want--;
180 }
181 }
182 WARN_ON(want);
183 break;
184 case NL80211_BAND_2GHZ:
185 want = 7;
186 for (i = 0; i < sband->n_bitrates; i++) {
187 switch (sband->bitrates[i].bitrate) {
188 case 10:
189 case 20:
190 case 55:
191 case 110:
192 sband->bitrates[i].flags |=
193 IEEE80211_RATE_MANDATORY_B |
194 IEEE80211_RATE_MANDATORY_G;
195 want--;
196 break;
197 case 60:
198 case 120:
199 case 240:
200 sband->bitrates[i].flags |=
201 IEEE80211_RATE_MANDATORY_G;
202 want--;
203 fallthrough;
204 default:
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_ERP_G;
207 break;
208 }
209 }
210 WARN_ON(want != 0 && want != 3);
211 break;
212 case NL80211_BAND_60GHZ:
213 /* check for mandatory HT MCS 1..4 */
214 WARN_ON(!sband->ht_cap.ht_supported);
215 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
216 break;
217 case NL80211_BAND_S1GHZ:
218 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
219 * mandatory is ok.
220 */
221 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
222 break;
223 case NUM_NL80211_BANDS:
224 default:
225 WARN_ON(1);
226 break;
227 }
228}
229
230void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
231{
232 enum nl80211_band band;
233
234 for (band = 0; band < NUM_NL80211_BANDS; band++)
235 if (wiphy->bands[band])
236 set_mandatory_flags_band(wiphy->bands[band]);
237}
238
239bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
240{
241 int i;
242 for (i = 0; i < wiphy->n_cipher_suites; i++)
243 if (cipher == wiphy->cipher_suites[i])
244 return true;
245 return false;
246}
247
248int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
249 struct key_params *params, int key_idx,
250 bool pairwise, const u8 *mac_addr)
251{
252 int max_key_idx = 5;
253
254 if (wiphy_ext_feature_isset(&rdev->wiphy,
255 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
256 wiphy_ext_feature_isset(&rdev->wiphy,
257 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
258 max_key_idx = 7;
259 if (key_idx < 0 || key_idx > max_key_idx)
260 return -EINVAL;
261
262 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
263 return -EINVAL;
264
265 if (pairwise && !mac_addr)
266 return -EINVAL;
267
268 switch (params->cipher) {
269 case WLAN_CIPHER_SUITE_TKIP:
270 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
271 if ((pairwise && key_idx) ||
272 params->mode != NL80211_KEY_RX_TX)
273 return -EINVAL;
274 break;
275 case WLAN_CIPHER_SUITE_CCMP:
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 case WLAN_CIPHER_SUITE_GCMP:
278 case WLAN_CIPHER_SUITE_GCMP_256:
279 /* IEEE802.11-2016 allows only 0 and - when supporting
280 * Extended Key ID - 1 as index for pairwise keys.
281 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
282 * the driver supports Extended Key ID.
283 * @NL80211_KEY_SET_TX can't be set when installing and
284 * validating a key.
285 */
286 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
287 params->mode == NL80211_KEY_SET_TX)
288 return -EINVAL;
289 if (wiphy_ext_feature_isset(&rdev->wiphy,
290 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
291 if (pairwise && (key_idx < 0 || key_idx > 1))
292 return -EINVAL;
293 } else if (pairwise && key_idx) {
294 return -EINVAL;
295 }
296 break;
297 case WLAN_CIPHER_SUITE_AES_CMAC:
298 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
299 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
300 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
301 /* Disallow BIP (group-only) cipher as pairwise cipher */
302 if (pairwise)
303 return -EINVAL;
304 if (key_idx < 4)
305 return -EINVAL;
306 break;
307 case WLAN_CIPHER_SUITE_WEP40:
308 case WLAN_CIPHER_SUITE_WEP104:
309 if (key_idx > 3)
310 return -EINVAL;
311 default:
312 break;
313 }
314
315 switch (params->cipher) {
316 case WLAN_CIPHER_SUITE_WEP40:
317 if (params->key_len != WLAN_KEY_LEN_WEP40)
318 return -EINVAL;
319 break;
320 case WLAN_CIPHER_SUITE_TKIP:
321 if (params->key_len != WLAN_KEY_LEN_TKIP)
322 return -EINVAL;
323 break;
324 case WLAN_CIPHER_SUITE_CCMP:
325 if (params->key_len != WLAN_KEY_LEN_CCMP)
326 return -EINVAL;
327 break;
328 case WLAN_CIPHER_SUITE_CCMP_256:
329 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
330 return -EINVAL;
331 break;
332 case WLAN_CIPHER_SUITE_GCMP:
333 if (params->key_len != WLAN_KEY_LEN_GCMP)
334 return -EINVAL;
335 break;
336 case WLAN_CIPHER_SUITE_GCMP_256:
337 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
338 return -EINVAL;
339 break;
340 case WLAN_CIPHER_SUITE_WEP104:
341 if (params->key_len != WLAN_KEY_LEN_WEP104)
342 return -EINVAL;
343 break;
344 case WLAN_CIPHER_SUITE_AES_CMAC:
345 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
346 return -EINVAL;
347 break;
348 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
349 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
350 return -EINVAL;
351 break;
352 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
353 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
354 return -EINVAL;
355 break;
356 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
357 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
358 return -EINVAL;
359 break;
360 default:
361 /*
362 * We don't know anything about this algorithm,
363 * allow using it -- but the driver must check
364 * all parameters! We still check below whether
365 * or not the driver supports this algorithm,
366 * of course.
367 */
368 break;
369 }
370
371 if (params->seq) {
372 switch (params->cipher) {
373 case WLAN_CIPHER_SUITE_WEP40:
374 case WLAN_CIPHER_SUITE_WEP104:
375 /* These ciphers do not use key sequence */
376 return -EINVAL;
377 case WLAN_CIPHER_SUITE_TKIP:
378 case WLAN_CIPHER_SUITE_CCMP:
379 case WLAN_CIPHER_SUITE_CCMP_256:
380 case WLAN_CIPHER_SUITE_GCMP:
381 case WLAN_CIPHER_SUITE_GCMP_256:
382 case WLAN_CIPHER_SUITE_AES_CMAC:
383 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
384 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
385 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
386 if (params->seq_len != 6)
387 return -EINVAL;
388 break;
389 }
390 }
391
392 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
393 return -EINVAL;
394
395 return 0;
396}
397
398unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
399{
400 unsigned int hdrlen = 24;
401
402 if (ieee80211_is_data(fc)) {
403 if (ieee80211_has_a4(fc))
404 hdrlen = 30;
405 if (ieee80211_is_data_qos(fc)) {
406 hdrlen += IEEE80211_QOS_CTL_LEN;
407 if (ieee80211_has_order(fc))
408 hdrlen += IEEE80211_HT_CTL_LEN;
409 }
410 goto out;
411 }
412
413 if (ieee80211_is_mgmt(fc)) {
414 if (ieee80211_has_order(fc))
415 hdrlen += IEEE80211_HT_CTL_LEN;
416 goto out;
417 }
418
419 if (ieee80211_is_ctl(fc)) {
420 /*
421 * ACK and CTS are 10 bytes, all others 16. To see how
422 * to get this condition consider
423 * subtype mask: 0b0000000011110000 (0x00F0)
424 * ACK subtype: 0b0000000011010000 (0x00D0)
425 * CTS subtype: 0b0000000011000000 (0x00C0)
426 * bits that matter: ^^^ (0x00E0)
427 * value of those: 0b0000000011000000 (0x00C0)
428 */
429 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
430 hdrlen = 10;
431 else
432 hdrlen = 16;
433 }
434out:
435 return hdrlen;
436}
437EXPORT_SYMBOL(ieee80211_hdrlen);
438
439unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
440{
441 const struct ieee80211_hdr *hdr =
442 (const struct ieee80211_hdr *)skb->data;
443 unsigned int hdrlen;
444
445 if (unlikely(skb->len < 10))
446 return 0;
447 hdrlen = ieee80211_hdrlen(hdr->frame_control);
448 if (unlikely(hdrlen > skb->len))
449 return 0;
450 return hdrlen;
451}
452EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
453
454static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
455{
456 int ae = flags & MESH_FLAGS_AE;
457 /* 802.11-2012, 8.2.4.7.3 */
458 switch (ae) {
459 default:
460 case 0:
461 return 6;
462 case MESH_FLAGS_AE_A4:
463 return 12;
464 case MESH_FLAGS_AE_A5_A6:
465 return 18;
466 }
467}
468
469unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
470{
471 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
472}
473EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
474
475int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
476 const u8 *addr, enum nl80211_iftype iftype,
477 u8 data_offset)
478{
479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
480 struct {
481 u8 hdr[ETH_ALEN] __aligned(2);
482 __be16 proto;
483 } payload;
484 struct ethhdr tmp;
485 u16 hdrlen;
486 u8 mesh_flags = 0;
487
488 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
489 return -1;
490
491 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
492 if (skb->len < hdrlen + 8)
493 return -1;
494
495 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
496 * header
497 * IEEE 802.11 address fields:
498 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
499 * 0 0 DA SA BSSID n/a
500 * 0 1 DA BSSID SA n/a
501 * 1 0 BSSID SA DA n/a
502 * 1 1 RA TA DA SA
503 */
504 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
505 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
506
507 if (iftype == NL80211_IFTYPE_MESH_POINT)
508 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
509
510 mesh_flags &= MESH_FLAGS_AE;
511
512 switch (hdr->frame_control &
513 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
514 case cpu_to_le16(IEEE80211_FCTL_TODS):
515 if (unlikely(iftype != NL80211_IFTYPE_AP &&
516 iftype != NL80211_IFTYPE_AP_VLAN &&
517 iftype != NL80211_IFTYPE_P2P_GO))
518 return -1;
519 break;
520 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
521 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
522 iftype != NL80211_IFTYPE_MESH_POINT &&
523 iftype != NL80211_IFTYPE_AP_VLAN &&
524 iftype != NL80211_IFTYPE_STATION))
525 return -1;
526 if (iftype == NL80211_IFTYPE_MESH_POINT) {
527 if (mesh_flags == MESH_FLAGS_AE_A4)
528 return -1;
529 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
530 skb_copy_bits(skb, hdrlen +
531 offsetof(struct ieee80211s_hdr, eaddr1),
532 tmp.h_dest, 2 * ETH_ALEN);
533 }
534 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
535 }
536 break;
537 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
538 if ((iftype != NL80211_IFTYPE_STATION &&
539 iftype != NL80211_IFTYPE_P2P_CLIENT &&
540 iftype != NL80211_IFTYPE_MESH_POINT) ||
541 (is_multicast_ether_addr(tmp.h_dest) &&
542 ether_addr_equal(tmp.h_source, addr)))
543 return -1;
544 if (iftype == NL80211_IFTYPE_MESH_POINT) {
545 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
546 return -1;
547 if (mesh_flags == MESH_FLAGS_AE_A4)
548 skb_copy_bits(skb, hdrlen +
549 offsetof(struct ieee80211s_hdr, eaddr1),
550 tmp.h_source, ETH_ALEN);
551 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
552 }
553 break;
554 case cpu_to_le16(0):
555 if (iftype != NL80211_IFTYPE_ADHOC &&
556 iftype != NL80211_IFTYPE_STATION &&
557 iftype != NL80211_IFTYPE_OCB)
558 return -1;
559 break;
560 }
561
562 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
563 tmp.h_proto = payload.proto;
564
565 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
566 tmp.h_proto != htons(ETH_P_AARP) &&
567 tmp.h_proto != htons(ETH_P_IPX)) ||
568 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
569 /* remove RFC1042 or Bridge-Tunnel encapsulation and
570 * replace EtherType */
571 hdrlen += ETH_ALEN + 2;
572 else
573 tmp.h_proto = htons(skb->len - hdrlen);
574
575 pskb_pull(skb, hdrlen);
576
577 if (!ehdr)
578 ehdr = skb_push(skb, sizeof(struct ethhdr));
579 memcpy(ehdr, &tmp, sizeof(tmp));
580
581 return 0;
582}
583EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
584
585static void
586__frame_add_frag(struct sk_buff *skb, struct page *page,
587 void *ptr, int len, int size)
588{
589 struct skb_shared_info *sh = skb_shinfo(skb);
590 int page_offset;
591
592 get_page(page);
593 page_offset = ptr - page_address(page);
594 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
595}
596
597static void
598__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
599 int offset, int len)
600{
601 struct skb_shared_info *sh = skb_shinfo(skb);
602 const skb_frag_t *frag = &sh->frags[0];
603 struct page *frag_page;
604 void *frag_ptr;
605 int frag_len, frag_size;
606 int head_size = skb->len - skb->data_len;
607 int cur_len;
608
609 frag_page = virt_to_head_page(skb->head);
610 frag_ptr = skb->data;
611 frag_size = head_size;
612
613 while (offset >= frag_size) {
614 offset -= frag_size;
615 frag_page = skb_frag_page(frag);
616 frag_ptr = skb_frag_address(frag);
617 frag_size = skb_frag_size(frag);
618 frag++;
619 }
620
621 frag_ptr += offset;
622 frag_len = frag_size - offset;
623
624 cur_len = min(len, frag_len);
625
626 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
627 len -= cur_len;
628
629 while (len > 0) {
630 frag_len = skb_frag_size(frag);
631 cur_len = min(len, frag_len);
632 __frame_add_frag(frame, skb_frag_page(frag),
633 skb_frag_address(frag), cur_len, frag_len);
634 len -= cur_len;
635 frag++;
636 }
637}
638
639static struct sk_buff *
640__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
641 int offset, int len, bool reuse_frag)
642{
643 struct sk_buff *frame;
644 int cur_len = len;
645
646 if (skb->len - offset < len)
647 return NULL;
648
649 /*
650 * When reusing framents, copy some data to the head to simplify
651 * ethernet header handling and speed up protocol header processing
652 * in the stack later.
653 */
654 if (reuse_frag)
655 cur_len = min_t(int, len, 32);
656
657 /*
658 * Allocate and reserve two bytes more for payload
659 * alignment since sizeof(struct ethhdr) is 14.
660 */
661 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
662 if (!frame)
663 return NULL;
664
665 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
666 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
667
668 len -= cur_len;
669 if (!len)
670 return frame;
671
672 offset += cur_len;
673 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
674
675 return frame;
676}
677
678void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
679 const u8 *addr, enum nl80211_iftype iftype,
680 const unsigned int extra_headroom,
681 const u8 *check_da, const u8 *check_sa)
682{
683 unsigned int hlen = ALIGN(extra_headroom, 4);
684 struct sk_buff *frame = NULL;
685 u16 ethertype;
686 u8 *payload;
687 int offset = 0, remaining;
688 struct ethhdr eth;
689 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
690 bool reuse_skb = false;
691 bool last = false;
692
693 while (!last) {
694 unsigned int subframe_len;
695 int len;
696 u8 padding;
697
698 skb_copy_bits(skb, offset, ð, sizeof(eth));
699 len = ntohs(eth.h_proto);
700 subframe_len = sizeof(struct ethhdr) + len;
701 padding = (4 - subframe_len) & 0x3;
702
703 /* the last MSDU has no padding */
704 remaining = skb->len - offset;
705 if (subframe_len > remaining)
706 goto purge;
707
708 offset += sizeof(struct ethhdr);
709 last = remaining <= subframe_len + padding;
710
711 /* FIXME: should we really accept multicast DA? */
712 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
713 !ether_addr_equal(check_da, eth.h_dest)) ||
714 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
715 offset += len + padding;
716 continue;
717 }
718
719 /* reuse skb for the last subframe */
720 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
721 skb_pull(skb, offset);
722 frame = skb;
723 reuse_skb = true;
724 } else {
725 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
726 reuse_frag);
727 if (!frame)
728 goto purge;
729
730 offset += len + padding;
731 }
732
733 skb_reset_network_header(frame);
734 frame->dev = skb->dev;
735 frame->priority = skb->priority;
736
737 payload = frame->data;
738 ethertype = (payload[6] << 8) | payload[7];
739 if (likely((ether_addr_equal(payload, rfc1042_header) &&
740 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
741 ether_addr_equal(payload, bridge_tunnel_header))) {
742 eth.h_proto = htons(ethertype);
743 skb_pull(frame, ETH_ALEN + 2);
744 }
745
746 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
747 __skb_queue_tail(list, frame);
748 }
749
750 if (!reuse_skb)
751 dev_kfree_skb(skb);
752
753 return;
754
755 purge:
756 __skb_queue_purge(list);
757 dev_kfree_skb(skb);
758}
759EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
760
761/* Given a data frame determine the 802.1p/1d tag to use. */
762unsigned int cfg80211_classify8021d(struct sk_buff *skb,
763 struct cfg80211_qos_map *qos_map)
764{
765 unsigned int dscp;
766 unsigned char vlan_priority;
767 unsigned int ret;
768
769 /* skb->priority values from 256->263 are magic values to
770 * directly indicate a specific 802.1d priority. This is used
771 * to allow 802.1d priority to be passed directly in from VLAN
772 * tags, etc.
773 */
774 if (skb->priority >= 256 && skb->priority <= 263) {
775 ret = skb->priority - 256;
776 goto out;
777 }
778
779 if (skb_vlan_tag_present(skb)) {
780 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
781 >> VLAN_PRIO_SHIFT;
782 if (vlan_priority > 0) {
783 ret = vlan_priority;
784 goto out;
785 }
786 }
787
788 switch (skb->protocol) {
789 case htons(ETH_P_IP):
790 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
791 break;
792 case htons(ETH_P_IPV6):
793 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
794 break;
795 case htons(ETH_P_MPLS_UC):
796 case htons(ETH_P_MPLS_MC): {
797 struct mpls_label mpls_tmp, *mpls;
798
799 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
800 sizeof(*mpls), &mpls_tmp);
801 if (!mpls)
802 return 0;
803
804 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
805 >> MPLS_LS_TC_SHIFT;
806 goto out;
807 }
808 case htons(ETH_P_80221):
809 /* 802.21 is always network control traffic */
810 return 7;
811 default:
812 return 0;
813 }
814
815 if (qos_map) {
816 unsigned int i, tmp_dscp = dscp >> 2;
817
818 for (i = 0; i < qos_map->num_des; i++) {
819 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
820 ret = qos_map->dscp_exception[i].up;
821 goto out;
822 }
823 }
824
825 for (i = 0; i < 8; i++) {
826 if (tmp_dscp >= qos_map->up[i].low &&
827 tmp_dscp <= qos_map->up[i].high) {
828 ret = i;
829 goto out;
830 }
831 }
832 }
833
834 ret = dscp >> 5;
835out:
836 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
837}
838EXPORT_SYMBOL(cfg80211_classify8021d);
839
840const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
841{
842 const struct cfg80211_bss_ies *ies;
843
844 ies = rcu_dereference(bss->ies);
845 if (!ies)
846 return NULL;
847
848 return cfg80211_find_elem(id, ies->data, ies->len);
849}
850EXPORT_SYMBOL(ieee80211_bss_get_elem);
851
852void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
853{
854 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
855 struct net_device *dev = wdev->netdev;
856 int i;
857
858 if (!wdev->connect_keys)
859 return;
860
861 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
862 if (!wdev->connect_keys->params[i].cipher)
863 continue;
864 if (rdev_add_key(rdev, dev, i, false, NULL,
865 &wdev->connect_keys->params[i])) {
866 netdev_err(dev, "failed to set key %d\n", i);
867 continue;
868 }
869 if (wdev->connect_keys->def == i &&
870 rdev_set_default_key(rdev, dev, i, true, true)) {
871 netdev_err(dev, "failed to set defkey %d\n", i);
872 continue;
873 }
874 }
875
876 kfree_sensitive(wdev->connect_keys);
877 wdev->connect_keys = NULL;
878}
879
880void cfg80211_process_wdev_events(struct wireless_dev *wdev)
881{
882 struct cfg80211_event *ev;
883 unsigned long flags;
884
885 spin_lock_irqsave(&wdev->event_lock, flags);
886 while (!list_empty(&wdev->event_list)) {
887 ev = list_first_entry(&wdev->event_list,
888 struct cfg80211_event, list);
889 list_del(&ev->list);
890 spin_unlock_irqrestore(&wdev->event_lock, flags);
891
892 wdev_lock(wdev);
893 switch (ev->type) {
894 case EVENT_CONNECT_RESULT:
895 __cfg80211_connect_result(
896 wdev->netdev,
897 &ev->cr,
898 ev->cr.status == WLAN_STATUS_SUCCESS);
899 break;
900 case EVENT_ROAMED:
901 __cfg80211_roamed(wdev, &ev->rm);
902 break;
903 case EVENT_DISCONNECTED:
904 __cfg80211_disconnected(wdev->netdev,
905 ev->dc.ie, ev->dc.ie_len,
906 ev->dc.reason,
907 !ev->dc.locally_generated);
908 break;
909 case EVENT_IBSS_JOINED:
910 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
911 ev->ij.channel);
912 break;
913 case EVENT_STOPPED:
914 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
915 break;
916 case EVENT_PORT_AUTHORIZED:
917 __cfg80211_port_authorized(wdev, ev->pa.bssid);
918 break;
919 }
920 wdev_unlock(wdev);
921
922 kfree(ev);
923
924 spin_lock_irqsave(&wdev->event_lock, flags);
925 }
926 spin_unlock_irqrestore(&wdev->event_lock, flags);
927}
928
929void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
930{
931 struct wireless_dev *wdev;
932
933 ASSERT_RTNL();
934
935 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
936 cfg80211_process_wdev_events(wdev);
937}
938
939int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
940 struct net_device *dev, enum nl80211_iftype ntype,
941 struct vif_params *params)
942{
943 int err;
944 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
945
946 ASSERT_RTNL();
947
948 /* don't support changing VLANs, you just re-create them */
949 if (otype == NL80211_IFTYPE_AP_VLAN)
950 return -EOPNOTSUPP;
951
952 /* cannot change into P2P device or NAN */
953 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
954 ntype == NL80211_IFTYPE_NAN)
955 return -EOPNOTSUPP;
956
957 if (!rdev->ops->change_virtual_intf ||
958 !(rdev->wiphy.interface_modes & (1 << ntype)))
959 return -EOPNOTSUPP;
960
961 /* if it's part of a bridge, reject changing type to station/ibss */
962 if (netif_is_bridge_port(dev) &&
963 (ntype == NL80211_IFTYPE_ADHOC ||
964 ntype == NL80211_IFTYPE_STATION ||
965 ntype == NL80211_IFTYPE_P2P_CLIENT))
966 return -EBUSY;
967
968 if (ntype != otype) {
969 dev->ieee80211_ptr->use_4addr = false;
970 dev->ieee80211_ptr->mesh_id_up_len = 0;
971 wdev_lock(dev->ieee80211_ptr);
972 rdev_set_qos_map(rdev, dev, NULL);
973 wdev_unlock(dev->ieee80211_ptr);
974
975 switch (otype) {
976 case NL80211_IFTYPE_AP:
977 cfg80211_stop_ap(rdev, dev, true);
978 break;
979 case NL80211_IFTYPE_ADHOC:
980 cfg80211_leave_ibss(rdev, dev, false);
981 break;
982 case NL80211_IFTYPE_STATION:
983 case NL80211_IFTYPE_P2P_CLIENT:
984 wdev_lock(dev->ieee80211_ptr);
985 cfg80211_disconnect(rdev, dev,
986 WLAN_REASON_DEAUTH_LEAVING, true);
987 wdev_unlock(dev->ieee80211_ptr);
988 break;
989 case NL80211_IFTYPE_MESH_POINT:
990 /* mesh should be handled? */
991 break;
992 default:
993 break;
994 }
995
996 cfg80211_process_rdev_events(rdev);
997 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
998 }
999
1000 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1001
1002 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1003
1004 if (!err && params && params->use_4addr != -1)
1005 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1006
1007 if (!err) {
1008 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1009 switch (ntype) {
1010 case NL80211_IFTYPE_STATION:
1011 if (dev->ieee80211_ptr->use_4addr)
1012 break;
1013 fallthrough;
1014 case NL80211_IFTYPE_OCB:
1015 case NL80211_IFTYPE_P2P_CLIENT:
1016 case NL80211_IFTYPE_ADHOC:
1017 dev->priv_flags |= IFF_DONT_BRIDGE;
1018 break;
1019 case NL80211_IFTYPE_P2P_GO:
1020 case NL80211_IFTYPE_AP:
1021 case NL80211_IFTYPE_AP_VLAN:
1022 case NL80211_IFTYPE_WDS:
1023 case NL80211_IFTYPE_MESH_POINT:
1024 /* bridging OK */
1025 break;
1026 case NL80211_IFTYPE_MONITOR:
1027 /* monitor can't bridge anyway */
1028 break;
1029 case NL80211_IFTYPE_UNSPECIFIED:
1030 case NUM_NL80211_IFTYPES:
1031 /* not happening */
1032 break;
1033 case NL80211_IFTYPE_P2P_DEVICE:
1034 case NL80211_IFTYPE_NAN:
1035 WARN_ON(1);
1036 break;
1037 }
1038 }
1039
1040 if (!err && ntype != otype && netif_running(dev)) {
1041 cfg80211_update_iface_num(rdev, ntype, 1);
1042 cfg80211_update_iface_num(rdev, otype, -1);
1043 }
1044
1045 return err;
1046}
1047
1048static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1049{
1050 int modulation, streams, bitrate;
1051
1052 /* the formula below does only work for MCS values smaller than 32 */
1053 if (WARN_ON_ONCE(rate->mcs >= 32))
1054 return 0;
1055
1056 modulation = rate->mcs & 7;
1057 streams = (rate->mcs >> 3) + 1;
1058
1059 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1060
1061 if (modulation < 4)
1062 bitrate *= (modulation + 1);
1063 else if (modulation == 4)
1064 bitrate *= (modulation + 2);
1065 else
1066 bitrate *= (modulation + 3);
1067
1068 bitrate *= streams;
1069
1070 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1071 bitrate = (bitrate / 9) * 10;
1072
1073 /* do NOT round down here */
1074 return (bitrate + 50000) / 100000;
1075}
1076
1077static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1078{
1079 static const u32 __mcs2bitrate[] = {
1080 /* control PHY */
1081 [0] = 275,
1082 /* SC PHY */
1083 [1] = 3850,
1084 [2] = 7700,
1085 [3] = 9625,
1086 [4] = 11550,
1087 [5] = 12512, /* 1251.25 mbps */
1088 [6] = 15400,
1089 [7] = 19250,
1090 [8] = 23100,
1091 [9] = 25025,
1092 [10] = 30800,
1093 [11] = 38500,
1094 [12] = 46200,
1095 /* OFDM PHY */
1096 [13] = 6930,
1097 [14] = 8662, /* 866.25 mbps */
1098 [15] = 13860,
1099 [16] = 17325,
1100 [17] = 20790,
1101 [18] = 27720,
1102 [19] = 34650,
1103 [20] = 41580,
1104 [21] = 45045,
1105 [22] = 51975,
1106 [23] = 62370,
1107 [24] = 67568, /* 6756.75 mbps */
1108 /* LP-SC PHY */
1109 [25] = 6260,
1110 [26] = 8340,
1111 [27] = 11120,
1112 [28] = 12510,
1113 [29] = 16680,
1114 [30] = 22240,
1115 [31] = 25030,
1116 };
1117
1118 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1119 return 0;
1120
1121 return __mcs2bitrate[rate->mcs];
1122}
1123
1124static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1125{
1126 static const u32 __mcs2bitrate[] = {
1127 /* control PHY */
1128 [0] = 275,
1129 /* SC PHY */
1130 [1] = 3850,
1131 [2] = 7700,
1132 [3] = 9625,
1133 [4] = 11550,
1134 [5] = 12512, /* 1251.25 mbps */
1135 [6] = 13475,
1136 [7] = 15400,
1137 [8] = 19250,
1138 [9] = 23100,
1139 [10] = 25025,
1140 [11] = 26950,
1141 [12] = 30800,
1142 [13] = 38500,
1143 [14] = 46200,
1144 [15] = 50050,
1145 [16] = 53900,
1146 [17] = 57750,
1147 [18] = 69300,
1148 [19] = 75075,
1149 [20] = 80850,
1150 };
1151
1152 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1153 return 0;
1154
1155 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1156}
1157
1158static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1159{
1160 static const u32 base[4][10] = {
1161 { 6500000,
1162 13000000,
1163 19500000,
1164 26000000,
1165 39000000,
1166 52000000,
1167 58500000,
1168 65000000,
1169 78000000,
1170 /* not in the spec, but some devices use this: */
1171 86500000,
1172 },
1173 { 13500000,
1174 27000000,
1175 40500000,
1176 54000000,
1177 81000000,
1178 108000000,
1179 121500000,
1180 135000000,
1181 162000000,
1182 180000000,
1183 },
1184 { 29300000,
1185 58500000,
1186 87800000,
1187 117000000,
1188 175500000,
1189 234000000,
1190 263300000,
1191 292500000,
1192 351000000,
1193 390000000,
1194 },
1195 { 58500000,
1196 117000000,
1197 175500000,
1198 234000000,
1199 351000000,
1200 468000000,
1201 526500000,
1202 585000000,
1203 702000000,
1204 780000000,
1205 },
1206 };
1207 u32 bitrate;
1208 int idx;
1209
1210 if (rate->mcs > 9)
1211 goto warn;
1212
1213 switch (rate->bw) {
1214 case RATE_INFO_BW_160:
1215 idx = 3;
1216 break;
1217 case RATE_INFO_BW_80:
1218 idx = 2;
1219 break;
1220 case RATE_INFO_BW_40:
1221 idx = 1;
1222 break;
1223 case RATE_INFO_BW_5:
1224 case RATE_INFO_BW_10:
1225 default:
1226 goto warn;
1227 case RATE_INFO_BW_20:
1228 idx = 0;
1229 }
1230
1231 bitrate = base[idx][rate->mcs];
1232 bitrate *= rate->nss;
1233
1234 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1235 bitrate = (bitrate / 9) * 10;
1236
1237 /* do NOT round down here */
1238 return (bitrate + 50000) / 100000;
1239 warn:
1240 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1241 rate->bw, rate->mcs, rate->nss);
1242 return 0;
1243}
1244
1245static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1246{
1247#define SCALE 2048
1248 u16 mcs_divisors[12] = {
1249 34133, /* 16.666666... */
1250 17067, /* 8.333333... */
1251 11378, /* 5.555555... */
1252 8533, /* 4.166666... */
1253 5689, /* 2.777777... */
1254 4267, /* 2.083333... */
1255 3923, /* 1.851851... */
1256 3413, /* 1.666666... */
1257 2844, /* 1.388888... */
1258 2560, /* 1.250000... */
1259 2276, /* 1.111111... */
1260 2048, /* 1.000000... */
1261 };
1262 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1263 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1264 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1265 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1266 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1267 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1268 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1269 u64 tmp;
1270 u32 result;
1271
1272 if (WARN_ON_ONCE(rate->mcs > 11))
1273 return 0;
1274
1275 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1276 return 0;
1277 if (WARN_ON_ONCE(rate->he_ru_alloc >
1278 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1279 return 0;
1280 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1281 return 0;
1282
1283 if (rate->bw == RATE_INFO_BW_160)
1284 result = rates_160M[rate->he_gi];
1285 else if (rate->bw == RATE_INFO_BW_80 ||
1286 (rate->bw == RATE_INFO_BW_HE_RU &&
1287 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1288 result = rates_969[rate->he_gi];
1289 else if (rate->bw == RATE_INFO_BW_40 ||
1290 (rate->bw == RATE_INFO_BW_HE_RU &&
1291 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1292 result = rates_484[rate->he_gi];
1293 else if (rate->bw == RATE_INFO_BW_20 ||
1294 (rate->bw == RATE_INFO_BW_HE_RU &&
1295 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1296 result = rates_242[rate->he_gi];
1297 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1298 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1299 result = rates_106[rate->he_gi];
1300 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1301 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1302 result = rates_52[rate->he_gi];
1303 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1304 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1305 result = rates_26[rate->he_gi];
1306 else {
1307 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1308 rate->bw, rate->he_ru_alloc);
1309 return 0;
1310 }
1311
1312 /* now scale to the appropriate MCS */
1313 tmp = result;
1314 tmp *= SCALE;
1315 do_div(tmp, mcs_divisors[rate->mcs]);
1316 result = tmp;
1317
1318 /* and take NSS, DCM into account */
1319 result = (result * rate->nss) / 8;
1320 if (rate->he_dcm)
1321 result /= 2;
1322
1323 return result / 10000;
1324}
1325
1326u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1327{
1328 if (rate->flags & RATE_INFO_FLAGS_MCS)
1329 return cfg80211_calculate_bitrate_ht(rate);
1330 if (rate->flags & RATE_INFO_FLAGS_DMG)
1331 return cfg80211_calculate_bitrate_dmg(rate);
1332 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1333 return cfg80211_calculate_bitrate_edmg(rate);
1334 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1335 return cfg80211_calculate_bitrate_vht(rate);
1336 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1337 return cfg80211_calculate_bitrate_he(rate);
1338
1339 return rate->legacy;
1340}
1341EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1342
1343int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1344 enum ieee80211_p2p_attr_id attr,
1345 u8 *buf, unsigned int bufsize)
1346{
1347 u8 *out = buf;
1348 u16 attr_remaining = 0;
1349 bool desired_attr = false;
1350 u16 desired_len = 0;
1351
1352 while (len > 0) {
1353 unsigned int iedatalen;
1354 unsigned int copy;
1355 const u8 *iedata;
1356
1357 if (len < 2)
1358 return -EILSEQ;
1359 iedatalen = ies[1];
1360 if (iedatalen + 2 > len)
1361 return -EILSEQ;
1362
1363 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1364 goto cont;
1365
1366 if (iedatalen < 4)
1367 goto cont;
1368
1369 iedata = ies + 2;
1370
1371 /* check WFA OUI, P2P subtype */
1372 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1373 iedata[2] != 0x9a || iedata[3] != 0x09)
1374 goto cont;
1375
1376 iedatalen -= 4;
1377 iedata += 4;
1378
1379 /* check attribute continuation into this IE */
1380 copy = min_t(unsigned int, attr_remaining, iedatalen);
1381 if (copy && desired_attr) {
1382 desired_len += copy;
1383 if (out) {
1384 memcpy(out, iedata, min(bufsize, copy));
1385 out += min(bufsize, copy);
1386 bufsize -= min(bufsize, copy);
1387 }
1388
1389
1390 if (copy == attr_remaining)
1391 return desired_len;
1392 }
1393
1394 attr_remaining -= copy;
1395 if (attr_remaining)
1396 goto cont;
1397
1398 iedatalen -= copy;
1399 iedata += copy;
1400
1401 while (iedatalen > 0) {
1402 u16 attr_len;
1403
1404 /* P2P attribute ID & size must fit */
1405 if (iedatalen < 3)
1406 return -EILSEQ;
1407 desired_attr = iedata[0] == attr;
1408 attr_len = get_unaligned_le16(iedata + 1);
1409 iedatalen -= 3;
1410 iedata += 3;
1411
1412 copy = min_t(unsigned int, attr_len, iedatalen);
1413
1414 if (desired_attr) {
1415 desired_len += copy;
1416 if (out) {
1417 memcpy(out, iedata, min(bufsize, copy));
1418 out += min(bufsize, copy);
1419 bufsize -= min(bufsize, copy);
1420 }
1421
1422 if (copy == attr_len)
1423 return desired_len;
1424 }
1425
1426 iedata += copy;
1427 iedatalen -= copy;
1428 attr_remaining = attr_len - copy;
1429 }
1430
1431 cont:
1432 len -= ies[1] + 2;
1433 ies += ies[1] + 2;
1434 }
1435
1436 if (attr_remaining && desired_attr)
1437 return -EILSEQ;
1438
1439 return -ENOENT;
1440}
1441EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1442
1443static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1444{
1445 int i;
1446
1447 /* Make sure array values are legal */
1448 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1449 return false;
1450
1451 i = 0;
1452 while (i < n_ids) {
1453 if (ids[i] == WLAN_EID_EXTENSION) {
1454 if (id_ext && (ids[i + 1] == id))
1455 return true;
1456
1457 i += 2;
1458 continue;
1459 }
1460
1461 if (ids[i] == id && !id_ext)
1462 return true;
1463
1464 i++;
1465 }
1466 return false;
1467}
1468
1469static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1470{
1471 /* we assume a validly formed IEs buffer */
1472 u8 len = ies[pos + 1];
1473
1474 pos += 2 + len;
1475
1476 /* the IE itself must have 255 bytes for fragments to follow */
1477 if (len < 255)
1478 return pos;
1479
1480 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1481 len = ies[pos + 1];
1482 pos += 2 + len;
1483 }
1484
1485 return pos;
1486}
1487
1488size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1489 const u8 *ids, int n_ids,
1490 const u8 *after_ric, int n_after_ric,
1491 size_t offset)
1492{
1493 size_t pos = offset;
1494
1495 while (pos < ielen) {
1496 u8 ext = 0;
1497
1498 if (ies[pos] == WLAN_EID_EXTENSION)
1499 ext = 2;
1500 if ((pos + ext) >= ielen)
1501 break;
1502
1503 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1504 ies[pos] == WLAN_EID_EXTENSION))
1505 break;
1506
1507 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1508 pos = skip_ie(ies, ielen, pos);
1509
1510 while (pos < ielen) {
1511 if (ies[pos] == WLAN_EID_EXTENSION)
1512 ext = 2;
1513 else
1514 ext = 0;
1515
1516 if ((pos + ext) >= ielen)
1517 break;
1518
1519 if (!ieee80211_id_in_list(after_ric,
1520 n_after_ric,
1521 ies[pos + ext],
1522 ext == 2))
1523 pos = skip_ie(ies, ielen, pos);
1524 else
1525 break;
1526 }
1527 } else {
1528 pos = skip_ie(ies, ielen, pos);
1529 }
1530 }
1531
1532 return pos;
1533}
1534EXPORT_SYMBOL(ieee80211_ie_split_ric);
1535
1536bool ieee80211_operating_class_to_band(u8 operating_class,
1537 enum nl80211_band *band)
1538{
1539 switch (operating_class) {
1540 case 112:
1541 case 115 ... 127:
1542 case 128 ... 130:
1543 *band = NL80211_BAND_5GHZ;
1544 return true;
1545 case 131 ... 135:
1546 *band = NL80211_BAND_6GHZ;
1547 return true;
1548 case 81:
1549 case 82:
1550 case 83:
1551 case 84:
1552 *band = NL80211_BAND_2GHZ;
1553 return true;
1554 case 180:
1555 *band = NL80211_BAND_60GHZ;
1556 return true;
1557 }
1558
1559 return false;
1560}
1561EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1562
1563bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1564 u8 *op_class)
1565{
1566 u8 vht_opclass;
1567 u32 freq = chandef->center_freq1;
1568
1569 if (freq >= 2412 && freq <= 2472) {
1570 if (chandef->width > NL80211_CHAN_WIDTH_40)
1571 return false;
1572
1573 /* 2.407 GHz, channels 1..13 */
1574 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1575 if (freq > chandef->chan->center_freq)
1576 *op_class = 83; /* HT40+ */
1577 else
1578 *op_class = 84; /* HT40- */
1579 } else {
1580 *op_class = 81;
1581 }
1582
1583 return true;
1584 }
1585
1586 if (freq == 2484) {
1587 /* channel 14 is only for IEEE 802.11b */
1588 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1589 return false;
1590
1591 *op_class = 82; /* channel 14 */
1592 return true;
1593 }
1594
1595 switch (chandef->width) {
1596 case NL80211_CHAN_WIDTH_80:
1597 vht_opclass = 128;
1598 break;
1599 case NL80211_CHAN_WIDTH_160:
1600 vht_opclass = 129;
1601 break;
1602 case NL80211_CHAN_WIDTH_80P80:
1603 vht_opclass = 130;
1604 break;
1605 case NL80211_CHAN_WIDTH_10:
1606 case NL80211_CHAN_WIDTH_5:
1607 return false; /* unsupported for now */
1608 default:
1609 vht_opclass = 0;
1610 break;
1611 }
1612
1613 /* 5 GHz, channels 36..48 */
1614 if (freq >= 5180 && freq <= 5240) {
1615 if (vht_opclass) {
1616 *op_class = vht_opclass;
1617 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1618 if (freq > chandef->chan->center_freq)
1619 *op_class = 116;
1620 else
1621 *op_class = 117;
1622 } else {
1623 *op_class = 115;
1624 }
1625
1626 return true;
1627 }
1628
1629 /* 5 GHz, channels 52..64 */
1630 if (freq >= 5260 && freq <= 5320) {
1631 if (vht_opclass) {
1632 *op_class = vht_opclass;
1633 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1634 if (freq > chandef->chan->center_freq)
1635 *op_class = 119;
1636 else
1637 *op_class = 120;
1638 } else {
1639 *op_class = 118;
1640 }
1641
1642 return true;
1643 }
1644
1645 /* 5 GHz, channels 100..144 */
1646 if (freq >= 5500 && freq <= 5720) {
1647 if (vht_opclass) {
1648 *op_class = vht_opclass;
1649 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650 if (freq > chandef->chan->center_freq)
1651 *op_class = 122;
1652 else
1653 *op_class = 123;
1654 } else {
1655 *op_class = 121;
1656 }
1657
1658 return true;
1659 }
1660
1661 /* 5 GHz, channels 149..169 */
1662 if (freq >= 5745 && freq <= 5845) {
1663 if (vht_opclass) {
1664 *op_class = vht_opclass;
1665 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666 if (freq > chandef->chan->center_freq)
1667 *op_class = 126;
1668 else
1669 *op_class = 127;
1670 } else if (freq <= 5805) {
1671 *op_class = 124;
1672 } else {
1673 *op_class = 125;
1674 }
1675
1676 return true;
1677 }
1678
1679 /* 56.16 GHz, channel 1..4 */
1680 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1681 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1682 return false;
1683
1684 *op_class = 180;
1685 return true;
1686 }
1687
1688 /* not supported yet */
1689 return false;
1690}
1691EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1692
1693static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1694 u32 *beacon_int_gcd,
1695 bool *beacon_int_different)
1696{
1697 struct wireless_dev *wdev;
1698
1699 *beacon_int_gcd = 0;
1700 *beacon_int_different = false;
1701
1702 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1703 if (!wdev->beacon_interval)
1704 continue;
1705
1706 if (!*beacon_int_gcd) {
1707 *beacon_int_gcd = wdev->beacon_interval;
1708 continue;
1709 }
1710
1711 if (wdev->beacon_interval == *beacon_int_gcd)
1712 continue;
1713
1714 *beacon_int_different = true;
1715 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1716 }
1717
1718 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1719 if (*beacon_int_gcd)
1720 *beacon_int_different = true;
1721 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1722 }
1723}
1724
1725int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1726 enum nl80211_iftype iftype, u32 beacon_int)
1727{
1728 /*
1729 * This is just a basic pre-condition check; if interface combinations
1730 * are possible the driver must already be checking those with a call
1731 * to cfg80211_check_combinations(), in which case we'll validate more
1732 * through the cfg80211_calculate_bi_data() call and code in
1733 * cfg80211_iter_combinations().
1734 */
1735
1736 if (beacon_int < 10 || beacon_int > 10000)
1737 return -EINVAL;
1738
1739 return 0;
1740}
1741
1742int cfg80211_iter_combinations(struct wiphy *wiphy,
1743 struct iface_combination_params *params,
1744 void (*iter)(const struct ieee80211_iface_combination *c,
1745 void *data),
1746 void *data)
1747{
1748 const struct ieee80211_regdomain *regdom;
1749 enum nl80211_dfs_regions region = 0;
1750 int i, j, iftype;
1751 int num_interfaces = 0;
1752 u32 used_iftypes = 0;
1753 u32 beacon_int_gcd;
1754 bool beacon_int_different;
1755
1756 /*
1757 * This is a bit strange, since the iteration used to rely only on
1758 * the data given by the driver, but here it now relies on context,
1759 * in form of the currently operating interfaces.
1760 * This is OK for all current users, and saves us from having to
1761 * push the GCD calculations into all the drivers.
1762 * In the future, this should probably rely more on data that's in
1763 * cfg80211 already - the only thing not would appear to be any new
1764 * interfaces (while being brought up) and channel/radar data.
1765 */
1766 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1767 &beacon_int_gcd, &beacon_int_different);
1768
1769 if (params->radar_detect) {
1770 rcu_read_lock();
1771 regdom = rcu_dereference(cfg80211_regdomain);
1772 if (regdom)
1773 region = regdom->dfs_region;
1774 rcu_read_unlock();
1775 }
1776
1777 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1778 num_interfaces += params->iftype_num[iftype];
1779 if (params->iftype_num[iftype] > 0 &&
1780 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1781 used_iftypes |= BIT(iftype);
1782 }
1783
1784 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1785 const struct ieee80211_iface_combination *c;
1786 struct ieee80211_iface_limit *limits;
1787 u32 all_iftypes = 0;
1788
1789 c = &wiphy->iface_combinations[i];
1790
1791 if (num_interfaces > c->max_interfaces)
1792 continue;
1793 if (params->num_different_channels > c->num_different_channels)
1794 continue;
1795
1796 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1797 GFP_KERNEL);
1798 if (!limits)
1799 return -ENOMEM;
1800
1801 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1802 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1803 continue;
1804 for (j = 0; j < c->n_limits; j++) {
1805 all_iftypes |= limits[j].types;
1806 if (!(limits[j].types & BIT(iftype)))
1807 continue;
1808 if (limits[j].max < params->iftype_num[iftype])
1809 goto cont;
1810 limits[j].max -= params->iftype_num[iftype];
1811 }
1812 }
1813
1814 if (params->radar_detect !=
1815 (c->radar_detect_widths & params->radar_detect))
1816 goto cont;
1817
1818 if (params->radar_detect && c->radar_detect_regions &&
1819 !(c->radar_detect_regions & BIT(region)))
1820 goto cont;
1821
1822 /* Finally check that all iftypes that we're currently
1823 * using are actually part of this combination. If they
1824 * aren't then we can't use this combination and have
1825 * to continue to the next.
1826 */
1827 if ((all_iftypes & used_iftypes) != used_iftypes)
1828 goto cont;
1829
1830 if (beacon_int_gcd) {
1831 if (c->beacon_int_min_gcd &&
1832 beacon_int_gcd < c->beacon_int_min_gcd)
1833 goto cont;
1834 if (!c->beacon_int_min_gcd && beacon_int_different)
1835 goto cont;
1836 }
1837
1838 /* This combination covered all interface types and
1839 * supported the requested numbers, so we're good.
1840 */
1841
1842 (*iter)(c, data);
1843 cont:
1844 kfree(limits);
1845 }
1846
1847 return 0;
1848}
1849EXPORT_SYMBOL(cfg80211_iter_combinations);
1850
1851static void
1852cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1853 void *data)
1854{
1855 int *num = data;
1856 (*num)++;
1857}
1858
1859int cfg80211_check_combinations(struct wiphy *wiphy,
1860 struct iface_combination_params *params)
1861{
1862 int err, num = 0;
1863
1864 err = cfg80211_iter_combinations(wiphy, params,
1865 cfg80211_iter_sum_ifcombs, &num);
1866 if (err)
1867 return err;
1868 if (num == 0)
1869 return -EBUSY;
1870
1871 return 0;
1872}
1873EXPORT_SYMBOL(cfg80211_check_combinations);
1874
1875int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1876 const u8 *rates, unsigned int n_rates,
1877 u32 *mask)
1878{
1879 int i, j;
1880
1881 if (!sband)
1882 return -EINVAL;
1883
1884 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1885 return -EINVAL;
1886
1887 *mask = 0;
1888
1889 for (i = 0; i < n_rates; i++) {
1890 int rate = (rates[i] & 0x7f) * 5;
1891 bool found = false;
1892
1893 for (j = 0; j < sband->n_bitrates; j++) {
1894 if (sband->bitrates[j].bitrate == rate) {
1895 found = true;
1896 *mask |= BIT(j);
1897 break;
1898 }
1899 }
1900 if (!found)
1901 return -EINVAL;
1902 }
1903
1904 /*
1905 * mask must have at least one bit set here since we
1906 * didn't accept a 0-length rates array nor allowed
1907 * entries in the array that didn't exist
1908 */
1909
1910 return 0;
1911}
1912
1913unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1914{
1915 enum nl80211_band band;
1916 unsigned int n_channels = 0;
1917
1918 for (band = 0; band < NUM_NL80211_BANDS; band++)
1919 if (wiphy->bands[band])
1920 n_channels += wiphy->bands[band]->n_channels;
1921
1922 return n_channels;
1923}
1924EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1925
1926int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1927 struct station_info *sinfo)
1928{
1929 struct cfg80211_registered_device *rdev;
1930 struct wireless_dev *wdev;
1931
1932 wdev = dev->ieee80211_ptr;
1933 if (!wdev)
1934 return -EOPNOTSUPP;
1935
1936 rdev = wiphy_to_rdev(wdev->wiphy);
1937 if (!rdev->ops->get_station)
1938 return -EOPNOTSUPP;
1939
1940 memset(sinfo, 0, sizeof(*sinfo));
1941
1942 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1943}
1944EXPORT_SYMBOL(cfg80211_get_station);
1945
1946void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1947{
1948 int i;
1949
1950 if (!f)
1951 return;
1952
1953 kfree(f->serv_spec_info);
1954 kfree(f->srf_bf);
1955 kfree(f->srf_macs);
1956 for (i = 0; i < f->num_rx_filters; i++)
1957 kfree(f->rx_filters[i].filter);
1958
1959 for (i = 0; i < f->num_tx_filters; i++)
1960 kfree(f->tx_filters[i].filter);
1961
1962 kfree(f->rx_filters);
1963 kfree(f->tx_filters);
1964 kfree(f);
1965}
1966EXPORT_SYMBOL(cfg80211_free_nan_func);
1967
1968bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1969 u32 center_freq_khz, u32 bw_khz)
1970{
1971 u32 start_freq_khz, end_freq_khz;
1972
1973 start_freq_khz = center_freq_khz - (bw_khz / 2);
1974 end_freq_khz = center_freq_khz + (bw_khz / 2);
1975
1976 if (start_freq_khz >= freq_range->start_freq_khz &&
1977 end_freq_khz <= freq_range->end_freq_khz)
1978 return true;
1979
1980 return false;
1981}
1982
1983int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1984{
1985 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1986 sizeof(*(sinfo->pertid)),
1987 gfp);
1988 if (!sinfo->pertid)
1989 return -ENOMEM;
1990
1991 return 0;
1992}
1993EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1994
1995/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1996/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1997const unsigned char rfc1042_header[] __aligned(2) =
1998 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1999EXPORT_SYMBOL(rfc1042_header);
2000
2001/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2002const unsigned char bridge_tunnel_header[] __aligned(2) =
2003 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2004EXPORT_SYMBOL(bridge_tunnel_header);
2005
2006/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2007struct iapp_layer2_update {
2008 u8 da[ETH_ALEN]; /* broadcast */
2009 u8 sa[ETH_ALEN]; /* STA addr */
2010 __be16 len; /* 6 */
2011 u8 dsap; /* 0 */
2012 u8 ssap; /* 0 */
2013 u8 control;
2014 u8 xid_info[3];
2015} __packed;
2016
2017void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2018{
2019 struct iapp_layer2_update *msg;
2020 struct sk_buff *skb;
2021
2022 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2023 * bridge devices */
2024
2025 skb = dev_alloc_skb(sizeof(*msg));
2026 if (!skb)
2027 return;
2028 msg = skb_put(skb, sizeof(*msg));
2029
2030 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2031 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2032
2033 eth_broadcast_addr(msg->da);
2034 ether_addr_copy(msg->sa, addr);
2035 msg->len = htons(6);
2036 msg->dsap = 0;
2037 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2038 msg->control = 0xaf; /* XID response lsb.1111F101.
2039 * F=0 (no poll command; unsolicited frame) */
2040 msg->xid_info[0] = 0x81; /* XID format identifier */
2041 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2042 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2043
2044 skb->dev = dev;
2045 skb->protocol = eth_type_trans(skb, dev);
2046 memset(skb->cb, 0, sizeof(skb->cb));
2047 netif_rx_ni(skb);
2048}
2049EXPORT_SYMBOL(cfg80211_send_layer2_update);
2050
2051int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2052 enum ieee80211_vht_chanwidth bw,
2053 int mcs, bool ext_nss_bw_capable,
2054 unsigned int max_vht_nss)
2055{
2056 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2057 int ext_nss_bw;
2058 int supp_width;
2059 int i, mcs_encoding;
2060
2061 if (map == 0xffff)
2062 return 0;
2063
2064 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2065 return 0;
2066 if (mcs <= 7)
2067 mcs_encoding = 0;
2068 else if (mcs == 8)
2069 mcs_encoding = 1;
2070 else
2071 mcs_encoding = 2;
2072
2073 if (!max_vht_nss) {
2074 /* find max_vht_nss for the given MCS */
2075 for (i = 7; i >= 0; i--) {
2076 int supp = (map >> (2 * i)) & 3;
2077
2078 if (supp == 3)
2079 continue;
2080
2081 if (supp >= mcs_encoding) {
2082 max_vht_nss = i + 1;
2083 break;
2084 }
2085 }
2086 }
2087
2088 if (!(cap->supp_mcs.tx_mcs_map &
2089 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2090 return max_vht_nss;
2091
2092 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2093 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2094 supp_width = le32_get_bits(cap->vht_cap_info,
2095 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2096
2097 /* if not capable, treat ext_nss_bw as 0 */
2098 if (!ext_nss_bw_capable)
2099 ext_nss_bw = 0;
2100
2101 /* This is invalid */
2102 if (supp_width == 3)
2103 return 0;
2104
2105 /* This is an invalid combination so pretend nothing is supported */
2106 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2107 return 0;
2108
2109 /*
2110 * Cover all the special cases according to IEEE 802.11-2016
2111 * Table 9-250. All other cases are either factor of 1 or not
2112 * valid/supported.
2113 */
2114 switch (bw) {
2115 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2116 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2117 if ((supp_width == 1 || supp_width == 2) &&
2118 ext_nss_bw == 3)
2119 return 2 * max_vht_nss;
2120 break;
2121 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2122 if (supp_width == 0 &&
2123 (ext_nss_bw == 1 || ext_nss_bw == 2))
2124 return max_vht_nss / 2;
2125 if (supp_width == 0 &&
2126 ext_nss_bw == 3)
2127 return (3 * max_vht_nss) / 4;
2128 if (supp_width == 1 &&
2129 ext_nss_bw == 3)
2130 return 2 * max_vht_nss;
2131 break;
2132 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2133 if (supp_width == 0 && ext_nss_bw == 1)
2134 return 0; /* not possible */
2135 if (supp_width == 0 &&
2136 ext_nss_bw == 2)
2137 return max_vht_nss / 2;
2138 if (supp_width == 0 &&
2139 ext_nss_bw == 3)
2140 return (3 * max_vht_nss) / 4;
2141 if (supp_width == 1 &&
2142 ext_nss_bw == 0)
2143 return 0; /* not possible */
2144 if (supp_width == 1 &&
2145 ext_nss_bw == 1)
2146 return max_vht_nss / 2;
2147 if (supp_width == 1 &&
2148 ext_nss_bw == 2)
2149 return (3 * max_vht_nss) / 4;
2150 break;
2151 }
2152
2153 /* not covered or invalid combination received */
2154 return max_vht_nss;
2155}
2156EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2157
2158bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2159 bool is_4addr, u8 check_swif)
2160
2161{
2162 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2163
2164 switch (check_swif) {
2165 case 0:
2166 if (is_vlan && is_4addr)
2167 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2168 return wiphy->interface_modes & BIT(iftype);
2169 case 1:
2170 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2171 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2172 return wiphy->software_iftypes & BIT(iftype);
2173 default:
2174 break;
2175 }
2176
2177 return false;
2178}
2179EXPORT_SYMBOL(cfg80211_iftype_allowed);