Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * linux/kernel/time/clocksource.c
  3 *
  4 * This file contains the functions which manage clocksource drivers.
  5 *
  6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 21 *
 22 * TODO WishList:
 23 *   o Allow clocksource drivers to be unregistered
 24 */
 25
 
 
 
 26#include <linux/clocksource.h>
 27#include <linux/sysdev.h>
 28#include <linux/init.h>
 29#include <linux/module.h>
 30#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
 31#include <linux/tick.h>
 32#include <linux/kthread.h>
 33
 34void timecounter_init(struct timecounter *tc,
 35		      const struct cyclecounter *cc,
 36		      u64 start_tstamp)
 37{
 38	tc->cc = cc;
 39	tc->cycle_last = cc->read(cc);
 40	tc->nsec = start_tstamp;
 41}
 42EXPORT_SYMBOL_GPL(timecounter_init);
 43
 44/**
 45 * timecounter_read_delta - get nanoseconds since last call of this function
 46 * @tc:         Pointer to time counter
 47 *
 48 * When the underlying cycle counter runs over, this will be handled
 49 * correctly as long as it does not run over more than once between
 50 * calls.
 51 *
 52 * The first call to this function for a new time counter initializes
 53 * the time tracking and returns an undefined result.
 54 */
 55static u64 timecounter_read_delta(struct timecounter *tc)
 56{
 57	cycle_t cycle_now, cycle_delta;
 58	u64 ns_offset;
 59
 60	/* read cycle counter: */
 61	cycle_now = tc->cc->read(tc->cc);
 62
 63	/* calculate the delta since the last timecounter_read_delta(): */
 64	cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
 65
 66	/* convert to nanoseconds: */
 67	ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
 68
 69	/* update time stamp of timecounter_read_delta() call: */
 70	tc->cycle_last = cycle_now;
 71
 72	return ns_offset;
 73}
 74
 75u64 timecounter_read(struct timecounter *tc)
 76{
 77	u64 nsec;
 78
 79	/* increment time by nanoseconds since last call */
 80	nsec = timecounter_read_delta(tc);
 81	nsec += tc->nsec;
 82	tc->nsec = nsec;
 83
 84	return nsec;
 85}
 86EXPORT_SYMBOL_GPL(timecounter_read);
 87
 88u64 timecounter_cyc2time(struct timecounter *tc,
 89			 cycle_t cycle_tstamp)
 90{
 91	u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
 92	u64 nsec;
 93
 94	/*
 95	 * Instead of always treating cycle_tstamp as more recent
 96	 * than tc->cycle_last, detect when it is too far in the
 97	 * future and treat it as old time stamp instead.
 98	 */
 99	if (cycle_delta > tc->cc->mask / 2) {
100		cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
101		nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
102	} else {
103		nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
104	}
105
106	return nsec;
107}
108EXPORT_SYMBOL_GPL(timecounter_cyc2time);
109
110/**
111 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
112 * @mult:	pointer to mult variable
113 * @shift:	pointer to shift variable
114 * @from:	frequency to convert from
115 * @to:		frequency to convert to
116 * @maxsec:	guaranteed runtime conversion range in seconds
117 *
118 * The function evaluates the shift/mult pair for the scaled math
119 * operations of clocksources and clockevents.
120 *
121 * @to and @from are frequency values in HZ. For clock sources @to is
122 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
123 * event @to is the counter frequency and @from is NSEC_PER_SEC.
124 *
125 * The @maxsec conversion range argument controls the time frame in
126 * seconds which must be covered by the runtime conversion with the
127 * calculated mult and shift factors. This guarantees that no 64bit
128 * overflow happens when the input value of the conversion is
129 * multiplied with the calculated mult factor. Larger ranges may
130 * reduce the conversion accuracy by chosing smaller mult and shift
131 * factors.
132 */
133void
134clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
135{
136	u64 tmp;
137	u32 sft, sftacc= 32;
138
139	/*
140	 * Calculate the shift factor which is limiting the conversion
141	 * range:
142	 */
143	tmp = ((u64)maxsec * from) >> 32;
144	while (tmp) {
145		tmp >>=1;
146		sftacc--;
147	}
148
149	/*
150	 * Find the conversion shift/mult pair which has the best
151	 * accuracy and fits the maxsec conversion range:
152	 */
153	for (sft = 32; sft > 0; sft--) {
154		tmp = (u64) to << sft;
155		tmp += from / 2;
156		do_div(tmp, from);
157		if ((tmp >> sftacc) == 0)
158			break;
159	}
160	*mult = tmp;
161	*shift = sft;
162}
 
163
164/*[Clocksource internal variables]---------
165 * curr_clocksource:
166 *	currently selected clocksource.
 
 
167 * clocksource_list:
168 *	linked list with the registered clocksources
169 * clocksource_mutex:
170 *	protects manipulations to curr_clocksource and the clocksource_list
171 * override_name:
172 *	Name of the user-specified clocksource.
173 */
174static struct clocksource *curr_clocksource;
 
175static LIST_HEAD(clocksource_list);
176static DEFINE_MUTEX(clocksource_mutex);
177static char override_name[32];
178static int finished_booting;
 
179
180#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
181static void clocksource_watchdog_work(struct work_struct *work);
 
182
183static LIST_HEAD(watchdog_list);
184static struct clocksource *watchdog;
185static struct timer_list watchdog_timer;
186static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
187static DEFINE_SPINLOCK(watchdog_lock);
188static int watchdog_running;
 
 
 
 
 
 
 
 
 
 
 
189
190static int clocksource_watchdog_kthread(void *data);
191static void __clocksource_change_rating(struct clocksource *cs, int rating);
192
193/*
194 * Interval: 0.5sec Threshold: 0.0625s
195 */
196#define WATCHDOG_INTERVAL (HZ >> 1)
197#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
198
199static void clocksource_watchdog_work(struct work_struct *work)
200{
201	/*
 
 
 
 
 
 
 
 
 
202	 * If kthread_run fails the next watchdog scan over the
203	 * watchdog_list will find the unstable clock again.
204	 */
205	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
206}
207
208static void __clocksource_unstable(struct clocksource *cs)
209{
210	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
211	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
212	if (finished_booting)
213		schedule_work(&watchdog_work);
214}
215
216static void clocksource_unstable(struct clocksource *cs, int64_t delta)
217{
218	printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
219	       cs->name, delta);
220	__clocksource_unstable(cs);
221}
222
223/**
224 * clocksource_mark_unstable - mark clocksource unstable via watchdog
225 * @cs:		clocksource to be marked unstable
226 *
227 * This function is called instead of clocksource_change_rating from
228 * cpu hotplug code to avoid a deadlock between the clocksource mutex
229 * and the cpu hotplug mutex. It defers the update of the clocksource
230 * to the watchdog thread.
231 */
232void clocksource_mark_unstable(struct clocksource *cs)
233{
234	unsigned long flags;
235
236	spin_lock_irqsave(&watchdog_lock, flags);
237	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
238		if (list_empty(&cs->wd_list))
239			list_add(&cs->wd_list, &watchdog_list);
240		__clocksource_unstable(cs);
241	}
242	spin_unlock_irqrestore(&watchdog_lock, flags);
243}
244
245static void clocksource_watchdog(unsigned long data)
246{
247	struct clocksource *cs;
248	cycle_t csnow, wdnow;
249	int64_t wd_nsec, cs_nsec;
250	int next_cpu;
251
252	spin_lock(&watchdog_lock);
253	if (!watchdog_running)
254		goto out;
255
 
 
256	list_for_each_entry(cs, &watchdog_list, wd_list) {
257
258		/* Clocksource already marked unstable? */
259		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
260			if (finished_booting)
261				schedule_work(&watchdog_work);
262			continue;
263		}
264
265		local_irq_disable();
266		csnow = cs->read(cs);
267		wdnow = watchdog->read(watchdog);
268		local_irq_enable();
269
270		/* Clocksource initialized ? */
271		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) {
 
272			cs->flags |= CLOCK_SOURCE_WATCHDOG;
273			cs->wd_last = wdnow;
274			cs->cs_last = csnow;
275			continue;
276		}
277
278		wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
279					     watchdog->mult, watchdog->shift);
280
281		cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
282					     cs->mask, cs->mult, cs->shift);
 
 
 
283		cs->cs_last = csnow;
284		cs->wd_last = wdnow;
285
 
 
 
286		/* Check the deviation from the watchdog clocksource. */
287		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
288			clocksource_unstable(cs, cs_nsec - wd_nsec);
 
 
 
 
 
 
289			continue;
290		}
291
 
 
 
292		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
293		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
294		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 
295			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 
296			/*
297			 * We just marked the clocksource as highres-capable,
298			 * notify the rest of the system as well so that we
299			 * transition into high-res mode:
300			 */
301			tick_clock_notify();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302		}
303	}
304
305	/*
 
 
 
 
 
 
 
306	 * Cycle through CPUs to check if the CPUs stay synchronized
307	 * to each other.
308	 */
309	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
310	if (next_cpu >= nr_cpu_ids)
311		next_cpu = cpumask_first(cpu_online_mask);
312	watchdog_timer.expires += WATCHDOG_INTERVAL;
313	add_timer_on(&watchdog_timer, next_cpu);
 
 
 
 
 
 
 
314out:
315	spin_unlock(&watchdog_lock);
316}
317
318static inline void clocksource_start_watchdog(void)
319{
320	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
321		return;
322	init_timer(&watchdog_timer);
323	watchdog_timer.function = clocksource_watchdog;
324	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
325	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
326	watchdog_running = 1;
327}
328
329static inline void clocksource_stop_watchdog(void)
330{
331	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
332		return;
333	del_timer(&watchdog_timer);
334	watchdog_running = 0;
335}
336
337static inline void clocksource_reset_watchdog(void)
338{
339	struct clocksource *cs;
340
341	list_for_each_entry(cs, &watchdog_list, wd_list)
342		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
343}
344
345static void clocksource_resume_watchdog(void)
346{
347	unsigned long flags;
348
349	/*
350	 * We use trylock here to avoid a potential dead lock when
351	 * kgdb calls this code after the kernel has been stopped with
352	 * watchdog_lock held. When watchdog_lock is held we just
353	 * return and accept, that the watchdog might trigger and mark
354	 * the monitored clock source (usually TSC) unstable.
355	 *
356	 * This does not affect the other caller clocksource_resume()
357	 * because at this point the kernel is UP, interrupts are
358	 * disabled and nothing can hold watchdog_lock.
359	 */
360	if (!spin_trylock_irqsave(&watchdog_lock, flags))
361		return;
362	clocksource_reset_watchdog();
363	spin_unlock_irqrestore(&watchdog_lock, flags);
364}
365
366static void clocksource_enqueue_watchdog(struct clocksource *cs)
367{
368	unsigned long flags;
369
370	spin_lock_irqsave(&watchdog_lock, flags);
371	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
372		/* cs is a clocksource to be watched. */
373		list_add(&cs->wd_list, &watchdog_list);
374		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
375	} else {
376		/* cs is a watchdog. */
377		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
378			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379		/* Pick the best watchdog. */
380		if (!watchdog || cs->rating > watchdog->rating) {
381			watchdog = cs;
382			/* Reset watchdog cycles */
383			clocksource_reset_watchdog();
384		}
385	}
 
 
 
 
 
 
 
 
386	/* Check if the watchdog timer needs to be started. */
387	clocksource_start_watchdog();
388	spin_unlock_irqrestore(&watchdog_lock, flags);
389}
390
391static void clocksource_dequeue_watchdog(struct clocksource *cs)
392{
393	struct clocksource *tmp;
394	unsigned long flags;
395
396	spin_lock_irqsave(&watchdog_lock, flags);
397	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
398		/* cs is a watched clocksource. */
399		list_del_init(&cs->wd_list);
400	} else if (cs == watchdog) {
401		/* Reset watchdog cycles */
402		clocksource_reset_watchdog();
403		/* Current watchdog is removed. Find an alternative. */
404		watchdog = NULL;
405		list_for_each_entry(tmp, &clocksource_list, list) {
406			if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
407				continue;
408			if (!watchdog || tmp->rating > watchdog->rating)
409				watchdog = tmp;
410		}
411	}
412	cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
413	/* Check if the watchdog timer needs to be stopped. */
414	clocksource_stop_watchdog();
415	spin_unlock_irqrestore(&watchdog_lock, flags);
416}
417
418static int clocksource_watchdog_kthread(void *data)
419{
420	struct clocksource *cs, *tmp;
421	unsigned long flags;
422	LIST_HEAD(unstable);
423
424	mutex_lock(&clocksource_mutex);
425	spin_lock_irqsave(&watchdog_lock, flags);
426	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
427		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
428			list_del_init(&cs->wd_list);
429			list_add(&cs->wd_list, &unstable);
 
 
 
 
 
430		}
 
431	/* Check if the watchdog timer needs to be stopped. */
432	clocksource_stop_watchdog();
433	spin_unlock_irqrestore(&watchdog_lock, flags);
434
435	/* Needs to be done outside of watchdog lock */
436	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
437		list_del_init(&cs->wd_list);
438		__clocksource_change_rating(cs, 0);
439	}
 
 
 
440	mutex_unlock(&clocksource_mutex);
441	return 0;
442}
443
 
 
 
 
 
444#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
445
446static void clocksource_enqueue_watchdog(struct clocksource *cs)
447{
448	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
449		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
450}
451
 
452static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
453static inline void clocksource_resume_watchdog(void) { }
454static inline int clocksource_watchdog_kthread(void *data) { return 0; }
 
 
 
 
 
455
456#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458/**
459 * clocksource_suspend - suspend the clocksource(s)
460 */
461void clocksource_suspend(void)
462{
463	struct clocksource *cs;
464
465	list_for_each_entry_reverse(cs, &clocksource_list, list)
466		if (cs->suspend)
467			cs->suspend(cs);
468}
469
470/**
471 * clocksource_resume - resume the clocksource(s)
472 */
473void clocksource_resume(void)
474{
475	struct clocksource *cs;
476
477	list_for_each_entry(cs, &clocksource_list, list)
478		if (cs->resume)
479			cs->resume(cs);
480
481	clocksource_resume_watchdog();
482}
483
484/**
485 * clocksource_touch_watchdog - Update watchdog
486 *
487 * Update the watchdog after exception contexts such as kgdb so as not
488 * to incorrectly trip the watchdog. This might fail when the kernel
489 * was stopped in code which holds watchdog_lock.
490 */
491void clocksource_touch_watchdog(void)
492{
493	clocksource_resume_watchdog();
494}
495
496/**
497 * clocksource_max_deferment - Returns max time the clocksource can be deferred
498 * @cs:         Pointer to clocksource
499 *
500 */
501static u64 clocksource_max_deferment(struct clocksource *cs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502{
503	u64 max_nsecs, max_cycles;
504
505	/*
506	 * Calculate the maximum number of cycles that we can pass to the
507	 * cyc2ns function without overflowing a 64-bit signed result. The
508	 * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
509	 * is equivalent to the below.
510	 * max_cycles < (2^63)/cs->mult
511	 * max_cycles < 2^(log2((2^63)/cs->mult))
512	 * max_cycles < 2^(log2(2^63) - log2(cs->mult))
513	 * max_cycles < 2^(63 - log2(cs->mult))
514	 * max_cycles < 1 << (63 - log2(cs->mult))
515	 * Please note that we add 1 to the result of the log2 to account for
516	 * any rounding errors, ensure the above inequality is satisfied and
517	 * no overflow will occur.
518	 */
519	max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));
 
520
521	/*
522	 * The actual maximum number of cycles we can defer the clocksource is
523	 * determined by the minimum of max_cycles and cs->mask.
 
 
524	 */
525	max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
526	max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);
527
528	/*
529	 * To ensure that the clocksource does not wrap whilst we are idle,
530	 * limit the time the clocksource can be deferred by 12.5%. Please
531	 * note a margin of 12.5% is used because this can be computed with
532	 * a shift, versus say 10% which would require division.
533	 */
534	return max_nsecs - (max_nsecs >> 5);
535}
536
537#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 
 
 
 
538
539/**
540 * clocksource_select - Select the best clocksource available
 
541 *
542 * Private function. Must hold clocksource_mutex when called.
543 *
544 * Select the clocksource with the best rating, or the clocksource,
545 * which is selected by userspace override.
546 */
547static void clocksource_select(void)
548{
549	struct clocksource *best, *cs;
 
 
 
 
 
 
 
 
 
550
551	if (!finished_booting || list_empty(&clocksource_list))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552		return;
553	/* First clocksource on the list has the best rating. */
554	best = list_first_entry(&clocksource_list, struct clocksource, list);
 
 
555	/* Check for the override clocksource. */
556	list_for_each_entry(cs, &clocksource_list, list) {
 
 
557		if (strcmp(cs->name, override_name) != 0)
558			continue;
559		/*
560		 * Check to make sure we don't switch to a non-highres
561		 * capable clocksource if the tick code is in oneshot
562		 * mode (highres or nohz)
563		 */
564		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
565		    tick_oneshot_mode_active()) {
566			/* Override clocksource cannot be used. */
567			printk(KERN_WARNING "Override clocksource %s is not "
568			       "HRT compatible. Cannot switch while in "
569			       "HRT/NOHZ mode\n", cs->name);
570			override_name[0] = 0;
 
 
 
 
 
 
 
 
571		} else
572			/* Override clocksource can be used. */
573			best = cs;
574		break;
575	}
576	if (curr_clocksource != best) {
577		printk(KERN_INFO "Switching to clocksource %s\n", best->name);
 
 
578		curr_clocksource = best;
579		timekeeping_notify(curr_clocksource);
580	}
581}
582
583#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
584
 
585static inline void clocksource_select(void) { }
 
586
587#endif
588
589/*
590 * clocksource_done_booting - Called near the end of core bootup
591 *
592 * Hack to avoid lots of clocksource churn at boot time.
593 * We use fs_initcall because we want this to start before
594 * device_initcall but after subsys_initcall.
595 */
596static int __init clocksource_done_booting(void)
597{
598	mutex_lock(&clocksource_mutex);
599	curr_clocksource = clocksource_default_clock();
600	mutex_unlock(&clocksource_mutex);
601
602	finished_booting = 1;
603
604	/*
605	 * Run the watchdog first to eliminate unstable clock sources
606	 */
607	clocksource_watchdog_kthread(NULL);
608
609	mutex_lock(&clocksource_mutex);
610	clocksource_select();
611	mutex_unlock(&clocksource_mutex);
612	return 0;
613}
614fs_initcall(clocksource_done_booting);
615
616/*
617 * Enqueue the clocksource sorted by rating
618 */
619static void clocksource_enqueue(struct clocksource *cs)
620{
621	struct list_head *entry = &clocksource_list;
622	struct clocksource *tmp;
623
624	list_for_each_entry(tmp, &clocksource_list, list)
625		/* Keep track of the place, where to insert */
626		if (tmp->rating >= cs->rating)
627			entry = &tmp->list;
 
 
628	list_add(&cs->list, entry);
629}
630
631/**
632 * __clocksource_updatefreq_scale - Used update clocksource with new freq
633 * @t:		clocksource to be registered
634 * @scale:	Scale factor multiplied against freq to get clocksource hz
635 * @freq:	clocksource frequency (cycles per second) divided by scale
636 *
637 * This should only be called from the clocksource->enable() method.
638 *
639 * This *SHOULD NOT* be called directly! Please use the
640 * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
 
641 */
642void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
643{
644	u64 sec;
645
646	/*
647	 * Calc the maximum number of seconds which we can run before
648	 * wrapping around. For clocksources which have a mask > 32bit
649	 * we need to limit the max sleep time to have a good
650	 * conversion precision. 10 minutes is still a reasonable
651	 * amount. That results in a shift value of 24 for a
652	 * clocksource with mask >= 40bit and f >= 4GHz. That maps to
653	 * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
654	 * margin as we do in clocksource_max_deferment()
655	 */
656	sec = (cs->mask - (cs->mask >> 5));
657	do_div(sec, freq);
658	do_div(sec, scale);
659	if (!sec)
660		sec = 1;
661	else if (sec > 600 && cs->mask > UINT_MAX)
662		sec = 600;
663
664	clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
665			       NSEC_PER_SEC / scale, sec * scale);
666	cs->max_idle_ns = clocksource_max_deferment(cs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
667}
668EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
669
670/**
671 * __clocksource_register_scale - Used to install new clocksources
672 * @t:		clocksource to be registered
673 * @scale:	Scale factor multiplied against freq to get clocksource hz
674 * @freq:	clocksource frequency (cycles per second) divided by scale
675 *
676 * Returns -EBUSY if registration fails, zero otherwise.
677 *
678 * This *SHOULD NOT* be called directly! Please use the
679 * clocksource_register_hz() or clocksource_register_khz helper functions.
680 */
681int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
682{
 
683
684	/* Initialize mult/shift and max_idle_ns */
685	__clocksource_updatefreq_scale(cs, scale, freq);
686
687	/* Add clocksource to the clcoksource list */
688	mutex_lock(&clocksource_mutex);
689	clocksource_enqueue(cs);
690	clocksource_enqueue_watchdog(cs);
691	clocksource_select();
692	mutex_unlock(&clocksource_mutex);
693	return 0;
694}
695EXPORT_SYMBOL_GPL(__clocksource_register_scale);
696
 
 
 
 
 
 
697
698/**
699 * clocksource_register - Used to install new clocksources
700 * @t:		clocksource to be registered
701 *
702 * Returns -EBUSY if registration fails, zero otherwise.
703 */
704int clocksource_register(struct clocksource *cs)
705{
706	/* calculate max idle time permitted for this clocksource */
707	cs->max_idle_ns = clocksource_max_deferment(cs);
708
 
709	mutex_lock(&clocksource_mutex);
 
 
710	clocksource_enqueue(cs);
711	clocksource_enqueue_watchdog(cs);
 
 
712	clocksource_select();
 
 
713	mutex_unlock(&clocksource_mutex);
714	return 0;
715}
716EXPORT_SYMBOL(clocksource_register);
717
718static void __clocksource_change_rating(struct clocksource *cs, int rating)
719{
720	list_del(&cs->list);
721	cs->rating = rating;
722	clocksource_enqueue(cs);
723	clocksource_select();
724}
725
726/**
727 * clocksource_change_rating - Change the rating of a registered clocksource
 
 
728 */
729void clocksource_change_rating(struct clocksource *cs, int rating)
730{
 
 
731	mutex_lock(&clocksource_mutex);
 
732	__clocksource_change_rating(cs, rating);
 
 
 
 
 
733	mutex_unlock(&clocksource_mutex);
734}
735EXPORT_SYMBOL(clocksource_change_rating);
736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737/**
738 * clocksource_unregister - remove a registered clocksource
 
739 */
740void clocksource_unregister(struct clocksource *cs)
741{
 
 
742	mutex_lock(&clocksource_mutex);
743	clocksource_dequeue_watchdog(cs);
744	list_del(&cs->list);
745	clocksource_select();
746	mutex_unlock(&clocksource_mutex);
 
747}
748EXPORT_SYMBOL(clocksource_unregister);
749
750#ifdef CONFIG_SYSFS
751/**
752 * sysfs_show_current_clocksources - sysfs interface for current clocksource
753 * @dev:	unused
 
754 * @buf:	char buffer to be filled with clocksource list
755 *
756 * Provides sysfs interface for listing current clocksource.
757 */
758static ssize_t
759sysfs_show_current_clocksources(struct sys_device *dev,
760				struct sysdev_attribute *attr, char *buf)
761{
762	ssize_t count = 0;
763
764	mutex_lock(&clocksource_mutex);
765	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
766	mutex_unlock(&clocksource_mutex);
767
768	return count;
769}
770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
771/**
772 * sysfs_override_clocksource - interface for manually overriding clocksource
773 * @dev:	unused
 
774 * @buf:	name of override clocksource
775 * @count:	length of buffer
776 *
777 * Takes input from sysfs interface for manually overriding the default
778 * clocksource selection.
779 */
780static ssize_t sysfs_override_clocksource(struct sys_device *dev,
781					  struct sysdev_attribute *attr,
782					  const char *buf, size_t count)
783{
784	size_t ret = count;
785
786	/* strings from sysfs write are not 0 terminated! */
787	if (count >= sizeof(override_name))
788		return -EINVAL;
789
790	/* strip of \n: */
791	if (buf[count-1] == '\n')
792		count--;
793
794	mutex_lock(&clocksource_mutex);
795
796	if (count > 0)
797		memcpy(override_name, buf, count);
798	override_name[count] = 0;
799	clocksource_select();
800
801	mutex_unlock(&clocksource_mutex);
802
803	return ret;
804}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805
806/**
807 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
808 * @dev:	unused
 
809 * @buf:	char buffer to be filled with clocksource list
810 *
811 * Provides sysfs interface for listing registered clocksources
812 */
813static ssize_t
814sysfs_show_available_clocksources(struct sys_device *dev,
815				  struct sysdev_attribute *attr,
816				  char *buf)
817{
818	struct clocksource *src;
819	ssize_t count = 0;
820
821	mutex_lock(&clocksource_mutex);
822	list_for_each_entry(src, &clocksource_list, list) {
823		/*
824		 * Don't show non-HRES clocksource if the tick code is
825		 * in one shot mode (highres=on or nohz=on)
826		 */
827		if (!tick_oneshot_mode_active() ||
828		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
829			count += snprintf(buf + count,
830				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
831				  "%s ", src->name);
832	}
833	mutex_unlock(&clocksource_mutex);
834
835	count += snprintf(buf + count,
836			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
837
838	return count;
839}
 
840
841/*
842 * Sysfs setup bits:
843 */
844static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
845		   sysfs_override_clocksource);
846
847static SYSDEV_ATTR(available_clocksource, 0444,
848		   sysfs_show_available_clocksources, NULL);
849
850static struct sysdev_class clocksource_sysclass = {
851	.name = "clocksource",
 
852};
853
854static struct sys_device device_clocksource = {
855	.id	= 0,
856	.cls	= &clocksource_sysclass,
 
857};
858
859static int __init init_clocksource_sysfs(void)
860{
861	int error = sysdev_class_register(&clocksource_sysclass);
862
863	if (!error)
864		error = sysdev_register(&device_clocksource);
865	if (!error)
866		error = sysdev_create_file(
867				&device_clocksource,
868				&attr_current_clocksource);
869	if (!error)
870		error = sysdev_create_file(
871				&device_clocksource,
872				&attr_available_clocksource);
873	return error;
874}
875
876device_initcall(init_clocksource_sysfs);
877#endif /* CONFIG_SYSFS */
878
879/**
880 * boot_override_clocksource - boot clock override
881 * @str:	override name
882 *
883 * Takes a clocksource= boot argument and uses it
884 * as the clocksource override name.
885 */
886static int __init boot_override_clocksource(char* str)
887{
888	mutex_lock(&clocksource_mutex);
889	if (str)
890		strlcpy(override_name, str, sizeof(override_name));
891	mutex_unlock(&clocksource_mutex);
892	return 1;
893}
894
895__setup("clocksource=", boot_override_clocksource);
896
897/**
898 * boot_override_clock - Compatibility layer for deprecated boot option
899 * @str:	override name
900 *
901 * DEPRECATED! Takes a clock= boot argument and uses it
902 * as the clocksource override name
903 */
904static int __init boot_override_clock(char* str)
905{
906	if (!strcmp(str, "pmtmr")) {
907		printk("Warning: clock=pmtmr is deprecated. "
908			"Use clocksource=acpi_pm.\n");
909		return boot_override_clocksource("acpi_pm");
910	}
911	printk("Warning! clock= boot option is deprecated. "
912		"Use clocksource=xyz\n");
913	return boot_override_clocksource(str);
914}
915
916__setup("clock=", boot_override_clock);
v5.9
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
 
 
   3 * This file contains the functions which manage clocksource drivers.
   4 *
   5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/device.h>
  11#include <linux/clocksource.h>
 
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  15#include <linux/tick.h>
  16#include <linux/kthread.h>
  17
  18#include "tick-internal.h"
  19#include "timekeeping_internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20
  21/**
  22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  23 * @mult:	pointer to mult variable
  24 * @shift:	pointer to shift variable
  25 * @from:	frequency to convert from
  26 * @to:		frequency to convert to
  27 * @maxsec:	guaranteed runtime conversion range in seconds
  28 *
  29 * The function evaluates the shift/mult pair for the scaled math
  30 * operations of clocksources and clockevents.
  31 *
  32 * @to and @from are frequency values in HZ. For clock sources @to is
  33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
  35 *
  36 * The @maxsec conversion range argument controls the time frame in
  37 * seconds which must be covered by the runtime conversion with the
  38 * calculated mult and shift factors. This guarantees that no 64bit
  39 * overflow happens when the input value of the conversion is
  40 * multiplied with the calculated mult factor. Larger ranges may
  41 * reduce the conversion accuracy by chosing smaller mult and shift
  42 * factors.
  43 */
  44void
  45clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  46{
  47	u64 tmp;
  48	u32 sft, sftacc= 32;
  49
  50	/*
  51	 * Calculate the shift factor which is limiting the conversion
  52	 * range:
  53	 */
  54	tmp = ((u64)maxsec * from) >> 32;
  55	while (tmp) {
  56		tmp >>=1;
  57		sftacc--;
  58	}
  59
  60	/*
  61	 * Find the conversion shift/mult pair which has the best
  62	 * accuracy and fits the maxsec conversion range:
  63	 */
  64	for (sft = 32; sft > 0; sft--) {
  65		tmp = (u64) to << sft;
  66		tmp += from / 2;
  67		do_div(tmp, from);
  68		if ((tmp >> sftacc) == 0)
  69			break;
  70	}
  71	*mult = tmp;
  72	*shift = sft;
  73}
  74EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
  75
  76/*[Clocksource internal variables]---------
  77 * curr_clocksource:
  78 *	currently selected clocksource.
  79 * suspend_clocksource:
  80 *	used to calculate the suspend time.
  81 * clocksource_list:
  82 *	linked list with the registered clocksources
  83 * clocksource_mutex:
  84 *	protects manipulations to curr_clocksource and the clocksource_list
  85 * override_name:
  86 *	Name of the user-specified clocksource.
  87 */
  88static struct clocksource *curr_clocksource;
  89static struct clocksource *suspend_clocksource;
  90static LIST_HEAD(clocksource_list);
  91static DEFINE_MUTEX(clocksource_mutex);
  92static char override_name[CS_NAME_LEN];
  93static int finished_booting;
  94static u64 suspend_start;
  95
  96#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
  97static void clocksource_watchdog_work(struct work_struct *work);
  98static void clocksource_select(void);
  99
 100static LIST_HEAD(watchdog_list);
 101static struct clocksource *watchdog;
 102static struct timer_list watchdog_timer;
 103static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
 104static DEFINE_SPINLOCK(watchdog_lock);
 105static int watchdog_running;
 106static atomic_t watchdog_reset_pending;
 107
 108static inline void clocksource_watchdog_lock(unsigned long *flags)
 109{
 110	spin_lock_irqsave(&watchdog_lock, *flags);
 111}
 112
 113static inline void clocksource_watchdog_unlock(unsigned long *flags)
 114{
 115	spin_unlock_irqrestore(&watchdog_lock, *flags);
 116}
 117
 118static int clocksource_watchdog_kthread(void *data);
 119static void __clocksource_change_rating(struct clocksource *cs, int rating);
 120
 121/*
 122 * Interval: 0.5sec Threshold: 0.0625s
 123 */
 124#define WATCHDOG_INTERVAL (HZ >> 1)
 125#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
 126
 127static void clocksource_watchdog_work(struct work_struct *work)
 128{
 129	/*
 130	 * We cannot directly run clocksource_watchdog_kthread() here, because
 131	 * clocksource_select() calls timekeeping_notify() which uses
 132	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
 133	 * lock inversions wrt CPU hotplug.
 134	 *
 135	 * Also, we only ever run this work once or twice during the lifetime
 136	 * of the kernel, so there is no point in creating a more permanent
 137	 * kthread for this.
 138	 *
 139	 * If kthread_run fails the next watchdog scan over the
 140	 * watchdog_list will find the unstable clock again.
 141	 */
 142	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
 143}
 144
 145static void __clocksource_unstable(struct clocksource *cs)
 146{
 147	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
 148	cs->flags |= CLOCK_SOURCE_UNSTABLE;
 149
 150	/*
 151	 * If the clocksource is registered clocksource_watchdog_kthread() will
 152	 * re-rate and re-select.
 153	 */
 154	if (list_empty(&cs->list)) {
 155		cs->rating = 0;
 156		return;
 157	}
 158
 159	if (cs->mark_unstable)
 160		cs->mark_unstable(cs);
 161
 162	/* kick clocksource_watchdog_kthread() */
 163	if (finished_booting)
 164		schedule_work(&watchdog_work);
 165}
 166
 
 
 
 
 
 
 
 167/**
 168 * clocksource_mark_unstable - mark clocksource unstable via watchdog
 169 * @cs:		clocksource to be marked unstable
 170 *
 171 * This function is called by the x86 TSC code to mark clocksources as unstable;
 172 * it defers demotion and re-selection to a kthread.
 
 
 173 */
 174void clocksource_mark_unstable(struct clocksource *cs)
 175{
 176	unsigned long flags;
 177
 178	spin_lock_irqsave(&watchdog_lock, flags);
 179	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
 180		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
 181			list_add(&cs->wd_list, &watchdog_list);
 182		__clocksource_unstable(cs);
 183	}
 184	spin_unlock_irqrestore(&watchdog_lock, flags);
 185}
 186
 187static void clocksource_watchdog(struct timer_list *unused)
 188{
 189	struct clocksource *cs;
 190	u64 csnow, wdnow, cslast, wdlast, delta;
 191	int64_t wd_nsec, cs_nsec;
 192	int next_cpu, reset_pending;
 193
 194	spin_lock(&watchdog_lock);
 195	if (!watchdog_running)
 196		goto out;
 197
 198	reset_pending = atomic_read(&watchdog_reset_pending);
 199
 200	list_for_each_entry(cs, &watchdog_list, wd_list) {
 201
 202		/* Clocksource already marked unstable? */
 203		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 204			if (finished_booting)
 205				schedule_work(&watchdog_work);
 206			continue;
 207		}
 208
 209		local_irq_disable();
 210		csnow = cs->read(cs);
 211		wdnow = watchdog->read(watchdog);
 212		local_irq_enable();
 213
 214		/* Clocksource initialized ? */
 215		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
 216		    atomic_read(&watchdog_reset_pending)) {
 217			cs->flags |= CLOCK_SOURCE_WATCHDOG;
 218			cs->wd_last = wdnow;
 219			cs->cs_last = csnow;
 220			continue;
 221		}
 222
 223		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
 224		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
 225					     watchdog->shift);
 226
 227		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
 228		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
 229		wdlast = cs->wd_last; /* save these in case we print them */
 230		cslast = cs->cs_last;
 231		cs->cs_last = csnow;
 232		cs->wd_last = wdnow;
 233
 234		if (atomic_read(&watchdog_reset_pending))
 235			continue;
 236
 237		/* Check the deviation from the watchdog clocksource. */
 238		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
 239			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
 240				smp_processor_id(), cs->name);
 241			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
 242				watchdog->name, wdnow, wdlast, watchdog->mask);
 243			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
 244				cs->name, csnow, cslast, cs->mask);
 245			__clocksource_unstable(cs);
 246			continue;
 247		}
 248
 249		if (cs == curr_clocksource && cs->tick_stable)
 250			cs->tick_stable(cs);
 251
 252		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
 253		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
 254		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
 255			/* Mark it valid for high-res. */
 256			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 257
 258			/*
 259			 * clocksource_done_booting() will sort it if
 260			 * finished_booting is not set yet.
 
 261			 */
 262			if (!finished_booting)
 263				continue;
 264
 265			/*
 266			 * If this is not the current clocksource let
 267			 * the watchdog thread reselect it. Due to the
 268			 * change to high res this clocksource might
 269			 * be preferred now. If it is the current
 270			 * clocksource let the tick code know about
 271			 * that change.
 272			 */
 273			if (cs != curr_clocksource) {
 274				cs->flags |= CLOCK_SOURCE_RESELECT;
 275				schedule_work(&watchdog_work);
 276			} else {
 277				tick_clock_notify();
 278			}
 279		}
 280	}
 281
 282	/*
 283	 * We only clear the watchdog_reset_pending, when we did a
 284	 * full cycle through all clocksources.
 285	 */
 286	if (reset_pending)
 287		atomic_dec(&watchdog_reset_pending);
 288
 289	/*
 290	 * Cycle through CPUs to check if the CPUs stay synchronized
 291	 * to each other.
 292	 */
 293	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
 294	if (next_cpu >= nr_cpu_ids)
 295		next_cpu = cpumask_first(cpu_online_mask);
 296
 297	/*
 298	 * Arm timer if not already pending: could race with concurrent
 299	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
 300	 */
 301	if (!timer_pending(&watchdog_timer)) {
 302		watchdog_timer.expires += WATCHDOG_INTERVAL;
 303		add_timer_on(&watchdog_timer, next_cpu);
 304	}
 305out:
 306	spin_unlock(&watchdog_lock);
 307}
 308
 309static inline void clocksource_start_watchdog(void)
 310{
 311	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
 312		return;
 313	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
 
 314	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
 315	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
 316	watchdog_running = 1;
 317}
 318
 319static inline void clocksource_stop_watchdog(void)
 320{
 321	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
 322		return;
 323	del_timer(&watchdog_timer);
 324	watchdog_running = 0;
 325}
 326
 327static inline void clocksource_reset_watchdog(void)
 328{
 329	struct clocksource *cs;
 330
 331	list_for_each_entry(cs, &watchdog_list, wd_list)
 332		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 333}
 334
 335static void clocksource_resume_watchdog(void)
 336{
 337	atomic_inc(&watchdog_reset_pending);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338}
 339
 340static void clocksource_enqueue_watchdog(struct clocksource *cs)
 341{
 342	INIT_LIST_HEAD(&cs->wd_list);
 343
 
 344	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 345		/* cs is a clocksource to be watched. */
 346		list_add(&cs->wd_list, &watchdog_list);
 347		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
 348	} else {
 349		/* cs is a watchdog. */
 350		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 351			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 352	}
 353}
 354
 355static void clocksource_select_watchdog(bool fallback)
 356{
 357	struct clocksource *cs, *old_wd;
 358	unsigned long flags;
 359
 360	spin_lock_irqsave(&watchdog_lock, flags);
 361	/* save current watchdog */
 362	old_wd = watchdog;
 363	if (fallback)
 364		watchdog = NULL;
 365
 366	list_for_each_entry(cs, &clocksource_list, list) {
 367		/* cs is a clocksource to be watched. */
 368		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
 369			continue;
 370
 371		/* Skip current if we were requested for a fallback. */
 372		if (fallback && cs == old_wd)
 373			continue;
 374
 375		/* Pick the best watchdog. */
 376		if (!watchdog || cs->rating > watchdog->rating)
 377			watchdog = cs;
 
 
 
 378	}
 379	/* If we failed to find a fallback restore the old one. */
 380	if (!watchdog)
 381		watchdog = old_wd;
 382
 383	/* If we changed the watchdog we need to reset cycles. */
 384	if (watchdog != old_wd)
 385		clocksource_reset_watchdog();
 386
 387	/* Check if the watchdog timer needs to be started. */
 388	clocksource_start_watchdog();
 389	spin_unlock_irqrestore(&watchdog_lock, flags);
 390}
 391
 392static void clocksource_dequeue_watchdog(struct clocksource *cs)
 393{
 394	if (cs != watchdog) {
 395		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
 396			/* cs is a watched clocksource. */
 397			list_del_init(&cs->wd_list);
 398			/* Check if the watchdog timer needs to be stopped. */
 399			clocksource_stop_watchdog();
 
 
 
 
 
 
 
 
 
 
 
 400		}
 401	}
 
 
 
 
 402}
 403
 404static int __clocksource_watchdog_kthread(void)
 405{
 406	struct clocksource *cs, *tmp;
 407	unsigned long flags;
 408	int select = 0;
 409
 
 410	spin_lock_irqsave(&watchdog_lock, flags);
 411	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
 412		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 413			list_del_init(&cs->wd_list);
 414			__clocksource_change_rating(cs, 0);
 415			select = 1;
 416		}
 417		if (cs->flags & CLOCK_SOURCE_RESELECT) {
 418			cs->flags &= ~CLOCK_SOURCE_RESELECT;
 419			select = 1;
 420		}
 421	}
 422	/* Check if the watchdog timer needs to be stopped. */
 423	clocksource_stop_watchdog();
 424	spin_unlock_irqrestore(&watchdog_lock, flags);
 425
 426	return select;
 427}
 428
 429static int clocksource_watchdog_kthread(void *data)
 430{
 431	mutex_lock(&clocksource_mutex);
 432	if (__clocksource_watchdog_kthread())
 433		clocksource_select();
 434	mutex_unlock(&clocksource_mutex);
 435	return 0;
 436}
 437
 438static bool clocksource_is_watchdog(struct clocksource *cs)
 439{
 440	return cs == watchdog;
 441}
 442
 443#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
 444
 445static void clocksource_enqueue_watchdog(struct clocksource *cs)
 446{
 447	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
 448		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
 449}
 450
 451static void clocksource_select_watchdog(bool fallback) { }
 452static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
 453static inline void clocksource_resume_watchdog(void) { }
 454static inline int __clocksource_watchdog_kthread(void) { return 0; }
 455static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
 456void clocksource_mark_unstable(struct clocksource *cs) { }
 457
 458static inline void clocksource_watchdog_lock(unsigned long *flags) { }
 459static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
 460
 461#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
 462
 463static bool clocksource_is_suspend(struct clocksource *cs)
 464{
 465	return cs == suspend_clocksource;
 466}
 467
 468static void __clocksource_suspend_select(struct clocksource *cs)
 469{
 470	/*
 471	 * Skip the clocksource which will be stopped in suspend state.
 472	 */
 473	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
 474		return;
 475
 476	/*
 477	 * The nonstop clocksource can be selected as the suspend clocksource to
 478	 * calculate the suspend time, so it should not supply suspend/resume
 479	 * interfaces to suspend the nonstop clocksource when system suspends.
 480	 */
 481	if (cs->suspend || cs->resume) {
 482		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
 483			cs->name);
 484	}
 485
 486	/* Pick the best rating. */
 487	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
 488		suspend_clocksource = cs;
 489}
 490
 491/**
 492 * clocksource_suspend_select - Select the best clocksource for suspend timing
 493 * @fallback:	if select a fallback clocksource
 494 */
 495static void clocksource_suspend_select(bool fallback)
 496{
 497	struct clocksource *cs, *old_suspend;
 498
 499	old_suspend = suspend_clocksource;
 500	if (fallback)
 501		suspend_clocksource = NULL;
 502
 503	list_for_each_entry(cs, &clocksource_list, list) {
 504		/* Skip current if we were requested for a fallback. */
 505		if (fallback && cs == old_suspend)
 506			continue;
 507
 508		__clocksource_suspend_select(cs);
 509	}
 510}
 511
 512/**
 513 * clocksource_start_suspend_timing - Start measuring the suspend timing
 514 * @cs:			current clocksource from timekeeping
 515 * @start_cycles:	current cycles from timekeeping
 516 *
 517 * This function will save the start cycle values of suspend timer to calculate
 518 * the suspend time when resuming system.
 519 *
 520 * This function is called late in the suspend process from timekeeping_suspend(),
 521 * that means processes are freezed, non-boot cpus and interrupts are disabled
 522 * now. It is therefore possible to start the suspend timer without taking the
 523 * clocksource mutex.
 524 */
 525void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
 526{
 527	if (!suspend_clocksource)
 528		return;
 529
 530	/*
 531	 * If current clocksource is the suspend timer, we should use the
 532	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
 533	 * from suspend timer.
 534	 */
 535	if (clocksource_is_suspend(cs)) {
 536		suspend_start = start_cycles;
 537		return;
 538	}
 539
 540	if (suspend_clocksource->enable &&
 541	    suspend_clocksource->enable(suspend_clocksource)) {
 542		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
 543		return;
 544	}
 545
 546	suspend_start = suspend_clocksource->read(suspend_clocksource);
 547}
 548
 549/**
 550 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
 551 * @cs:		current clocksource from timekeeping
 552 * @cycle_now:	current cycles from timekeeping
 553 *
 554 * This function will calculate the suspend time from suspend timer.
 555 *
 556 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
 557 *
 558 * This function is called early in the resume process from timekeeping_resume(),
 559 * that means there is only one cpu, no processes are running and the interrupts
 560 * are disabled. It is therefore possible to stop the suspend timer without
 561 * taking the clocksource mutex.
 562 */
 563u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
 564{
 565	u64 now, delta, nsec = 0;
 566
 567	if (!suspend_clocksource)
 568		return 0;
 569
 570	/*
 571	 * If current clocksource is the suspend timer, we should use the
 572	 * tkr_mono.cycle_last value from timekeeping as current cycle to
 573	 * avoid same reading from suspend timer.
 574	 */
 575	if (clocksource_is_suspend(cs))
 576		now = cycle_now;
 577	else
 578		now = suspend_clocksource->read(suspend_clocksource);
 579
 580	if (now > suspend_start) {
 581		delta = clocksource_delta(now, suspend_start,
 582					  suspend_clocksource->mask);
 583		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
 584				       suspend_clocksource->shift);
 585	}
 586
 587	/*
 588	 * Disable the suspend timer to save power if current clocksource is
 589	 * not the suspend timer.
 590	 */
 591	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
 592		suspend_clocksource->disable(suspend_clocksource);
 593
 594	return nsec;
 595}
 596
 597/**
 598 * clocksource_suspend - suspend the clocksource(s)
 599 */
 600void clocksource_suspend(void)
 601{
 602	struct clocksource *cs;
 603
 604	list_for_each_entry_reverse(cs, &clocksource_list, list)
 605		if (cs->suspend)
 606			cs->suspend(cs);
 607}
 608
 609/**
 610 * clocksource_resume - resume the clocksource(s)
 611 */
 612void clocksource_resume(void)
 613{
 614	struct clocksource *cs;
 615
 616	list_for_each_entry(cs, &clocksource_list, list)
 617		if (cs->resume)
 618			cs->resume(cs);
 619
 620	clocksource_resume_watchdog();
 621}
 622
 623/**
 624 * clocksource_touch_watchdog - Update watchdog
 625 *
 626 * Update the watchdog after exception contexts such as kgdb so as not
 627 * to incorrectly trip the watchdog. This might fail when the kernel
 628 * was stopped in code which holds watchdog_lock.
 629 */
 630void clocksource_touch_watchdog(void)
 631{
 632	clocksource_resume_watchdog();
 633}
 634
 635/**
 636 * clocksource_max_adjustment- Returns max adjustment amount
 637 * @cs:         Pointer to clocksource
 638 *
 639 */
 640static u32 clocksource_max_adjustment(struct clocksource *cs)
 641{
 642	u64 ret;
 643	/*
 644	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
 645	 */
 646	ret = (u64)cs->mult * 11;
 647	do_div(ret,100);
 648	return (u32)ret;
 649}
 650
 651/**
 652 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
 653 * @mult:	cycle to nanosecond multiplier
 654 * @shift:	cycle to nanosecond divisor (power of two)
 655 * @maxadj:	maximum adjustment value to mult (~11%)
 656 * @mask:	bitmask for two's complement subtraction of non 64 bit counters
 657 * @max_cyc:	maximum cycle value before potential overflow (does not include
 658 *		any safety margin)
 659 *
 660 * NOTE: This function includes a safety margin of 50%, in other words, we
 661 * return half the number of nanoseconds the hardware counter can technically
 662 * cover. This is done so that we can potentially detect problems caused by
 663 * delayed timers or bad hardware, which might result in time intervals that
 664 * are larger than what the math used can handle without overflows.
 665 */
 666u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
 667{
 668	u64 max_nsecs, max_cycles;
 669
 670	/*
 671	 * Calculate the maximum number of cycles that we can pass to the
 672	 * cyc2ns() function without overflowing a 64-bit result.
 
 
 
 
 
 
 
 
 
 
 673	 */
 674	max_cycles = ULLONG_MAX;
 675	do_div(max_cycles, mult+maxadj);
 676
 677	/*
 678	 * The actual maximum number of cycles we can defer the clocksource is
 679	 * determined by the minimum of max_cycles and mask.
 680	 * Note: Here we subtract the maxadj to make sure we don't sleep for
 681	 * too long if there's a large negative adjustment.
 682	 */
 683	max_cycles = min(max_cycles, mask);
 684	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
 685
 686	/* return the max_cycles value as well if requested */
 687	if (max_cyc)
 688		*max_cyc = max_cycles;
 
 
 
 
 
 689
 690	/* Return 50% of the actual maximum, so we can detect bad values */
 691	max_nsecs >>= 1;
 692
 693	return max_nsecs;
 694}
 695
 696/**
 697 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
 698 * @cs:         Pointer to clocksource to be updated
 699 *
 
 
 
 
 700 */
 701static inline void clocksource_update_max_deferment(struct clocksource *cs)
 702{
 703	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
 704						cs->maxadj, cs->mask,
 705						&cs->max_cycles);
 706}
 707
 708#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
 709
 710static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
 711{
 712	struct clocksource *cs;
 713
 714	if (!finished_booting || list_empty(&clocksource_list))
 715		return NULL;
 716
 717	/*
 718	 * We pick the clocksource with the highest rating. If oneshot
 719	 * mode is active, we pick the highres valid clocksource with
 720	 * the best rating.
 721	 */
 722	list_for_each_entry(cs, &clocksource_list, list) {
 723		if (skipcur && cs == curr_clocksource)
 724			continue;
 725		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
 726			continue;
 727		return cs;
 728	}
 729	return NULL;
 730}
 731
 732static void __clocksource_select(bool skipcur)
 733{
 734	bool oneshot = tick_oneshot_mode_active();
 735	struct clocksource *best, *cs;
 736
 737	/* Find the best suitable clocksource */
 738	best = clocksource_find_best(oneshot, skipcur);
 739	if (!best)
 740		return;
 741
 742	if (!strlen(override_name))
 743		goto found;
 744
 745	/* Check for the override clocksource. */
 746	list_for_each_entry(cs, &clocksource_list, list) {
 747		if (skipcur && cs == curr_clocksource)
 748			continue;
 749		if (strcmp(cs->name, override_name) != 0)
 750			continue;
 751		/*
 752		 * Check to make sure we don't switch to a non-highres
 753		 * capable clocksource if the tick code is in oneshot
 754		 * mode (highres or nohz)
 755		 */
 756		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
 
 757			/* Override clocksource cannot be used. */
 758			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
 759				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
 760					cs->name);
 761				override_name[0] = 0;
 762			} else {
 763				/*
 764				 * The override cannot be currently verified.
 765				 * Deferring to let the watchdog check.
 766				 */
 767				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
 768					cs->name);
 769			}
 770		} else
 771			/* Override clocksource can be used. */
 772			best = cs;
 773		break;
 774	}
 775
 776found:
 777	if (curr_clocksource != best && !timekeeping_notify(best)) {
 778		pr_info("Switched to clocksource %s\n", best->name);
 779		curr_clocksource = best;
 
 780	}
 781}
 782
 783/**
 784 * clocksource_select - Select the best clocksource available
 785 *
 786 * Private function. Must hold clocksource_mutex when called.
 787 *
 788 * Select the clocksource with the best rating, or the clocksource,
 789 * which is selected by userspace override.
 790 */
 791static void clocksource_select(void)
 792{
 793	__clocksource_select(false);
 794}
 795
 796static void clocksource_select_fallback(void)
 797{
 798	__clocksource_select(true);
 799}
 800
 801#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
 802static inline void clocksource_select(void) { }
 803static inline void clocksource_select_fallback(void) { }
 804
 805#endif
 806
 807/*
 808 * clocksource_done_booting - Called near the end of core bootup
 809 *
 810 * Hack to avoid lots of clocksource churn at boot time.
 811 * We use fs_initcall because we want this to start before
 812 * device_initcall but after subsys_initcall.
 813 */
 814static int __init clocksource_done_booting(void)
 815{
 816	mutex_lock(&clocksource_mutex);
 817	curr_clocksource = clocksource_default_clock();
 
 
 818	finished_booting = 1;
 
 819	/*
 820	 * Run the watchdog first to eliminate unstable clock sources
 821	 */
 822	__clocksource_watchdog_kthread();
 
 
 823	clocksource_select();
 824	mutex_unlock(&clocksource_mutex);
 825	return 0;
 826}
 827fs_initcall(clocksource_done_booting);
 828
 829/*
 830 * Enqueue the clocksource sorted by rating
 831 */
 832static void clocksource_enqueue(struct clocksource *cs)
 833{
 834	struct list_head *entry = &clocksource_list;
 835	struct clocksource *tmp;
 836
 837	list_for_each_entry(tmp, &clocksource_list, list) {
 838		/* Keep track of the place, where to insert */
 839		if (tmp->rating < cs->rating)
 840			break;
 841		entry = &tmp->list;
 842	}
 843	list_add(&cs->list, entry);
 844}
 845
 846/**
 847 * __clocksource_update_freq_scale - Used update clocksource with new freq
 848 * @cs:		clocksource to be registered
 849 * @scale:	Scale factor multiplied against freq to get clocksource hz
 850 * @freq:	clocksource frequency (cycles per second) divided by scale
 851 *
 852 * This should only be called from the clocksource->enable() method.
 853 *
 854 * This *SHOULD NOT* be called directly! Please use the
 855 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
 856 * functions.
 857 */
 858void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
 859{
 860	u64 sec;
 861
 862	/*
 863	 * Default clocksources are *special* and self-define their mult/shift.
 864	 * But, you're not special, so you should specify a freq value.
 865	 */
 866	if (freq) {
 867		/*
 868		 * Calc the maximum number of seconds which we can run before
 869		 * wrapping around. For clocksources which have a mask > 32-bit
 870		 * we need to limit the max sleep time to have a good
 871		 * conversion precision. 10 minutes is still a reasonable
 872		 * amount. That results in a shift value of 24 for a
 873		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
 874		 * ~ 0.06ppm granularity for NTP.
 875		 */
 876		sec = cs->mask;
 877		do_div(sec, freq);
 878		do_div(sec, scale);
 879		if (!sec)
 880			sec = 1;
 881		else if (sec > 600 && cs->mask > UINT_MAX)
 882			sec = 600;
 883
 884		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
 885				       NSEC_PER_SEC / scale, sec * scale);
 886	}
 887	/*
 888	 * Ensure clocksources that have large 'mult' values don't overflow
 889	 * when adjusted.
 890	 */
 891	cs->maxadj = clocksource_max_adjustment(cs);
 892	while (freq && ((cs->mult + cs->maxadj < cs->mult)
 893		|| (cs->mult - cs->maxadj > cs->mult))) {
 894		cs->mult >>= 1;
 895		cs->shift--;
 896		cs->maxadj = clocksource_max_adjustment(cs);
 897	}
 898
 899	/*
 900	 * Only warn for *special* clocksources that self-define
 901	 * their mult/shift values and don't specify a freq.
 902	 */
 903	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
 904		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
 905		cs->name);
 906
 907	clocksource_update_max_deferment(cs);
 908
 909	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
 910		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
 911}
 912EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
 913
 914/**
 915 * __clocksource_register_scale - Used to install new clocksources
 916 * @cs:		clocksource to be registered
 917 * @scale:	Scale factor multiplied against freq to get clocksource hz
 918 * @freq:	clocksource frequency (cycles per second) divided by scale
 919 *
 920 * Returns -EBUSY if registration fails, zero otherwise.
 921 *
 922 * This *SHOULD NOT* be called directly! Please use the
 923 * clocksource_register_hz() or clocksource_register_khz helper functions.
 924 */
 925int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
 926{
 927	unsigned long flags;
 928
 929	clocksource_arch_init(cs);
 
 
 
 
 
 
 
 
 
 
 
 930
 931	if (cs->vdso_clock_mode < 0 ||
 932	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
 933		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
 934			cs->name, cs->vdso_clock_mode);
 935		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 936	}
 937
 938	/* Initialize mult/shift and max_idle_ns */
 939	__clocksource_update_freq_scale(cs, scale, freq);
 
 
 
 
 
 
 
 
 940
 941	/* Add clocksource to the clocksource list */
 942	mutex_lock(&clocksource_mutex);
 943
 944	clocksource_watchdog_lock(&flags);
 945	clocksource_enqueue(cs);
 946	clocksource_enqueue_watchdog(cs);
 947	clocksource_watchdog_unlock(&flags);
 948
 949	clocksource_select();
 950	clocksource_select_watchdog(false);
 951	__clocksource_suspend_select(cs);
 952	mutex_unlock(&clocksource_mutex);
 953	return 0;
 954}
 955EXPORT_SYMBOL_GPL(__clocksource_register_scale);
 956
 957static void __clocksource_change_rating(struct clocksource *cs, int rating)
 958{
 959	list_del(&cs->list);
 960	cs->rating = rating;
 961	clocksource_enqueue(cs);
 
 962}
 963
 964/**
 965 * clocksource_change_rating - Change the rating of a registered clocksource
 966 * @cs:		clocksource to be changed
 967 * @rating:	new rating
 968 */
 969void clocksource_change_rating(struct clocksource *cs, int rating)
 970{
 971	unsigned long flags;
 972
 973	mutex_lock(&clocksource_mutex);
 974	clocksource_watchdog_lock(&flags);
 975	__clocksource_change_rating(cs, rating);
 976	clocksource_watchdog_unlock(&flags);
 977
 978	clocksource_select();
 979	clocksource_select_watchdog(false);
 980	clocksource_suspend_select(false);
 981	mutex_unlock(&clocksource_mutex);
 982}
 983EXPORT_SYMBOL(clocksource_change_rating);
 984
 985/*
 986 * Unbind clocksource @cs. Called with clocksource_mutex held
 987 */
 988static int clocksource_unbind(struct clocksource *cs)
 989{
 990	unsigned long flags;
 991
 992	if (clocksource_is_watchdog(cs)) {
 993		/* Select and try to install a replacement watchdog. */
 994		clocksource_select_watchdog(true);
 995		if (clocksource_is_watchdog(cs))
 996			return -EBUSY;
 997	}
 998
 999	if (cs == curr_clocksource) {
1000		/* Select and try to install a replacement clock source */
1001		clocksource_select_fallback();
1002		if (curr_clocksource == cs)
1003			return -EBUSY;
1004	}
1005
1006	if (clocksource_is_suspend(cs)) {
1007		/*
1008		 * Select and try to install a replacement suspend clocksource.
1009		 * If no replacement suspend clocksource, we will just let the
1010		 * clocksource go and have no suspend clocksource.
1011		 */
1012		clocksource_suspend_select(true);
1013	}
1014
1015	clocksource_watchdog_lock(&flags);
1016	clocksource_dequeue_watchdog(cs);
1017	list_del_init(&cs->list);
1018	clocksource_watchdog_unlock(&flags);
1019
1020	return 0;
1021}
1022
1023/**
1024 * clocksource_unregister - remove a registered clocksource
1025 * @cs:	clocksource to be unregistered
1026 */
1027int clocksource_unregister(struct clocksource *cs)
1028{
1029	int ret = 0;
1030
1031	mutex_lock(&clocksource_mutex);
1032	if (!list_empty(&cs->list))
1033		ret = clocksource_unbind(cs);
 
1034	mutex_unlock(&clocksource_mutex);
1035	return ret;
1036}
1037EXPORT_SYMBOL(clocksource_unregister);
1038
1039#ifdef CONFIG_SYSFS
1040/**
1041 * current_clocksource_show - sysfs interface for current clocksource
1042 * @dev:	unused
1043 * @attr:	unused
1044 * @buf:	char buffer to be filled with clocksource list
1045 *
1046 * Provides sysfs interface for listing current clocksource.
1047 */
1048static ssize_t current_clocksource_show(struct device *dev,
1049					struct device_attribute *attr,
1050					char *buf)
1051{
1052	ssize_t count = 0;
1053
1054	mutex_lock(&clocksource_mutex);
1055	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1056	mutex_unlock(&clocksource_mutex);
1057
1058	return count;
1059}
1060
1061ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1062{
1063	size_t ret = cnt;
1064
1065	/* strings from sysfs write are not 0 terminated! */
1066	if (!cnt || cnt >= CS_NAME_LEN)
1067		return -EINVAL;
1068
1069	/* strip of \n: */
1070	if (buf[cnt-1] == '\n')
1071		cnt--;
1072	if (cnt > 0)
1073		memcpy(dst, buf, cnt);
1074	dst[cnt] = 0;
1075	return ret;
1076}
1077
1078/**
1079 * current_clocksource_store - interface for manually overriding clocksource
1080 * @dev:	unused
1081 * @attr:	unused
1082 * @buf:	name of override clocksource
1083 * @count:	length of buffer
1084 *
1085 * Takes input from sysfs interface for manually overriding the default
1086 * clocksource selection.
1087 */
1088static ssize_t current_clocksource_store(struct device *dev,
1089					 struct device_attribute *attr,
1090					 const char *buf, size_t count)
1091{
1092	ssize_t ret;
 
 
 
 
 
 
 
 
1093
1094	mutex_lock(&clocksource_mutex);
1095
1096	ret = sysfs_get_uname(buf, override_name, count);
1097	if (ret >= 0)
1098		clocksource_select();
 
1099
1100	mutex_unlock(&clocksource_mutex);
1101
1102	return ret;
1103}
1104static DEVICE_ATTR_RW(current_clocksource);
1105
1106/**
1107 * unbind_clocksource_store - interface for manually unbinding clocksource
1108 * @dev:	unused
1109 * @attr:	unused
1110 * @buf:	unused
1111 * @count:	length of buffer
1112 *
1113 * Takes input from sysfs interface for manually unbinding a clocksource.
1114 */
1115static ssize_t unbind_clocksource_store(struct device *dev,
1116					struct device_attribute *attr,
1117					const char *buf, size_t count)
1118{
1119	struct clocksource *cs;
1120	char name[CS_NAME_LEN];
1121	ssize_t ret;
1122
1123	ret = sysfs_get_uname(buf, name, count);
1124	if (ret < 0)
1125		return ret;
1126
1127	ret = -ENODEV;
1128	mutex_lock(&clocksource_mutex);
1129	list_for_each_entry(cs, &clocksource_list, list) {
1130		if (strcmp(cs->name, name))
1131			continue;
1132		ret = clocksource_unbind(cs);
1133		break;
1134	}
1135	mutex_unlock(&clocksource_mutex);
1136
1137	return ret ? ret : count;
1138}
1139static DEVICE_ATTR_WO(unbind_clocksource);
1140
1141/**
1142 * available_clocksource_show - sysfs interface for listing clocksource
1143 * @dev:	unused
1144 * @attr:	unused
1145 * @buf:	char buffer to be filled with clocksource list
1146 *
1147 * Provides sysfs interface for listing registered clocksources
1148 */
1149static ssize_t available_clocksource_show(struct device *dev,
1150					  struct device_attribute *attr,
1151					  char *buf)
 
1152{
1153	struct clocksource *src;
1154	ssize_t count = 0;
1155
1156	mutex_lock(&clocksource_mutex);
1157	list_for_each_entry(src, &clocksource_list, list) {
1158		/*
1159		 * Don't show non-HRES clocksource if the tick code is
1160		 * in one shot mode (highres=on or nohz=on)
1161		 */
1162		if (!tick_oneshot_mode_active() ||
1163		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1164			count += snprintf(buf + count,
1165				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1166				  "%s ", src->name);
1167	}
1168	mutex_unlock(&clocksource_mutex);
1169
1170	count += snprintf(buf + count,
1171			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1172
1173	return count;
1174}
1175static DEVICE_ATTR_RO(available_clocksource);
1176
1177static struct attribute *clocksource_attrs[] = {
1178	&dev_attr_current_clocksource.attr,
1179	&dev_attr_unbind_clocksource.attr,
1180	&dev_attr_available_clocksource.attr,
1181	NULL
1182};
1183ATTRIBUTE_GROUPS(clocksource);
 
1184
1185static struct bus_type clocksource_subsys = {
1186	.name = "clocksource",
1187	.dev_name = "clocksource",
1188};
1189
1190static struct device device_clocksource = {
1191	.id	= 0,
1192	.bus	= &clocksource_subsys,
1193	.groups	= clocksource_groups,
1194};
1195
1196static int __init init_clocksource_sysfs(void)
1197{
1198	int error = subsys_system_register(&clocksource_subsys, NULL);
1199
1200	if (!error)
1201		error = device_register(&device_clocksource);
1202
 
 
 
 
 
 
 
1203	return error;
1204}
1205
1206device_initcall(init_clocksource_sysfs);
1207#endif /* CONFIG_SYSFS */
1208
1209/**
1210 * boot_override_clocksource - boot clock override
1211 * @str:	override name
1212 *
1213 * Takes a clocksource= boot argument and uses it
1214 * as the clocksource override name.
1215 */
1216static int __init boot_override_clocksource(char* str)
1217{
1218	mutex_lock(&clocksource_mutex);
1219	if (str)
1220		strlcpy(override_name, str, sizeof(override_name));
1221	mutex_unlock(&clocksource_mutex);
1222	return 1;
1223}
1224
1225__setup("clocksource=", boot_override_clocksource);
1226
1227/**
1228 * boot_override_clock - Compatibility layer for deprecated boot option
1229 * @str:	override name
1230 *
1231 * DEPRECATED! Takes a clock= boot argument and uses it
1232 * as the clocksource override name
1233 */
1234static int __init boot_override_clock(char* str)
1235{
1236	if (!strcmp(str, "pmtmr")) {
1237		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
 
1238		return boot_override_clocksource("acpi_pm");
1239	}
1240	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
 
1241	return boot_override_clocksource(str);
1242}
1243
1244__setup("clock=", boot_override_clock);