Linux Audio

Check our new training course

Loading...
v3.1
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_types.h"
 
 
 
  21#include "xfs_bit.h"
  22#include "xfs_log.h"
  23#include "xfs_inum.h"
  24#include "xfs_trans.h"
  25#include "xfs_sb.h"
  26#include "xfs_ag.h"
  27#include "xfs_mount.h"
  28#include "xfs_buf_item.h"
  29#include "xfs_trans_priv.h"
  30#include "xfs_error.h"
 
 
 
 
 
  31#include "xfs_trace.h"
 
  32
  33
  34kmem_zone_t	*xfs_buf_item_zone;
  35
  36static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  37{
  38	return container_of(lip, struct xfs_buf_log_item, bli_item);
  39}
  40
 
  41
  42#ifdef XFS_TRANS_DEBUG
  43/*
  44 * This function uses an alternate strategy for tracking the bytes
  45 * that the user requests to be logged.  This can then be used
  46 * in conjunction with the bli_orig array in the buf log item to
  47 * catch bugs in our callers' code.
  48 *
  49 * We also double check the bits set in xfs_buf_item_log using a
  50 * simple algorithm to check that every byte is accounted for.
  51 */
  52STATIC void
  53xfs_buf_item_log_debug(
  54	xfs_buf_log_item_t	*bip,
  55	uint			first,
  56	uint			last)
  57{
  58	uint	x;
  59	uint	byte;
  60	uint	nbytes;
  61	uint	chunk_num;
  62	uint	word_num;
  63	uint	bit_num;
  64	uint	bit_set;
  65	uint	*wordp;
  66
  67	ASSERT(bip->bli_logged != NULL);
  68	byte = first;
  69	nbytes = last - first + 1;
  70	bfset(bip->bli_logged, first, nbytes);
  71	for (x = 0; x < nbytes; x++) {
  72		chunk_num = byte >> XFS_BLF_SHIFT;
  73		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
  74		bit_num = chunk_num & (NBWORD - 1);
  75		wordp = &(bip->bli_format.blf_data_map[word_num]);
  76		bit_set = *wordp & (1 << bit_num);
  77		ASSERT(bit_set);
  78		byte++;
  79	}
  80}
  81
  82/*
  83 * This function is called when we flush something into a buffer without
  84 * logging it.  This happens for things like inodes which are logged
  85 * separately from the buffer.
  86 */
  87void
  88xfs_buf_item_flush_log_debug(
  89	xfs_buf_t	*bp,
  90	uint		first,
  91	uint		last)
  92{
  93	xfs_buf_log_item_t	*bip = bp->b_fspriv;
  94	uint			nbytes;
 
  95
  96	if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
  97		return;
  98
  99	ASSERT(bip->bli_logged != NULL);
 100	nbytes = last - first + 1;
 101	bfset(bip->bli_logged, first, nbytes);
 102}
 103
 104/*
 105 * This function is called to verify that our callers have logged
 106 * all the bytes that they changed.
 107 *
 108 * It does this by comparing the original copy of the buffer stored in
 109 * the buf log item's bli_orig array to the current copy of the buffer
 110 * and ensuring that all bytes which mismatch are set in the bli_logged
 111 * array of the buf log item.
 112 */
 113STATIC void
 114xfs_buf_item_log_check(
 115	xfs_buf_log_item_t	*bip)
 116{
 117	char		*orig;
 118	char		*buffer;
 119	int		x;
 120	xfs_buf_t	*bp;
 121
 122	ASSERT(bip->bli_orig != NULL);
 123	ASSERT(bip->bli_logged != NULL);
 124
 125	bp = bip->bli_buf;
 126	ASSERT(XFS_BUF_COUNT(bp) > 0);
 127	ASSERT(bp->b_addr != NULL);
 128	orig = bip->bli_orig;
 129	buffer = bp->b_addr;
 130	for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
 131		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
 132			xfs_emerg(bp->b_mount,
 133				"%s: bip %x buffer %x orig %x index %d",
 134				__func__, bip, bp, orig, x);
 135			ASSERT(0);
 136		}
 137	}
 138}
 139#else
 140#define		xfs_buf_item_log_debug(x,y,z)
 141#define		xfs_buf_item_log_check(x)
 142#endif
 143
 144STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
 145
 146/*
 147 * This returns the number of log iovecs needed to log the
 148 * given buf log item.
 149 *
 150 * It calculates this as 1 iovec for the buf log format structure
 151 * and 1 for each stretch of non-contiguous chunks to be logged.
 152 * Contiguous chunks are logged in a single iovec.
 153 *
 154 * If the XFS_BLI_STALE flag has been set, then log nothing.
 155 */
 156STATIC uint
 157xfs_buf_item_size(
 158	struct xfs_log_item	*lip)
 159{
 160	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 161	struct xfs_buf		*bp = bip->bli_buf;
 162	uint			nvecs;
 163	int			next_bit;
 164	int			last_bit;
 
 165
 166	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 167	if (bip->bli_flags & XFS_BLI_STALE) {
 168		/*
 169		 * The buffer is stale, so all we need to log
 170		 * is the buf log format structure with the
 171		 * cancel flag in it.
 172		 */
 173		trace_xfs_buf_item_size_stale(bip);
 174		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
 175		return 1;
 176	}
 177
 178	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
 179	nvecs = 1;
 180	last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
 181					 bip->bli_format.blf_map_size, 0);
 182	ASSERT(last_bit != -1);
 183	nvecs++;
 184	while (last_bit != -1) {
 185		/*
 186		 * This takes the bit number to start looking from and
 187		 * returns the next set bit from there.  It returns -1
 188		 * if there are no more bits set or the start bit is
 189		 * beyond the end of the bitmap.
 190		 */
 191		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
 192						 bip->bli_format.blf_map_size,
 193						 last_bit + 1);
 194		/*
 195		 * If we run out of bits, leave the loop,
 196		 * else if we find a new set of bits bump the number of vecs,
 197		 * else keep scanning the current set of bits.
 198		 */
 199		if (next_bit == -1) {
 200			last_bit = -1;
 201		} else if (next_bit != last_bit + 1) {
 202			last_bit = next_bit;
 203			nvecs++;
 204		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
 205			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
 206			    XFS_BLF_CHUNK)) {
 207			last_bit = next_bit;
 208			nvecs++;
 209		} else {
 210			last_bit++;
 211		}
 
 212	}
 213
 214	trace_xfs_buf_item_size(bip);
 215	return nvecs;
 216}
 217
 218/*
 219 * This is called to fill in the vector of log iovecs for the
 220 * given log buf item.  It fills the first entry with a buf log
 221 * format structure, and the rest point to contiguous chunks
 222 * within the buffer.
 
 
 
 
 
 
 
 
 
 
 
 223 */
 224STATIC void
 225xfs_buf_item_format(
 226	struct xfs_log_item	*lip,
 227	struct xfs_log_iovec	*vecp)
 
 228{
 229	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 230	struct xfs_buf	*bp = bip->bli_buf;
 231	uint		base_size;
 232	uint		nvecs;
 233	int		first_bit;
 234	int		last_bit;
 235	int		next_bit;
 236	uint		nbits;
 237	uint		buffer_offset;
 238
 239	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 240	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 241	       (bip->bli_flags & XFS_BLI_STALE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242
 243	/*
 244	 * The size of the base structure is the size of the
 245	 * declared structure plus the space for the extra words
 246	 * of the bitmap.  We subtract one from the map size, because
 247	 * the first element of the bitmap is accounted for in the
 248	 * size of the base structure.
 249	 */
 250	base_size =
 251		(uint)(sizeof(xfs_buf_log_format_t) +
 252		       ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
 253	vecp->i_addr = &bip->bli_format;
 254	vecp->i_len = base_size;
 255	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
 256	vecp++;
 257	nvecs = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 258
 259	/*
 260	 * If it is an inode buffer, transfer the in-memory state to the
 261	 * format flags and clear the in-memory state. We do not transfer
 262	 * this state if the inode buffer allocation has not yet been committed
 263	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
 264	 * correct replay of the inode allocation.
 265	 */
 266	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
 267		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
 268		      xfs_log_item_in_current_chkpt(lip)))
 269			bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
 270		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
 
 
 
 
 271	}
 272
 
 
 
 273	if (bip->bli_flags & XFS_BLI_STALE) {
 274		/*
 275		 * The buffer is stale, so all we need to log
 276		 * is the buf log format structure with the
 277		 * cancel flag in it.
 278		 */
 279		trace_xfs_buf_item_format_stale(bip);
 280		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
 281		bip->bli_format.blf_size = nvecs;
 282		return;
 283	}
 284
 
 285	/*
 286	 * Fill in an iovec for each set of contiguous chunks.
 287	 */
 288	first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
 289					 bip->bli_format.blf_map_size, 0);
 290	ASSERT(first_bit != -1);
 291	last_bit = first_bit;
 292	nbits = 1;
 293	for (;;) {
 294		/*
 295		 * This takes the bit number to start looking from and
 296		 * returns the next set bit from there.  It returns -1
 297		 * if there are no more bits set or the start bit is
 298		 * beyond the end of the bitmap.
 299		 */
 300		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
 301						 bip->bli_format.blf_map_size,
 302						 (uint)last_bit + 1);
 303		/*
 304		 * If we run out of bits fill in the last iovec and get
 305		 * out of the loop.
 306		 * Else if we start a new set of bits then fill in the
 307		 * iovec for the series we were looking at and start
 308		 * counting the bits in the new one.
 309		 * Else we're still in the same set of bits so just
 310		 * keep counting and scanning.
 311		 */
 312		if (next_bit == -1) {
 313			buffer_offset = first_bit * XFS_BLF_CHUNK;
 314			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
 315			vecp->i_len = nbits * XFS_BLF_CHUNK;
 316			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
 317			nvecs++;
 318			break;
 319		} else if (next_bit != last_bit + 1) {
 320			buffer_offset = first_bit * XFS_BLF_CHUNK;
 321			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
 322			vecp->i_len = nbits * XFS_BLF_CHUNK;
 323			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
 324			nvecs++;
 325			vecp++;
 326			first_bit = next_bit;
 327			last_bit = next_bit;
 328			nbits = 1;
 329		} else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
 330			   (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
 331			    XFS_BLF_CHUNK)) {
 332			buffer_offset = first_bit * XFS_BLF_CHUNK;
 333			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
 334			vecp->i_len = nbits * XFS_BLF_CHUNK;
 335			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
 336/* You would think we need to bump the nvecs here too, but we do not
 337 * this number is used by recovery, and it gets confused by the boundary
 338 * split here
 339 *			nvecs++;
 340 */
 341			vecp++;
 342			first_bit = next_bit;
 343			last_bit = next_bit;
 344			nbits = 1;
 345		} else {
 346			last_bit++;
 347			nbits++;
 348		}
 349	}
 350	bip->bli_format.blf_size = nvecs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351
 352	/*
 353	 * Check to make sure everything is consistent.
 354	 */
 355	trace_xfs_buf_item_format(bip);
 356	xfs_buf_item_log_check(bip);
 357}
 358
 359/*
 360 * This is called to pin the buffer associated with the buf log item in memory
 361 * so it cannot be written out.
 362 *
 363 * We also always take a reference to the buffer log item here so that the bli
 364 * is held while the item is pinned in memory. This means that we can
 365 * unconditionally drop the reference count a transaction holds when the
 366 * transaction is completed.
 367 */
 368STATIC void
 369xfs_buf_item_pin(
 370	struct xfs_log_item	*lip)
 371{
 372	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 373
 374	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 375	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 
 376	       (bip->bli_flags & XFS_BLI_STALE));
 377
 378	trace_xfs_buf_item_pin(bip);
 379
 380	atomic_inc(&bip->bli_refcount);
 381	atomic_inc(&bip->bli_buf->b_pin_count);
 382}
 383
 384/*
 385 * This is called to unpin the buffer associated with the buf log
 386 * item which was previously pinned with a call to xfs_buf_item_pin().
 387 *
 388 * Also drop the reference to the buf item for the current transaction.
 389 * If the XFS_BLI_STALE flag is set and we are the last reference,
 390 * then free up the buf log item and unlock the buffer.
 391 *
 392 * If the remove flag is set we are called from uncommit in the
 393 * forced-shutdown path.  If that is true and the reference count on
 394 * the log item is going to drop to zero we need to free the item's
 395 * descriptor in the transaction.
 396 */
 397STATIC void
 398xfs_buf_item_unpin(
 399	struct xfs_log_item	*lip,
 400	int			remove)
 401{
 402	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 403	xfs_buf_t	*bp = bip->bli_buf;
 404	struct xfs_ail	*ailp = lip->li_ailp;
 405	int		stale = bip->bli_flags & XFS_BLI_STALE;
 406	int		freed;
 407
 408	ASSERT(bp->b_fspriv == bip);
 409	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 410
 411	trace_xfs_buf_item_unpin(bip);
 412
 413	freed = atomic_dec_and_test(&bip->bli_refcount);
 414
 415	if (atomic_dec_and_test(&bp->b_pin_count))
 416		wake_up_all(&bp->b_waiters);
 417
 418	if (freed && stale) {
 419		ASSERT(bip->bli_flags & XFS_BLI_STALE);
 420		ASSERT(xfs_buf_islocked(bp));
 421		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
 422		ASSERT(XFS_BUF_ISSTALE(bp));
 423		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
 424
 425		trace_xfs_buf_item_unpin_stale(bip);
 426
 427		if (remove) {
 428			/*
 429			 * If we are in a transaction context, we have to
 430			 * remove the log item from the transaction as we are
 431			 * about to release our reference to the buffer.  If we
 432			 * don't, the unlock that occurs later in
 433			 * xfs_trans_uncommit() will try to reference the
 434			 * buffer which we no longer have a hold on.
 435			 */
 436			if (lip->li_desc)
 437				xfs_trans_del_item(lip);
 438
 439			/*
 440			 * Since the transaction no longer refers to the buffer,
 441			 * the buffer should no longer refer to the transaction.
 442			 */
 443			bp->b_transp = NULL;
 444		}
 445
 446		/*
 447		 * If we get called here because of an IO error, we may
 448		 * or may not have the item on the AIL. xfs_trans_ail_delete()
 449		 * will take care of that situation.
 450		 * xfs_trans_ail_delete() drops the AIL lock.
 451		 */
 452		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
 453			xfs_buf_do_callbacks(bp);
 454			bp->b_fspriv = NULL;
 455			bp->b_iodone = NULL;
 456		} else {
 457			spin_lock(&ailp->xa_lock);
 458			xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
 459			xfs_buf_item_relse(bp);
 460			ASSERT(bp->b_fspriv == NULL);
 461		}
 462		xfs_buf_relse(bp);
 
 
 
 
 
 
 
 
 
 463	}
 464}
 465
 466/*
 467 * This is called to attempt to lock the buffer associated with this
 468 * buf log item.  Don't sleep on the buffer lock.  If we can't get
 469 * the lock right away, return 0.  If we can get the lock, take a
 470 * reference to the buffer. If this is a delayed write buffer that
 471 * needs AIL help to be written back, invoke the pushbuf routine
 472 * rather than the normal success path.
 473 */
 474STATIC uint
 475xfs_buf_item_trylock(
 476	struct xfs_log_item	*lip)
 
 477{
 478	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 479	struct xfs_buf		*bp = bip->bli_buf;
 
 480
 481	if (xfs_buf_ispinned(bp))
 482		return XFS_ITEM_PINNED;
 483	if (!xfs_buf_trylock(bp))
 
 
 
 
 
 
 
 
 
 484		return XFS_ITEM_LOCKED;
 485
 486	/* take a reference to the buffer.  */
 487	xfs_buf_hold(bp);
 488
 489	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 490	trace_xfs_buf_item_trylock(bip);
 491	if (XFS_BUF_ISDELAYWRITE(bp))
 492		return XFS_ITEM_PUSHBUF;
 493	return XFS_ITEM_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494}
 495
 496/*
 497 * Release the buffer associated with the buf log item.  If there is no dirty
 498 * logged data associated with the buffer recorded in the buf log item, then
 499 * free the buf log item and remove the reference to it in the buffer.
 500 *
 501 * This call ignores the recursion count.  It is only called when the buffer
 502 * should REALLY be unlocked, regardless of the recursion count.
 503 *
 504 * We unconditionally drop the transaction's reference to the log item. If the
 505 * item was logged, then another reference was taken when it was pinned, so we
 506 * can safely drop the transaction reference now.  This also allows us to avoid
 507 * potential races with the unpin code freeing the bli by not referencing the
 508 * bli after we've dropped the reference count.
 509 *
 510 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
 511 * if necessary but do not unlock the buffer.  This is for support of
 512 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
 513 * free the item.
 514 */
 515STATIC void
 516xfs_buf_item_unlock(
 517	struct xfs_log_item	*lip)
 518{
 519	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 520	struct xfs_buf		*bp = bip->bli_buf;
 521	int			aborted;
 522	uint			hold;
 523
 524	/* Clear the buffer's association with this transaction. */
 525	bp->b_transp = NULL;
 
 
 
 
 526
 527	/*
 528	 * If this is a transaction abort, don't return early.  Instead, allow
 529	 * the brelse to happen.  Normally it would be done for stale
 530	 * (cancelled) buffers at unpin time, but we'll never go through the
 531	 * pin/unpin cycle if we abort inside commit.
 532	 */
 533	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
 534
 535	/*
 536	 * Before possibly freeing the buf item, determine if we should
 537	 * release the buffer at the end of this routine.
 538	 */
 539	hold = bip->bli_flags & XFS_BLI_HOLD;
 540
 541	/* Clear the per transaction state. */
 542	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
 543
 544	/*
 545	 * If the buf item is marked stale, then don't do anything.  We'll
 546	 * unlock the buffer and free the buf item when the buffer is unpinned
 547	 * for the last time.
 548	 */
 549	if (bip->bli_flags & XFS_BLI_STALE) {
 550		trace_xfs_buf_item_unlock_stale(bip);
 551		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
 552		if (!aborted) {
 553			atomic_dec(&bip->bli_refcount);
 554			return;
 555		}
 556	}
 557
 558	trace_xfs_buf_item_unlock(bip);
 559
 560	/*
 561	 * If the buf item isn't tracking any data, free it, otherwise drop the
 562	 * reference we hold to it.
 
 
 563	 */
 564	if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
 565			     bip->bli_format.blf_map_size))
 566		xfs_buf_item_relse(bp);
 567	else
 568		atomic_dec(&bip->bli_refcount);
 
 569
 570	if (!hold)
 571		xfs_buf_relse(bp);
 
 
 
 
 572}
 573
 574/*
 575 * This is called to find out where the oldest active copy of the
 576 * buf log item in the on disk log resides now that the last log
 577 * write of it completed at the given lsn.
 578 * We always re-log all the dirty data in a buffer, so usually the
 579 * latest copy in the on disk log is the only one that matters.  For
 580 * those cases we simply return the given lsn.
 581 *
 582 * The one exception to this is for buffers full of newly allocated
 583 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
 584 * flag set, indicating that only the di_next_unlinked fields from the
 585 * inodes in the buffers will be replayed during recovery.  If the
 586 * original newly allocated inode images have not yet been flushed
 587 * when the buffer is so relogged, then we need to make sure that we
 588 * keep the old images in the 'active' portion of the log.  We do this
 589 * by returning the original lsn of that transaction here rather than
 590 * the current one.
 591 */
 592STATIC xfs_lsn_t
 593xfs_buf_item_committed(
 594	struct xfs_log_item	*lip,
 595	xfs_lsn_t		lsn)
 596{
 597	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 598
 599	trace_xfs_buf_item_committed(bip);
 600
 601	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
 602		return lip->li_lsn;
 603	return lsn;
 604}
 605
 606/*
 607 * The buffer is locked, but is not a delayed write buffer. This happens
 608 * if we race with IO completion and hence we don't want to try to write it
 609 * again. Just release the buffer.
 610 */
 611STATIC void
 612xfs_buf_item_push(
 613	struct xfs_log_item	*lip)
 614{
 615	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 616	struct xfs_buf		*bp = bip->bli_buf;
 617
 618	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 619	ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
 620
 621	trace_xfs_buf_item_push(bip);
 622
 623	xfs_buf_relse(bp);
 624}
 625
 626/*
 627 * The buffer is locked and is a delayed write buffer. Promote the buffer
 628 * in the delayed write queue as the caller knows that they must invoke
 629 * the xfsbufd to get this buffer written. We have to unlock the buffer
 630 * to allow the xfsbufd to write it, too.
 631 */
 632STATIC bool
 633xfs_buf_item_pushbuf(
 634	struct xfs_log_item	*lip)
 635{
 636	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 637	struct xfs_buf		*bp = bip->bli_buf;
 638
 639	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 640	ASSERT(XFS_BUF_ISDELAYWRITE(bp));
 641
 642	trace_xfs_buf_item_pushbuf(bip);
 643
 644	xfs_buf_delwri_promote(bp);
 645	xfs_buf_relse(bp);
 646	return true;
 647}
 648
 649STATIC void
 650xfs_buf_item_committing(
 651	struct xfs_log_item	*lip,
 652	xfs_lsn_t		commit_lsn)
 653{
 
 
 
 
 654}
 655
 656/*
 657 * This is the ops vector shared by all buf log items.
 658 */
 659static struct xfs_item_ops xfs_buf_item_ops = {
 660	.iop_size	= xfs_buf_item_size,
 661	.iop_format	= xfs_buf_item_format,
 662	.iop_pin	= xfs_buf_item_pin,
 663	.iop_unpin	= xfs_buf_item_unpin,
 664	.iop_trylock	= xfs_buf_item_trylock,
 665	.iop_unlock	= xfs_buf_item_unlock,
 666	.iop_committed	= xfs_buf_item_committed,
 667	.iop_push	= xfs_buf_item_push,
 668	.iop_pushbuf	= xfs_buf_item_pushbuf,
 669	.iop_committing = xfs_buf_item_committing
 670};
 671
 672
 673/*
 674 * Allocate a new buf log item to go with the given buffer.
 675 * Set the buffer's b_fsprivate field to point to the new
 676 * buf log item.  If there are other item's attached to the
 677 * buffer (see xfs_buf_attach_iodone() below), then put the
 678 * buf log item at the front.
 679 */
 680void
 681xfs_buf_item_init(
 682	xfs_buf_t	*bp,
 683	xfs_mount_t	*mp)
 684{
 685	xfs_log_item_t		*lip = bp->b_fspriv;
 686	xfs_buf_log_item_t	*bip;
 687	int			chunks;
 688	int			map_size;
 
 689
 690	/*
 691	 * Check to see if there is already a buf log item for
 692	 * this buffer.  If there is, it is guaranteed to be
 693	 * the first.  If we do already have one, there is
 694	 * nothing to do here so return.
 695	 */
 696	ASSERT(bp->b_target->bt_mount == mp);
 697	if (lip != NULL && lip->li_type == XFS_LI_BUF)
 698		return;
 699
 700	/*
 701	 * chunks is the number of XFS_BLF_CHUNK size pieces
 702	 * the buffer can be divided into. Make sure not to
 703	 * truncate any pieces.  map_size is the size of the
 704	 * bitmap needed to describe the chunks of the buffer.
 705	 */
 706	chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
 707	map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
 708
 709	bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
 710						    KM_SLEEP);
 711	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
 712	bip->bli_buf = bp;
 713	xfs_buf_hold(bp);
 714	bip->bli_format.blf_type = XFS_LI_BUF;
 715	bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
 716	bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
 717	bip->bli_format.blf_map_size = map_size;
 718
 719#ifdef XFS_TRANS_DEBUG
 720	/*
 721	 * Allocate the arrays for tracking what needs to be logged
 722	 * and what our callers request to be logged.  bli_orig
 723	 * holds a copy of the original, clean buffer for comparison
 724	 * against, and bli_logged keeps a 1 bit flag per byte in
 725	 * the buffer to indicate which bytes the callers have asked
 726	 * to have logged.
 727	 */
 728	bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
 729	memcpy(bip->bli_orig, bp->b_addr, XFS_BUF_COUNT(bp));
 730	bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
 731#endif
 732
 733	/*
 734	 * Put the buf item into the list of items attached to the
 735	 * buffer at the front.
 
 
 
 
 
 736	 */
 737	if (bp->b_fspriv)
 738		bip->bli_item.li_bio_list = bp->b_fspriv;
 739	bp->b_fspriv = bip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740}
 741
 742
 743/*
 744 * Mark bytes first through last inclusive as dirty in the buf
 745 * item's bitmap.
 746 */
 747void
 748xfs_buf_item_log(
 749	xfs_buf_log_item_t	*bip,
 750	uint			first,
 751	uint			last)
 
 752{
 753	uint		first_bit;
 754	uint		last_bit;
 755	uint		bits_to_set;
 756	uint		bits_set;
 757	uint		word_num;
 758	uint		*wordp;
 759	uint		bit;
 760	uint		end_bit;
 761	uint		mask;
 762
 763	/*
 764	 * Mark the item as having some dirty data for
 765	 * quick reference in xfs_buf_item_dirty.
 766	 */
 767	bip->bli_flags |= XFS_BLI_DIRTY;
 768
 769	/*
 770	 * Convert byte offsets to bit numbers.
 771	 */
 772	first_bit = first >> XFS_BLF_SHIFT;
 773	last_bit = last >> XFS_BLF_SHIFT;
 774
 775	/*
 776	 * Calculate the total number of bits to be set.
 777	 */
 778	bits_to_set = last_bit - first_bit + 1;
 779
 780	/*
 781	 * Get a pointer to the first word in the bitmap
 782	 * to set a bit in.
 783	 */
 784	word_num = first_bit >> BIT_TO_WORD_SHIFT;
 785	wordp = &(bip->bli_format.blf_data_map[word_num]);
 786
 787	/*
 788	 * Calculate the starting bit in the first word.
 789	 */
 790	bit = first_bit & (uint)(NBWORD - 1);
 791
 792	/*
 793	 * First set any bits in the first word of our range.
 794	 * If it starts at bit 0 of the word, it will be
 795	 * set below rather than here.  That is what the variable
 796	 * bit tells us. The variable bits_set tracks the number
 797	 * of bits that have been set so far.  End_bit is the number
 798	 * of the last bit to be set in this word plus one.
 799	 */
 800	if (bit) {
 801		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
 802		mask = ((1 << (end_bit - bit)) - 1) << bit;
 803		*wordp |= mask;
 804		wordp++;
 805		bits_set = end_bit - bit;
 806	} else {
 807		bits_set = 0;
 808	}
 809
 810	/*
 811	 * Now set bits a whole word at a time that are between
 812	 * first_bit and last_bit.
 813	 */
 814	while ((bits_to_set - bits_set) >= NBWORD) {
 815		*wordp |= 0xffffffff;
 816		bits_set += NBWORD;
 817		wordp++;
 818	}
 819
 820	/*
 821	 * Finally, set any bits left to be set in one last partial word.
 822	 */
 823	end_bit = bits_to_set - bits_set;
 824	if (end_bit) {
 825		mask = (1 << end_bit) - 1;
 826		*wordp |= mask;
 827	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828
 829	xfs_buf_item_log_debug(bip, first, last);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830}
 831
 832
 833/*
 834 * Return 1 if the buffer has some data that has been logged (at any
 835 * point, not just the current transaction) and 0 if not.
 836 */
 837uint
 838xfs_buf_item_dirty(
 839	xfs_buf_log_item_t	*bip)
 840{
 841	return (bip->bli_flags & XFS_BLI_DIRTY);
 
 
 
 
 
 
 
 
 842}
 843
 844STATIC void
 845xfs_buf_item_free(
 846	xfs_buf_log_item_t	*bip)
 847{
 848#ifdef XFS_TRANS_DEBUG
 849	kmem_free(bip->bli_orig);
 850	kmem_free(bip->bli_logged);
 851#endif /* XFS_TRANS_DEBUG */
 852
 853	kmem_zone_free(xfs_buf_item_zone, bip);
 854}
 855
 856/*
 857 * This is called when the buf log item is no longer needed.  It should
 858 * free the buf log item associated with the given buffer and clear
 859 * the buffer's pointer to the buf log item.  If there are no more
 860 * items in the list, clear the b_iodone field of the buffer (see
 861 * xfs_buf_attach_iodone() below).
 862 */
 863void
 864xfs_buf_item_relse(
 865	xfs_buf_t	*bp)
 866{
 867	xfs_buf_log_item_t	*bip;
 868
 869	trace_xfs_buf_item_relse(bp, _RET_IP_);
 
 870
 871	bip = bp->b_fspriv;
 872	bp->b_fspriv = bip->bli_item.li_bio_list;
 873	if (bp->b_fspriv == NULL)
 874		bp->b_iodone = NULL;
 875
 876	xfs_buf_rele(bp);
 877	xfs_buf_item_free(bip);
 878}
 879
 880
 881/*
 882 * Add the given log item with its callback to the list of callbacks
 883 * to be called when the buffer's I/O completes.  If it is not set
 884 * already, set the buffer's b_iodone() routine to be
 885 * xfs_buf_iodone_callbacks() and link the log item into the list of
 886 * items rooted at b_fsprivate.  Items are always added as the second
 887 * entry in the list if there is a first, because the buf item code
 888 * assumes that the buf log item is first.
 889 */
 890void
 891xfs_buf_attach_iodone(
 892	xfs_buf_t	*bp,
 893	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
 894	xfs_log_item_t	*lip)
 895{
 896	xfs_log_item_t	*head_lip;
 897
 898	ASSERT(xfs_buf_islocked(bp));
 899
 900	lip->li_cb = cb;
 901	head_lip = bp->b_fspriv;
 902	if (head_lip) {
 903		lip->li_bio_list = head_lip->li_bio_list;
 904		head_lip->li_bio_list = lip;
 905	} else {
 906		bp->b_fspriv = lip;
 
 
 907	}
 
 
 
 
 
 
 
 908
 909	ASSERT(bp->b_iodone == NULL ||
 910	       bp->b_iodone == xfs_buf_iodone_callbacks);
 911	bp->b_iodone = xfs_buf_iodone_callbacks;
 
 
 
 
 
 
 
 
 
 
 
 
 912}
 913
 914/*
 915 * We can have many callbacks on a buffer. Running the callbacks individually
 916 * can cause a lot of contention on the AIL lock, so we allow for a single
 917 * callback to be able to scan the remaining lip->li_bio_list for other items
 918 * of the same type and callback to be processed in the first call.
 919 *
 920 * As a result, the loop walking the callback list below will also modify the
 921 * list. it removes the first item from the list and then runs the callback.
 922 * The loop then restarts from the new head of the list. This allows the
 923 * callback to scan and modify the list attached to the buffer and we don't
 924 * have to care about maintaining a next item pointer.
 925 */
 926STATIC void
 927xfs_buf_do_callbacks(
 928	struct xfs_buf		*bp)
 
 929{
 930	struct xfs_log_item	*lip;
 931
 932	while ((lip = bp->b_fspriv) != NULL) {
 933		bp->b_fspriv = lip->li_bio_list;
 934		ASSERT(lip->li_cb != NULL);
 935		/*
 936		 * Clear the next pointer so we don't have any
 937		 * confusion if the item is added to another buf.
 938		 * Don't touch the log item after calling its
 939		 * callback, because it could have freed itself.
 940		 */
 941		lip->li_bio_list = NULL;
 942		lip->li_cb(bp, lip);
 943	}
 944}
 945
 946/*
 947 * This is the iodone() function for buffers which have had callbacks
 948 * attached to them by xfs_buf_attach_iodone().  It should remove each
 949 * log item from the buffer's list and call the callback of each in turn.
 950 * When done, the buffer's fsprivate field is set to NULL and the buffer
 951 * is unlocked with a call to iodone().
 952 */
 953void
 954xfs_buf_iodone_callbacks(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955	struct xfs_buf		*bp)
 956{
 957	struct xfs_log_item	*lip = bp->b_fspriv;
 958	struct xfs_mount	*mp = lip->li_mountp;
 959	static ulong		lasttime;
 960	static xfs_buftarg_t	*lasttarg;
 961
 962	if (likely(!xfs_buf_geterror(bp)))
 963		goto do_callbacks;
 
 
 
 
 
 
 
 
 
 964
 965	/*
 966	 * If we've already decided to shutdown the filesystem because of
 967	 * I/O errors, there's no point in giving this a retry.
 968	 */
 969	if (XFS_FORCED_SHUTDOWN(mp)) {
 970		XFS_BUF_SUPER_STALE(bp);
 971		trace_xfs_buf_item_iodone(bp, _RET_IP_);
 972		goto do_callbacks;
 973	}
 974
 975	if (bp->b_target != lasttarg ||
 976	    time_after(jiffies, (lasttime + 5*HZ))) {
 977		lasttime = jiffies;
 978		xfs_alert(mp, "Device %s: metadata write error block 0x%llx",
 979			xfs_buf_target_name(bp->b_target),
 980		      (__uint64_t)XFS_BUF_ADDR(bp));
 981	}
 982	lasttarg = bp->b_target;
 
 
 
 
 
 
 
 
 
 
 983
 984	/*
 985	 * If the write was asynchronous then no one will be looking for the
 986	 * error.  Clear the error state and write the buffer out again.
 
 
 
 987	 *
 988	 * During sync or umount we'll write all pending buffers again
 989	 * synchronous, which will catch these errors if they keep hanging
 990	 * around.
 991	 */
 992	if (XFS_BUF_ISASYNC(bp)) {
 993		xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
 994
 995		if (!XFS_BUF_ISSTALE(bp)) {
 996			XFS_BUF_DELAYWRITE(bp);
 997			XFS_BUF_DONE(bp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 998		}
 999		ASSERT(bp->b_iodone != NULL);
1000		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1001		xfs_buf_relse(bp);
1002		return;
1003	}
1004
1005	/*
1006	 * If the write of the buffer was synchronous, we want to make
1007	 * sure to return the error to the caller of xfs_bwrite().
1008	 */
1009	XFS_BUF_STALE(bp);
1010	XFS_BUF_DONE(bp);
1011	XFS_BUF_UNDELAYWRITE(bp);
1012
1013	trace_xfs_buf_error_relse(bp, _RET_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014
1015do_callbacks:
1016	xfs_buf_do_callbacks(bp);
1017	bp->b_fspriv = NULL;
1018	bp->b_iodone = NULL;
1019	xfs_buf_ioend(bp, 0);
 
1020}
1021
1022/*
1023 * This is the iodone() function for buffers which have been
1024 * logged.  It is called when they are eventually flushed out.
1025 * It should remove the buf item from the AIL, and free the buf item.
1026 * It is called by xfs_buf_iodone_callbacks() above which will take
1027 * care of cleaning up the buffer itself.
1028 */
1029void
1030xfs_buf_iodone(
1031	struct xfs_buf		*bp,
1032	struct xfs_log_item	*lip)
1033{
1034	struct xfs_ail		*ailp = lip->li_ailp;
1035
1036	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1037
1038	xfs_buf_rele(bp);
 
 
 
 
 
 
 
 
 
1039
1040	/*
1041	 * If we are forcibly shutting down, this may well be
1042	 * off the AIL already. That's because we simulate the
1043	 * log-committed callbacks to unpin these buffers. Or we may never
1044	 * have put this item on AIL because of the transaction was
1045	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1046	 *
1047	 * Either way, AIL is useless if we're forcing a shutdown.
1048	 */
1049	spin_lock(&ailp->xa_lock);
1050	xfs_trans_ail_delete(ailp, lip);
1051	xfs_buf_item_free(BUF_ITEM(lip));
1052}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_bit.h"
 
 
 
 
 
  13#include "xfs_mount.h"
  14#include "xfs_trans.h"
  15#include "xfs_trans_priv.h"
  16#include "xfs_buf_item.h"
  17#include "xfs_inode.h"
  18#include "xfs_inode_item.h"
  19#include "xfs_quota.h"
  20#include "xfs_dquot_item.h"
  21#include "xfs_dquot.h"
  22#include "xfs_trace.h"
  23#include "xfs_log.h"
  24
  25
  26kmem_zone_t	*xfs_buf_item_zone;
  27
  28static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  29{
  30	return container_of(lip, struct xfs_buf_log_item, bli_item);
  31}
  32
  33static void xfs_buf_item_done(struct xfs_buf *bp);
  34
  35/* Is this log iovec plausibly large enough to contain the buffer log format? */
  36bool
  37xfs_buf_log_check_iovec(
  38	struct xfs_log_iovec		*iovec)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39{
  40	struct xfs_buf_log_format	*blfp = iovec->i_addr;
  41	char				*bmp_end;
  42	char				*item_end;
  43
  44	if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
  45		return false;
  46
  47	item_end = (char *)iovec->i_addr + iovec->i_len;
  48	bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
  49	return bmp_end <= item_end;
  50}
  51
  52static inline int
  53xfs_buf_log_format_size(
  54	struct xfs_buf_log_format *blfp)
 
 
 
 
 
 
 
 
 
  55{
  56	return offsetof(struct xfs_buf_log_format, blf_data_map) +
  57			(blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58}
 
 
 
 
 
 
  59
  60/*
  61 * This returns the number of log iovecs needed to log the
  62 * given buf log item.
  63 *
  64 * It calculates this as 1 iovec for the buf log format structure
  65 * and 1 for each stretch of non-contiguous chunks to be logged.
  66 * Contiguous chunks are logged in a single iovec.
  67 *
  68 * If the XFS_BLI_STALE flag has been set, then log nothing.
  69 */
  70STATIC void
  71xfs_buf_item_size_segment(
  72	struct xfs_buf_log_item		*bip,
  73	struct xfs_buf_log_format	*blfp,
  74	int				*nvecs,
  75	int				*nbytes)
  76{
  77	struct xfs_buf			*bp = bip->bli_buf;
  78	int				next_bit;
  79	int				last_bit;
  80
  81	last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  82	if (last_bit == -1)
  83		return;
  84
  85	/*
  86	 * initial count for a dirty buffer is 2 vectors - the format structure
  87	 * and the first dirty region.
  88	 */
  89	*nvecs += 2;
  90	*nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
 
  91
 
 
 
 
 
 
  92	while (last_bit != -1) {
  93		/*
  94		 * This takes the bit number to start looking from and
  95		 * returns the next set bit from there.  It returns -1
  96		 * if there are no more bits set or the start bit is
  97		 * beyond the end of the bitmap.
  98		 */
  99		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 100					last_bit + 1);
 
 101		/*
 102		 * If we run out of bits, leave the loop,
 103		 * else if we find a new set of bits bump the number of vecs,
 104		 * else keep scanning the current set of bits.
 105		 */
 106		if (next_bit == -1) {
 107			break;
 108		} else if (next_bit != last_bit + 1) {
 109			last_bit = next_bit;
 110			(*nvecs)++;
 111		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
 112			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
 113			    XFS_BLF_CHUNK)) {
 114			last_bit = next_bit;
 115			(*nvecs)++;
 116		} else {
 117			last_bit++;
 118		}
 119		*nbytes += XFS_BLF_CHUNK;
 120	}
 
 
 
 121}
 122
 123/*
 124 * This returns the number of log iovecs needed to log the given buf log item.
 125 *
 126 * It calculates this as 1 iovec for the buf log format structure and 1 for each
 127 * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
 128 * in a single iovec.
 129 *
 130 * Discontiguous buffers need a format structure per region that is being
 131 * logged. This makes the changes in the buffer appear to log recovery as though
 132 * they came from separate buffers, just like would occur if multiple buffers
 133 * were used instead of a single discontiguous buffer. This enables
 134 * discontiguous buffers to be in-memory constructs, completely transparent to
 135 * what ends up on disk.
 136 *
 137 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
 138 * format structures.
 139 */
 140STATIC void
 141xfs_buf_item_size(
 142	struct xfs_log_item	*lip,
 143	int			*nvecs,
 144	int			*nbytes)
 145{
 146	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 147	int			i;
 
 
 
 
 
 
 
 148
 149	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 150	if (bip->bli_flags & XFS_BLI_STALE) {
 151		/*
 152		 * The buffer is stale, so all we need to log
 153		 * is the buf log format structure with the
 154		 * cancel flag in it.
 155		 */
 156		trace_xfs_buf_item_size_stale(bip);
 157		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 158		*nvecs += bip->bli_format_count;
 159		for (i = 0; i < bip->bli_format_count; i++) {
 160			*nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
 161		}
 162		return;
 163	}
 164
 165	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
 166
 167	if (bip->bli_flags & XFS_BLI_ORDERED) {
 168		/*
 169		 * The buffer has been logged just to order it.
 170		 * It is not being included in the transaction
 171		 * commit, so no vectors are used at all.
 172		 */
 173		trace_xfs_buf_item_size_ordered(bip);
 174		*nvecs = XFS_LOG_VEC_ORDERED;
 175		return;
 176	}
 177
 178	/*
 179	 * the vector count is based on the number of buffer vectors we have
 180	 * dirty bits in. This will only be greater than one when we have a
 181	 * compound buffer with more than one segment dirty. Hence for compound
 182	 * buffers we need to track which segment the dirty bits correspond to,
 183	 * and when we move from one segment to the next increment the vector
 184	 * count for the extra buf log format structure that will need to be
 185	 * written.
 186	 */
 187	for (i = 0; i < bip->bli_format_count; i++) {
 188		xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
 189					  nvecs, nbytes);
 190	}
 191	trace_xfs_buf_item_size(bip);
 192}
 193
 194static inline void
 195xfs_buf_item_copy_iovec(
 196	struct xfs_log_vec	*lv,
 197	struct xfs_log_iovec	**vecp,
 198	struct xfs_buf		*bp,
 199	uint			offset,
 200	int			first_bit,
 201	uint			nbits)
 202{
 203	offset += first_bit * XFS_BLF_CHUNK;
 204	xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
 205			xfs_buf_offset(bp, offset),
 206			nbits * XFS_BLF_CHUNK);
 207}
 208
 209static inline bool
 210xfs_buf_item_straddle(
 211	struct xfs_buf		*bp,
 212	uint			offset,
 213	int			next_bit,
 214	int			last_bit)
 215{
 216	return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
 217		(xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
 218		 XFS_BLF_CHUNK);
 219}
 220
 221static void
 222xfs_buf_item_format_segment(
 223	struct xfs_buf_log_item	*bip,
 224	struct xfs_log_vec	*lv,
 225	struct xfs_log_iovec	**vecp,
 226	uint			offset,
 227	struct xfs_buf_log_format *blfp)
 228{
 229	struct xfs_buf		*bp = bip->bli_buf;
 230	uint			base_size;
 231	int			first_bit;
 232	int			last_bit;
 233	int			next_bit;
 234	uint			nbits;
 235
 236	/* copy the flags across from the base format item */
 237	blfp->blf_flags = bip->__bli_format.blf_flags;
 238
 239	/*
 240	 * Base size is the actual size of the ondisk structure - it reflects
 241	 * the actual size of the dirty bitmap rather than the size of the in
 242	 * memory structure.
 
 
 243	 */
 244	base_size = xfs_buf_log_format_size(blfp);
 245
 246	first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
 247	if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
 248		/*
 249		 * If the map is not be dirty in the transaction, mark
 250		 * the size as zero and do not advance the vector pointer.
 251		 */
 252		return;
 253	}
 254
 255	blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
 256	blfp->blf_size = 1;
 257
 258	if (bip->bli_flags & XFS_BLI_STALE) {
 259		/*
 260		 * The buffer is stale, so all we need to log
 261		 * is the buf log format structure with the
 262		 * cancel flag in it.
 263		 */
 264		trace_xfs_buf_item_format_stale(bip);
 265		ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
 
 266		return;
 267	}
 268
 269
 270	/*
 271	 * Fill in an iovec for each set of contiguous chunks.
 272	 */
 
 
 
 273	last_bit = first_bit;
 274	nbits = 1;
 275	for (;;) {
 276		/*
 277		 * This takes the bit number to start looking from and
 278		 * returns the next set bit from there.  It returns -1
 279		 * if there are no more bits set or the start bit is
 280		 * beyond the end of the bitmap.
 281		 */
 282		next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
 283					(uint)last_bit + 1);
 
 284		/*
 285		 * If we run out of bits fill in the last iovec and get out of
 286		 * the loop.  Else if we start a new set of bits then fill in
 287		 * the iovec for the series we were looking at and start
 288		 * counting the bits in the new one.  Else we're still in the
 289		 * same set of bits so just keep counting and scanning.
 
 
 290		 */
 291		if (next_bit == -1) {
 292			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 293						first_bit, nbits);
 294			blfp->blf_size++;
 
 
 295			break;
 296		} else if (next_bit != last_bit + 1 ||
 297		           xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
 298			xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
 299						first_bit, nbits);
 300			blfp->blf_size++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301			first_bit = next_bit;
 302			last_bit = next_bit;
 303			nbits = 1;
 304		} else {
 305			last_bit++;
 306			nbits++;
 307		}
 308	}
 309}
 310
 311/*
 312 * This is called to fill in the vector of log iovecs for the
 313 * given log buf item.  It fills the first entry with a buf log
 314 * format structure, and the rest point to contiguous chunks
 315 * within the buffer.
 316 */
 317STATIC void
 318xfs_buf_item_format(
 319	struct xfs_log_item	*lip,
 320	struct xfs_log_vec	*lv)
 321{
 322	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 323	struct xfs_buf		*bp = bip->bli_buf;
 324	struct xfs_log_iovec	*vecp = NULL;
 325	uint			offset = 0;
 326	int			i;
 327
 328	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 329	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 330	       (bip->bli_flags & XFS_BLI_STALE));
 331	ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
 332	       (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
 333	        && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
 334	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
 335	       (bip->bli_flags & XFS_BLI_STALE));
 336
 337
 338	/*
 339	 * If it is an inode buffer, transfer the in-memory state to the
 340	 * format flags and clear the in-memory state.
 341	 *
 342	 * For buffer based inode allocation, we do not transfer
 343	 * this state if the inode buffer allocation has not yet been committed
 344	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
 345	 * correct replay of the inode allocation.
 346	 *
 347	 * For icreate item based inode allocation, the buffers aren't written
 348	 * to the journal during allocation, and hence we should always tag the
 349	 * buffer as an inode buffer so that the correct unlinked list replay
 350	 * occurs during recovery.
 351	 */
 352	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
 353		if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
 354		    !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
 355		      xfs_log_item_in_current_chkpt(lip)))
 356			bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
 357		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
 358	}
 359
 360	for (i = 0; i < bip->bli_format_count; i++) {
 361		xfs_buf_item_format_segment(bip, lv, &vecp, offset,
 362					    &bip->bli_formats[i]);
 363		offset += BBTOB(bp->b_maps[i].bm_len);
 364	}
 365
 366	/*
 367	 * Check to make sure everything is consistent.
 368	 */
 369	trace_xfs_buf_item_format(bip);
 
 370}
 371
 372/*
 373 * This is called to pin the buffer associated with the buf log item in memory
 374 * so it cannot be written out.
 375 *
 376 * We also always take a reference to the buffer log item here so that the bli
 377 * is held while the item is pinned in memory. This means that we can
 378 * unconditionally drop the reference count a transaction holds when the
 379 * transaction is completed.
 380 */
 381STATIC void
 382xfs_buf_item_pin(
 383	struct xfs_log_item	*lip)
 384{
 385	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 386
 387	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 388	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
 389	       (bip->bli_flags & XFS_BLI_ORDERED) ||
 390	       (bip->bli_flags & XFS_BLI_STALE));
 391
 392	trace_xfs_buf_item_pin(bip);
 393
 394	atomic_inc(&bip->bli_refcount);
 395	atomic_inc(&bip->bli_buf->b_pin_count);
 396}
 397
 398/*
 399 * This is called to unpin the buffer associated with the buf log
 400 * item which was previously pinned with a call to xfs_buf_item_pin().
 401 *
 402 * Also drop the reference to the buf item for the current transaction.
 403 * If the XFS_BLI_STALE flag is set and we are the last reference,
 404 * then free up the buf log item and unlock the buffer.
 405 *
 406 * If the remove flag is set we are called from uncommit in the
 407 * forced-shutdown path.  If that is true and the reference count on
 408 * the log item is going to drop to zero we need to free the item's
 409 * descriptor in the transaction.
 410 */
 411STATIC void
 412xfs_buf_item_unpin(
 413	struct xfs_log_item	*lip,
 414	int			remove)
 415{
 416	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 417	xfs_buf_t		*bp = bip->bli_buf;
 418	int			stale = bip->bli_flags & XFS_BLI_STALE;
 419	int			freed;
 
 420
 421	ASSERT(bp->b_log_item == bip);
 422	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 423
 424	trace_xfs_buf_item_unpin(bip);
 425
 426	freed = atomic_dec_and_test(&bip->bli_refcount);
 427
 428	if (atomic_dec_and_test(&bp->b_pin_count))
 429		wake_up_all(&bp->b_waiters);
 430
 431	if (freed && stale) {
 432		ASSERT(bip->bli_flags & XFS_BLI_STALE);
 433		ASSERT(xfs_buf_islocked(bp));
 434		ASSERT(bp->b_flags & XBF_STALE);
 435		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
 
 436
 437		trace_xfs_buf_item_unpin_stale(bip);
 438
 439		if (remove) {
 440			/*
 441			 * If we are in a transaction context, we have to
 442			 * remove the log item from the transaction as we are
 443			 * about to release our reference to the buffer.  If we
 444			 * don't, the unlock that occurs later in
 445			 * xfs_trans_uncommit() will try to reference the
 446			 * buffer which we no longer have a hold on.
 447			 */
 448			if (!list_empty(&lip->li_trans))
 449				xfs_trans_del_item(lip);
 450
 451			/*
 452			 * Since the transaction no longer refers to the buffer,
 453			 * the buffer should no longer refer to the transaction.
 454			 */
 455			bp->b_transp = NULL;
 456		}
 457
 458		/*
 459		 * If we get called here because of an IO error, we may or may
 460		 * not have the item on the AIL. xfs_trans_ail_delete() will
 461		 * take care of that situation. xfs_trans_ail_delete() drops
 462		 * the AIL lock.
 463		 */
 464		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
 465			xfs_buf_item_done(bp);
 466			xfs_iflush_done(bp);
 467			ASSERT(list_empty(&bp->b_li_list));
 468		} else {
 469			xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
 
 470			xfs_buf_item_relse(bp);
 471			ASSERT(bp->b_log_item == NULL);
 472		}
 473		xfs_buf_relse(bp);
 474	} else if (freed && remove) {
 475		/*
 476		 * The buffer must be locked and held by the caller to simulate
 477		 * an async I/O failure.
 478		 */
 479		xfs_buf_lock(bp);
 480		xfs_buf_hold(bp);
 481		bp->b_flags |= XBF_ASYNC;
 482		xfs_buf_ioend_fail(bp);
 483	}
 484}
 485
 
 
 
 
 
 
 
 
 486STATIC uint
 487xfs_buf_item_push(
 488	struct xfs_log_item	*lip,
 489	struct list_head	*buffer_list)
 490{
 491	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 492	struct xfs_buf		*bp = bip->bli_buf;
 493	uint			rval = XFS_ITEM_SUCCESS;
 494
 495	if (xfs_buf_ispinned(bp))
 496		return XFS_ITEM_PINNED;
 497	if (!xfs_buf_trylock(bp)) {
 498		/*
 499		 * If we have just raced with a buffer being pinned and it has
 500		 * been marked stale, we could end up stalling until someone else
 501		 * issues a log force to unpin the stale buffer. Check for the
 502		 * race condition here so xfsaild recognizes the buffer is pinned
 503		 * and queues a log force to move it along.
 504		 */
 505		if (xfs_buf_ispinned(bp))
 506			return XFS_ITEM_PINNED;
 507		return XFS_ITEM_LOCKED;
 508	}
 
 
 509
 510	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 511
 512	trace_xfs_buf_item_push(bip);
 513
 514	/* has a previous flush failed due to IO errors? */
 515	if (bp->b_flags & XBF_WRITE_FAIL) {
 516		xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
 517	    "Failing async write on buffer block 0x%llx. Retrying async write.",
 518					  (long long)bp->b_bn);
 519	}
 520
 521	if (!xfs_buf_delwri_queue(bp, buffer_list))
 522		rval = XFS_ITEM_FLUSHING;
 523	xfs_buf_unlock(bp);
 524	return rval;
 525}
 526
 527/*
 528 * Drop the buffer log item refcount and take appropriate action. This helper
 529 * determines whether the bli must be freed or not, since a decrement to zero
 530 * does not necessarily mean the bli is unused.
 531 *
 532 * Return true if the bli is freed, false otherwise.
 533 */
 534bool
 535xfs_buf_item_put(
 536	struct xfs_buf_log_item	*bip)
 537{
 538	struct xfs_log_item	*lip = &bip->bli_item;
 539	bool			aborted;
 540	bool			dirty;
 541
 542	/* drop the bli ref and return if it wasn't the last one */
 543	if (!atomic_dec_and_test(&bip->bli_refcount))
 544		return false;
 545
 546	/*
 547	 * We dropped the last ref and must free the item if clean or aborted.
 548	 * If the bli is dirty and non-aborted, the buffer was clean in the
 549	 * transaction but still awaiting writeback from previous changes. In
 550	 * that case, the bli is freed on buffer writeback completion.
 551	 */
 552	aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
 553		  XFS_FORCED_SHUTDOWN(lip->li_mountp);
 554	dirty = bip->bli_flags & XFS_BLI_DIRTY;
 555	if (dirty && !aborted)
 556		return false;
 557
 558	/*
 559	 * The bli is aborted or clean. An aborted item may be in the AIL
 560	 * regardless of dirty state.  For example, consider an aborted
 561	 * transaction that invalidated a dirty bli and cleared the dirty
 562	 * state.
 563	 */
 564	if (aborted)
 565		xfs_trans_ail_delete(lip, 0);
 566	xfs_buf_item_relse(bip->bli_buf);
 567	return true;
 568}
 569
 570/*
 571 * Release the buffer associated with the buf log item.  If there is no dirty
 572 * logged data associated with the buffer recorded in the buf log item, then
 573 * free the buf log item and remove the reference to it in the buffer.
 574 *
 575 * This call ignores the recursion count.  It is only called when the buffer
 576 * should REALLY be unlocked, regardless of the recursion count.
 577 *
 578 * We unconditionally drop the transaction's reference to the log item. If the
 579 * item was logged, then another reference was taken when it was pinned, so we
 580 * can safely drop the transaction reference now.  This also allows us to avoid
 581 * potential races with the unpin code freeing the bli by not referencing the
 582 * bli after we've dropped the reference count.
 583 *
 584 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
 585 * if necessary but do not unlock the buffer.  This is for support of
 586 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
 587 * free the item.
 588 */
 589STATIC void
 590xfs_buf_item_release(
 591	struct xfs_log_item	*lip)
 592{
 593	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 594	struct xfs_buf		*bp = bip->bli_buf;
 595	bool			released;
 596	bool			hold = bip->bli_flags & XFS_BLI_HOLD;
 597	bool			stale = bip->bli_flags & XFS_BLI_STALE;
 598#if defined(DEBUG) || defined(XFS_WARN)
 599	bool			ordered = bip->bli_flags & XFS_BLI_ORDERED;
 600	bool			dirty = bip->bli_flags & XFS_BLI_DIRTY;
 601	bool			aborted = test_bit(XFS_LI_ABORTED,
 602						   &lip->li_flags);
 603#endif
 604
 605	trace_xfs_buf_item_release(bip);
 
 
 
 
 
 
 606
 607	/*
 608	 * The bli dirty state should match whether the blf has logged segments
 609	 * except for ordered buffers, where only the bli should be dirty.
 610	 */
 611	ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
 612	       (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
 613	ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 
 614
 615	/*
 616	 * Clear the buffer's association with this transaction and
 617	 * per-transaction state from the bli, which has been copied above.
 
 618	 */
 619	bp->b_transp = NULL;
 620	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
 
 
 
 
 
 
 
 
 621
 622	/*
 623	 * Unref the item and unlock the buffer unless held or stale. Stale
 624	 * buffers remain locked until final unpin unless the bli is freed by
 625	 * the unref call. The latter implies shutdown because buffer
 626	 * invalidation dirties the bli and transaction.
 627	 */
 628	released = xfs_buf_item_put(bip);
 629	if (hold || (stale && !released))
 630		return;
 631	ASSERT(!stale || aborted);
 632	xfs_buf_relse(bp);
 633}
 634
 635STATIC void
 636xfs_buf_item_committing(
 637	struct xfs_log_item	*lip,
 638	xfs_lsn_t		commit_lsn)
 639{
 640	return xfs_buf_item_release(lip);
 641}
 642
 643/*
 644 * This is called to find out where the oldest active copy of the
 645 * buf log item in the on disk log resides now that the last log
 646 * write of it completed at the given lsn.
 647 * We always re-log all the dirty data in a buffer, so usually the
 648 * latest copy in the on disk log is the only one that matters.  For
 649 * those cases we simply return the given lsn.
 650 *
 651 * The one exception to this is for buffers full of newly allocated
 652 * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
 653 * flag set, indicating that only the di_next_unlinked fields from the
 654 * inodes in the buffers will be replayed during recovery.  If the
 655 * original newly allocated inode images have not yet been flushed
 656 * when the buffer is so relogged, then we need to make sure that we
 657 * keep the old images in the 'active' portion of the log.  We do this
 658 * by returning the original lsn of that transaction here rather than
 659 * the current one.
 660 */
 661STATIC xfs_lsn_t
 662xfs_buf_item_committed(
 663	struct xfs_log_item	*lip,
 664	xfs_lsn_t		lsn)
 665{
 666	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
 667
 668	trace_xfs_buf_item_committed(bip);
 669
 670	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
 671		return lip->li_lsn;
 672	return lsn;
 673}
 674
 675static const struct xfs_item_ops xfs_buf_item_ops = {
 676	.iop_size	= xfs_buf_item_size,
 677	.iop_format	= xfs_buf_item_format,
 678	.iop_pin	= xfs_buf_item_pin,
 679	.iop_unpin	= xfs_buf_item_unpin,
 680	.iop_release	= xfs_buf_item_release,
 681	.iop_committing	= xfs_buf_item_committing,
 682	.iop_committed	= xfs_buf_item_committed,
 683	.iop_push	= xfs_buf_item_push,
 684};
 
 
 
 
 
 
 
 
 
 685
 686STATIC void
 687xfs_buf_item_get_format(
 688	struct xfs_buf_log_item	*bip,
 689	int			count)
 
 
 
 
 
 690{
 691	ASSERT(bip->bli_formats == NULL);
 692	bip->bli_format_count = count;
 693
 694	if (count == 1) {
 695		bip->bli_formats = &bip->__bli_format;
 696		return;
 697	}
 698
 699	bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
 700				0);
 
 701}
 702
 703STATIC void
 704xfs_buf_item_free_format(
 705	struct xfs_buf_log_item	*bip)
 
 706{
 707	if (bip->bli_formats != &bip->__bli_format) {
 708		kmem_free(bip->bli_formats);
 709		bip->bli_formats = NULL;
 710	}
 711}
 712
 713/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714 * Allocate a new buf log item to go with the given buffer.
 715 * Set the buffer's b_log_item field to point to the new
 716 * buf log item.
 
 
 717 */
 718int
 719xfs_buf_item_init(
 720	struct xfs_buf	*bp,
 721	struct xfs_mount *mp)
 722{
 723	struct xfs_buf_log_item	*bip = bp->b_log_item;
 
 724	int			chunks;
 725	int			map_size;
 726	int			i;
 727
 728	/*
 729	 * Check to see if there is already a buf log item for
 730	 * this buffer. If we do already have one, there is
 
 731	 * nothing to do here so return.
 732	 */
 733	ASSERT(bp->b_mount == mp);
 734	if (bip) {
 735		ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 736		ASSERT(!bp->b_transp);
 737		ASSERT(bip->bli_buf == bp);
 738		return 0;
 739	}
 
 
 
 
 
 740
 741	bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL);
 
 742	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
 743	bip->bli_buf = bp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 744
 745	/*
 746	 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
 747	 * can be divided into. Make sure not to truncate any pieces.
 748	 * map_size is the size of the bitmap needed to describe the
 749	 * chunks of the buffer.
 750	 *
 751	 * Discontiguous buffer support follows the layout of the underlying
 752	 * buffer. This makes the implementation as simple as possible.
 753	 */
 754	xfs_buf_item_get_format(bip, bp->b_map_count);
 755
 756	for (i = 0; i < bip->bli_format_count; i++) {
 757		chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
 758				      XFS_BLF_CHUNK);
 759		map_size = DIV_ROUND_UP(chunks, NBWORD);
 760
 761		if (map_size > XFS_BLF_DATAMAP_SIZE) {
 762			kmem_cache_free(xfs_buf_item_zone, bip);
 763			xfs_err(mp,
 764	"buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
 765					map_size,
 766					BBTOB(bp->b_maps[i].bm_len));
 767			return -EFSCORRUPTED;
 768		}
 769
 770		bip->bli_formats[i].blf_type = XFS_LI_BUF;
 771		bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
 772		bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
 773		bip->bli_formats[i].blf_map_size = map_size;
 774	}
 775
 776	bp->b_log_item = bip;
 777	xfs_buf_hold(bp);
 778	return 0;
 779}
 780
 781
 782/*
 783 * Mark bytes first through last inclusive as dirty in the buf
 784 * item's bitmap.
 785 */
 786static void
 787xfs_buf_item_log_segment(
 
 788	uint			first,
 789	uint			last,
 790	uint			*map)
 791{
 792	uint		first_bit;
 793	uint		last_bit;
 794	uint		bits_to_set;
 795	uint		bits_set;
 796	uint		word_num;
 797	uint		*wordp;
 798	uint		bit;
 799	uint		end_bit;
 800	uint		mask;
 801
 802	ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
 803	ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
 
 
 
 804
 805	/*
 806	 * Convert byte offsets to bit numbers.
 807	 */
 808	first_bit = first >> XFS_BLF_SHIFT;
 809	last_bit = last >> XFS_BLF_SHIFT;
 810
 811	/*
 812	 * Calculate the total number of bits to be set.
 813	 */
 814	bits_to_set = last_bit - first_bit + 1;
 815
 816	/*
 817	 * Get a pointer to the first word in the bitmap
 818	 * to set a bit in.
 819	 */
 820	word_num = first_bit >> BIT_TO_WORD_SHIFT;
 821	wordp = &map[word_num];
 822
 823	/*
 824	 * Calculate the starting bit in the first word.
 825	 */
 826	bit = first_bit & (uint)(NBWORD - 1);
 827
 828	/*
 829	 * First set any bits in the first word of our range.
 830	 * If it starts at bit 0 of the word, it will be
 831	 * set below rather than here.  That is what the variable
 832	 * bit tells us. The variable bits_set tracks the number
 833	 * of bits that have been set so far.  End_bit is the number
 834	 * of the last bit to be set in this word plus one.
 835	 */
 836	if (bit) {
 837		end_bit = min(bit + bits_to_set, (uint)NBWORD);
 838		mask = ((1U << (end_bit - bit)) - 1) << bit;
 839		*wordp |= mask;
 840		wordp++;
 841		bits_set = end_bit - bit;
 842	} else {
 843		bits_set = 0;
 844	}
 845
 846	/*
 847	 * Now set bits a whole word at a time that are between
 848	 * first_bit and last_bit.
 849	 */
 850	while ((bits_to_set - bits_set) >= NBWORD) {
 851		*wordp = 0xffffffff;
 852		bits_set += NBWORD;
 853		wordp++;
 854	}
 855
 856	/*
 857	 * Finally, set any bits left to be set in one last partial word.
 858	 */
 859	end_bit = bits_to_set - bits_set;
 860	if (end_bit) {
 861		mask = (1U << end_bit) - 1;
 862		*wordp |= mask;
 863	}
 864}
 865
 866/*
 867 * Mark bytes first through last inclusive as dirty in the buf
 868 * item's bitmap.
 869 */
 870void
 871xfs_buf_item_log(
 872	struct xfs_buf_log_item	*bip,
 873	uint			first,
 874	uint			last)
 875{
 876	int			i;
 877	uint			start;
 878	uint			end;
 879	struct xfs_buf		*bp = bip->bli_buf;
 880
 881	/*
 882	 * walk each buffer segment and mark them dirty appropriately.
 883	 */
 884	start = 0;
 885	for (i = 0; i < bip->bli_format_count; i++) {
 886		if (start > last)
 887			break;
 888		end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
 889
 890		/* skip to the map that includes the first byte to log */
 891		if (first > end) {
 892			start += BBTOB(bp->b_maps[i].bm_len);
 893			continue;
 894		}
 895
 896		/*
 897		 * Trim the range to this segment and mark it in the bitmap.
 898		 * Note that we must convert buffer offsets to segment relative
 899		 * offsets (e.g., the first byte of each segment is byte 0 of
 900		 * that segment).
 901		 */
 902		if (first < start)
 903			first = start;
 904		if (end > last)
 905			end = last;
 906		xfs_buf_item_log_segment(first - start, end - start,
 907					 &bip->bli_formats[i].blf_data_map[0]);
 908
 909		start += BBTOB(bp->b_maps[i].bm_len);
 910	}
 911}
 912
 913
 914/*
 915 * Return true if the buffer has any ranges logged/dirtied by a transaction,
 916 * false otherwise.
 917 */
 918bool
 919xfs_buf_item_dirty_format(
 920	struct xfs_buf_log_item	*bip)
 921{
 922	int			i;
 923
 924	for (i = 0; i < bip->bli_format_count; i++) {
 925		if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
 926			     bip->bli_formats[i].blf_map_size))
 927			return true;
 928	}
 929
 930	return false;
 931}
 932
 933STATIC void
 934xfs_buf_item_free(
 935	struct xfs_buf_log_item	*bip)
 936{
 937	xfs_buf_item_free_format(bip);
 938	kmem_free(bip->bli_item.li_lv_shadow);
 939	kmem_cache_free(xfs_buf_item_zone, bip);
 
 
 
 940}
 941
 942/*
 943 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
 
 
 
 
 944 */
 945void
 946xfs_buf_item_relse(
 947	xfs_buf_t	*bp)
 948{
 949	struct xfs_buf_log_item	*bip = bp->b_log_item;
 950
 951	trace_xfs_buf_item_relse(bp, _RET_IP_);
 952	ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
 953
 954	bp->b_log_item = NULL;
 
 
 
 
 955	xfs_buf_rele(bp);
 956	xfs_buf_item_free(bip);
 957}
 958
 
 959/*
 960 * Decide if we're going to retry the write after a failure, and prepare
 961 * the buffer for retrying the write.
 
 
 
 
 
 962 */
 963static bool
 964xfs_buf_ioerror_fail_without_retry(
 965	struct xfs_buf		*bp)
 966{
 967	struct xfs_mount	*mp = bp->b_mount;
 968	static ulong		lasttime;
 969	static xfs_buftarg_t	*lasttarg;
 970
 971	/*
 972	 * If we've already decided to shutdown the filesystem because of
 973	 * I/O errors, there's no point in giving this a retry.
 974	 */
 975	if (XFS_FORCED_SHUTDOWN(mp))
 976		return true;
 977
 978	if (bp->b_target != lasttarg ||
 979	    time_after(jiffies, (lasttime + 5*HZ))) {
 980		lasttime = jiffies;
 981		xfs_buf_ioerror_alert(bp, __this_address);
 982	}
 983	lasttarg = bp->b_target;
 984
 985	/* synchronous writes will have callers process the error */
 986	if (!(bp->b_flags & XBF_ASYNC))
 987		return true;
 988	return false;
 989}
 990
 991static bool
 992xfs_buf_ioerror_retry(
 993	struct xfs_buf		*bp,
 994	struct xfs_error_cfg	*cfg)
 995{
 996	if ((bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) &&
 997	    bp->b_last_error == bp->b_error)
 998		return false;
 999
1000	bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
1001	bp->b_last_error = bp->b_error;
1002	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1003	    !bp->b_first_retry_time)
1004		bp->b_first_retry_time = jiffies;
1005	return true;
1006}
1007
1008/*
1009 * Account for this latest trip around the retry handler, and decide if
1010 * we've failed enough times to constitute a permanent failure.
 
 
 
 
 
 
 
 
1011 */
1012static bool
1013xfs_buf_ioerror_permanent(
1014	struct xfs_buf		*bp,
1015	struct xfs_error_cfg	*cfg)
1016{
1017	struct xfs_mount	*mp = bp->b_mount;
1018
1019	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1020	    ++bp->b_retries > cfg->max_retries)
1021		return true;
1022	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1023	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1024		return true;
1025
1026	/* At unmount we may treat errors differently */
1027	if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1028		return true;
1029
1030	return false;
1031}
1032
1033/*
1034 * On a sync write or shutdown we just want to stale the buffer and let the
1035 * caller handle the error in bp->b_error appropriately.
1036 *
1037 * If the write was asynchronous then no one will be looking for the error.  If
1038 * this is the first failure of this type, clear the error state and write the
1039 * buffer out again. This means we always retry an async write failure at least
1040 * once, but we also need to set the buffer up to behave correctly now for
1041 * repeated failures.
1042 *
1043 * If we get repeated async write failures, then we take action according to the
1044 * error configuration we have been set up to use.
1045 *
1046 * Multi-state return value:
1047 *
1048 * XBF_IOERROR_FINISH: clear IO error retry state and run callback completions
1049 * XBF_IOERROR_DONE: resubmitted immediately, do not run any completions
1050 * XBF_IOERROR_FAIL: transient error, run failure callback completions and then
1051 *    release the buffer
1052 */
1053enum {
1054	XBF_IOERROR_FINISH,
1055	XBF_IOERROR_DONE,
1056	XBF_IOERROR_FAIL,
1057};
1058
1059static int
1060xfs_buf_iodone_error(
1061	struct xfs_buf		*bp)
1062{
1063	struct xfs_mount	*mp = bp->b_mount;
1064	struct xfs_error_cfg	*cfg;
 
 
1065
1066	if (xfs_buf_ioerror_fail_without_retry(bp))
1067		goto out_stale;
1068
1069	trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1070
1071	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1072	if (xfs_buf_ioerror_retry(bp, cfg)) {
1073		xfs_buf_ioerror(bp, 0);
1074		xfs_buf_submit(bp);
1075		return XBF_IOERROR_DONE;
1076	}
1077
1078	/*
1079	 * Permanent error - we need to trigger a shutdown if we haven't already
1080	 * to indicate that inconsistency will result from this action.
1081	 */
1082	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1083		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1084		goto out_stale;
 
1085	}
1086
1087	/* Still considered a transient error. Caller will schedule retries. */
1088	return XBF_IOERROR_FAIL;
1089
1090out_stale:
1091	xfs_buf_stale(bp);
1092	bp->b_flags |= XBF_DONE;
1093	trace_xfs_buf_error_relse(bp, _RET_IP_);
1094	return XBF_IOERROR_FINISH;
1095}
1096
1097static void
1098xfs_buf_item_done(
1099	struct xfs_buf		*bp)
1100{
1101	struct xfs_buf_log_item	*bip = bp->b_log_item;
1102
1103	if (!bip)
1104		return;
1105
1106	/*
1107	 * If we are forcibly shutting down, this may well be off the AIL
1108	 * already. That's because we simulate the log-committed callbacks to
1109	 * unpin these buffers. Or we may never have put this item on AIL
1110	 * because of the transaction was aborted forcibly.
1111	 * xfs_trans_ail_delete() takes care of these.
1112	 *
1113	 * Either way, AIL is useless if we're forcing a shutdown.
1114	 */
1115	xfs_trans_ail_delete(&bip->bli_item, SHUTDOWN_CORRUPT_INCORE);
1116	bp->b_log_item = NULL;
1117	xfs_buf_item_free(bip);
1118	xfs_buf_rele(bp);
1119}
1120
1121static inline void
1122xfs_buf_clear_ioerror_retry_state(
1123	struct xfs_buf		*bp)
1124{
1125	bp->b_last_error = 0;
1126	bp->b_retries = 0;
1127	bp->b_first_retry_time = 0;
1128}
1129
1130/*
1131 * Inode buffer iodone callback function.
1132 */
1133void
1134xfs_buf_inode_iodone(
1135	struct xfs_buf		*bp)
1136{
1137	if (bp->b_error) {
1138		struct xfs_log_item *lip;
1139		int ret = xfs_buf_iodone_error(bp);
1140
1141		if (ret == XBF_IOERROR_FINISH)
1142			goto finish_iodone;
1143		if (ret == XBF_IOERROR_DONE)
1144			return;
1145		ASSERT(ret == XBF_IOERROR_FAIL);
1146		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1147			set_bit(XFS_LI_FAILED, &lip->li_flags);
1148		}
1149		xfs_buf_ioerror(bp, 0);
 
1150		xfs_buf_relse(bp);
1151		return;
1152	}
1153
1154finish_iodone:
1155	xfs_buf_clear_ioerror_retry_state(bp);
1156	xfs_buf_item_done(bp);
1157	xfs_iflush_done(bp);
1158	xfs_buf_ioend_finish(bp);
1159}
 
1160
1161/*
1162 * Dquot buffer iodone callback function.
1163 */
1164void
1165xfs_buf_dquot_iodone(
1166	struct xfs_buf		*bp)
1167{
1168	if (bp->b_error) {
1169		struct xfs_log_item *lip;
1170		int ret = xfs_buf_iodone_error(bp);
1171
1172		if (ret == XBF_IOERROR_FINISH)
1173			goto finish_iodone;
1174		if (ret == XBF_IOERROR_DONE)
1175			return;
1176		ASSERT(ret == XBF_IOERROR_FAIL);
1177		spin_lock(&bp->b_mount->m_ail->ail_lock);
1178		list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1179			xfs_set_li_failed(lip, bp);
1180		}
1181		spin_unlock(&bp->b_mount->m_ail->ail_lock);
1182		xfs_buf_ioerror(bp, 0);
1183		xfs_buf_relse(bp);
1184		return;
1185	}
1186
1187finish_iodone:
1188	xfs_buf_clear_ioerror_retry_state(bp);
1189	/* a newly allocated dquot buffer might have a log item attached */
1190	xfs_buf_item_done(bp);
1191	xfs_dquot_done(bp);
1192	xfs_buf_ioend_finish(bp);
1193}
1194
1195/*
1196 * Dirty buffer iodone callback function.
1197 *
1198 * Note that for things like remote attribute buffers, there may not be a buffer
1199 * log item here, so processing the buffer log item must remain be optional.
 
1200 */
1201void
1202xfs_buf_iodone(
1203	struct xfs_buf		*bp)
 
1204{
1205	if (bp->b_error) {
1206		int ret = xfs_buf_iodone_error(bp);
 
1207
1208		if (ret == XBF_IOERROR_FINISH)
1209			goto finish_iodone;
1210		if (ret == XBF_IOERROR_DONE)
1211			return;
1212		ASSERT(ret == XBF_IOERROR_FAIL);
1213		ASSERT(list_empty(&bp->b_li_list));
1214		xfs_buf_ioerror(bp, 0);
1215		xfs_buf_relse(bp);
1216		return;
1217	}
1218
1219finish_iodone:
1220	xfs_buf_clear_ioerror_retry_state(bp);
1221	xfs_buf_item_done(bp);
1222	xfs_buf_ioend_finish(bp);
 
 
 
 
 
 
 
 
1223}