Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19#include "xfs.h"
20#include "xfs_bit.h"
21#include "xfs_log.h"
22#include "xfs_inum.h"
23#include "xfs_trans.h"
24#include "xfs_sb.h"
25#include "xfs_ag.h"
26#include "xfs_dir2.h"
27#include "xfs_alloc.h"
28#include "xfs_quota.h"
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
35#include "xfs_btree.h"
36#include "xfs_ialloc.h"
37#include "xfs_bmap.h"
38#include "xfs_rtalloc.h"
39#include "xfs_error.h"
40#include "xfs_itable.h"
41#include "xfs_fsops.h"
42#include "xfs_attr.h"
43#include "xfs_buf_item.h"
44#include "xfs_utils.h"
45#include "xfs_vnodeops.h"
46#include "xfs_log_priv.h"
47#include "xfs_trans_priv.h"
48#include "xfs_filestream.h"
49#include "xfs_da_btree.h"
50#include "xfs_extfree_item.h"
51#include "xfs_mru_cache.h"
52#include "xfs_inode_item.h"
53#include "xfs_sync.h"
54#include "xfs_trace.h"
55
56#include <linux/namei.h>
57#include <linux/init.h>
58#include <linux/slab.h>
59#include <linux/mount.h>
60#include <linux/mempool.h>
61#include <linux/writeback.h>
62#include <linux/kthread.h>
63#include <linux/freezer.h>
64#include <linux/parser.h>
65
66static const struct super_operations xfs_super_operations;
67static kmem_zone_t *xfs_ioend_zone;
68mempool_t *xfs_ioend_pool;
69
70#define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
71#define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
72#define MNTOPT_LOGDEV "logdev" /* log device */
73#define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
74#define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
75#define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
76#define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
77#define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
78#define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
79#define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
80#define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
81#define MNTOPT_MTPT "mtpt" /* filesystem mount point */
82#define MNTOPT_GRPID "grpid" /* group-ID from parent directory */
83#define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */
84#define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */
85#define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */
86#define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */
87#define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
88#define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and
89 * unwritten extent conversion */
90#define MNTOPT_NOBARRIER "nobarrier" /* .. disable */
91#define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
92#define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
93#define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
94#define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */
95#define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes
96 * in stat(). */
97#define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */
98#define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */
99#define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */
100#define MNTOPT_QUOTA "quota" /* disk quotas (user) */
101#define MNTOPT_NOQUOTA "noquota" /* no quotas */
102#define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */
103#define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */
104#define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */
105#define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */
106#define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */
107#define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */
108#define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */
109#define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */
110#define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */
111#define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */
112#define MNTOPT_DELAYLOG "delaylog" /* Delayed logging enabled */
113#define MNTOPT_NODELAYLOG "nodelaylog" /* Delayed logging disabled */
114#define MNTOPT_DISCARD "discard" /* Discard unused blocks */
115#define MNTOPT_NODISCARD "nodiscard" /* Do not discard unused blocks */
116
117/*
118 * Table driven mount option parser.
119 *
120 * Currently only used for remount, but it will be used for mount
121 * in the future, too.
122 */
123enum {
124 Opt_barrier, Opt_nobarrier, Opt_err
125};
126
127static const match_table_t tokens = {
128 {Opt_barrier, "barrier"},
129 {Opt_nobarrier, "nobarrier"},
130 {Opt_err, NULL}
131};
132
133
134STATIC unsigned long
135suffix_strtoul(char *s, char **endp, unsigned int base)
136{
137 int last, shift_left_factor = 0;
138 char *value = s;
139
140 last = strlen(value) - 1;
141 if (value[last] == 'K' || value[last] == 'k') {
142 shift_left_factor = 10;
143 value[last] = '\0';
144 }
145 if (value[last] == 'M' || value[last] == 'm') {
146 shift_left_factor = 20;
147 value[last] = '\0';
148 }
149 if (value[last] == 'G' || value[last] == 'g') {
150 shift_left_factor = 30;
151 value[last] = '\0';
152 }
153
154 return simple_strtoul((const char *)s, endp, base) << shift_left_factor;
155}
156
157/*
158 * This function fills in xfs_mount_t fields based on mount args.
159 * Note: the superblock has _not_ yet been read in.
160 *
161 * Note that this function leaks the various device name allocations on
162 * failure. The caller takes care of them.
163 */
164STATIC int
165xfs_parseargs(
166 struct xfs_mount *mp,
167 char *options)
168{
169 struct super_block *sb = mp->m_super;
170 char *this_char, *value, *eov;
171 int dsunit = 0;
172 int dswidth = 0;
173 int iosize = 0;
174 __uint8_t iosizelog = 0;
175
176 /*
177 * set up the mount name first so all the errors will refer to the
178 * correct device.
179 */
180 mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
181 if (!mp->m_fsname)
182 return ENOMEM;
183 mp->m_fsname_len = strlen(mp->m_fsname) + 1;
184
185 /*
186 * Copy binary VFS mount flags we are interested in.
187 */
188 if (sb->s_flags & MS_RDONLY)
189 mp->m_flags |= XFS_MOUNT_RDONLY;
190 if (sb->s_flags & MS_DIRSYNC)
191 mp->m_flags |= XFS_MOUNT_DIRSYNC;
192 if (sb->s_flags & MS_SYNCHRONOUS)
193 mp->m_flags |= XFS_MOUNT_WSYNC;
194
195 /*
196 * Set some default flags that could be cleared by the mount option
197 * parsing.
198 */
199 mp->m_flags |= XFS_MOUNT_BARRIER;
200 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
201 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
202 mp->m_flags |= XFS_MOUNT_DELAYLOG;
203
204 /*
205 * These can be overridden by the mount option parsing.
206 */
207 mp->m_logbufs = -1;
208 mp->m_logbsize = -1;
209
210 if (!options)
211 goto done;
212
213 while ((this_char = strsep(&options, ",")) != NULL) {
214 if (!*this_char)
215 continue;
216 if ((value = strchr(this_char, '=')) != NULL)
217 *value++ = 0;
218
219 if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
220 if (!value || !*value) {
221 xfs_warn(mp, "%s option requires an argument",
222 this_char);
223 return EINVAL;
224 }
225 mp->m_logbufs = simple_strtoul(value, &eov, 10);
226 } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
227 if (!value || !*value) {
228 xfs_warn(mp, "%s option requires an argument",
229 this_char);
230 return EINVAL;
231 }
232 mp->m_logbsize = suffix_strtoul(value, &eov, 10);
233 } else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
234 if (!value || !*value) {
235 xfs_warn(mp, "%s option requires an argument",
236 this_char);
237 return EINVAL;
238 }
239 mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
240 if (!mp->m_logname)
241 return ENOMEM;
242 } else if (!strcmp(this_char, MNTOPT_MTPT)) {
243 xfs_warn(mp, "%s option not allowed on this system",
244 this_char);
245 return EINVAL;
246 } else if (!strcmp(this_char, MNTOPT_RTDEV)) {
247 if (!value || !*value) {
248 xfs_warn(mp, "%s option requires an argument",
249 this_char);
250 return EINVAL;
251 }
252 mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL);
253 if (!mp->m_rtname)
254 return ENOMEM;
255 } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
256 if (!value || !*value) {
257 xfs_warn(mp, "%s option requires an argument",
258 this_char);
259 return EINVAL;
260 }
261 iosize = simple_strtoul(value, &eov, 10);
262 iosizelog = ffs(iosize) - 1;
263 } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE)) {
264 if (!value || !*value) {
265 xfs_warn(mp, "%s option requires an argument",
266 this_char);
267 return EINVAL;
268 }
269 iosize = suffix_strtoul(value, &eov, 10);
270 iosizelog = ffs(iosize) - 1;
271 } else if (!strcmp(this_char, MNTOPT_GRPID) ||
272 !strcmp(this_char, MNTOPT_BSDGROUPS)) {
273 mp->m_flags |= XFS_MOUNT_GRPID;
274 } else if (!strcmp(this_char, MNTOPT_NOGRPID) ||
275 !strcmp(this_char, MNTOPT_SYSVGROUPS)) {
276 mp->m_flags &= ~XFS_MOUNT_GRPID;
277 } else if (!strcmp(this_char, MNTOPT_WSYNC)) {
278 mp->m_flags |= XFS_MOUNT_WSYNC;
279 } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
280 mp->m_flags |= XFS_MOUNT_NORECOVERY;
281 } else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
282 mp->m_flags |= XFS_MOUNT_NOALIGN;
283 } else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
284 mp->m_flags |= XFS_MOUNT_SWALLOC;
285 } else if (!strcmp(this_char, MNTOPT_SUNIT)) {
286 if (!value || !*value) {
287 xfs_warn(mp, "%s option requires an argument",
288 this_char);
289 return EINVAL;
290 }
291 dsunit = simple_strtoul(value, &eov, 10);
292 } else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
293 if (!value || !*value) {
294 xfs_warn(mp, "%s option requires an argument",
295 this_char);
296 return EINVAL;
297 }
298 dswidth = simple_strtoul(value, &eov, 10);
299 } else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
300 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
301#if !XFS_BIG_INUMS
302 xfs_warn(mp, "%s option not allowed on this system",
303 this_char);
304 return EINVAL;
305#endif
306 } else if (!strcmp(this_char, MNTOPT_NOUUID)) {
307 mp->m_flags |= XFS_MOUNT_NOUUID;
308 } else if (!strcmp(this_char, MNTOPT_BARRIER)) {
309 mp->m_flags |= XFS_MOUNT_BARRIER;
310 } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) {
311 mp->m_flags &= ~XFS_MOUNT_BARRIER;
312 } else if (!strcmp(this_char, MNTOPT_IKEEP)) {
313 mp->m_flags |= XFS_MOUNT_IKEEP;
314 } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
315 mp->m_flags &= ~XFS_MOUNT_IKEEP;
316 } else if (!strcmp(this_char, MNTOPT_LARGEIO)) {
317 mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
318 } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) {
319 mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
320 } else if (!strcmp(this_char, MNTOPT_ATTR2)) {
321 mp->m_flags |= XFS_MOUNT_ATTR2;
322 } else if (!strcmp(this_char, MNTOPT_NOATTR2)) {
323 mp->m_flags &= ~XFS_MOUNT_ATTR2;
324 mp->m_flags |= XFS_MOUNT_NOATTR2;
325 } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) {
326 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
327 } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) {
328 mp->m_qflags &= ~(XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
329 XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
330 XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
331 XFS_UQUOTA_ENFD | XFS_OQUOTA_ENFD);
332 } else if (!strcmp(this_char, MNTOPT_QUOTA) ||
333 !strcmp(this_char, MNTOPT_UQUOTA) ||
334 !strcmp(this_char, MNTOPT_USRQUOTA)) {
335 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
336 XFS_UQUOTA_ENFD);
337 } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) ||
338 !strcmp(this_char, MNTOPT_UQUOTANOENF)) {
339 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
340 mp->m_qflags &= ~XFS_UQUOTA_ENFD;
341 } else if (!strcmp(this_char, MNTOPT_PQUOTA) ||
342 !strcmp(this_char, MNTOPT_PRJQUOTA)) {
343 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
344 XFS_OQUOTA_ENFD);
345 } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) {
346 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
347 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
348 } else if (!strcmp(this_char, MNTOPT_GQUOTA) ||
349 !strcmp(this_char, MNTOPT_GRPQUOTA)) {
350 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
351 XFS_OQUOTA_ENFD);
352 } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) {
353 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
354 mp->m_qflags &= ~XFS_OQUOTA_ENFD;
355 } else if (!strcmp(this_char, MNTOPT_DELAYLOG)) {
356 mp->m_flags |= XFS_MOUNT_DELAYLOG;
357 } else if (!strcmp(this_char, MNTOPT_NODELAYLOG)) {
358 mp->m_flags &= ~XFS_MOUNT_DELAYLOG;
359 xfs_warn(mp,
360 "nodelaylog is deprecated and will be removed in Linux 3.3");
361 } else if (!strcmp(this_char, MNTOPT_DISCARD)) {
362 mp->m_flags |= XFS_MOUNT_DISCARD;
363 } else if (!strcmp(this_char, MNTOPT_NODISCARD)) {
364 mp->m_flags &= ~XFS_MOUNT_DISCARD;
365 } else if (!strcmp(this_char, "ihashsize")) {
366 xfs_warn(mp,
367 "ihashsize no longer used, option is deprecated.");
368 } else if (!strcmp(this_char, "osyncisdsync")) {
369 xfs_warn(mp,
370 "osyncisdsync has no effect, option is deprecated.");
371 } else if (!strcmp(this_char, "osyncisosync")) {
372 xfs_warn(mp,
373 "osyncisosync has no effect, option is deprecated.");
374 } else if (!strcmp(this_char, "irixsgid")) {
375 xfs_warn(mp,
376 "irixsgid is now a sysctl(2) variable, option is deprecated.");
377 } else {
378 xfs_warn(mp, "unknown mount option [%s].", this_char);
379 return EINVAL;
380 }
381 }
382
383 /*
384 * no recovery flag requires a read-only mount
385 */
386 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
387 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
388 xfs_warn(mp, "no-recovery mounts must be read-only.");
389 return EINVAL;
390 }
391
392 if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
393 xfs_warn(mp,
394 "sunit and swidth options incompatible with the noalign option");
395 return EINVAL;
396 }
397
398 if ((mp->m_flags & XFS_MOUNT_DISCARD) &&
399 !(mp->m_flags & XFS_MOUNT_DELAYLOG)) {
400 xfs_warn(mp,
401 "the discard option is incompatible with the nodelaylog option");
402 return EINVAL;
403 }
404
405#ifndef CONFIG_XFS_QUOTA
406 if (XFS_IS_QUOTA_RUNNING(mp)) {
407 xfs_warn(mp, "quota support not available in this kernel.");
408 return EINVAL;
409 }
410#endif
411
412 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
413 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE))) {
414 xfs_warn(mp, "cannot mount with both project and group quota");
415 return EINVAL;
416 }
417
418 if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
419 xfs_warn(mp, "sunit and swidth must be specified together");
420 return EINVAL;
421 }
422
423 if (dsunit && (dswidth % dsunit != 0)) {
424 xfs_warn(mp,
425 "stripe width (%d) must be a multiple of the stripe unit (%d)",
426 dswidth, dsunit);
427 return EINVAL;
428 }
429
430done:
431 if (!(mp->m_flags & XFS_MOUNT_NOALIGN)) {
432 /*
433 * At this point the superblock has not been read
434 * in, therefore we do not know the block size.
435 * Before the mount call ends we will convert
436 * these to FSBs.
437 */
438 if (dsunit) {
439 mp->m_dalign = dsunit;
440 mp->m_flags |= XFS_MOUNT_RETERR;
441 }
442
443 if (dswidth)
444 mp->m_swidth = dswidth;
445 }
446
447 if (mp->m_logbufs != -1 &&
448 mp->m_logbufs != 0 &&
449 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
450 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
451 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
452 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
453 return XFS_ERROR(EINVAL);
454 }
455 if (mp->m_logbsize != -1 &&
456 mp->m_logbsize != 0 &&
457 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
458 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
459 !is_power_of_2(mp->m_logbsize))) {
460 xfs_warn(mp,
461 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
462 mp->m_logbsize);
463 return XFS_ERROR(EINVAL);
464 }
465
466 if (iosizelog) {
467 if (iosizelog > XFS_MAX_IO_LOG ||
468 iosizelog < XFS_MIN_IO_LOG) {
469 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
470 iosizelog, XFS_MIN_IO_LOG,
471 XFS_MAX_IO_LOG);
472 return XFS_ERROR(EINVAL);
473 }
474
475 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
476 mp->m_readio_log = iosizelog;
477 mp->m_writeio_log = iosizelog;
478 }
479
480 return 0;
481}
482
483struct proc_xfs_info {
484 int flag;
485 char *str;
486};
487
488STATIC int
489xfs_showargs(
490 struct xfs_mount *mp,
491 struct seq_file *m)
492{
493 static struct proc_xfs_info xfs_info_set[] = {
494 /* the few simple ones we can get from the mount struct */
495 { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP },
496 { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
497 { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
498 { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
499 { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
500 { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
501 { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 },
502 { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM },
503 { XFS_MOUNT_GRPID, "," MNTOPT_GRPID },
504 { XFS_MOUNT_DELAYLOG, "," MNTOPT_DELAYLOG },
505 { XFS_MOUNT_DISCARD, "," MNTOPT_DISCARD },
506 { 0, NULL }
507 };
508 static struct proc_xfs_info xfs_info_unset[] = {
509 /* the few simple ones we can get from the mount struct */
510 { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO },
511 { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER },
512 { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE },
513 { 0, NULL }
514 };
515 struct proc_xfs_info *xfs_infop;
516
517 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
518 if (mp->m_flags & xfs_infop->flag)
519 seq_puts(m, xfs_infop->str);
520 }
521 for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
522 if (!(mp->m_flags & xfs_infop->flag))
523 seq_puts(m, xfs_infop->str);
524 }
525
526 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
527 seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk",
528 (int)(1 << mp->m_writeio_log) >> 10);
529
530 if (mp->m_logbufs > 0)
531 seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
532 if (mp->m_logbsize > 0)
533 seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10);
534
535 if (mp->m_logname)
536 seq_printf(m, "," MNTOPT_LOGDEV "=%s", mp->m_logname);
537 if (mp->m_rtname)
538 seq_printf(m, "," MNTOPT_RTDEV "=%s", mp->m_rtname);
539
540 if (mp->m_dalign > 0)
541 seq_printf(m, "," MNTOPT_SUNIT "=%d",
542 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
543 if (mp->m_swidth > 0)
544 seq_printf(m, "," MNTOPT_SWIDTH "=%d",
545 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
546
547 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
548 seq_puts(m, "," MNTOPT_USRQUOTA);
549 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
550 seq_puts(m, "," MNTOPT_UQUOTANOENF);
551
552 /* Either project or group quotas can be active, not both */
553
554 if (mp->m_qflags & XFS_PQUOTA_ACCT) {
555 if (mp->m_qflags & XFS_OQUOTA_ENFD)
556 seq_puts(m, "," MNTOPT_PRJQUOTA);
557 else
558 seq_puts(m, "," MNTOPT_PQUOTANOENF);
559 } else if (mp->m_qflags & XFS_GQUOTA_ACCT) {
560 if (mp->m_qflags & XFS_OQUOTA_ENFD)
561 seq_puts(m, "," MNTOPT_GRPQUOTA);
562 else
563 seq_puts(m, "," MNTOPT_GQUOTANOENF);
564 }
565
566 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
567 seq_puts(m, "," MNTOPT_NOQUOTA);
568
569 return 0;
570}
571__uint64_t
572xfs_max_file_offset(
573 unsigned int blockshift)
574{
575 unsigned int pagefactor = 1;
576 unsigned int bitshift = BITS_PER_LONG - 1;
577
578 /* Figure out maximum filesize, on Linux this can depend on
579 * the filesystem blocksize (on 32 bit platforms).
580 * __block_write_begin does this in an [unsigned] long...
581 * page->index << (PAGE_CACHE_SHIFT - bbits)
582 * So, for page sized blocks (4K on 32 bit platforms),
583 * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
584 * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
585 * but for smaller blocksizes it is less (bbits = log2 bsize).
586 * Note1: get_block_t takes a long (implicit cast from above)
587 * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
588 * can optionally convert the [unsigned] long from above into
589 * an [unsigned] long long.
590 */
591
592#if BITS_PER_LONG == 32
593# if defined(CONFIG_LBDAF)
594 ASSERT(sizeof(sector_t) == 8);
595 pagefactor = PAGE_CACHE_SIZE;
596 bitshift = BITS_PER_LONG;
597# else
598 pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
599# endif
600#endif
601
602 return (((__uint64_t)pagefactor) << bitshift) - 1;
603}
604
605STATIC int
606xfs_blkdev_get(
607 xfs_mount_t *mp,
608 const char *name,
609 struct block_device **bdevp)
610{
611 int error = 0;
612
613 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
614 mp);
615 if (IS_ERR(*bdevp)) {
616 error = PTR_ERR(*bdevp);
617 xfs_warn(mp, "Invalid device [%s], error=%d\n", name, error);
618 }
619
620 return -error;
621}
622
623STATIC void
624xfs_blkdev_put(
625 struct block_device *bdev)
626{
627 if (bdev)
628 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
629}
630
631void
632xfs_blkdev_issue_flush(
633 xfs_buftarg_t *buftarg)
634{
635 blkdev_issue_flush(buftarg->bt_bdev, GFP_KERNEL, NULL);
636}
637
638STATIC void
639xfs_close_devices(
640 struct xfs_mount *mp)
641{
642 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
643 struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
644 xfs_free_buftarg(mp, mp->m_logdev_targp);
645 xfs_blkdev_put(logdev);
646 }
647 if (mp->m_rtdev_targp) {
648 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
649 xfs_free_buftarg(mp, mp->m_rtdev_targp);
650 xfs_blkdev_put(rtdev);
651 }
652 xfs_free_buftarg(mp, mp->m_ddev_targp);
653}
654
655/*
656 * The file system configurations are:
657 * (1) device (partition) with data and internal log
658 * (2) logical volume with data and log subvolumes.
659 * (3) logical volume with data, log, and realtime subvolumes.
660 *
661 * We only have to handle opening the log and realtime volumes here if
662 * they are present. The data subvolume has already been opened by
663 * get_sb_bdev() and is stored in sb->s_bdev.
664 */
665STATIC int
666xfs_open_devices(
667 struct xfs_mount *mp)
668{
669 struct block_device *ddev = mp->m_super->s_bdev;
670 struct block_device *logdev = NULL, *rtdev = NULL;
671 int error;
672
673 /*
674 * Open real time and log devices - order is important.
675 */
676 if (mp->m_logname) {
677 error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
678 if (error)
679 goto out;
680 }
681
682 if (mp->m_rtname) {
683 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
684 if (error)
685 goto out_close_logdev;
686
687 if (rtdev == ddev || rtdev == logdev) {
688 xfs_warn(mp,
689 "Cannot mount filesystem with identical rtdev and ddev/logdev.");
690 error = EINVAL;
691 goto out_close_rtdev;
692 }
693 }
694
695 /*
696 * Setup xfs_mount buffer target pointers
697 */
698 error = ENOMEM;
699 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, 0, mp->m_fsname);
700 if (!mp->m_ddev_targp)
701 goto out_close_rtdev;
702
703 if (rtdev) {
704 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, 1,
705 mp->m_fsname);
706 if (!mp->m_rtdev_targp)
707 goto out_free_ddev_targ;
708 }
709
710 if (logdev && logdev != ddev) {
711 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, 1,
712 mp->m_fsname);
713 if (!mp->m_logdev_targp)
714 goto out_free_rtdev_targ;
715 } else {
716 mp->m_logdev_targp = mp->m_ddev_targp;
717 }
718
719 return 0;
720
721 out_free_rtdev_targ:
722 if (mp->m_rtdev_targp)
723 xfs_free_buftarg(mp, mp->m_rtdev_targp);
724 out_free_ddev_targ:
725 xfs_free_buftarg(mp, mp->m_ddev_targp);
726 out_close_rtdev:
727 if (rtdev)
728 xfs_blkdev_put(rtdev);
729 out_close_logdev:
730 if (logdev && logdev != ddev)
731 xfs_blkdev_put(logdev);
732 out:
733 return error;
734}
735
736/*
737 * Setup xfs_mount buffer target pointers based on superblock
738 */
739STATIC int
740xfs_setup_devices(
741 struct xfs_mount *mp)
742{
743 int error;
744
745 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
746 mp->m_sb.sb_sectsize);
747 if (error)
748 return error;
749
750 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
751 unsigned int log_sector_size = BBSIZE;
752
753 if (xfs_sb_version_hassector(&mp->m_sb))
754 log_sector_size = mp->m_sb.sb_logsectsize;
755 error = xfs_setsize_buftarg(mp->m_logdev_targp,
756 mp->m_sb.sb_blocksize,
757 log_sector_size);
758 if (error)
759 return error;
760 }
761 if (mp->m_rtdev_targp) {
762 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
763 mp->m_sb.sb_blocksize,
764 mp->m_sb.sb_sectsize);
765 if (error)
766 return error;
767 }
768
769 return 0;
770}
771
772/* Catch misguided souls that try to use this interface on XFS */
773STATIC struct inode *
774xfs_fs_alloc_inode(
775 struct super_block *sb)
776{
777 BUG();
778 return NULL;
779}
780
781/*
782 * Now that the generic code is guaranteed not to be accessing
783 * the linux inode, we can reclaim the inode.
784 */
785STATIC void
786xfs_fs_destroy_inode(
787 struct inode *inode)
788{
789 struct xfs_inode *ip = XFS_I(inode);
790
791 trace_xfs_destroy_inode(ip);
792
793 XFS_STATS_INC(vn_reclaim);
794
795 /* bad inode, get out here ASAP */
796 if (is_bad_inode(inode))
797 goto out_reclaim;
798
799 xfs_ioend_wait(ip);
800
801 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
802
803 /*
804 * We should never get here with one of the reclaim flags already set.
805 */
806 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
807 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
808
809 /*
810 * We always use background reclaim here because even if the
811 * inode is clean, it still may be under IO and hence we have
812 * to take the flush lock. The background reclaim path handles
813 * this more efficiently than we can here, so simply let background
814 * reclaim tear down all inodes.
815 */
816out_reclaim:
817 xfs_inode_set_reclaim_tag(ip);
818}
819
820/*
821 * Slab object creation initialisation for the XFS inode.
822 * This covers only the idempotent fields in the XFS inode;
823 * all other fields need to be initialised on allocation
824 * from the slab. This avoids the need to repeatedly initialise
825 * fields in the xfs inode that left in the initialise state
826 * when freeing the inode.
827 */
828STATIC void
829xfs_fs_inode_init_once(
830 void *inode)
831{
832 struct xfs_inode *ip = inode;
833
834 memset(ip, 0, sizeof(struct xfs_inode));
835
836 /* vfs inode */
837 inode_init_once(VFS_I(ip));
838
839 /* xfs inode */
840 atomic_set(&ip->i_iocount, 0);
841 atomic_set(&ip->i_pincount, 0);
842 spin_lock_init(&ip->i_flags_lock);
843 init_waitqueue_head(&ip->i_ipin_wait);
844 /*
845 * Because we want to use a counting completion, complete
846 * the flush completion once to allow a single access to
847 * the flush completion without blocking.
848 */
849 init_completion(&ip->i_flush);
850 complete(&ip->i_flush);
851
852 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
853 "xfsino", ip->i_ino);
854}
855
856/*
857 * Dirty the XFS inode when mark_inode_dirty_sync() is called so that
858 * we catch unlogged VFS level updates to the inode.
859 *
860 * We need the barrier() to maintain correct ordering between unlogged
861 * updates and the transaction commit code that clears the i_update_core
862 * field. This requires all updates to be completed before marking the
863 * inode dirty.
864 */
865STATIC void
866xfs_fs_dirty_inode(
867 struct inode *inode,
868 int flags)
869{
870 barrier();
871 XFS_I(inode)->i_update_core = 1;
872}
873
874STATIC int
875xfs_log_inode(
876 struct xfs_inode *ip)
877{
878 struct xfs_mount *mp = ip->i_mount;
879 struct xfs_trans *tp;
880 int error;
881
882 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
883 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
884 if (error) {
885 xfs_trans_cancel(tp, 0);
886 return error;
887 }
888
889 xfs_ilock(ip, XFS_ILOCK_EXCL);
890 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
891 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
892 return xfs_trans_commit(tp, 0);
893}
894
895STATIC int
896xfs_fs_write_inode(
897 struct inode *inode,
898 struct writeback_control *wbc)
899{
900 struct xfs_inode *ip = XFS_I(inode);
901 struct xfs_mount *mp = ip->i_mount;
902 int error = EAGAIN;
903
904 trace_xfs_write_inode(ip);
905
906 if (XFS_FORCED_SHUTDOWN(mp))
907 return -XFS_ERROR(EIO);
908 if (!ip->i_update_core)
909 return 0;
910
911 if (wbc->sync_mode == WB_SYNC_ALL) {
912 /*
913 * Make sure the inode has made it it into the log. Instead
914 * of forcing it all the way to stable storage using a
915 * synchronous transaction we let the log force inside the
916 * ->sync_fs call do that for thus, which reduces the number
917 * of synchronous log foces dramatically.
918 */
919 xfs_ioend_wait(ip);
920 error = xfs_log_inode(ip);
921 if (error)
922 goto out;
923 return 0;
924 } else {
925 /*
926 * We make this non-blocking if the inode is contended, return
927 * EAGAIN to indicate to the caller that they did not succeed.
928 * This prevents the flush path from blocking on inodes inside
929 * another operation right now, they get caught later by
930 * xfs_sync.
931 */
932 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
933 goto out;
934
935 if (xfs_ipincount(ip) || !xfs_iflock_nowait(ip))
936 goto out_unlock;
937
938 /*
939 * Now we have the flush lock and the inode is not pinned, we
940 * can check if the inode is really clean as we know that
941 * there are no pending transaction completions, it is not
942 * waiting on the delayed write queue and there is no IO in
943 * progress.
944 */
945 if (xfs_inode_clean(ip)) {
946 xfs_ifunlock(ip);
947 error = 0;
948 goto out_unlock;
949 }
950 error = xfs_iflush(ip, SYNC_TRYLOCK);
951 }
952
953 out_unlock:
954 xfs_iunlock(ip, XFS_ILOCK_SHARED);
955 out:
956 /*
957 * if we failed to write out the inode then mark
958 * it dirty again so we'll try again later.
959 */
960 if (error)
961 xfs_mark_inode_dirty_sync(ip);
962 return -error;
963}
964
965STATIC void
966xfs_fs_evict_inode(
967 struct inode *inode)
968{
969 xfs_inode_t *ip = XFS_I(inode);
970
971 trace_xfs_evict_inode(ip);
972
973 truncate_inode_pages(&inode->i_data, 0);
974 end_writeback(inode);
975 XFS_STATS_INC(vn_rele);
976 XFS_STATS_INC(vn_remove);
977 XFS_STATS_DEC(vn_active);
978
979 /*
980 * The iolock is used by the file system to coordinate reads,
981 * writes, and block truncates. Up to this point the lock
982 * protected concurrent accesses by users of the inode. But
983 * from here forward we're doing some final processing of the
984 * inode because we're done with it, and although we reuse the
985 * iolock for protection it is really a distinct lock class
986 * (in the lockdep sense) from before. To keep lockdep happy
987 * (and basically indicate what we are doing), we explicitly
988 * re-init the iolock here.
989 */
990 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
991 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
992 lockdep_set_class_and_name(&ip->i_iolock.mr_lock,
993 &xfs_iolock_reclaimable, "xfs_iolock_reclaimable");
994
995 xfs_inactive(ip);
996}
997
998STATIC void
999xfs_free_fsname(
1000 struct xfs_mount *mp)
1001{
1002 kfree(mp->m_fsname);
1003 kfree(mp->m_rtname);
1004 kfree(mp->m_logname);
1005}
1006
1007STATIC void
1008xfs_fs_put_super(
1009 struct super_block *sb)
1010{
1011 struct xfs_mount *mp = XFS_M(sb);
1012
1013 xfs_syncd_stop(mp);
1014
1015 /*
1016 * Blow away any referenced inode in the filestreams cache.
1017 * This can and will cause log traffic as inodes go inactive
1018 * here.
1019 */
1020 xfs_filestream_unmount(mp);
1021
1022 XFS_bflush(mp->m_ddev_targp);
1023
1024 xfs_unmountfs(mp);
1025 xfs_freesb(mp);
1026 xfs_icsb_destroy_counters(mp);
1027 xfs_close_devices(mp);
1028 xfs_free_fsname(mp);
1029 kfree(mp);
1030}
1031
1032STATIC int
1033xfs_fs_sync_fs(
1034 struct super_block *sb,
1035 int wait)
1036{
1037 struct xfs_mount *mp = XFS_M(sb);
1038 int error;
1039
1040 /*
1041 * Not much we can do for the first async pass. Writing out the
1042 * superblock would be counter-productive as we are going to redirty
1043 * when writing out other data and metadata (and writing out a single
1044 * block is quite fast anyway).
1045 *
1046 * Try to asynchronously kick off quota syncing at least.
1047 */
1048 if (!wait) {
1049 xfs_qm_sync(mp, SYNC_TRYLOCK);
1050 return 0;
1051 }
1052
1053 error = xfs_quiesce_data(mp);
1054 if (error)
1055 return -error;
1056
1057 if (laptop_mode) {
1058 /*
1059 * The disk must be active because we're syncing.
1060 * We schedule xfssyncd now (now that the disk is
1061 * active) instead of later (when it might not be).
1062 */
1063 flush_delayed_work_sync(&mp->m_sync_work);
1064 }
1065
1066 return 0;
1067}
1068
1069STATIC int
1070xfs_fs_statfs(
1071 struct dentry *dentry,
1072 struct kstatfs *statp)
1073{
1074 struct xfs_mount *mp = XFS_M(dentry->d_sb);
1075 xfs_sb_t *sbp = &mp->m_sb;
1076 struct xfs_inode *ip = XFS_I(dentry->d_inode);
1077 __uint64_t fakeinos, id;
1078 xfs_extlen_t lsize;
1079 __int64_t ffree;
1080
1081 statp->f_type = XFS_SB_MAGIC;
1082 statp->f_namelen = MAXNAMELEN - 1;
1083
1084 id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
1085 statp->f_fsid.val[0] = (u32)id;
1086 statp->f_fsid.val[1] = (u32)(id >> 32);
1087
1088 xfs_icsb_sync_counters(mp, XFS_ICSB_LAZY_COUNT);
1089
1090 spin_lock(&mp->m_sb_lock);
1091 statp->f_bsize = sbp->sb_blocksize;
1092 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
1093 statp->f_blocks = sbp->sb_dblocks - lsize;
1094 statp->f_bfree = statp->f_bavail =
1095 sbp->sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1096 fakeinos = statp->f_bfree << sbp->sb_inopblog;
1097 statp->f_files =
1098 MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
1099 if (mp->m_maxicount)
1100 statp->f_files = min_t(typeof(statp->f_files),
1101 statp->f_files,
1102 mp->m_maxicount);
1103
1104 /* make sure statp->f_ffree does not underflow */
1105 ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
1106 statp->f_ffree = max_t(__int64_t, ffree, 0);
1107
1108 spin_unlock(&mp->m_sb_lock);
1109
1110 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) ||
1111 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))) ==
1112 (XFS_PQUOTA_ACCT|XFS_OQUOTA_ENFD))
1113 xfs_qm_statvfs(ip, statp);
1114 return 0;
1115}
1116
1117STATIC void
1118xfs_save_resvblks(struct xfs_mount *mp)
1119{
1120 __uint64_t resblks = 0;
1121
1122 mp->m_resblks_save = mp->m_resblks;
1123 xfs_reserve_blocks(mp, &resblks, NULL);
1124}
1125
1126STATIC void
1127xfs_restore_resvblks(struct xfs_mount *mp)
1128{
1129 __uint64_t resblks;
1130
1131 if (mp->m_resblks_save) {
1132 resblks = mp->m_resblks_save;
1133 mp->m_resblks_save = 0;
1134 } else
1135 resblks = xfs_default_resblks(mp);
1136
1137 xfs_reserve_blocks(mp, &resblks, NULL);
1138}
1139
1140STATIC int
1141xfs_fs_remount(
1142 struct super_block *sb,
1143 int *flags,
1144 char *options)
1145{
1146 struct xfs_mount *mp = XFS_M(sb);
1147 substring_t args[MAX_OPT_ARGS];
1148 char *p;
1149 int error;
1150
1151 while ((p = strsep(&options, ",")) != NULL) {
1152 int token;
1153
1154 if (!*p)
1155 continue;
1156
1157 token = match_token(p, tokens, args);
1158 switch (token) {
1159 case Opt_barrier:
1160 mp->m_flags |= XFS_MOUNT_BARRIER;
1161 break;
1162 case Opt_nobarrier:
1163 mp->m_flags &= ~XFS_MOUNT_BARRIER;
1164 break;
1165 default:
1166 /*
1167 * Logically we would return an error here to prevent
1168 * users from believing they might have changed
1169 * mount options using remount which can't be changed.
1170 *
1171 * But unfortunately mount(8) adds all options from
1172 * mtab and fstab to the mount arguments in some cases
1173 * so we can't blindly reject options, but have to
1174 * check for each specified option if it actually
1175 * differs from the currently set option and only
1176 * reject it if that's the case.
1177 *
1178 * Until that is implemented we return success for
1179 * every remount request, and silently ignore all
1180 * options that we can't actually change.
1181 */
1182#if 0
1183 xfs_info(mp,
1184 "mount option \"%s\" not supported for remount\n", p);
1185 return -EINVAL;
1186#else
1187 break;
1188#endif
1189 }
1190 }
1191
1192 /* ro -> rw */
1193 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) {
1194 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1195
1196 /*
1197 * If this is the first remount to writeable state we
1198 * might have some superblock changes to update.
1199 */
1200 if (mp->m_update_flags) {
1201 error = xfs_mount_log_sb(mp, mp->m_update_flags);
1202 if (error) {
1203 xfs_warn(mp, "failed to write sb changes");
1204 return error;
1205 }
1206 mp->m_update_flags = 0;
1207 }
1208
1209 /*
1210 * Fill out the reserve pool if it is empty. Use the stashed
1211 * value if it is non-zero, otherwise go with the default.
1212 */
1213 xfs_restore_resvblks(mp);
1214 }
1215
1216 /* rw -> ro */
1217 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) {
1218 /*
1219 * After we have synced the data but before we sync the
1220 * metadata, we need to free up the reserve block pool so that
1221 * the used block count in the superblock on disk is correct at
1222 * the end of the remount. Stash the current reserve pool size
1223 * so that if we get remounted rw, we can return it to the same
1224 * size.
1225 */
1226
1227 xfs_quiesce_data(mp);
1228 xfs_save_resvblks(mp);
1229 xfs_quiesce_attr(mp);
1230 mp->m_flags |= XFS_MOUNT_RDONLY;
1231 }
1232
1233 return 0;
1234}
1235
1236/*
1237 * Second stage of a freeze. The data is already frozen so we only
1238 * need to take care of the metadata. Once that's done write a dummy
1239 * record to dirty the log in case of a crash while frozen.
1240 */
1241STATIC int
1242xfs_fs_freeze(
1243 struct super_block *sb)
1244{
1245 struct xfs_mount *mp = XFS_M(sb);
1246
1247 xfs_save_resvblks(mp);
1248 xfs_quiesce_attr(mp);
1249 return -xfs_fs_log_dummy(mp);
1250}
1251
1252STATIC int
1253xfs_fs_unfreeze(
1254 struct super_block *sb)
1255{
1256 struct xfs_mount *mp = XFS_M(sb);
1257
1258 xfs_restore_resvblks(mp);
1259 return 0;
1260}
1261
1262STATIC int
1263xfs_fs_show_options(
1264 struct seq_file *m,
1265 struct vfsmount *mnt)
1266{
1267 return -xfs_showargs(XFS_M(mnt->mnt_sb), m);
1268}
1269
1270/*
1271 * This function fills in xfs_mount_t fields based on mount args.
1272 * Note: the superblock _has_ now been read in.
1273 */
1274STATIC int
1275xfs_finish_flags(
1276 struct xfs_mount *mp)
1277{
1278 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
1279
1280 /* Fail a mount where the logbuf is smaller than the log stripe */
1281 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1282 if (mp->m_logbsize <= 0 &&
1283 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
1284 mp->m_logbsize = mp->m_sb.sb_logsunit;
1285 } else if (mp->m_logbsize > 0 &&
1286 mp->m_logbsize < mp->m_sb.sb_logsunit) {
1287 xfs_warn(mp,
1288 "logbuf size must be greater than or equal to log stripe size");
1289 return XFS_ERROR(EINVAL);
1290 }
1291 } else {
1292 /* Fail a mount if the logbuf is larger than 32K */
1293 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
1294 xfs_warn(mp,
1295 "logbuf size for version 1 logs must be 16K or 32K");
1296 return XFS_ERROR(EINVAL);
1297 }
1298 }
1299
1300 /*
1301 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
1302 * told by noattr2 to turn it off
1303 */
1304 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1305 !(mp->m_flags & XFS_MOUNT_NOATTR2))
1306 mp->m_flags |= XFS_MOUNT_ATTR2;
1307
1308 /*
1309 * prohibit r/w mounts of read-only filesystems
1310 */
1311 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
1312 xfs_warn(mp,
1313 "cannot mount a read-only filesystem as read-write");
1314 return XFS_ERROR(EROFS);
1315 }
1316
1317 return 0;
1318}
1319
1320STATIC int
1321xfs_fs_fill_super(
1322 struct super_block *sb,
1323 void *data,
1324 int silent)
1325{
1326 struct inode *root;
1327 struct xfs_mount *mp = NULL;
1328 int flags = 0, error = ENOMEM;
1329
1330 mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
1331 if (!mp)
1332 goto out;
1333
1334 spin_lock_init(&mp->m_sb_lock);
1335 mutex_init(&mp->m_growlock);
1336 atomic_set(&mp->m_active_trans, 0);
1337
1338 mp->m_super = sb;
1339 sb->s_fs_info = mp;
1340
1341 error = xfs_parseargs(mp, (char *)data);
1342 if (error)
1343 goto out_free_fsname;
1344
1345 sb_min_blocksize(sb, BBSIZE);
1346 sb->s_xattr = xfs_xattr_handlers;
1347 sb->s_export_op = &xfs_export_operations;
1348#ifdef CONFIG_XFS_QUOTA
1349 sb->s_qcop = &xfs_quotactl_operations;
1350#endif
1351 sb->s_op = &xfs_super_operations;
1352
1353 if (silent)
1354 flags |= XFS_MFSI_QUIET;
1355
1356 error = xfs_open_devices(mp);
1357 if (error)
1358 goto out_free_fsname;
1359
1360 error = xfs_icsb_init_counters(mp);
1361 if (error)
1362 goto out_close_devices;
1363
1364 error = xfs_readsb(mp, flags);
1365 if (error)
1366 goto out_destroy_counters;
1367
1368 error = xfs_finish_flags(mp);
1369 if (error)
1370 goto out_free_sb;
1371
1372 error = xfs_setup_devices(mp);
1373 if (error)
1374 goto out_free_sb;
1375
1376 error = xfs_filestream_mount(mp);
1377 if (error)
1378 goto out_free_sb;
1379
1380 /*
1381 * we must configure the block size in the superblock before we run the
1382 * full mount process as the mount process can lookup and cache inodes.
1383 * For the same reason we must also initialise the syncd and register
1384 * the inode cache shrinker so that inodes can be reclaimed during
1385 * operations like a quotacheck that iterate all inodes in the
1386 * filesystem.
1387 */
1388 sb->s_magic = XFS_SB_MAGIC;
1389 sb->s_blocksize = mp->m_sb.sb_blocksize;
1390 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1391 sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
1392 sb->s_time_gran = 1;
1393 set_posix_acl_flag(sb);
1394
1395 error = xfs_mountfs(mp);
1396 if (error)
1397 goto out_filestream_unmount;
1398
1399 error = xfs_syncd_init(mp);
1400 if (error)
1401 goto out_unmount;
1402
1403 root = igrab(VFS_I(mp->m_rootip));
1404 if (!root) {
1405 error = ENOENT;
1406 goto out_syncd_stop;
1407 }
1408 if (is_bad_inode(root)) {
1409 error = EINVAL;
1410 goto out_syncd_stop;
1411 }
1412 sb->s_root = d_alloc_root(root);
1413 if (!sb->s_root) {
1414 error = ENOMEM;
1415 goto out_iput;
1416 }
1417
1418 return 0;
1419
1420 out_filestream_unmount:
1421 xfs_filestream_unmount(mp);
1422 out_free_sb:
1423 xfs_freesb(mp);
1424 out_destroy_counters:
1425 xfs_icsb_destroy_counters(mp);
1426 out_close_devices:
1427 xfs_close_devices(mp);
1428 out_free_fsname:
1429 xfs_free_fsname(mp);
1430 kfree(mp);
1431 out:
1432 return -error;
1433
1434 out_iput:
1435 iput(root);
1436 out_syncd_stop:
1437 xfs_syncd_stop(mp);
1438 out_unmount:
1439 /*
1440 * Blow away any referenced inode in the filestreams cache.
1441 * This can and will cause log traffic as inodes go inactive
1442 * here.
1443 */
1444 xfs_filestream_unmount(mp);
1445
1446 XFS_bflush(mp->m_ddev_targp);
1447
1448 xfs_unmountfs(mp);
1449 goto out_free_sb;
1450}
1451
1452STATIC struct dentry *
1453xfs_fs_mount(
1454 struct file_system_type *fs_type,
1455 int flags,
1456 const char *dev_name,
1457 void *data)
1458{
1459 return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
1460}
1461
1462static int
1463xfs_fs_nr_cached_objects(
1464 struct super_block *sb)
1465{
1466 return xfs_reclaim_inodes_count(XFS_M(sb));
1467}
1468
1469static void
1470xfs_fs_free_cached_objects(
1471 struct super_block *sb,
1472 int nr_to_scan)
1473{
1474 xfs_reclaim_inodes_nr(XFS_M(sb), nr_to_scan);
1475}
1476
1477static const struct super_operations xfs_super_operations = {
1478 .alloc_inode = xfs_fs_alloc_inode,
1479 .destroy_inode = xfs_fs_destroy_inode,
1480 .dirty_inode = xfs_fs_dirty_inode,
1481 .write_inode = xfs_fs_write_inode,
1482 .evict_inode = xfs_fs_evict_inode,
1483 .put_super = xfs_fs_put_super,
1484 .sync_fs = xfs_fs_sync_fs,
1485 .freeze_fs = xfs_fs_freeze,
1486 .unfreeze_fs = xfs_fs_unfreeze,
1487 .statfs = xfs_fs_statfs,
1488 .remount_fs = xfs_fs_remount,
1489 .show_options = xfs_fs_show_options,
1490 .nr_cached_objects = xfs_fs_nr_cached_objects,
1491 .free_cached_objects = xfs_fs_free_cached_objects,
1492};
1493
1494static struct file_system_type xfs_fs_type = {
1495 .owner = THIS_MODULE,
1496 .name = "xfs",
1497 .mount = xfs_fs_mount,
1498 .kill_sb = kill_block_super,
1499 .fs_flags = FS_REQUIRES_DEV,
1500};
1501
1502STATIC int __init
1503xfs_init_zones(void)
1504{
1505
1506 xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
1507 if (!xfs_ioend_zone)
1508 goto out;
1509
1510 xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
1511 xfs_ioend_zone);
1512 if (!xfs_ioend_pool)
1513 goto out_destroy_ioend_zone;
1514
1515 xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
1516 "xfs_log_ticket");
1517 if (!xfs_log_ticket_zone)
1518 goto out_destroy_ioend_pool;
1519
1520 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
1521 "xfs_bmap_free_item");
1522 if (!xfs_bmap_free_item_zone)
1523 goto out_destroy_log_ticket_zone;
1524
1525 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
1526 "xfs_btree_cur");
1527 if (!xfs_btree_cur_zone)
1528 goto out_destroy_bmap_free_item_zone;
1529
1530 xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
1531 "xfs_da_state");
1532 if (!xfs_da_state_zone)
1533 goto out_destroy_btree_cur_zone;
1534
1535 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
1536 if (!xfs_dabuf_zone)
1537 goto out_destroy_da_state_zone;
1538
1539 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
1540 if (!xfs_ifork_zone)
1541 goto out_destroy_dabuf_zone;
1542
1543 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
1544 if (!xfs_trans_zone)
1545 goto out_destroy_ifork_zone;
1546
1547 xfs_log_item_desc_zone =
1548 kmem_zone_init(sizeof(struct xfs_log_item_desc),
1549 "xfs_log_item_desc");
1550 if (!xfs_log_item_desc_zone)
1551 goto out_destroy_trans_zone;
1552
1553 /*
1554 * The size of the zone allocated buf log item is the maximum
1555 * size possible under XFS. This wastes a little bit of memory,
1556 * but it is much faster.
1557 */
1558 xfs_buf_item_zone = kmem_zone_init((sizeof(xfs_buf_log_item_t) +
1559 (((XFS_MAX_BLOCKSIZE / XFS_BLF_CHUNK) /
1560 NBWORD) * sizeof(int))), "xfs_buf_item");
1561 if (!xfs_buf_item_zone)
1562 goto out_destroy_log_item_desc_zone;
1563
1564 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
1565 ((XFS_EFD_MAX_FAST_EXTENTS - 1) *
1566 sizeof(xfs_extent_t))), "xfs_efd_item");
1567 if (!xfs_efd_zone)
1568 goto out_destroy_buf_item_zone;
1569
1570 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
1571 ((XFS_EFI_MAX_FAST_EXTENTS - 1) *
1572 sizeof(xfs_extent_t))), "xfs_efi_item");
1573 if (!xfs_efi_zone)
1574 goto out_destroy_efd_zone;
1575
1576 xfs_inode_zone =
1577 kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
1578 KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD,
1579 xfs_fs_inode_init_once);
1580 if (!xfs_inode_zone)
1581 goto out_destroy_efi_zone;
1582
1583 xfs_ili_zone =
1584 kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
1585 KM_ZONE_SPREAD, NULL);
1586 if (!xfs_ili_zone)
1587 goto out_destroy_inode_zone;
1588
1589 return 0;
1590
1591 out_destroy_inode_zone:
1592 kmem_zone_destroy(xfs_inode_zone);
1593 out_destroy_efi_zone:
1594 kmem_zone_destroy(xfs_efi_zone);
1595 out_destroy_efd_zone:
1596 kmem_zone_destroy(xfs_efd_zone);
1597 out_destroy_buf_item_zone:
1598 kmem_zone_destroy(xfs_buf_item_zone);
1599 out_destroy_log_item_desc_zone:
1600 kmem_zone_destroy(xfs_log_item_desc_zone);
1601 out_destroy_trans_zone:
1602 kmem_zone_destroy(xfs_trans_zone);
1603 out_destroy_ifork_zone:
1604 kmem_zone_destroy(xfs_ifork_zone);
1605 out_destroy_dabuf_zone:
1606 kmem_zone_destroy(xfs_dabuf_zone);
1607 out_destroy_da_state_zone:
1608 kmem_zone_destroy(xfs_da_state_zone);
1609 out_destroy_btree_cur_zone:
1610 kmem_zone_destroy(xfs_btree_cur_zone);
1611 out_destroy_bmap_free_item_zone:
1612 kmem_zone_destroy(xfs_bmap_free_item_zone);
1613 out_destroy_log_ticket_zone:
1614 kmem_zone_destroy(xfs_log_ticket_zone);
1615 out_destroy_ioend_pool:
1616 mempool_destroy(xfs_ioend_pool);
1617 out_destroy_ioend_zone:
1618 kmem_zone_destroy(xfs_ioend_zone);
1619 out:
1620 return -ENOMEM;
1621}
1622
1623STATIC void
1624xfs_destroy_zones(void)
1625{
1626 kmem_zone_destroy(xfs_ili_zone);
1627 kmem_zone_destroy(xfs_inode_zone);
1628 kmem_zone_destroy(xfs_efi_zone);
1629 kmem_zone_destroy(xfs_efd_zone);
1630 kmem_zone_destroy(xfs_buf_item_zone);
1631 kmem_zone_destroy(xfs_log_item_desc_zone);
1632 kmem_zone_destroy(xfs_trans_zone);
1633 kmem_zone_destroy(xfs_ifork_zone);
1634 kmem_zone_destroy(xfs_dabuf_zone);
1635 kmem_zone_destroy(xfs_da_state_zone);
1636 kmem_zone_destroy(xfs_btree_cur_zone);
1637 kmem_zone_destroy(xfs_bmap_free_item_zone);
1638 kmem_zone_destroy(xfs_log_ticket_zone);
1639 mempool_destroy(xfs_ioend_pool);
1640 kmem_zone_destroy(xfs_ioend_zone);
1641
1642}
1643
1644STATIC int __init
1645xfs_init_workqueues(void)
1646{
1647 /*
1648 * max_active is set to 8 to give enough concurency to allow
1649 * multiple work operations on each CPU to run. This allows multiple
1650 * filesystems to be running sync work concurrently, and scales with
1651 * the number of CPUs in the system.
1652 */
1653 xfs_syncd_wq = alloc_workqueue("xfssyncd", WQ_CPU_INTENSIVE, 8);
1654 if (!xfs_syncd_wq)
1655 return -ENOMEM;
1656 return 0;
1657}
1658
1659STATIC void
1660xfs_destroy_workqueues(void)
1661{
1662 destroy_workqueue(xfs_syncd_wq);
1663}
1664
1665STATIC int __init
1666init_xfs_fs(void)
1667{
1668 int error;
1669
1670 printk(KERN_INFO XFS_VERSION_STRING " with "
1671 XFS_BUILD_OPTIONS " enabled\n");
1672
1673 xfs_ioend_init();
1674 xfs_dir_startup();
1675
1676 error = xfs_init_zones();
1677 if (error)
1678 goto out;
1679
1680 error = xfs_init_workqueues();
1681 if (error)
1682 goto out_destroy_zones;
1683
1684 error = xfs_mru_cache_init();
1685 if (error)
1686 goto out_destroy_wq;
1687
1688 error = xfs_filestream_init();
1689 if (error)
1690 goto out_mru_cache_uninit;
1691
1692 error = xfs_buf_init();
1693 if (error)
1694 goto out_filestream_uninit;
1695
1696 error = xfs_init_procfs();
1697 if (error)
1698 goto out_buf_terminate;
1699
1700 error = xfs_sysctl_register();
1701 if (error)
1702 goto out_cleanup_procfs;
1703
1704 vfs_initquota();
1705
1706 error = register_filesystem(&xfs_fs_type);
1707 if (error)
1708 goto out_sysctl_unregister;
1709 return 0;
1710
1711 out_sysctl_unregister:
1712 xfs_sysctl_unregister();
1713 out_cleanup_procfs:
1714 xfs_cleanup_procfs();
1715 out_buf_terminate:
1716 xfs_buf_terminate();
1717 out_filestream_uninit:
1718 xfs_filestream_uninit();
1719 out_mru_cache_uninit:
1720 xfs_mru_cache_uninit();
1721 out_destroy_wq:
1722 xfs_destroy_workqueues();
1723 out_destroy_zones:
1724 xfs_destroy_zones();
1725 out:
1726 return error;
1727}
1728
1729STATIC void __exit
1730exit_xfs_fs(void)
1731{
1732 vfs_exitquota();
1733 unregister_filesystem(&xfs_fs_type);
1734 xfs_sysctl_unregister();
1735 xfs_cleanup_procfs();
1736 xfs_buf_terminate();
1737 xfs_filestream_uninit();
1738 xfs_mru_cache_uninit();
1739 xfs_destroy_workqueues();
1740 xfs_destroy_zones();
1741}
1742
1743module_init(init_xfs_fs);
1744module_exit(exit_xfs_fs);
1745
1746MODULE_AUTHOR("Silicon Graphics, Inc.");
1747MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
1748MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6
7#include "xfs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_sb.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_btree.h"
16#include "xfs_bmap.h"
17#include "xfs_alloc.h"
18#include "xfs_fsops.h"
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
21#include "xfs_log.h"
22#include "xfs_log_priv.h"
23#include "xfs_dir2.h"
24#include "xfs_extfree_item.h"
25#include "xfs_mru_cache.h"
26#include "xfs_inode_item.h"
27#include "xfs_icache.h"
28#include "xfs_trace.h"
29#include "xfs_icreate_item.h"
30#include "xfs_filestream.h"
31#include "xfs_quota.h"
32#include "xfs_sysfs.h"
33#include "xfs_ondisk.h"
34#include "xfs_rmap_item.h"
35#include "xfs_refcount_item.h"
36#include "xfs_bmap_item.h"
37#include "xfs_reflink.h"
38
39#include <linux/magic.h>
40#include <linux/fs_context.h>
41#include <linux/fs_parser.h>
42
43static const struct super_operations xfs_super_operations;
44
45static struct kset *xfs_kset; /* top-level xfs sysfs dir */
46#ifdef DEBUG
47static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */
48#endif
49
50enum xfs_dax_mode {
51 XFS_DAX_INODE = 0,
52 XFS_DAX_ALWAYS = 1,
53 XFS_DAX_NEVER = 2,
54};
55
56static void
57xfs_mount_set_dax_mode(
58 struct xfs_mount *mp,
59 enum xfs_dax_mode mode)
60{
61 switch (mode) {
62 case XFS_DAX_INODE:
63 mp->m_flags &= ~(XFS_MOUNT_DAX_ALWAYS | XFS_MOUNT_DAX_NEVER);
64 break;
65 case XFS_DAX_ALWAYS:
66 mp->m_flags |= XFS_MOUNT_DAX_ALWAYS;
67 mp->m_flags &= ~XFS_MOUNT_DAX_NEVER;
68 break;
69 case XFS_DAX_NEVER:
70 mp->m_flags |= XFS_MOUNT_DAX_NEVER;
71 mp->m_flags &= ~XFS_MOUNT_DAX_ALWAYS;
72 break;
73 }
74}
75
76static const struct constant_table dax_param_enums[] = {
77 {"inode", XFS_DAX_INODE },
78 {"always", XFS_DAX_ALWAYS },
79 {"never", XFS_DAX_NEVER },
80 {}
81};
82
83/*
84 * Table driven mount option parser.
85 */
86enum {
87 Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev,
88 Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
89 Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
90 Opt_allocsize, Opt_norecovery, Opt_inode64, Opt_inode32, Opt_ikeep,
91 Opt_noikeep, Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2,
92 Opt_filestreams, Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota,
93 Opt_prjquota, Opt_uquota, Opt_gquota, Opt_pquota,
94 Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
95 Opt_discard, Opt_nodiscard, Opt_dax, Opt_dax_enum,
96};
97
98static const struct fs_parameter_spec xfs_fs_parameters[] = {
99 fsparam_u32("logbufs", Opt_logbufs),
100 fsparam_string("logbsize", Opt_logbsize),
101 fsparam_string("logdev", Opt_logdev),
102 fsparam_string("rtdev", Opt_rtdev),
103 fsparam_flag("wsync", Opt_wsync),
104 fsparam_flag("noalign", Opt_noalign),
105 fsparam_flag("swalloc", Opt_swalloc),
106 fsparam_u32("sunit", Opt_sunit),
107 fsparam_u32("swidth", Opt_swidth),
108 fsparam_flag("nouuid", Opt_nouuid),
109 fsparam_flag("grpid", Opt_grpid),
110 fsparam_flag("nogrpid", Opt_nogrpid),
111 fsparam_flag("bsdgroups", Opt_bsdgroups),
112 fsparam_flag("sysvgroups", Opt_sysvgroups),
113 fsparam_string("allocsize", Opt_allocsize),
114 fsparam_flag("norecovery", Opt_norecovery),
115 fsparam_flag("inode64", Opt_inode64),
116 fsparam_flag("inode32", Opt_inode32),
117 fsparam_flag("ikeep", Opt_ikeep),
118 fsparam_flag("noikeep", Opt_noikeep),
119 fsparam_flag("largeio", Opt_largeio),
120 fsparam_flag("nolargeio", Opt_nolargeio),
121 fsparam_flag("attr2", Opt_attr2),
122 fsparam_flag("noattr2", Opt_noattr2),
123 fsparam_flag("filestreams", Opt_filestreams),
124 fsparam_flag("quota", Opt_quota),
125 fsparam_flag("noquota", Opt_noquota),
126 fsparam_flag("usrquota", Opt_usrquota),
127 fsparam_flag("grpquota", Opt_grpquota),
128 fsparam_flag("prjquota", Opt_prjquota),
129 fsparam_flag("uquota", Opt_uquota),
130 fsparam_flag("gquota", Opt_gquota),
131 fsparam_flag("pquota", Opt_pquota),
132 fsparam_flag("uqnoenforce", Opt_uqnoenforce),
133 fsparam_flag("gqnoenforce", Opt_gqnoenforce),
134 fsparam_flag("pqnoenforce", Opt_pqnoenforce),
135 fsparam_flag("qnoenforce", Opt_qnoenforce),
136 fsparam_flag("discard", Opt_discard),
137 fsparam_flag("nodiscard", Opt_nodiscard),
138 fsparam_flag("dax", Opt_dax),
139 fsparam_enum("dax", Opt_dax_enum, dax_param_enums),
140 {}
141};
142
143struct proc_xfs_info {
144 uint64_t flag;
145 char *str;
146};
147
148static int
149xfs_fs_show_options(
150 struct seq_file *m,
151 struct dentry *root)
152{
153 static struct proc_xfs_info xfs_info_set[] = {
154 /* the few simple ones we can get from the mount struct */
155 { XFS_MOUNT_IKEEP, ",ikeep" },
156 { XFS_MOUNT_WSYNC, ",wsync" },
157 { XFS_MOUNT_NOALIGN, ",noalign" },
158 { XFS_MOUNT_SWALLOC, ",swalloc" },
159 { XFS_MOUNT_NOUUID, ",nouuid" },
160 { XFS_MOUNT_NORECOVERY, ",norecovery" },
161 { XFS_MOUNT_ATTR2, ",attr2" },
162 { XFS_MOUNT_FILESTREAMS, ",filestreams" },
163 { XFS_MOUNT_GRPID, ",grpid" },
164 { XFS_MOUNT_DISCARD, ",discard" },
165 { XFS_MOUNT_LARGEIO, ",largeio" },
166 { XFS_MOUNT_DAX_ALWAYS, ",dax=always" },
167 { XFS_MOUNT_DAX_NEVER, ",dax=never" },
168 { 0, NULL }
169 };
170 struct xfs_mount *mp = XFS_M(root->d_sb);
171 struct proc_xfs_info *xfs_infop;
172
173 for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
174 if (mp->m_flags & xfs_infop->flag)
175 seq_puts(m, xfs_infop->str);
176 }
177
178 seq_printf(m, ",inode%d",
179 (mp->m_flags & XFS_MOUNT_SMALL_INUMS) ? 32 : 64);
180
181 if (mp->m_flags & XFS_MOUNT_ALLOCSIZE)
182 seq_printf(m, ",allocsize=%dk",
183 (1 << mp->m_allocsize_log) >> 10);
184
185 if (mp->m_logbufs > 0)
186 seq_printf(m, ",logbufs=%d", mp->m_logbufs);
187 if (mp->m_logbsize > 0)
188 seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
189
190 if (mp->m_logname)
191 seq_show_option(m, "logdev", mp->m_logname);
192 if (mp->m_rtname)
193 seq_show_option(m, "rtdev", mp->m_rtname);
194
195 if (mp->m_dalign > 0)
196 seq_printf(m, ",sunit=%d",
197 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
198 if (mp->m_swidth > 0)
199 seq_printf(m, ",swidth=%d",
200 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
201
202 if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
203 seq_puts(m, ",usrquota");
204 else if (mp->m_qflags & XFS_UQUOTA_ACCT)
205 seq_puts(m, ",uqnoenforce");
206
207 if (mp->m_qflags & XFS_PQUOTA_ACCT) {
208 if (mp->m_qflags & XFS_PQUOTA_ENFD)
209 seq_puts(m, ",prjquota");
210 else
211 seq_puts(m, ",pqnoenforce");
212 }
213 if (mp->m_qflags & XFS_GQUOTA_ACCT) {
214 if (mp->m_qflags & XFS_GQUOTA_ENFD)
215 seq_puts(m, ",grpquota");
216 else
217 seq_puts(m, ",gqnoenforce");
218 }
219
220 if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
221 seq_puts(m, ",noquota");
222
223 return 0;
224}
225
226/*
227 * Set parameters for inode allocation heuristics, taking into account
228 * filesystem size and inode32/inode64 mount options; i.e. specifically
229 * whether or not XFS_MOUNT_SMALL_INUMS is set.
230 *
231 * Inode allocation patterns are altered only if inode32 is requested
232 * (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large.
233 * If altered, XFS_MOUNT_32BITINODES is set as well.
234 *
235 * An agcount independent of that in the mount structure is provided
236 * because in the growfs case, mp->m_sb.sb_agcount is not yet updated
237 * to the potentially higher ag count.
238 *
239 * Returns the maximum AG index which may contain inodes.
240 */
241xfs_agnumber_t
242xfs_set_inode_alloc(
243 struct xfs_mount *mp,
244 xfs_agnumber_t agcount)
245{
246 xfs_agnumber_t index;
247 xfs_agnumber_t maxagi = 0;
248 xfs_sb_t *sbp = &mp->m_sb;
249 xfs_agnumber_t max_metadata;
250 xfs_agino_t agino;
251 xfs_ino_t ino;
252
253 /*
254 * Calculate how much should be reserved for inodes to meet
255 * the max inode percentage. Used only for inode32.
256 */
257 if (M_IGEO(mp)->maxicount) {
258 uint64_t icount;
259
260 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
261 do_div(icount, 100);
262 icount += sbp->sb_agblocks - 1;
263 do_div(icount, sbp->sb_agblocks);
264 max_metadata = icount;
265 } else {
266 max_metadata = agcount;
267 }
268
269 /* Get the last possible inode in the filesystem */
270 agino = XFS_AGB_TO_AGINO(mp, sbp->sb_agblocks - 1);
271 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
272
273 /*
274 * If user asked for no more than 32-bit inodes, and the fs is
275 * sufficiently large, set XFS_MOUNT_32BITINODES if we must alter
276 * the allocator to accommodate the request.
277 */
278 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
279 mp->m_flags |= XFS_MOUNT_32BITINODES;
280 else
281 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
282
283 for (index = 0; index < agcount; index++) {
284 struct xfs_perag *pag;
285
286 ino = XFS_AGINO_TO_INO(mp, index, agino);
287
288 pag = xfs_perag_get(mp, index);
289
290 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
291 if (ino > XFS_MAXINUMBER_32) {
292 pag->pagi_inodeok = 0;
293 pag->pagf_metadata = 0;
294 } else {
295 pag->pagi_inodeok = 1;
296 maxagi++;
297 if (index < max_metadata)
298 pag->pagf_metadata = 1;
299 else
300 pag->pagf_metadata = 0;
301 }
302 } else {
303 pag->pagi_inodeok = 1;
304 pag->pagf_metadata = 0;
305 }
306
307 xfs_perag_put(pag);
308 }
309
310 return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount;
311}
312
313STATIC int
314xfs_blkdev_get(
315 xfs_mount_t *mp,
316 const char *name,
317 struct block_device **bdevp)
318{
319 int error = 0;
320
321 *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
322 mp);
323 if (IS_ERR(*bdevp)) {
324 error = PTR_ERR(*bdevp);
325 xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
326 }
327
328 return error;
329}
330
331STATIC void
332xfs_blkdev_put(
333 struct block_device *bdev)
334{
335 if (bdev)
336 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
337}
338
339void
340xfs_blkdev_issue_flush(
341 xfs_buftarg_t *buftarg)
342{
343 blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS);
344}
345
346STATIC void
347xfs_close_devices(
348 struct xfs_mount *mp)
349{
350 struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev;
351
352 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
353 struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
354 struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev;
355
356 xfs_free_buftarg(mp->m_logdev_targp);
357 xfs_blkdev_put(logdev);
358 fs_put_dax(dax_logdev);
359 }
360 if (mp->m_rtdev_targp) {
361 struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
362 struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev;
363
364 xfs_free_buftarg(mp->m_rtdev_targp);
365 xfs_blkdev_put(rtdev);
366 fs_put_dax(dax_rtdev);
367 }
368 xfs_free_buftarg(mp->m_ddev_targp);
369 fs_put_dax(dax_ddev);
370}
371
372/*
373 * The file system configurations are:
374 * (1) device (partition) with data and internal log
375 * (2) logical volume with data and log subvolumes.
376 * (3) logical volume with data, log, and realtime subvolumes.
377 *
378 * We only have to handle opening the log and realtime volumes here if
379 * they are present. The data subvolume has already been opened by
380 * get_sb_bdev() and is stored in sb->s_bdev.
381 */
382STATIC int
383xfs_open_devices(
384 struct xfs_mount *mp)
385{
386 struct block_device *ddev = mp->m_super->s_bdev;
387 struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev);
388 struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL;
389 struct block_device *logdev = NULL, *rtdev = NULL;
390 int error;
391
392 /*
393 * Open real time and log devices - order is important.
394 */
395 if (mp->m_logname) {
396 error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
397 if (error)
398 goto out;
399 dax_logdev = fs_dax_get_by_bdev(logdev);
400 }
401
402 if (mp->m_rtname) {
403 error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
404 if (error)
405 goto out_close_logdev;
406
407 if (rtdev == ddev || rtdev == logdev) {
408 xfs_warn(mp,
409 "Cannot mount filesystem with identical rtdev and ddev/logdev.");
410 error = -EINVAL;
411 goto out_close_rtdev;
412 }
413 dax_rtdev = fs_dax_get_by_bdev(rtdev);
414 }
415
416 /*
417 * Setup xfs_mount buffer target pointers
418 */
419 error = -ENOMEM;
420 mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev);
421 if (!mp->m_ddev_targp)
422 goto out_close_rtdev;
423
424 if (rtdev) {
425 mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev);
426 if (!mp->m_rtdev_targp)
427 goto out_free_ddev_targ;
428 }
429
430 if (logdev && logdev != ddev) {
431 mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev);
432 if (!mp->m_logdev_targp)
433 goto out_free_rtdev_targ;
434 } else {
435 mp->m_logdev_targp = mp->m_ddev_targp;
436 }
437
438 return 0;
439
440 out_free_rtdev_targ:
441 if (mp->m_rtdev_targp)
442 xfs_free_buftarg(mp->m_rtdev_targp);
443 out_free_ddev_targ:
444 xfs_free_buftarg(mp->m_ddev_targp);
445 out_close_rtdev:
446 xfs_blkdev_put(rtdev);
447 fs_put_dax(dax_rtdev);
448 out_close_logdev:
449 if (logdev && logdev != ddev) {
450 xfs_blkdev_put(logdev);
451 fs_put_dax(dax_logdev);
452 }
453 out:
454 fs_put_dax(dax_ddev);
455 return error;
456}
457
458/*
459 * Setup xfs_mount buffer target pointers based on superblock
460 */
461STATIC int
462xfs_setup_devices(
463 struct xfs_mount *mp)
464{
465 int error;
466
467 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
468 if (error)
469 return error;
470
471 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
472 unsigned int log_sector_size = BBSIZE;
473
474 if (xfs_sb_version_hassector(&mp->m_sb))
475 log_sector_size = mp->m_sb.sb_logsectsize;
476 error = xfs_setsize_buftarg(mp->m_logdev_targp,
477 log_sector_size);
478 if (error)
479 return error;
480 }
481 if (mp->m_rtdev_targp) {
482 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
483 mp->m_sb.sb_sectsize);
484 if (error)
485 return error;
486 }
487
488 return 0;
489}
490
491STATIC int
492xfs_init_mount_workqueues(
493 struct xfs_mount *mp)
494{
495 mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
496 WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_super->s_id);
497 if (!mp->m_buf_workqueue)
498 goto out;
499
500 mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
501 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
502 if (!mp->m_unwritten_workqueue)
503 goto out_destroy_buf;
504
505 mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s",
506 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND,
507 0, mp->m_super->s_id);
508 if (!mp->m_cil_workqueue)
509 goto out_destroy_unwritten;
510
511 mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
512 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
513 if (!mp->m_reclaim_workqueue)
514 goto out_destroy_cil;
515
516 mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s",
517 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_super->s_id);
518 if (!mp->m_eofblocks_workqueue)
519 goto out_destroy_reclaim;
520
521 mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0,
522 mp->m_super->s_id);
523 if (!mp->m_sync_workqueue)
524 goto out_destroy_eofb;
525
526 return 0;
527
528out_destroy_eofb:
529 destroy_workqueue(mp->m_eofblocks_workqueue);
530out_destroy_reclaim:
531 destroy_workqueue(mp->m_reclaim_workqueue);
532out_destroy_cil:
533 destroy_workqueue(mp->m_cil_workqueue);
534out_destroy_unwritten:
535 destroy_workqueue(mp->m_unwritten_workqueue);
536out_destroy_buf:
537 destroy_workqueue(mp->m_buf_workqueue);
538out:
539 return -ENOMEM;
540}
541
542STATIC void
543xfs_destroy_mount_workqueues(
544 struct xfs_mount *mp)
545{
546 destroy_workqueue(mp->m_sync_workqueue);
547 destroy_workqueue(mp->m_eofblocks_workqueue);
548 destroy_workqueue(mp->m_reclaim_workqueue);
549 destroy_workqueue(mp->m_cil_workqueue);
550 destroy_workqueue(mp->m_unwritten_workqueue);
551 destroy_workqueue(mp->m_buf_workqueue);
552}
553
554static void
555xfs_flush_inodes_worker(
556 struct work_struct *work)
557{
558 struct xfs_mount *mp = container_of(work, struct xfs_mount,
559 m_flush_inodes_work);
560 struct super_block *sb = mp->m_super;
561
562 if (down_read_trylock(&sb->s_umount)) {
563 sync_inodes_sb(sb);
564 up_read(&sb->s_umount);
565 }
566}
567
568/*
569 * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
570 * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
571 * for IO to complete so that we effectively throttle multiple callers to the
572 * rate at which IO is completing.
573 */
574void
575xfs_flush_inodes(
576 struct xfs_mount *mp)
577{
578 /*
579 * If flush_work() returns true then that means we waited for a flush
580 * which was already in progress. Don't bother running another scan.
581 */
582 if (flush_work(&mp->m_flush_inodes_work))
583 return;
584
585 queue_work(mp->m_sync_workqueue, &mp->m_flush_inodes_work);
586 flush_work(&mp->m_flush_inodes_work);
587}
588
589/* Catch misguided souls that try to use this interface on XFS */
590STATIC struct inode *
591xfs_fs_alloc_inode(
592 struct super_block *sb)
593{
594 BUG();
595 return NULL;
596}
597
598#ifdef DEBUG
599static void
600xfs_check_delalloc(
601 struct xfs_inode *ip,
602 int whichfork)
603{
604 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork);
605 struct xfs_bmbt_irec got;
606 struct xfs_iext_cursor icur;
607
608 if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
609 return;
610 do {
611 if (isnullstartblock(got.br_startblock)) {
612 xfs_warn(ip->i_mount,
613 "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
614 ip->i_ino,
615 whichfork == XFS_DATA_FORK ? "data" : "cow",
616 got.br_startoff, got.br_blockcount);
617 }
618 } while (xfs_iext_next_extent(ifp, &icur, &got));
619}
620#else
621#define xfs_check_delalloc(ip, whichfork) do { } while (0)
622#endif
623
624/*
625 * Now that the generic code is guaranteed not to be accessing
626 * the linux inode, we can inactivate and reclaim the inode.
627 */
628STATIC void
629xfs_fs_destroy_inode(
630 struct inode *inode)
631{
632 struct xfs_inode *ip = XFS_I(inode);
633
634 trace_xfs_destroy_inode(ip);
635
636 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
637 XFS_STATS_INC(ip->i_mount, vn_rele);
638 XFS_STATS_INC(ip->i_mount, vn_remove);
639
640 xfs_inactive(ip);
641
642 if (!XFS_FORCED_SHUTDOWN(ip->i_mount) && ip->i_delayed_blks) {
643 xfs_check_delalloc(ip, XFS_DATA_FORK);
644 xfs_check_delalloc(ip, XFS_COW_FORK);
645 ASSERT(0);
646 }
647
648 XFS_STATS_INC(ip->i_mount, vn_reclaim);
649
650 /*
651 * We should never get here with one of the reclaim flags already set.
652 */
653 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
654 ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
655
656 /*
657 * We always use background reclaim here because even if the
658 * inode is clean, it still may be under IO and hence we have
659 * to take the flush lock. The background reclaim path handles
660 * this more efficiently than we can here, so simply let background
661 * reclaim tear down all inodes.
662 */
663 xfs_inode_set_reclaim_tag(ip);
664}
665
666static void
667xfs_fs_dirty_inode(
668 struct inode *inode,
669 int flag)
670{
671 struct xfs_inode *ip = XFS_I(inode);
672 struct xfs_mount *mp = ip->i_mount;
673 struct xfs_trans *tp;
674
675 if (!(inode->i_sb->s_flags & SB_LAZYTIME))
676 return;
677 if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME))
678 return;
679
680 if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
681 return;
682 xfs_ilock(ip, XFS_ILOCK_EXCL);
683 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
684 xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
685 xfs_trans_commit(tp);
686}
687
688/*
689 * Slab object creation initialisation for the XFS inode.
690 * This covers only the idempotent fields in the XFS inode;
691 * all other fields need to be initialised on allocation
692 * from the slab. This avoids the need to repeatedly initialise
693 * fields in the xfs inode that left in the initialise state
694 * when freeing the inode.
695 */
696STATIC void
697xfs_fs_inode_init_once(
698 void *inode)
699{
700 struct xfs_inode *ip = inode;
701
702 memset(ip, 0, sizeof(struct xfs_inode));
703
704 /* vfs inode */
705 inode_init_once(VFS_I(ip));
706
707 /* xfs inode */
708 atomic_set(&ip->i_pincount, 0);
709 spin_lock_init(&ip->i_flags_lock);
710
711 mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
712 "xfsino", ip->i_ino);
713 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
714 "xfsino", ip->i_ino);
715}
716
717/*
718 * We do an unlocked check for XFS_IDONTCACHE here because we are already
719 * serialised against cache hits here via the inode->i_lock and igrab() in
720 * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
721 * racing with us, and it avoids needing to grab a spinlock here for every inode
722 * we drop the final reference on.
723 */
724STATIC int
725xfs_fs_drop_inode(
726 struct inode *inode)
727{
728 struct xfs_inode *ip = XFS_I(inode);
729
730 /*
731 * If this unlinked inode is in the middle of recovery, don't
732 * drop the inode just yet; log recovery will take care of
733 * that. See the comment for this inode flag.
734 */
735 if (ip->i_flags & XFS_IRECOVERY) {
736 ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED);
737 return 0;
738 }
739
740 return generic_drop_inode(inode);
741}
742
743static void
744xfs_mount_free(
745 struct xfs_mount *mp)
746{
747 kfree(mp->m_rtname);
748 kfree(mp->m_logname);
749 kmem_free(mp);
750}
751
752STATIC int
753xfs_fs_sync_fs(
754 struct super_block *sb,
755 int wait)
756{
757 struct xfs_mount *mp = XFS_M(sb);
758
759 /*
760 * Doing anything during the async pass would be counterproductive.
761 */
762 if (!wait)
763 return 0;
764
765 xfs_log_force(mp, XFS_LOG_SYNC);
766 if (laptop_mode) {
767 /*
768 * The disk must be active because we're syncing.
769 * We schedule log work now (now that the disk is
770 * active) instead of later (when it might not be).
771 */
772 flush_delayed_work(&mp->m_log->l_work);
773 }
774
775 return 0;
776}
777
778STATIC int
779xfs_fs_statfs(
780 struct dentry *dentry,
781 struct kstatfs *statp)
782{
783 struct xfs_mount *mp = XFS_M(dentry->d_sb);
784 xfs_sb_t *sbp = &mp->m_sb;
785 struct xfs_inode *ip = XFS_I(d_inode(dentry));
786 uint64_t fakeinos, id;
787 uint64_t icount;
788 uint64_t ifree;
789 uint64_t fdblocks;
790 xfs_extlen_t lsize;
791 int64_t ffree;
792
793 statp->f_type = XFS_SUPER_MAGIC;
794 statp->f_namelen = MAXNAMELEN - 1;
795
796 id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
797 statp->f_fsid.val[0] = (u32)id;
798 statp->f_fsid.val[1] = (u32)(id >> 32);
799
800 icount = percpu_counter_sum(&mp->m_icount);
801 ifree = percpu_counter_sum(&mp->m_ifree);
802 fdblocks = percpu_counter_sum(&mp->m_fdblocks);
803
804 spin_lock(&mp->m_sb_lock);
805 statp->f_bsize = sbp->sb_blocksize;
806 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
807 statp->f_blocks = sbp->sb_dblocks - lsize;
808 spin_unlock(&mp->m_sb_lock);
809
810 /* make sure statp->f_bfree does not underflow */
811 statp->f_bfree = max_t(int64_t, fdblocks - mp->m_alloc_set_aside, 0);
812 statp->f_bavail = statp->f_bfree;
813
814 fakeinos = XFS_FSB_TO_INO(mp, statp->f_bfree);
815 statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
816 if (M_IGEO(mp)->maxicount)
817 statp->f_files = min_t(typeof(statp->f_files),
818 statp->f_files,
819 M_IGEO(mp)->maxicount);
820
821 /* If sb_icount overshot maxicount, report actual allocation */
822 statp->f_files = max_t(typeof(statp->f_files),
823 statp->f_files,
824 sbp->sb_icount);
825
826 /* make sure statp->f_ffree does not underflow */
827 ffree = statp->f_files - (icount - ifree);
828 statp->f_ffree = max_t(int64_t, ffree, 0);
829
830
831 if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
832 ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
833 (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
834 xfs_qm_statvfs(ip, statp);
835
836 if (XFS_IS_REALTIME_MOUNT(mp) &&
837 (ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
838 statp->f_blocks = sbp->sb_rblocks;
839 statp->f_bavail = statp->f_bfree =
840 sbp->sb_frextents * sbp->sb_rextsize;
841 }
842
843 return 0;
844}
845
846STATIC void
847xfs_save_resvblks(struct xfs_mount *mp)
848{
849 uint64_t resblks = 0;
850
851 mp->m_resblks_save = mp->m_resblks;
852 xfs_reserve_blocks(mp, &resblks, NULL);
853}
854
855STATIC void
856xfs_restore_resvblks(struct xfs_mount *mp)
857{
858 uint64_t resblks;
859
860 if (mp->m_resblks_save) {
861 resblks = mp->m_resblks_save;
862 mp->m_resblks_save = 0;
863 } else
864 resblks = xfs_default_resblks(mp);
865
866 xfs_reserve_blocks(mp, &resblks, NULL);
867}
868
869/*
870 * Trigger writeback of all the dirty metadata in the file system.
871 *
872 * This ensures that the metadata is written to their location on disk rather
873 * than just existing in transactions in the log. This means after a quiesce
874 * there is no log replay required to write the inodes to disk - this is the
875 * primary difference between a sync and a quiesce.
876 *
877 * We cancel log work early here to ensure all transactions the log worker may
878 * run have finished before we clean up and log the superblock and write an
879 * unmount record. The unfreeze process is responsible for restarting the log
880 * worker correctly.
881 */
882void
883xfs_quiesce_attr(
884 struct xfs_mount *mp)
885{
886 int error = 0;
887
888 cancel_delayed_work_sync(&mp->m_log->l_work);
889
890 /* force the log to unpin objects from the now complete transactions */
891 xfs_log_force(mp, XFS_LOG_SYNC);
892
893
894 /* Push the superblock and write an unmount record */
895 error = xfs_log_sbcount(mp);
896 if (error)
897 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
898 "Frozen image may not be consistent.");
899 xfs_log_quiesce(mp);
900}
901
902/*
903 * Second stage of a freeze. The data is already frozen so we only
904 * need to take care of the metadata. Once that's done sync the superblock
905 * to the log to dirty it in case of a crash while frozen. This ensures that we
906 * will recover the unlinked inode lists on the next mount.
907 */
908STATIC int
909xfs_fs_freeze(
910 struct super_block *sb)
911{
912 struct xfs_mount *mp = XFS_M(sb);
913 unsigned int flags;
914 int ret;
915
916 /*
917 * The filesystem is now frozen far enough that memory reclaim
918 * cannot safely operate on the filesystem. Hence we need to
919 * set a GFP_NOFS context here to avoid recursion deadlocks.
920 */
921 flags = memalloc_nofs_save();
922 xfs_stop_block_reaping(mp);
923 xfs_save_resvblks(mp);
924 xfs_quiesce_attr(mp);
925 ret = xfs_sync_sb(mp, true);
926 memalloc_nofs_restore(flags);
927 return ret;
928}
929
930STATIC int
931xfs_fs_unfreeze(
932 struct super_block *sb)
933{
934 struct xfs_mount *mp = XFS_M(sb);
935
936 xfs_restore_resvblks(mp);
937 xfs_log_work_queue(mp);
938 xfs_start_block_reaping(mp);
939 return 0;
940}
941
942/*
943 * This function fills in xfs_mount_t fields based on mount args.
944 * Note: the superblock _has_ now been read in.
945 */
946STATIC int
947xfs_finish_flags(
948 struct xfs_mount *mp)
949{
950 int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
951
952 /* Fail a mount where the logbuf is smaller than the log stripe */
953 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
954 if (mp->m_logbsize <= 0 &&
955 mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
956 mp->m_logbsize = mp->m_sb.sb_logsunit;
957 } else if (mp->m_logbsize > 0 &&
958 mp->m_logbsize < mp->m_sb.sb_logsunit) {
959 xfs_warn(mp,
960 "logbuf size must be greater than or equal to log stripe size");
961 return -EINVAL;
962 }
963 } else {
964 /* Fail a mount if the logbuf is larger than 32K */
965 if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
966 xfs_warn(mp,
967 "logbuf size for version 1 logs must be 16K or 32K");
968 return -EINVAL;
969 }
970 }
971
972 /*
973 * V5 filesystems always use attr2 format for attributes.
974 */
975 if (xfs_sb_version_hascrc(&mp->m_sb) &&
976 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
977 xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
978 "attr2 is always enabled for V5 filesystems.");
979 return -EINVAL;
980 }
981
982 /*
983 * mkfs'ed attr2 will turn on attr2 mount unless explicitly
984 * told by noattr2 to turn it off
985 */
986 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
987 !(mp->m_flags & XFS_MOUNT_NOATTR2))
988 mp->m_flags |= XFS_MOUNT_ATTR2;
989
990 /*
991 * prohibit r/w mounts of read-only filesystems
992 */
993 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
994 xfs_warn(mp,
995 "cannot mount a read-only filesystem as read-write");
996 return -EROFS;
997 }
998
999 if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
1000 (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) &&
1001 !xfs_sb_version_has_pquotino(&mp->m_sb)) {
1002 xfs_warn(mp,
1003 "Super block does not support project and group quota together");
1004 return -EINVAL;
1005 }
1006
1007 return 0;
1008}
1009
1010static int
1011xfs_init_percpu_counters(
1012 struct xfs_mount *mp)
1013{
1014 int error;
1015
1016 error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
1017 if (error)
1018 return -ENOMEM;
1019
1020 error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
1021 if (error)
1022 goto free_icount;
1023
1024 error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
1025 if (error)
1026 goto free_ifree;
1027
1028 error = percpu_counter_init(&mp->m_delalloc_blks, 0, GFP_KERNEL);
1029 if (error)
1030 goto free_fdblocks;
1031
1032 return 0;
1033
1034free_fdblocks:
1035 percpu_counter_destroy(&mp->m_fdblocks);
1036free_ifree:
1037 percpu_counter_destroy(&mp->m_ifree);
1038free_icount:
1039 percpu_counter_destroy(&mp->m_icount);
1040 return -ENOMEM;
1041}
1042
1043void
1044xfs_reinit_percpu_counters(
1045 struct xfs_mount *mp)
1046{
1047 percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
1048 percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
1049 percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
1050}
1051
1052static void
1053xfs_destroy_percpu_counters(
1054 struct xfs_mount *mp)
1055{
1056 percpu_counter_destroy(&mp->m_icount);
1057 percpu_counter_destroy(&mp->m_ifree);
1058 percpu_counter_destroy(&mp->m_fdblocks);
1059 ASSERT(XFS_FORCED_SHUTDOWN(mp) ||
1060 percpu_counter_sum(&mp->m_delalloc_blks) == 0);
1061 percpu_counter_destroy(&mp->m_delalloc_blks);
1062}
1063
1064static void
1065xfs_fs_put_super(
1066 struct super_block *sb)
1067{
1068 struct xfs_mount *mp = XFS_M(sb);
1069
1070 /* if ->fill_super failed, we have no mount to tear down */
1071 if (!sb->s_fs_info)
1072 return;
1073
1074 xfs_notice(mp, "Unmounting Filesystem");
1075 xfs_filestream_unmount(mp);
1076 xfs_unmountfs(mp);
1077
1078 xfs_freesb(mp);
1079 free_percpu(mp->m_stats.xs_stats);
1080 xfs_destroy_percpu_counters(mp);
1081 xfs_destroy_mount_workqueues(mp);
1082 xfs_close_devices(mp);
1083
1084 sb->s_fs_info = NULL;
1085 xfs_mount_free(mp);
1086}
1087
1088static long
1089xfs_fs_nr_cached_objects(
1090 struct super_block *sb,
1091 struct shrink_control *sc)
1092{
1093 /* Paranoia: catch incorrect calls during mount setup or teardown */
1094 if (WARN_ON_ONCE(!sb->s_fs_info))
1095 return 0;
1096 return xfs_reclaim_inodes_count(XFS_M(sb));
1097}
1098
1099static long
1100xfs_fs_free_cached_objects(
1101 struct super_block *sb,
1102 struct shrink_control *sc)
1103{
1104 return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
1105}
1106
1107static const struct super_operations xfs_super_operations = {
1108 .alloc_inode = xfs_fs_alloc_inode,
1109 .destroy_inode = xfs_fs_destroy_inode,
1110 .dirty_inode = xfs_fs_dirty_inode,
1111 .drop_inode = xfs_fs_drop_inode,
1112 .put_super = xfs_fs_put_super,
1113 .sync_fs = xfs_fs_sync_fs,
1114 .freeze_fs = xfs_fs_freeze,
1115 .unfreeze_fs = xfs_fs_unfreeze,
1116 .statfs = xfs_fs_statfs,
1117 .show_options = xfs_fs_show_options,
1118 .nr_cached_objects = xfs_fs_nr_cached_objects,
1119 .free_cached_objects = xfs_fs_free_cached_objects,
1120};
1121
1122static int
1123suffix_kstrtoint(
1124 const char *s,
1125 unsigned int base,
1126 int *res)
1127{
1128 int last, shift_left_factor = 0, _res;
1129 char *value;
1130 int ret = 0;
1131
1132 value = kstrdup(s, GFP_KERNEL);
1133 if (!value)
1134 return -ENOMEM;
1135
1136 last = strlen(value) - 1;
1137 if (value[last] == 'K' || value[last] == 'k') {
1138 shift_left_factor = 10;
1139 value[last] = '\0';
1140 }
1141 if (value[last] == 'M' || value[last] == 'm') {
1142 shift_left_factor = 20;
1143 value[last] = '\0';
1144 }
1145 if (value[last] == 'G' || value[last] == 'g') {
1146 shift_left_factor = 30;
1147 value[last] = '\0';
1148 }
1149
1150 if (kstrtoint(value, base, &_res))
1151 ret = -EINVAL;
1152 kfree(value);
1153 *res = _res << shift_left_factor;
1154 return ret;
1155}
1156
1157/*
1158 * Set mount state from a mount option.
1159 *
1160 * NOTE: mp->m_super is NULL here!
1161 */
1162static int
1163xfs_fc_parse_param(
1164 struct fs_context *fc,
1165 struct fs_parameter *param)
1166{
1167 struct xfs_mount *mp = fc->s_fs_info;
1168 struct fs_parse_result result;
1169 int size = 0;
1170 int opt;
1171
1172 opt = fs_parse(fc, xfs_fs_parameters, param, &result);
1173 if (opt < 0)
1174 return opt;
1175
1176 switch (opt) {
1177 case Opt_logbufs:
1178 mp->m_logbufs = result.uint_32;
1179 return 0;
1180 case Opt_logbsize:
1181 if (suffix_kstrtoint(param->string, 10, &mp->m_logbsize))
1182 return -EINVAL;
1183 return 0;
1184 case Opt_logdev:
1185 kfree(mp->m_logname);
1186 mp->m_logname = kstrdup(param->string, GFP_KERNEL);
1187 if (!mp->m_logname)
1188 return -ENOMEM;
1189 return 0;
1190 case Opt_rtdev:
1191 kfree(mp->m_rtname);
1192 mp->m_rtname = kstrdup(param->string, GFP_KERNEL);
1193 if (!mp->m_rtname)
1194 return -ENOMEM;
1195 return 0;
1196 case Opt_allocsize:
1197 if (suffix_kstrtoint(param->string, 10, &size))
1198 return -EINVAL;
1199 mp->m_allocsize_log = ffs(size) - 1;
1200 mp->m_flags |= XFS_MOUNT_ALLOCSIZE;
1201 return 0;
1202 case Opt_grpid:
1203 case Opt_bsdgroups:
1204 mp->m_flags |= XFS_MOUNT_GRPID;
1205 return 0;
1206 case Opt_nogrpid:
1207 case Opt_sysvgroups:
1208 mp->m_flags &= ~XFS_MOUNT_GRPID;
1209 return 0;
1210 case Opt_wsync:
1211 mp->m_flags |= XFS_MOUNT_WSYNC;
1212 return 0;
1213 case Opt_norecovery:
1214 mp->m_flags |= XFS_MOUNT_NORECOVERY;
1215 return 0;
1216 case Opt_noalign:
1217 mp->m_flags |= XFS_MOUNT_NOALIGN;
1218 return 0;
1219 case Opt_swalloc:
1220 mp->m_flags |= XFS_MOUNT_SWALLOC;
1221 return 0;
1222 case Opt_sunit:
1223 mp->m_dalign = result.uint_32;
1224 return 0;
1225 case Opt_swidth:
1226 mp->m_swidth = result.uint_32;
1227 return 0;
1228 case Opt_inode32:
1229 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
1230 return 0;
1231 case Opt_inode64:
1232 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
1233 return 0;
1234 case Opt_nouuid:
1235 mp->m_flags |= XFS_MOUNT_NOUUID;
1236 return 0;
1237 case Opt_ikeep:
1238 mp->m_flags |= XFS_MOUNT_IKEEP;
1239 return 0;
1240 case Opt_noikeep:
1241 mp->m_flags &= ~XFS_MOUNT_IKEEP;
1242 return 0;
1243 case Opt_largeio:
1244 mp->m_flags |= XFS_MOUNT_LARGEIO;
1245 return 0;
1246 case Opt_nolargeio:
1247 mp->m_flags &= ~XFS_MOUNT_LARGEIO;
1248 return 0;
1249 case Opt_attr2:
1250 mp->m_flags |= XFS_MOUNT_ATTR2;
1251 return 0;
1252 case Opt_noattr2:
1253 mp->m_flags &= ~XFS_MOUNT_ATTR2;
1254 mp->m_flags |= XFS_MOUNT_NOATTR2;
1255 return 0;
1256 case Opt_filestreams:
1257 mp->m_flags |= XFS_MOUNT_FILESTREAMS;
1258 return 0;
1259 case Opt_noquota:
1260 mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
1261 mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
1262 mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE;
1263 return 0;
1264 case Opt_quota:
1265 case Opt_uquota:
1266 case Opt_usrquota:
1267 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
1268 XFS_UQUOTA_ENFD);
1269 return 0;
1270 case Opt_qnoenforce:
1271 case Opt_uqnoenforce:
1272 mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
1273 mp->m_qflags &= ~XFS_UQUOTA_ENFD;
1274 return 0;
1275 case Opt_pquota:
1276 case Opt_prjquota:
1277 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
1278 XFS_PQUOTA_ENFD);
1279 return 0;
1280 case Opt_pqnoenforce:
1281 mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
1282 mp->m_qflags &= ~XFS_PQUOTA_ENFD;
1283 return 0;
1284 case Opt_gquota:
1285 case Opt_grpquota:
1286 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
1287 XFS_GQUOTA_ENFD);
1288 return 0;
1289 case Opt_gqnoenforce:
1290 mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
1291 mp->m_qflags &= ~XFS_GQUOTA_ENFD;
1292 return 0;
1293 case Opt_discard:
1294 mp->m_flags |= XFS_MOUNT_DISCARD;
1295 return 0;
1296 case Opt_nodiscard:
1297 mp->m_flags &= ~XFS_MOUNT_DISCARD;
1298 return 0;
1299#ifdef CONFIG_FS_DAX
1300 case Opt_dax:
1301 xfs_mount_set_dax_mode(mp, XFS_DAX_ALWAYS);
1302 return 0;
1303 case Opt_dax_enum:
1304 xfs_mount_set_dax_mode(mp, result.uint_32);
1305 return 0;
1306#endif
1307 default:
1308 xfs_warn(mp, "unknown mount option [%s].", param->key);
1309 return -EINVAL;
1310 }
1311
1312 return 0;
1313}
1314
1315static int
1316xfs_fc_validate_params(
1317 struct xfs_mount *mp)
1318{
1319 /*
1320 * no recovery flag requires a read-only mount
1321 */
1322 if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
1323 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1324 xfs_warn(mp, "no-recovery mounts must be read-only.");
1325 return -EINVAL;
1326 }
1327
1328 if ((mp->m_flags & XFS_MOUNT_NOALIGN) &&
1329 (mp->m_dalign || mp->m_swidth)) {
1330 xfs_warn(mp,
1331 "sunit and swidth options incompatible with the noalign option");
1332 return -EINVAL;
1333 }
1334
1335 if (!IS_ENABLED(CONFIG_XFS_QUOTA) && mp->m_qflags != 0) {
1336 xfs_warn(mp, "quota support not available in this kernel.");
1337 return -EINVAL;
1338 }
1339
1340 if ((mp->m_dalign && !mp->m_swidth) ||
1341 (!mp->m_dalign && mp->m_swidth)) {
1342 xfs_warn(mp, "sunit and swidth must be specified together");
1343 return -EINVAL;
1344 }
1345
1346 if (mp->m_dalign && (mp->m_swidth % mp->m_dalign != 0)) {
1347 xfs_warn(mp,
1348 "stripe width (%d) must be a multiple of the stripe unit (%d)",
1349 mp->m_swidth, mp->m_dalign);
1350 return -EINVAL;
1351 }
1352
1353 if (mp->m_logbufs != -1 &&
1354 mp->m_logbufs != 0 &&
1355 (mp->m_logbufs < XLOG_MIN_ICLOGS ||
1356 mp->m_logbufs > XLOG_MAX_ICLOGS)) {
1357 xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
1358 mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
1359 return -EINVAL;
1360 }
1361
1362 if (mp->m_logbsize != -1 &&
1363 mp->m_logbsize != 0 &&
1364 (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
1365 mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
1366 !is_power_of_2(mp->m_logbsize))) {
1367 xfs_warn(mp,
1368 "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
1369 mp->m_logbsize);
1370 return -EINVAL;
1371 }
1372
1373 if ((mp->m_flags & XFS_MOUNT_ALLOCSIZE) &&
1374 (mp->m_allocsize_log > XFS_MAX_IO_LOG ||
1375 mp->m_allocsize_log < XFS_MIN_IO_LOG)) {
1376 xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
1377 mp->m_allocsize_log, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG);
1378 return -EINVAL;
1379 }
1380
1381 return 0;
1382}
1383
1384static int
1385xfs_fc_fill_super(
1386 struct super_block *sb,
1387 struct fs_context *fc)
1388{
1389 struct xfs_mount *mp = sb->s_fs_info;
1390 struct inode *root;
1391 int flags = 0, error;
1392
1393 mp->m_super = sb;
1394
1395 error = xfs_fc_validate_params(mp);
1396 if (error)
1397 goto out_free_names;
1398
1399 sb_min_blocksize(sb, BBSIZE);
1400 sb->s_xattr = xfs_xattr_handlers;
1401 sb->s_export_op = &xfs_export_operations;
1402#ifdef CONFIG_XFS_QUOTA
1403 sb->s_qcop = &xfs_quotactl_operations;
1404 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
1405#endif
1406 sb->s_op = &xfs_super_operations;
1407
1408 /*
1409 * Delay mount work if the debug hook is set. This is debug
1410 * instrumention to coordinate simulation of xfs mount failures with
1411 * VFS superblock operations
1412 */
1413 if (xfs_globals.mount_delay) {
1414 xfs_notice(mp, "Delaying mount for %d seconds.",
1415 xfs_globals.mount_delay);
1416 msleep(xfs_globals.mount_delay * 1000);
1417 }
1418
1419 if (fc->sb_flags & SB_SILENT)
1420 flags |= XFS_MFSI_QUIET;
1421
1422 error = xfs_open_devices(mp);
1423 if (error)
1424 goto out_free_names;
1425
1426 error = xfs_init_mount_workqueues(mp);
1427 if (error)
1428 goto out_close_devices;
1429
1430 error = xfs_init_percpu_counters(mp);
1431 if (error)
1432 goto out_destroy_workqueues;
1433
1434 /* Allocate stats memory before we do operations that might use it */
1435 mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
1436 if (!mp->m_stats.xs_stats) {
1437 error = -ENOMEM;
1438 goto out_destroy_counters;
1439 }
1440
1441 error = xfs_readsb(mp, flags);
1442 if (error)
1443 goto out_free_stats;
1444
1445 error = xfs_finish_flags(mp);
1446 if (error)
1447 goto out_free_sb;
1448
1449 error = xfs_setup_devices(mp);
1450 if (error)
1451 goto out_free_sb;
1452
1453 /*
1454 * XFS block mappings use 54 bits to store the logical block offset.
1455 * This should suffice to handle the maximum file size that the VFS
1456 * supports (currently 2^63 bytes on 64-bit and ULONG_MAX << PAGE_SHIFT
1457 * bytes on 32-bit), but as XFS and VFS have gotten the s_maxbytes
1458 * calculation wrong on 32-bit kernels in the past, we'll add a WARN_ON
1459 * to check this assertion.
1460 *
1461 * Avoid integer overflow by comparing the maximum bmbt offset to the
1462 * maximum pagecache offset in units of fs blocks.
1463 */
1464 if (XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE) > XFS_MAX_FILEOFF) {
1465 xfs_warn(mp,
1466"MAX_LFS_FILESIZE block offset (%llu) exceeds extent map maximum (%llu)!",
1467 XFS_B_TO_FSBT(mp, MAX_LFS_FILESIZE),
1468 XFS_MAX_FILEOFF);
1469 error = -EINVAL;
1470 goto out_free_sb;
1471 }
1472
1473 error = xfs_filestream_mount(mp);
1474 if (error)
1475 goto out_free_sb;
1476
1477 /*
1478 * we must configure the block size in the superblock before we run the
1479 * full mount process as the mount process can lookup and cache inodes.
1480 */
1481 sb->s_magic = XFS_SUPER_MAGIC;
1482 sb->s_blocksize = mp->m_sb.sb_blocksize;
1483 sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
1484 sb->s_maxbytes = MAX_LFS_FILESIZE;
1485 sb->s_max_links = XFS_MAXLINK;
1486 sb->s_time_gran = 1;
1487 sb->s_time_min = S32_MIN;
1488 sb->s_time_max = S32_MAX;
1489 sb->s_iflags |= SB_I_CGROUPWB;
1490
1491 set_posix_acl_flag(sb);
1492
1493 /* version 5 superblocks support inode version counters. */
1494 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
1495 sb->s_flags |= SB_I_VERSION;
1496
1497 if (mp->m_flags & XFS_MOUNT_DAX_ALWAYS) {
1498 bool rtdev_is_dax = false, datadev_is_dax;
1499
1500 xfs_warn(mp,
1501 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1502
1503 datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev,
1504 sb->s_blocksize);
1505 if (mp->m_rtdev_targp)
1506 rtdev_is_dax = bdev_dax_supported(
1507 mp->m_rtdev_targp->bt_bdev, sb->s_blocksize);
1508 if (!rtdev_is_dax && !datadev_is_dax) {
1509 xfs_alert(mp,
1510 "DAX unsupported by block device. Turning off DAX.");
1511 xfs_mount_set_dax_mode(mp, XFS_DAX_NEVER);
1512 }
1513 if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1514 xfs_alert(mp,
1515 "DAX and reflink cannot be used together!");
1516 error = -EINVAL;
1517 goto out_filestream_unmount;
1518 }
1519 }
1520
1521 if (mp->m_flags & XFS_MOUNT_DISCARD) {
1522 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1523
1524 if (!blk_queue_discard(q)) {
1525 xfs_warn(mp, "mounting with \"discard\" option, but "
1526 "the device does not support discard");
1527 mp->m_flags &= ~XFS_MOUNT_DISCARD;
1528 }
1529 }
1530
1531 if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1532 if (mp->m_sb.sb_rblocks) {
1533 xfs_alert(mp,
1534 "reflink not compatible with realtime device!");
1535 error = -EINVAL;
1536 goto out_filestream_unmount;
1537 }
1538
1539 if (xfs_globals.always_cow) {
1540 xfs_info(mp, "using DEBUG-only always_cow mode.");
1541 mp->m_always_cow = true;
1542 }
1543 }
1544
1545 if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) {
1546 xfs_alert(mp,
1547 "reverse mapping btree not compatible with realtime device!");
1548 error = -EINVAL;
1549 goto out_filestream_unmount;
1550 }
1551
1552 error = xfs_mountfs(mp);
1553 if (error)
1554 goto out_filestream_unmount;
1555
1556 root = igrab(VFS_I(mp->m_rootip));
1557 if (!root) {
1558 error = -ENOENT;
1559 goto out_unmount;
1560 }
1561 sb->s_root = d_make_root(root);
1562 if (!sb->s_root) {
1563 error = -ENOMEM;
1564 goto out_unmount;
1565 }
1566
1567 return 0;
1568
1569 out_filestream_unmount:
1570 xfs_filestream_unmount(mp);
1571 out_free_sb:
1572 xfs_freesb(mp);
1573 out_free_stats:
1574 free_percpu(mp->m_stats.xs_stats);
1575 out_destroy_counters:
1576 xfs_destroy_percpu_counters(mp);
1577 out_destroy_workqueues:
1578 xfs_destroy_mount_workqueues(mp);
1579 out_close_devices:
1580 xfs_close_devices(mp);
1581 out_free_names:
1582 sb->s_fs_info = NULL;
1583 xfs_mount_free(mp);
1584 return error;
1585
1586 out_unmount:
1587 xfs_filestream_unmount(mp);
1588 xfs_unmountfs(mp);
1589 goto out_free_sb;
1590}
1591
1592static int
1593xfs_fc_get_tree(
1594 struct fs_context *fc)
1595{
1596 return get_tree_bdev(fc, xfs_fc_fill_super);
1597}
1598
1599static int
1600xfs_remount_rw(
1601 struct xfs_mount *mp)
1602{
1603 struct xfs_sb *sbp = &mp->m_sb;
1604 int error;
1605
1606 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
1607 xfs_warn(mp,
1608 "ro->rw transition prohibited on norecovery mount");
1609 return -EINVAL;
1610 }
1611
1612 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
1613 xfs_sb_has_ro_compat_feature(sbp, XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
1614 xfs_warn(mp,
1615 "ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
1616 (sbp->sb_features_ro_compat &
1617 XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
1618 return -EINVAL;
1619 }
1620
1621 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1622
1623 /*
1624 * If this is the first remount to writeable state we might have some
1625 * superblock changes to update.
1626 */
1627 if (mp->m_update_sb) {
1628 error = xfs_sync_sb(mp, false);
1629 if (error) {
1630 xfs_warn(mp, "failed to write sb changes");
1631 return error;
1632 }
1633 mp->m_update_sb = false;
1634 }
1635
1636 /*
1637 * Fill out the reserve pool if it is empty. Use the stashed value if
1638 * it is non-zero, otherwise go with the default.
1639 */
1640 xfs_restore_resvblks(mp);
1641 xfs_log_work_queue(mp);
1642
1643 /* Recover any CoW blocks that never got remapped. */
1644 error = xfs_reflink_recover_cow(mp);
1645 if (error) {
1646 xfs_err(mp,
1647 "Error %d recovering leftover CoW allocations.", error);
1648 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1649 return error;
1650 }
1651 xfs_start_block_reaping(mp);
1652
1653 /* Create the per-AG metadata reservation pool .*/
1654 error = xfs_fs_reserve_ag_blocks(mp);
1655 if (error && error != -ENOSPC)
1656 return error;
1657
1658 return 0;
1659}
1660
1661static int
1662xfs_remount_ro(
1663 struct xfs_mount *mp)
1664{
1665 int error;
1666
1667 /*
1668 * Cancel background eofb scanning so it cannot race with the final
1669 * log force+buftarg wait and deadlock the remount.
1670 */
1671 xfs_stop_block_reaping(mp);
1672
1673 /* Get rid of any leftover CoW reservations... */
1674 error = xfs_icache_free_cowblocks(mp, NULL);
1675 if (error) {
1676 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1677 return error;
1678 }
1679
1680 /* Free the per-AG metadata reservation pool. */
1681 error = xfs_fs_unreserve_ag_blocks(mp);
1682 if (error) {
1683 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1684 return error;
1685 }
1686
1687 /*
1688 * Before we sync the metadata, we need to free up the reserve block
1689 * pool so that the used block count in the superblock on disk is
1690 * correct at the end of the remount. Stash the current* reserve pool
1691 * size so that if we get remounted rw, we can return it to the same
1692 * size.
1693 */
1694 xfs_save_resvblks(mp);
1695
1696 xfs_quiesce_attr(mp);
1697 mp->m_flags |= XFS_MOUNT_RDONLY;
1698
1699 return 0;
1700}
1701
1702/*
1703 * Logically we would return an error here to prevent users from believing
1704 * they might have changed mount options using remount which can't be changed.
1705 *
1706 * But unfortunately mount(8) adds all options from mtab and fstab to the mount
1707 * arguments in some cases so we can't blindly reject options, but have to
1708 * check for each specified option if it actually differs from the currently
1709 * set option and only reject it if that's the case.
1710 *
1711 * Until that is implemented we return success for every remount request, and
1712 * silently ignore all options that we can't actually change.
1713 */
1714static int
1715xfs_fc_reconfigure(
1716 struct fs_context *fc)
1717{
1718 struct xfs_mount *mp = XFS_M(fc->root->d_sb);
1719 struct xfs_mount *new_mp = fc->s_fs_info;
1720 xfs_sb_t *sbp = &mp->m_sb;
1721 int flags = fc->sb_flags;
1722 int error;
1723
1724 /* version 5 superblocks always support version counters. */
1725 if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
1726 fc->sb_flags |= SB_I_VERSION;
1727
1728 error = xfs_fc_validate_params(new_mp);
1729 if (error)
1730 return error;
1731
1732 sync_filesystem(mp->m_super);
1733
1734 /* inode32 -> inode64 */
1735 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) &&
1736 !(new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) {
1737 mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
1738 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
1739 }
1740
1741 /* inode64 -> inode32 */
1742 if (!(mp->m_flags & XFS_MOUNT_SMALL_INUMS) &&
1743 (new_mp->m_flags & XFS_MOUNT_SMALL_INUMS)) {
1744 mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
1745 mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
1746 }
1747
1748 /* ro -> rw */
1749 if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(flags & SB_RDONLY)) {
1750 error = xfs_remount_rw(mp);
1751 if (error)
1752 return error;
1753 }
1754
1755 /* rw -> ro */
1756 if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (flags & SB_RDONLY)) {
1757 error = xfs_remount_ro(mp);
1758 if (error)
1759 return error;
1760 }
1761
1762 return 0;
1763}
1764
1765static void xfs_fc_free(
1766 struct fs_context *fc)
1767{
1768 struct xfs_mount *mp = fc->s_fs_info;
1769
1770 /*
1771 * mp is stored in the fs_context when it is initialized.
1772 * mp is transferred to the superblock on a successful mount,
1773 * but if an error occurs before the transfer we have to free
1774 * it here.
1775 */
1776 if (mp)
1777 xfs_mount_free(mp);
1778}
1779
1780static const struct fs_context_operations xfs_context_ops = {
1781 .parse_param = xfs_fc_parse_param,
1782 .get_tree = xfs_fc_get_tree,
1783 .reconfigure = xfs_fc_reconfigure,
1784 .free = xfs_fc_free,
1785};
1786
1787static int xfs_init_fs_context(
1788 struct fs_context *fc)
1789{
1790 struct xfs_mount *mp;
1791
1792 mp = kmem_alloc(sizeof(struct xfs_mount), KM_ZERO);
1793 if (!mp)
1794 return -ENOMEM;
1795
1796 spin_lock_init(&mp->m_sb_lock);
1797 spin_lock_init(&mp->m_agirotor_lock);
1798 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1799 spin_lock_init(&mp->m_perag_lock);
1800 mutex_init(&mp->m_growlock);
1801 INIT_WORK(&mp->m_flush_inodes_work, xfs_flush_inodes_worker);
1802 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
1803 INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker);
1804 INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker);
1805 mp->m_kobj.kobject.kset = xfs_kset;
1806 /*
1807 * We don't create the finobt per-ag space reservation until after log
1808 * recovery, so we must set this to true so that an ifree transaction
1809 * started during log recovery will not depend on space reservations
1810 * for finobt expansion.
1811 */
1812 mp->m_finobt_nores = true;
1813
1814 /*
1815 * These can be overridden by the mount option parsing.
1816 */
1817 mp->m_logbufs = -1;
1818 mp->m_logbsize = -1;
1819 mp->m_allocsize_log = 16; /* 64k */
1820
1821 /*
1822 * Copy binary VFS mount flags we are interested in.
1823 */
1824 if (fc->sb_flags & SB_RDONLY)
1825 mp->m_flags |= XFS_MOUNT_RDONLY;
1826 if (fc->sb_flags & SB_DIRSYNC)
1827 mp->m_flags |= XFS_MOUNT_DIRSYNC;
1828 if (fc->sb_flags & SB_SYNCHRONOUS)
1829 mp->m_flags |= XFS_MOUNT_WSYNC;
1830
1831 fc->s_fs_info = mp;
1832 fc->ops = &xfs_context_ops;
1833
1834 return 0;
1835}
1836
1837static struct file_system_type xfs_fs_type = {
1838 .owner = THIS_MODULE,
1839 .name = "xfs",
1840 .init_fs_context = xfs_init_fs_context,
1841 .parameters = xfs_fs_parameters,
1842 .kill_sb = kill_block_super,
1843 .fs_flags = FS_REQUIRES_DEV,
1844};
1845MODULE_ALIAS_FS("xfs");
1846
1847STATIC int __init
1848xfs_init_zones(void)
1849{
1850 xfs_log_ticket_zone = kmem_cache_create("xfs_log_ticket",
1851 sizeof(struct xlog_ticket),
1852 0, 0, NULL);
1853 if (!xfs_log_ticket_zone)
1854 goto out;
1855
1856 xfs_bmap_free_item_zone = kmem_cache_create("xfs_bmap_free_item",
1857 sizeof(struct xfs_extent_free_item),
1858 0, 0, NULL);
1859 if (!xfs_bmap_free_item_zone)
1860 goto out_destroy_log_ticket_zone;
1861
1862 xfs_btree_cur_zone = kmem_cache_create("xfs_btree_cur",
1863 sizeof(struct xfs_btree_cur),
1864 0, 0, NULL);
1865 if (!xfs_btree_cur_zone)
1866 goto out_destroy_bmap_free_item_zone;
1867
1868 xfs_da_state_zone = kmem_cache_create("xfs_da_state",
1869 sizeof(struct xfs_da_state),
1870 0, 0, NULL);
1871 if (!xfs_da_state_zone)
1872 goto out_destroy_btree_cur_zone;
1873
1874 xfs_ifork_zone = kmem_cache_create("xfs_ifork",
1875 sizeof(struct xfs_ifork),
1876 0, 0, NULL);
1877 if (!xfs_ifork_zone)
1878 goto out_destroy_da_state_zone;
1879
1880 xfs_trans_zone = kmem_cache_create("xf_trans",
1881 sizeof(struct xfs_trans),
1882 0, 0, NULL);
1883 if (!xfs_trans_zone)
1884 goto out_destroy_ifork_zone;
1885
1886
1887 /*
1888 * The size of the zone allocated buf log item is the maximum
1889 * size possible under XFS. This wastes a little bit of memory,
1890 * but it is much faster.
1891 */
1892 xfs_buf_item_zone = kmem_cache_create("xfs_buf_item",
1893 sizeof(struct xfs_buf_log_item),
1894 0, 0, NULL);
1895 if (!xfs_buf_item_zone)
1896 goto out_destroy_trans_zone;
1897
1898 xfs_efd_zone = kmem_cache_create("xfs_efd_item",
1899 (sizeof(struct xfs_efd_log_item) +
1900 (XFS_EFD_MAX_FAST_EXTENTS - 1) *
1901 sizeof(struct xfs_extent)),
1902 0, 0, NULL);
1903 if (!xfs_efd_zone)
1904 goto out_destroy_buf_item_zone;
1905
1906 xfs_efi_zone = kmem_cache_create("xfs_efi_item",
1907 (sizeof(struct xfs_efi_log_item) +
1908 (XFS_EFI_MAX_FAST_EXTENTS - 1) *
1909 sizeof(struct xfs_extent)),
1910 0, 0, NULL);
1911 if (!xfs_efi_zone)
1912 goto out_destroy_efd_zone;
1913
1914 xfs_inode_zone = kmem_cache_create("xfs_inode",
1915 sizeof(struct xfs_inode), 0,
1916 (SLAB_HWCACHE_ALIGN |
1917 SLAB_RECLAIM_ACCOUNT |
1918 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1919 xfs_fs_inode_init_once);
1920 if (!xfs_inode_zone)
1921 goto out_destroy_efi_zone;
1922
1923 xfs_ili_zone = kmem_cache_create("xfs_ili",
1924 sizeof(struct xfs_inode_log_item), 0,
1925 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1926 NULL);
1927 if (!xfs_ili_zone)
1928 goto out_destroy_inode_zone;
1929
1930 xfs_icreate_zone = kmem_cache_create("xfs_icr",
1931 sizeof(struct xfs_icreate_item),
1932 0, 0, NULL);
1933 if (!xfs_icreate_zone)
1934 goto out_destroy_ili_zone;
1935
1936 xfs_rud_zone = kmem_cache_create("xfs_rud_item",
1937 sizeof(struct xfs_rud_log_item),
1938 0, 0, NULL);
1939 if (!xfs_rud_zone)
1940 goto out_destroy_icreate_zone;
1941
1942 xfs_rui_zone = kmem_cache_create("xfs_rui_item",
1943 xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
1944 0, 0, NULL);
1945 if (!xfs_rui_zone)
1946 goto out_destroy_rud_zone;
1947
1948 xfs_cud_zone = kmem_cache_create("xfs_cud_item",
1949 sizeof(struct xfs_cud_log_item),
1950 0, 0, NULL);
1951 if (!xfs_cud_zone)
1952 goto out_destroy_rui_zone;
1953
1954 xfs_cui_zone = kmem_cache_create("xfs_cui_item",
1955 xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
1956 0, 0, NULL);
1957 if (!xfs_cui_zone)
1958 goto out_destroy_cud_zone;
1959
1960 xfs_bud_zone = kmem_cache_create("xfs_bud_item",
1961 sizeof(struct xfs_bud_log_item),
1962 0, 0, NULL);
1963 if (!xfs_bud_zone)
1964 goto out_destroy_cui_zone;
1965
1966 xfs_bui_zone = kmem_cache_create("xfs_bui_item",
1967 xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
1968 0, 0, NULL);
1969 if (!xfs_bui_zone)
1970 goto out_destroy_bud_zone;
1971
1972 return 0;
1973
1974 out_destroy_bud_zone:
1975 kmem_cache_destroy(xfs_bud_zone);
1976 out_destroy_cui_zone:
1977 kmem_cache_destroy(xfs_cui_zone);
1978 out_destroy_cud_zone:
1979 kmem_cache_destroy(xfs_cud_zone);
1980 out_destroy_rui_zone:
1981 kmem_cache_destroy(xfs_rui_zone);
1982 out_destroy_rud_zone:
1983 kmem_cache_destroy(xfs_rud_zone);
1984 out_destroy_icreate_zone:
1985 kmem_cache_destroy(xfs_icreate_zone);
1986 out_destroy_ili_zone:
1987 kmem_cache_destroy(xfs_ili_zone);
1988 out_destroy_inode_zone:
1989 kmem_cache_destroy(xfs_inode_zone);
1990 out_destroy_efi_zone:
1991 kmem_cache_destroy(xfs_efi_zone);
1992 out_destroy_efd_zone:
1993 kmem_cache_destroy(xfs_efd_zone);
1994 out_destroy_buf_item_zone:
1995 kmem_cache_destroy(xfs_buf_item_zone);
1996 out_destroy_trans_zone:
1997 kmem_cache_destroy(xfs_trans_zone);
1998 out_destroy_ifork_zone:
1999 kmem_cache_destroy(xfs_ifork_zone);
2000 out_destroy_da_state_zone:
2001 kmem_cache_destroy(xfs_da_state_zone);
2002 out_destroy_btree_cur_zone:
2003 kmem_cache_destroy(xfs_btree_cur_zone);
2004 out_destroy_bmap_free_item_zone:
2005 kmem_cache_destroy(xfs_bmap_free_item_zone);
2006 out_destroy_log_ticket_zone:
2007 kmem_cache_destroy(xfs_log_ticket_zone);
2008 out:
2009 return -ENOMEM;
2010}
2011
2012STATIC void
2013xfs_destroy_zones(void)
2014{
2015 /*
2016 * Make sure all delayed rcu free are flushed before we
2017 * destroy caches.
2018 */
2019 rcu_barrier();
2020 kmem_cache_destroy(xfs_bui_zone);
2021 kmem_cache_destroy(xfs_bud_zone);
2022 kmem_cache_destroy(xfs_cui_zone);
2023 kmem_cache_destroy(xfs_cud_zone);
2024 kmem_cache_destroy(xfs_rui_zone);
2025 kmem_cache_destroy(xfs_rud_zone);
2026 kmem_cache_destroy(xfs_icreate_zone);
2027 kmem_cache_destroy(xfs_ili_zone);
2028 kmem_cache_destroy(xfs_inode_zone);
2029 kmem_cache_destroy(xfs_efi_zone);
2030 kmem_cache_destroy(xfs_efd_zone);
2031 kmem_cache_destroy(xfs_buf_item_zone);
2032 kmem_cache_destroy(xfs_trans_zone);
2033 kmem_cache_destroy(xfs_ifork_zone);
2034 kmem_cache_destroy(xfs_da_state_zone);
2035 kmem_cache_destroy(xfs_btree_cur_zone);
2036 kmem_cache_destroy(xfs_bmap_free_item_zone);
2037 kmem_cache_destroy(xfs_log_ticket_zone);
2038}
2039
2040STATIC int __init
2041xfs_init_workqueues(void)
2042{
2043 /*
2044 * The allocation workqueue can be used in memory reclaim situations
2045 * (writepage path), and parallelism is only limited by the number of
2046 * AGs in all the filesystems mounted. Hence use the default large
2047 * max_active value for this workqueue.
2048 */
2049 xfs_alloc_wq = alloc_workqueue("xfsalloc",
2050 WQ_MEM_RECLAIM|WQ_FREEZABLE, 0);
2051 if (!xfs_alloc_wq)
2052 return -ENOMEM;
2053
2054 xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0);
2055 if (!xfs_discard_wq)
2056 goto out_free_alloc_wq;
2057
2058 return 0;
2059out_free_alloc_wq:
2060 destroy_workqueue(xfs_alloc_wq);
2061 return -ENOMEM;
2062}
2063
2064STATIC void
2065xfs_destroy_workqueues(void)
2066{
2067 destroy_workqueue(xfs_discard_wq);
2068 destroy_workqueue(xfs_alloc_wq);
2069}
2070
2071STATIC int __init
2072init_xfs_fs(void)
2073{
2074 int error;
2075
2076 xfs_check_ondisk_structs();
2077
2078 printk(KERN_INFO XFS_VERSION_STRING " with "
2079 XFS_BUILD_OPTIONS " enabled\n");
2080
2081 xfs_dir_startup();
2082
2083 error = xfs_init_zones();
2084 if (error)
2085 goto out;
2086
2087 error = xfs_init_workqueues();
2088 if (error)
2089 goto out_destroy_zones;
2090
2091 error = xfs_mru_cache_init();
2092 if (error)
2093 goto out_destroy_wq;
2094
2095 error = xfs_buf_init();
2096 if (error)
2097 goto out_mru_cache_uninit;
2098
2099 error = xfs_init_procfs();
2100 if (error)
2101 goto out_buf_terminate;
2102
2103 error = xfs_sysctl_register();
2104 if (error)
2105 goto out_cleanup_procfs;
2106
2107 xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
2108 if (!xfs_kset) {
2109 error = -ENOMEM;
2110 goto out_sysctl_unregister;
2111 }
2112
2113 xfsstats.xs_kobj.kobject.kset = xfs_kset;
2114
2115 xfsstats.xs_stats = alloc_percpu(struct xfsstats);
2116 if (!xfsstats.xs_stats) {
2117 error = -ENOMEM;
2118 goto out_kset_unregister;
2119 }
2120
2121 error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
2122 "stats");
2123 if (error)
2124 goto out_free_stats;
2125
2126#ifdef DEBUG
2127 xfs_dbg_kobj.kobject.kset = xfs_kset;
2128 error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
2129 if (error)
2130 goto out_remove_stats_kobj;
2131#endif
2132
2133 error = xfs_qm_init();
2134 if (error)
2135 goto out_remove_dbg_kobj;
2136
2137 error = register_filesystem(&xfs_fs_type);
2138 if (error)
2139 goto out_qm_exit;
2140 return 0;
2141
2142 out_qm_exit:
2143 xfs_qm_exit();
2144 out_remove_dbg_kobj:
2145#ifdef DEBUG
2146 xfs_sysfs_del(&xfs_dbg_kobj);
2147 out_remove_stats_kobj:
2148#endif
2149 xfs_sysfs_del(&xfsstats.xs_kobj);
2150 out_free_stats:
2151 free_percpu(xfsstats.xs_stats);
2152 out_kset_unregister:
2153 kset_unregister(xfs_kset);
2154 out_sysctl_unregister:
2155 xfs_sysctl_unregister();
2156 out_cleanup_procfs:
2157 xfs_cleanup_procfs();
2158 out_buf_terminate:
2159 xfs_buf_terminate();
2160 out_mru_cache_uninit:
2161 xfs_mru_cache_uninit();
2162 out_destroy_wq:
2163 xfs_destroy_workqueues();
2164 out_destroy_zones:
2165 xfs_destroy_zones();
2166 out:
2167 return error;
2168}
2169
2170STATIC void __exit
2171exit_xfs_fs(void)
2172{
2173 xfs_qm_exit();
2174 unregister_filesystem(&xfs_fs_type);
2175#ifdef DEBUG
2176 xfs_sysfs_del(&xfs_dbg_kobj);
2177#endif
2178 xfs_sysfs_del(&xfsstats.xs_kobj);
2179 free_percpu(xfsstats.xs_stats);
2180 kset_unregister(xfs_kset);
2181 xfs_sysctl_unregister();
2182 xfs_cleanup_procfs();
2183 xfs_buf_terminate();
2184 xfs_mru_cache_uninit();
2185 xfs_destroy_workqueues();
2186 xfs_destroy_zones();
2187 xfs_uuid_table_free();
2188}
2189
2190module_init(init_xfs_fs);
2191module_exit(exit_xfs_fs);
2192
2193MODULE_AUTHOR("Silicon Graphics, Inc.");
2194MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
2195MODULE_LICENSE("GPL");