Loading...
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements functions that manage the running of the commit process.
25 * Each affected module has its own functions to accomplish their part in the
26 * commit and those functions are called here.
27 *
28 * The commit is the process whereby all updates to the index and LEB properties
29 * are written out together and the journal becomes empty. This keeps the
30 * file system consistent - at all times the state can be recreated by reading
31 * the index and LEB properties and then replaying the journal.
32 *
33 * The commit is split into two parts named "commit start" and "commit end".
34 * During commit start, the commit process has exclusive access to the journal
35 * by holding the commit semaphore down for writing. As few I/O operations as
36 * possible are performed during commit start, instead the nodes that are to be
37 * written are merely identified. During commit end, the commit semaphore is no
38 * longer held and the journal is again in operation, allowing users to continue
39 * to use the file system while the bulk of the commit I/O is performed. The
40 * purpose of this two-step approach is to prevent the commit from causing any
41 * latency blips. Note that in any case, the commit does not prevent lookups
42 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
43 * cache.
44 */
45
46#include <linux/freezer.h>
47#include <linux/kthread.h>
48#include <linux/slab.h>
49#include "ubifs.h"
50
51/*
52 * nothing_to_commit - check if there is nothing to commit.
53 * @c: UBIFS file-system description object
54 *
55 * This is a helper function which checks if there is anything to commit. It is
56 * used as an optimization to avoid starting the commit if it is not really
57 * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
58 * writing the commit start node to the log), and it is better to avoid doing
59 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
60 * nothing to commit, it is more optimal to avoid any flash I/O.
61 *
62 * This function has to be called with @c->commit_sem locked for writing -
63 * this function does not take LPT/TNC locks because the @c->commit_sem
64 * guarantees that we have exclusive access to the TNC and LPT data structures.
65 *
66 * This function returns %1 if there is nothing to commit and %0 otherwise.
67 */
68static int nothing_to_commit(struct ubifs_info *c)
69{
70 /*
71 * During mounting or remounting from R/O mode to R/W mode we may
72 * commit for various recovery-related reasons.
73 */
74 if (c->mounting || c->remounting_rw)
75 return 0;
76
77 /*
78 * If the root TNC node is dirty, we definitely have something to
79 * commit.
80 */
81 if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
82 return 0;
83
84 /*
85 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
86 * example, this may happen if the budgeting subsystem invoked GC to
87 * make some free space, and the GC found an LEB with only dirty and
88 * free space. In this case GC would just change the lprops of this
89 * LEB (by turning all space into free space) and unmap it.
90 */
91 if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
92 return 0;
93
94 ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
95 ubifs_assert(c->dirty_pn_cnt == 0);
96 ubifs_assert(c->dirty_nn_cnt == 0);
97
98 return 1;
99}
100
101/**
102 * do_commit - commit the journal.
103 * @c: UBIFS file-system description object
104 *
105 * This function implements UBIFS commit. It has to be called with commit lock
106 * locked. Returns zero in case of success and a negative error code in case of
107 * failure.
108 */
109static int do_commit(struct ubifs_info *c)
110{
111 int err, new_ltail_lnum, old_ltail_lnum, i;
112 struct ubifs_zbranch zroot;
113 struct ubifs_lp_stats lst;
114
115 dbg_cmt("start");
116 ubifs_assert(!c->ro_media && !c->ro_mount);
117
118 if (c->ro_error) {
119 err = -EROFS;
120 goto out_up;
121 }
122
123 if (nothing_to_commit(c)) {
124 up_write(&c->commit_sem);
125 err = 0;
126 goto out_cancel;
127 }
128
129 /* Sync all write buffers (necessary for recovery) */
130 for (i = 0; i < c->jhead_cnt; i++) {
131 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
132 if (err)
133 goto out_up;
134 }
135
136 c->cmt_no += 1;
137 err = ubifs_gc_start_commit(c);
138 if (err)
139 goto out_up;
140 err = dbg_check_lprops(c);
141 if (err)
142 goto out_up;
143 err = ubifs_log_start_commit(c, &new_ltail_lnum);
144 if (err)
145 goto out_up;
146 err = ubifs_tnc_start_commit(c, &zroot);
147 if (err)
148 goto out_up;
149 err = ubifs_lpt_start_commit(c);
150 if (err)
151 goto out_up;
152 err = ubifs_orphan_start_commit(c);
153 if (err)
154 goto out_up;
155
156 ubifs_get_lp_stats(c, &lst);
157
158 up_write(&c->commit_sem);
159
160 err = ubifs_tnc_end_commit(c);
161 if (err)
162 goto out;
163 err = ubifs_lpt_end_commit(c);
164 if (err)
165 goto out;
166 err = ubifs_orphan_end_commit(c);
167 if (err)
168 goto out;
169 old_ltail_lnum = c->ltail_lnum;
170 err = ubifs_log_end_commit(c, new_ltail_lnum);
171 if (err)
172 goto out;
173 err = dbg_check_old_index(c, &zroot);
174 if (err)
175 goto out;
176
177 mutex_lock(&c->mst_mutex);
178 c->mst_node->cmt_no = cpu_to_le64(c->cmt_no);
179 c->mst_node->log_lnum = cpu_to_le32(new_ltail_lnum);
180 c->mst_node->root_lnum = cpu_to_le32(zroot.lnum);
181 c->mst_node->root_offs = cpu_to_le32(zroot.offs);
182 c->mst_node->root_len = cpu_to_le32(zroot.len);
183 c->mst_node->ihead_lnum = cpu_to_le32(c->ihead_lnum);
184 c->mst_node->ihead_offs = cpu_to_le32(c->ihead_offs);
185 c->mst_node->index_size = cpu_to_le64(c->bi.old_idx_sz);
186 c->mst_node->lpt_lnum = cpu_to_le32(c->lpt_lnum);
187 c->mst_node->lpt_offs = cpu_to_le32(c->lpt_offs);
188 c->mst_node->nhead_lnum = cpu_to_le32(c->nhead_lnum);
189 c->mst_node->nhead_offs = cpu_to_le32(c->nhead_offs);
190 c->mst_node->ltab_lnum = cpu_to_le32(c->ltab_lnum);
191 c->mst_node->ltab_offs = cpu_to_le32(c->ltab_offs);
192 c->mst_node->lsave_lnum = cpu_to_le32(c->lsave_lnum);
193 c->mst_node->lsave_offs = cpu_to_le32(c->lsave_offs);
194 c->mst_node->lscan_lnum = cpu_to_le32(c->lscan_lnum);
195 c->mst_node->empty_lebs = cpu_to_le32(lst.empty_lebs);
196 c->mst_node->idx_lebs = cpu_to_le32(lst.idx_lebs);
197 c->mst_node->total_free = cpu_to_le64(lst.total_free);
198 c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
199 c->mst_node->total_used = cpu_to_le64(lst.total_used);
200 c->mst_node->total_dead = cpu_to_le64(lst.total_dead);
201 c->mst_node->total_dark = cpu_to_le64(lst.total_dark);
202 if (c->no_orphs)
203 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
204 else
205 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
206 err = ubifs_write_master(c);
207 mutex_unlock(&c->mst_mutex);
208 if (err)
209 goto out;
210
211 err = ubifs_log_post_commit(c, old_ltail_lnum);
212 if (err)
213 goto out;
214 err = ubifs_gc_end_commit(c);
215 if (err)
216 goto out;
217 err = ubifs_lpt_post_commit(c);
218 if (err)
219 goto out;
220
221out_cancel:
222 spin_lock(&c->cs_lock);
223 c->cmt_state = COMMIT_RESTING;
224 wake_up(&c->cmt_wq);
225 dbg_cmt("commit end");
226 spin_unlock(&c->cs_lock);
227 return 0;
228
229out_up:
230 up_write(&c->commit_sem);
231out:
232 ubifs_err("commit failed, error %d", err);
233 spin_lock(&c->cs_lock);
234 c->cmt_state = COMMIT_BROKEN;
235 wake_up(&c->cmt_wq);
236 spin_unlock(&c->cs_lock);
237 ubifs_ro_mode(c, err);
238 return err;
239}
240
241/**
242 * run_bg_commit - run background commit if it is needed.
243 * @c: UBIFS file-system description object
244 *
245 * This function runs background commit if it is needed. Returns zero in case
246 * of success and a negative error code in case of failure.
247 */
248static int run_bg_commit(struct ubifs_info *c)
249{
250 spin_lock(&c->cs_lock);
251 /*
252 * Run background commit only if background commit was requested or if
253 * commit is required.
254 */
255 if (c->cmt_state != COMMIT_BACKGROUND &&
256 c->cmt_state != COMMIT_REQUIRED)
257 goto out;
258 spin_unlock(&c->cs_lock);
259
260 down_write(&c->commit_sem);
261 spin_lock(&c->cs_lock);
262 if (c->cmt_state == COMMIT_REQUIRED)
263 c->cmt_state = COMMIT_RUNNING_REQUIRED;
264 else if (c->cmt_state == COMMIT_BACKGROUND)
265 c->cmt_state = COMMIT_RUNNING_BACKGROUND;
266 else
267 goto out_cmt_unlock;
268 spin_unlock(&c->cs_lock);
269
270 return do_commit(c);
271
272out_cmt_unlock:
273 up_write(&c->commit_sem);
274out:
275 spin_unlock(&c->cs_lock);
276 return 0;
277}
278
279/**
280 * ubifs_bg_thread - UBIFS background thread function.
281 * @info: points to the file-system description object
282 *
283 * This function implements various file-system background activities:
284 * o when a write-buffer timer expires it synchronizes the appropriate
285 * write-buffer;
286 * o when the journal is about to be full, it starts in-advance commit.
287 *
288 * Note, other stuff like background garbage collection may be added here in
289 * future.
290 */
291int ubifs_bg_thread(void *info)
292{
293 int err;
294 struct ubifs_info *c = info;
295
296 dbg_msg("background thread \"%s\" started, PID %d",
297 c->bgt_name, current->pid);
298 set_freezable();
299
300 while (1) {
301 if (kthread_should_stop())
302 break;
303
304 if (try_to_freeze())
305 continue;
306
307 set_current_state(TASK_INTERRUPTIBLE);
308 /* Check if there is something to do */
309 if (!c->need_bgt) {
310 /*
311 * Nothing prevents us from going sleep now and
312 * be never woken up and block the task which
313 * could wait in 'kthread_stop()' forever.
314 */
315 if (kthread_should_stop())
316 break;
317 schedule();
318 continue;
319 } else
320 __set_current_state(TASK_RUNNING);
321
322 c->need_bgt = 0;
323 err = ubifs_bg_wbufs_sync(c);
324 if (err)
325 ubifs_ro_mode(c, err);
326
327 run_bg_commit(c);
328 cond_resched();
329 }
330
331 dbg_msg("background thread \"%s\" stops", c->bgt_name);
332 return 0;
333}
334
335/**
336 * ubifs_commit_required - set commit state to "required".
337 * @c: UBIFS file-system description object
338 *
339 * This function is called if a commit is required but cannot be done from the
340 * calling function, so it is just flagged instead.
341 */
342void ubifs_commit_required(struct ubifs_info *c)
343{
344 spin_lock(&c->cs_lock);
345 switch (c->cmt_state) {
346 case COMMIT_RESTING:
347 case COMMIT_BACKGROUND:
348 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
349 dbg_cstate(COMMIT_REQUIRED));
350 c->cmt_state = COMMIT_REQUIRED;
351 break;
352 case COMMIT_RUNNING_BACKGROUND:
353 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
354 dbg_cstate(COMMIT_RUNNING_REQUIRED));
355 c->cmt_state = COMMIT_RUNNING_REQUIRED;
356 break;
357 case COMMIT_REQUIRED:
358 case COMMIT_RUNNING_REQUIRED:
359 case COMMIT_BROKEN:
360 break;
361 }
362 spin_unlock(&c->cs_lock);
363}
364
365/**
366 * ubifs_request_bg_commit - notify the background thread to do a commit.
367 * @c: UBIFS file-system description object
368 *
369 * This function is called if the journal is full enough to make a commit
370 * worthwhile, so background thread is kicked to start it.
371 */
372void ubifs_request_bg_commit(struct ubifs_info *c)
373{
374 spin_lock(&c->cs_lock);
375 if (c->cmt_state == COMMIT_RESTING) {
376 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
377 dbg_cstate(COMMIT_BACKGROUND));
378 c->cmt_state = COMMIT_BACKGROUND;
379 spin_unlock(&c->cs_lock);
380 ubifs_wake_up_bgt(c);
381 } else
382 spin_unlock(&c->cs_lock);
383}
384
385/**
386 * wait_for_commit - wait for commit.
387 * @c: UBIFS file-system description object
388 *
389 * This function sleeps until the commit operation is no longer running.
390 */
391static int wait_for_commit(struct ubifs_info *c)
392{
393 dbg_cmt("pid %d goes sleep", current->pid);
394
395 /*
396 * The following sleeps if the condition is false, and will be woken
397 * when the commit ends. It is possible, although very unlikely, that we
398 * will wake up and see the subsequent commit running, rather than the
399 * one we were waiting for, and go back to sleep. However, we will be
400 * woken again, so there is no danger of sleeping forever.
401 */
402 wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
403 c->cmt_state != COMMIT_RUNNING_REQUIRED);
404 dbg_cmt("commit finished, pid %d woke up", current->pid);
405 return 0;
406}
407
408/**
409 * ubifs_run_commit - run or wait for commit.
410 * @c: UBIFS file-system description object
411 *
412 * This function runs commit and returns zero in case of success and a negative
413 * error code in case of failure.
414 */
415int ubifs_run_commit(struct ubifs_info *c)
416{
417 int err = 0;
418
419 spin_lock(&c->cs_lock);
420 if (c->cmt_state == COMMIT_BROKEN) {
421 err = -EROFS;
422 goto out;
423 }
424
425 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
426 /*
427 * We set the commit state to 'running required' to indicate
428 * that we want it to complete as quickly as possible.
429 */
430 c->cmt_state = COMMIT_RUNNING_REQUIRED;
431
432 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
433 spin_unlock(&c->cs_lock);
434 return wait_for_commit(c);
435 }
436 spin_unlock(&c->cs_lock);
437
438 /* Ok, the commit is indeed needed */
439
440 down_write(&c->commit_sem);
441 spin_lock(&c->cs_lock);
442 /*
443 * Since we unlocked 'c->cs_lock', the state may have changed, so
444 * re-check it.
445 */
446 if (c->cmt_state == COMMIT_BROKEN) {
447 err = -EROFS;
448 goto out_cmt_unlock;
449 }
450
451 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
452 c->cmt_state = COMMIT_RUNNING_REQUIRED;
453
454 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
455 up_write(&c->commit_sem);
456 spin_unlock(&c->cs_lock);
457 return wait_for_commit(c);
458 }
459 c->cmt_state = COMMIT_RUNNING_REQUIRED;
460 spin_unlock(&c->cs_lock);
461
462 err = do_commit(c);
463 return err;
464
465out_cmt_unlock:
466 up_write(&c->commit_sem);
467out:
468 spin_unlock(&c->cs_lock);
469 return err;
470}
471
472/**
473 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
474 * @c: UBIFS file-system description object
475 *
476 * This function is called by garbage collection to determine if commit should
477 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
478 * is full enough to start commit, this function returns true. It is not
479 * absolutely necessary to commit yet, but it feels like this should be better
480 * then to keep doing GC. This function returns %1 if GC has to initiate commit
481 * and %0 if not.
482 */
483int ubifs_gc_should_commit(struct ubifs_info *c)
484{
485 int ret = 0;
486
487 spin_lock(&c->cs_lock);
488 if (c->cmt_state == COMMIT_BACKGROUND) {
489 dbg_cmt("commit required now");
490 c->cmt_state = COMMIT_REQUIRED;
491 } else
492 dbg_cmt("commit not requested");
493 if (c->cmt_state == COMMIT_REQUIRED)
494 ret = 1;
495 spin_unlock(&c->cs_lock);
496 return ret;
497}
498
499#ifdef CONFIG_UBIFS_FS_DEBUG
500
501/**
502 * struct idx_node - hold index nodes during index tree traversal.
503 * @list: list
504 * @iip: index in parent (slot number of this indexing node in the parent
505 * indexing node)
506 * @upper_key: all keys in this indexing node have to be less or equivalent to
507 * this key
508 * @idx: index node (8-byte aligned because all node structures must be 8-byte
509 * aligned)
510 */
511struct idx_node {
512 struct list_head list;
513 int iip;
514 union ubifs_key upper_key;
515 struct ubifs_idx_node idx __attribute__((aligned(8)));
516};
517
518/**
519 * dbg_old_index_check_init - get information for the next old index check.
520 * @c: UBIFS file-system description object
521 * @zroot: root of the index
522 *
523 * This function records information about the index that will be needed for the
524 * next old index check i.e. 'dbg_check_old_index()'.
525 *
526 * This function returns %0 on success and a negative error code on failure.
527 */
528int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
529{
530 struct ubifs_idx_node *idx;
531 int lnum, offs, len, err = 0;
532 struct ubifs_debug_info *d = c->dbg;
533
534 d->old_zroot = *zroot;
535 lnum = d->old_zroot.lnum;
536 offs = d->old_zroot.offs;
537 len = d->old_zroot.len;
538
539 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
540 if (!idx)
541 return -ENOMEM;
542
543 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
544 if (err)
545 goto out;
546
547 d->old_zroot_level = le16_to_cpu(idx->level);
548 d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
549out:
550 kfree(idx);
551 return err;
552}
553
554/**
555 * dbg_check_old_index - check the old copy of the index.
556 * @c: UBIFS file-system description object
557 * @zroot: root of the new index
558 *
559 * In order to be able to recover from an unclean unmount, a complete copy of
560 * the index must exist on flash. This is the "old" index. The commit process
561 * must write the "new" index to flash without overwriting or destroying any
562 * part of the old index. This function is run at commit end in order to check
563 * that the old index does indeed exist completely intact.
564 *
565 * This function returns %0 on success and a negative error code on failure.
566 */
567int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
568{
569 int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
570 int first = 1, iip;
571 struct ubifs_debug_info *d = c->dbg;
572 union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key;
573 unsigned long long uninitialized_var(last_sqnum);
574 struct ubifs_idx_node *idx;
575 struct list_head list;
576 struct idx_node *i;
577 size_t sz;
578
579 if (!dbg_is_chk_index(c))
580 return 0;
581
582 INIT_LIST_HEAD(&list);
583
584 sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
585 UBIFS_IDX_NODE_SZ;
586
587 /* Start at the old zroot */
588 lnum = d->old_zroot.lnum;
589 offs = d->old_zroot.offs;
590 len = d->old_zroot.len;
591 iip = 0;
592
593 /*
594 * Traverse the index tree preorder depth-first i.e. do a node and then
595 * its subtrees from left to right.
596 */
597 while (1) {
598 struct ubifs_branch *br;
599
600 /* Get the next index node */
601 i = kmalloc(sz, GFP_NOFS);
602 if (!i) {
603 err = -ENOMEM;
604 goto out_free;
605 }
606 i->iip = iip;
607 /* Keep the index nodes on our path in a linked list */
608 list_add_tail(&i->list, &list);
609 /* Read the index node */
610 idx = &i->idx;
611 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
612 if (err)
613 goto out_free;
614 /* Validate index node */
615 child_cnt = le16_to_cpu(idx->child_cnt);
616 if (child_cnt < 1 || child_cnt > c->fanout) {
617 err = 1;
618 goto out_dump;
619 }
620 if (first) {
621 first = 0;
622 /* Check root level and sqnum */
623 if (le16_to_cpu(idx->level) != d->old_zroot_level) {
624 err = 2;
625 goto out_dump;
626 }
627 if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
628 err = 3;
629 goto out_dump;
630 }
631 /* Set last values as though root had a parent */
632 last_level = le16_to_cpu(idx->level) + 1;
633 last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
634 key_read(c, ubifs_idx_key(c, idx), &lower_key);
635 highest_ino_key(c, &upper_key, INUM_WATERMARK);
636 }
637 key_copy(c, &upper_key, &i->upper_key);
638 if (le16_to_cpu(idx->level) != last_level - 1) {
639 err = 3;
640 goto out_dump;
641 }
642 /*
643 * The index is always written bottom up hence a child's sqnum
644 * is always less than the parents.
645 */
646 if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
647 err = 4;
648 goto out_dump;
649 }
650 /* Check key range */
651 key_read(c, ubifs_idx_key(c, idx), &l_key);
652 br = ubifs_idx_branch(c, idx, child_cnt - 1);
653 key_read(c, &br->key, &u_key);
654 if (keys_cmp(c, &lower_key, &l_key) > 0) {
655 err = 5;
656 goto out_dump;
657 }
658 if (keys_cmp(c, &upper_key, &u_key) < 0) {
659 err = 6;
660 goto out_dump;
661 }
662 if (keys_cmp(c, &upper_key, &u_key) == 0)
663 if (!is_hash_key(c, &u_key)) {
664 err = 7;
665 goto out_dump;
666 }
667 /* Go to next index node */
668 if (le16_to_cpu(idx->level) == 0) {
669 /* At the bottom, so go up until can go right */
670 while (1) {
671 /* Drop the bottom of the list */
672 list_del(&i->list);
673 kfree(i);
674 /* No more list means we are done */
675 if (list_empty(&list))
676 goto out;
677 /* Look at the new bottom */
678 i = list_entry(list.prev, struct idx_node,
679 list);
680 idx = &i->idx;
681 /* Can we go right */
682 if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
683 iip = iip + 1;
684 break;
685 } else
686 /* Nope, so go up again */
687 iip = i->iip;
688 }
689 } else
690 /* Go down left */
691 iip = 0;
692 /*
693 * We have the parent in 'idx' and now we set up for reading the
694 * child pointed to by slot 'iip'.
695 */
696 last_level = le16_to_cpu(idx->level);
697 last_sqnum = le64_to_cpu(idx->ch.sqnum);
698 br = ubifs_idx_branch(c, idx, iip);
699 lnum = le32_to_cpu(br->lnum);
700 offs = le32_to_cpu(br->offs);
701 len = le32_to_cpu(br->len);
702 key_read(c, &br->key, &lower_key);
703 if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
704 br = ubifs_idx_branch(c, idx, iip + 1);
705 key_read(c, &br->key, &upper_key);
706 } else
707 key_copy(c, &i->upper_key, &upper_key);
708 }
709out:
710 err = dbg_old_index_check_init(c, zroot);
711 if (err)
712 goto out_free;
713
714 return 0;
715
716out_dump:
717 dbg_err("dumping index node (iip=%d)", i->iip);
718 dbg_dump_node(c, idx);
719 list_del(&i->list);
720 kfree(i);
721 if (!list_empty(&list)) {
722 i = list_entry(list.prev, struct idx_node, list);
723 dbg_err("dumping parent index node");
724 dbg_dump_node(c, &i->idx);
725 }
726out_free:
727 while (!list_empty(&list)) {
728 i = list_entry(list.next, struct idx_node, list);
729 list_del(&i->list);
730 kfree(i);
731 }
732 ubifs_err("failed, error %d", err);
733 if (err > 0)
734 err = -EINVAL;
735 return err;
736}
737
738#endif /* CONFIG_UBIFS_FS_DEBUG */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/*
12 * This file implements functions that manage the running of the commit process.
13 * Each affected module has its own functions to accomplish their part in the
14 * commit and those functions are called here.
15 *
16 * The commit is the process whereby all updates to the index and LEB properties
17 * are written out together and the journal becomes empty. This keeps the
18 * file system consistent - at all times the state can be recreated by reading
19 * the index and LEB properties and then replaying the journal.
20 *
21 * The commit is split into two parts named "commit start" and "commit end".
22 * During commit start, the commit process has exclusive access to the journal
23 * by holding the commit semaphore down for writing. As few I/O operations as
24 * possible are performed during commit start, instead the nodes that are to be
25 * written are merely identified. During commit end, the commit semaphore is no
26 * longer held and the journal is again in operation, allowing users to continue
27 * to use the file system while the bulk of the commit I/O is performed. The
28 * purpose of this two-step approach is to prevent the commit from causing any
29 * latency blips. Note that in any case, the commit does not prevent lookups
30 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
31 * cache.
32 */
33
34#include <linux/freezer.h>
35#include <linux/kthread.h>
36#include <linux/slab.h>
37#include "ubifs.h"
38
39/*
40 * nothing_to_commit - check if there is nothing to commit.
41 * @c: UBIFS file-system description object
42 *
43 * This is a helper function which checks if there is anything to commit. It is
44 * used as an optimization to avoid starting the commit if it is not really
45 * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
46 * writing the commit start node to the log), and it is better to avoid doing
47 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
48 * nothing to commit, it is more optimal to avoid any flash I/O.
49 *
50 * This function has to be called with @c->commit_sem locked for writing -
51 * this function does not take LPT/TNC locks because the @c->commit_sem
52 * guarantees that we have exclusive access to the TNC and LPT data structures.
53 *
54 * This function returns %1 if there is nothing to commit and %0 otherwise.
55 */
56static int nothing_to_commit(struct ubifs_info *c)
57{
58 /*
59 * During mounting or remounting from R/O mode to R/W mode we may
60 * commit for various recovery-related reasons.
61 */
62 if (c->mounting || c->remounting_rw)
63 return 0;
64
65 /*
66 * If the root TNC node is dirty, we definitely have something to
67 * commit.
68 */
69 if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
70 return 0;
71
72 /*
73 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
74 * example, this may happen if the budgeting subsystem invoked GC to
75 * make some free space, and the GC found an LEB with only dirty and
76 * free space. In this case GC would just change the lprops of this
77 * LEB (by turning all space into free space) and unmap it.
78 */
79 if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
80 return 0;
81
82 ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
83 ubifs_assert(c, c->dirty_pn_cnt == 0);
84 ubifs_assert(c, c->dirty_nn_cnt == 0);
85
86 return 1;
87}
88
89/**
90 * do_commit - commit the journal.
91 * @c: UBIFS file-system description object
92 *
93 * This function implements UBIFS commit. It has to be called with commit lock
94 * locked. Returns zero in case of success and a negative error code in case of
95 * failure.
96 */
97static int do_commit(struct ubifs_info *c)
98{
99 int err, new_ltail_lnum, old_ltail_lnum, i;
100 struct ubifs_zbranch zroot;
101 struct ubifs_lp_stats lst;
102
103 dbg_cmt("start");
104 ubifs_assert(c, !c->ro_media && !c->ro_mount);
105
106 if (c->ro_error) {
107 err = -EROFS;
108 goto out_up;
109 }
110
111 if (nothing_to_commit(c)) {
112 up_write(&c->commit_sem);
113 err = 0;
114 goto out_cancel;
115 }
116
117 /* Sync all write buffers (necessary for recovery) */
118 for (i = 0; i < c->jhead_cnt; i++) {
119 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
120 if (err)
121 goto out_up;
122 }
123
124 c->cmt_no += 1;
125 err = ubifs_gc_start_commit(c);
126 if (err)
127 goto out_up;
128 err = dbg_check_lprops(c);
129 if (err)
130 goto out_up;
131 err = ubifs_log_start_commit(c, &new_ltail_lnum);
132 if (err)
133 goto out_up;
134 err = ubifs_tnc_start_commit(c, &zroot);
135 if (err)
136 goto out_up;
137 err = ubifs_lpt_start_commit(c);
138 if (err)
139 goto out_up;
140 err = ubifs_orphan_start_commit(c);
141 if (err)
142 goto out_up;
143
144 ubifs_get_lp_stats(c, &lst);
145
146 up_write(&c->commit_sem);
147
148 err = ubifs_tnc_end_commit(c);
149 if (err)
150 goto out;
151 err = ubifs_lpt_end_commit(c);
152 if (err)
153 goto out;
154 err = ubifs_orphan_end_commit(c);
155 if (err)
156 goto out;
157 err = dbg_check_old_index(c, &zroot);
158 if (err)
159 goto out;
160
161 c->mst_node->cmt_no = cpu_to_le64(c->cmt_no);
162 c->mst_node->log_lnum = cpu_to_le32(new_ltail_lnum);
163 c->mst_node->root_lnum = cpu_to_le32(zroot.lnum);
164 c->mst_node->root_offs = cpu_to_le32(zroot.offs);
165 c->mst_node->root_len = cpu_to_le32(zroot.len);
166 c->mst_node->ihead_lnum = cpu_to_le32(c->ihead_lnum);
167 c->mst_node->ihead_offs = cpu_to_le32(c->ihead_offs);
168 c->mst_node->index_size = cpu_to_le64(c->bi.old_idx_sz);
169 c->mst_node->lpt_lnum = cpu_to_le32(c->lpt_lnum);
170 c->mst_node->lpt_offs = cpu_to_le32(c->lpt_offs);
171 c->mst_node->nhead_lnum = cpu_to_le32(c->nhead_lnum);
172 c->mst_node->nhead_offs = cpu_to_le32(c->nhead_offs);
173 c->mst_node->ltab_lnum = cpu_to_le32(c->ltab_lnum);
174 c->mst_node->ltab_offs = cpu_to_le32(c->ltab_offs);
175 c->mst_node->lsave_lnum = cpu_to_le32(c->lsave_lnum);
176 c->mst_node->lsave_offs = cpu_to_le32(c->lsave_offs);
177 c->mst_node->lscan_lnum = cpu_to_le32(c->lscan_lnum);
178 c->mst_node->empty_lebs = cpu_to_le32(lst.empty_lebs);
179 c->mst_node->idx_lebs = cpu_to_le32(lst.idx_lebs);
180 c->mst_node->total_free = cpu_to_le64(lst.total_free);
181 c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
182 c->mst_node->total_used = cpu_to_le64(lst.total_used);
183 c->mst_node->total_dead = cpu_to_le64(lst.total_dead);
184 c->mst_node->total_dark = cpu_to_le64(lst.total_dark);
185 if (c->no_orphs)
186 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
187 else
188 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
189
190 old_ltail_lnum = c->ltail_lnum;
191 err = ubifs_log_end_commit(c, new_ltail_lnum);
192 if (err)
193 goto out;
194
195 err = ubifs_log_post_commit(c, old_ltail_lnum);
196 if (err)
197 goto out;
198 err = ubifs_gc_end_commit(c);
199 if (err)
200 goto out;
201 err = ubifs_lpt_post_commit(c);
202 if (err)
203 goto out;
204
205out_cancel:
206 spin_lock(&c->cs_lock);
207 c->cmt_state = COMMIT_RESTING;
208 wake_up(&c->cmt_wq);
209 dbg_cmt("commit end");
210 spin_unlock(&c->cs_lock);
211 return 0;
212
213out_up:
214 up_write(&c->commit_sem);
215out:
216 ubifs_err(c, "commit failed, error %d", err);
217 spin_lock(&c->cs_lock);
218 c->cmt_state = COMMIT_BROKEN;
219 wake_up(&c->cmt_wq);
220 spin_unlock(&c->cs_lock);
221 ubifs_ro_mode(c, err);
222 return err;
223}
224
225/**
226 * run_bg_commit - run background commit if it is needed.
227 * @c: UBIFS file-system description object
228 *
229 * This function runs background commit if it is needed. Returns zero in case
230 * of success and a negative error code in case of failure.
231 */
232static int run_bg_commit(struct ubifs_info *c)
233{
234 spin_lock(&c->cs_lock);
235 /*
236 * Run background commit only if background commit was requested or if
237 * commit is required.
238 */
239 if (c->cmt_state != COMMIT_BACKGROUND &&
240 c->cmt_state != COMMIT_REQUIRED)
241 goto out;
242 spin_unlock(&c->cs_lock);
243
244 down_write(&c->commit_sem);
245 spin_lock(&c->cs_lock);
246 if (c->cmt_state == COMMIT_REQUIRED)
247 c->cmt_state = COMMIT_RUNNING_REQUIRED;
248 else if (c->cmt_state == COMMIT_BACKGROUND)
249 c->cmt_state = COMMIT_RUNNING_BACKGROUND;
250 else
251 goto out_cmt_unlock;
252 spin_unlock(&c->cs_lock);
253
254 return do_commit(c);
255
256out_cmt_unlock:
257 up_write(&c->commit_sem);
258out:
259 spin_unlock(&c->cs_lock);
260 return 0;
261}
262
263/**
264 * ubifs_bg_thread - UBIFS background thread function.
265 * @info: points to the file-system description object
266 *
267 * This function implements various file-system background activities:
268 * o when a write-buffer timer expires it synchronizes the appropriate
269 * write-buffer;
270 * o when the journal is about to be full, it starts in-advance commit.
271 *
272 * Note, other stuff like background garbage collection may be added here in
273 * future.
274 */
275int ubifs_bg_thread(void *info)
276{
277 int err;
278 struct ubifs_info *c = info;
279
280 ubifs_msg(c, "background thread \"%s\" started, PID %d",
281 c->bgt_name, current->pid);
282 set_freezable();
283
284 while (1) {
285 if (kthread_should_stop())
286 break;
287
288 if (try_to_freeze())
289 continue;
290
291 set_current_state(TASK_INTERRUPTIBLE);
292 /* Check if there is something to do */
293 if (!c->need_bgt) {
294 /*
295 * Nothing prevents us from going sleep now and
296 * be never woken up and block the task which
297 * could wait in 'kthread_stop()' forever.
298 */
299 if (kthread_should_stop())
300 break;
301 schedule();
302 continue;
303 } else
304 __set_current_state(TASK_RUNNING);
305
306 c->need_bgt = 0;
307 err = ubifs_bg_wbufs_sync(c);
308 if (err)
309 ubifs_ro_mode(c, err);
310
311 run_bg_commit(c);
312 cond_resched();
313 }
314
315 ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name);
316 return 0;
317}
318
319/**
320 * ubifs_commit_required - set commit state to "required".
321 * @c: UBIFS file-system description object
322 *
323 * This function is called if a commit is required but cannot be done from the
324 * calling function, so it is just flagged instead.
325 */
326void ubifs_commit_required(struct ubifs_info *c)
327{
328 spin_lock(&c->cs_lock);
329 switch (c->cmt_state) {
330 case COMMIT_RESTING:
331 case COMMIT_BACKGROUND:
332 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
333 dbg_cstate(COMMIT_REQUIRED));
334 c->cmt_state = COMMIT_REQUIRED;
335 break;
336 case COMMIT_RUNNING_BACKGROUND:
337 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
338 dbg_cstate(COMMIT_RUNNING_REQUIRED));
339 c->cmt_state = COMMIT_RUNNING_REQUIRED;
340 break;
341 case COMMIT_REQUIRED:
342 case COMMIT_RUNNING_REQUIRED:
343 case COMMIT_BROKEN:
344 break;
345 }
346 spin_unlock(&c->cs_lock);
347}
348
349/**
350 * ubifs_request_bg_commit - notify the background thread to do a commit.
351 * @c: UBIFS file-system description object
352 *
353 * This function is called if the journal is full enough to make a commit
354 * worthwhile, so background thread is kicked to start it.
355 */
356void ubifs_request_bg_commit(struct ubifs_info *c)
357{
358 spin_lock(&c->cs_lock);
359 if (c->cmt_state == COMMIT_RESTING) {
360 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
361 dbg_cstate(COMMIT_BACKGROUND));
362 c->cmt_state = COMMIT_BACKGROUND;
363 spin_unlock(&c->cs_lock);
364 ubifs_wake_up_bgt(c);
365 } else
366 spin_unlock(&c->cs_lock);
367}
368
369/**
370 * wait_for_commit - wait for commit.
371 * @c: UBIFS file-system description object
372 *
373 * This function sleeps until the commit operation is no longer running.
374 */
375static int wait_for_commit(struct ubifs_info *c)
376{
377 dbg_cmt("pid %d goes sleep", current->pid);
378
379 /*
380 * The following sleeps if the condition is false, and will be woken
381 * when the commit ends. It is possible, although very unlikely, that we
382 * will wake up and see the subsequent commit running, rather than the
383 * one we were waiting for, and go back to sleep. However, we will be
384 * woken again, so there is no danger of sleeping forever.
385 */
386 wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
387 c->cmt_state != COMMIT_RUNNING_REQUIRED);
388 dbg_cmt("commit finished, pid %d woke up", current->pid);
389 return 0;
390}
391
392/**
393 * ubifs_run_commit - run or wait for commit.
394 * @c: UBIFS file-system description object
395 *
396 * This function runs commit and returns zero in case of success and a negative
397 * error code in case of failure.
398 */
399int ubifs_run_commit(struct ubifs_info *c)
400{
401 int err = 0;
402
403 spin_lock(&c->cs_lock);
404 if (c->cmt_state == COMMIT_BROKEN) {
405 err = -EROFS;
406 goto out;
407 }
408
409 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
410 /*
411 * We set the commit state to 'running required' to indicate
412 * that we want it to complete as quickly as possible.
413 */
414 c->cmt_state = COMMIT_RUNNING_REQUIRED;
415
416 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
417 spin_unlock(&c->cs_lock);
418 return wait_for_commit(c);
419 }
420 spin_unlock(&c->cs_lock);
421
422 /* Ok, the commit is indeed needed */
423
424 down_write(&c->commit_sem);
425 spin_lock(&c->cs_lock);
426 /*
427 * Since we unlocked 'c->cs_lock', the state may have changed, so
428 * re-check it.
429 */
430 if (c->cmt_state == COMMIT_BROKEN) {
431 err = -EROFS;
432 goto out_cmt_unlock;
433 }
434
435 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
436 c->cmt_state = COMMIT_RUNNING_REQUIRED;
437
438 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
439 up_write(&c->commit_sem);
440 spin_unlock(&c->cs_lock);
441 return wait_for_commit(c);
442 }
443 c->cmt_state = COMMIT_RUNNING_REQUIRED;
444 spin_unlock(&c->cs_lock);
445
446 err = do_commit(c);
447 return err;
448
449out_cmt_unlock:
450 up_write(&c->commit_sem);
451out:
452 spin_unlock(&c->cs_lock);
453 return err;
454}
455
456/**
457 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
458 * @c: UBIFS file-system description object
459 *
460 * This function is called by garbage collection to determine if commit should
461 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
462 * is full enough to start commit, this function returns true. It is not
463 * absolutely necessary to commit yet, but it feels like this should be better
464 * then to keep doing GC. This function returns %1 if GC has to initiate commit
465 * and %0 if not.
466 */
467int ubifs_gc_should_commit(struct ubifs_info *c)
468{
469 int ret = 0;
470
471 spin_lock(&c->cs_lock);
472 if (c->cmt_state == COMMIT_BACKGROUND) {
473 dbg_cmt("commit required now");
474 c->cmt_state = COMMIT_REQUIRED;
475 } else
476 dbg_cmt("commit not requested");
477 if (c->cmt_state == COMMIT_REQUIRED)
478 ret = 1;
479 spin_unlock(&c->cs_lock);
480 return ret;
481}
482
483/*
484 * Everything below is related to debugging.
485 */
486
487/**
488 * struct idx_node - hold index nodes during index tree traversal.
489 * @list: list
490 * @iip: index in parent (slot number of this indexing node in the parent
491 * indexing node)
492 * @upper_key: all keys in this indexing node have to be less or equivalent to
493 * this key
494 * @idx: index node (8-byte aligned because all node structures must be 8-byte
495 * aligned)
496 */
497struct idx_node {
498 struct list_head list;
499 int iip;
500 union ubifs_key upper_key;
501 struct ubifs_idx_node idx __aligned(8);
502};
503
504/**
505 * dbg_old_index_check_init - get information for the next old index check.
506 * @c: UBIFS file-system description object
507 * @zroot: root of the index
508 *
509 * This function records information about the index that will be needed for the
510 * next old index check i.e. 'dbg_check_old_index()'.
511 *
512 * This function returns %0 on success and a negative error code on failure.
513 */
514int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
515{
516 struct ubifs_idx_node *idx;
517 int lnum, offs, len, err = 0;
518 struct ubifs_debug_info *d = c->dbg;
519
520 d->old_zroot = *zroot;
521 lnum = d->old_zroot.lnum;
522 offs = d->old_zroot.offs;
523 len = d->old_zroot.len;
524
525 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
526 if (!idx)
527 return -ENOMEM;
528
529 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
530 if (err)
531 goto out;
532
533 d->old_zroot_level = le16_to_cpu(idx->level);
534 d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
535out:
536 kfree(idx);
537 return err;
538}
539
540/**
541 * dbg_check_old_index - check the old copy of the index.
542 * @c: UBIFS file-system description object
543 * @zroot: root of the new index
544 *
545 * In order to be able to recover from an unclean unmount, a complete copy of
546 * the index must exist on flash. This is the "old" index. The commit process
547 * must write the "new" index to flash without overwriting or destroying any
548 * part of the old index. This function is run at commit end in order to check
549 * that the old index does indeed exist completely intact.
550 *
551 * This function returns %0 on success and a negative error code on failure.
552 */
553int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
554{
555 int lnum, offs, len, err = 0, last_level, child_cnt;
556 int first = 1, iip;
557 struct ubifs_debug_info *d = c->dbg;
558 union ubifs_key lower_key, upper_key, l_key, u_key;
559 unsigned long long last_sqnum;
560 struct ubifs_idx_node *idx;
561 struct list_head list;
562 struct idx_node *i;
563 size_t sz;
564
565 if (!dbg_is_chk_index(c))
566 return 0;
567
568 INIT_LIST_HEAD(&list);
569
570 sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
571 UBIFS_IDX_NODE_SZ;
572
573 /* Start at the old zroot */
574 lnum = d->old_zroot.lnum;
575 offs = d->old_zroot.offs;
576 len = d->old_zroot.len;
577 iip = 0;
578
579 /*
580 * Traverse the index tree preorder depth-first i.e. do a node and then
581 * its subtrees from left to right.
582 */
583 while (1) {
584 struct ubifs_branch *br;
585
586 /* Get the next index node */
587 i = kmalloc(sz, GFP_NOFS);
588 if (!i) {
589 err = -ENOMEM;
590 goto out_free;
591 }
592 i->iip = iip;
593 /* Keep the index nodes on our path in a linked list */
594 list_add_tail(&i->list, &list);
595 /* Read the index node */
596 idx = &i->idx;
597 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
598 if (err)
599 goto out_free;
600 /* Validate index node */
601 child_cnt = le16_to_cpu(idx->child_cnt);
602 if (child_cnt < 1 || child_cnt > c->fanout) {
603 err = 1;
604 goto out_dump;
605 }
606 if (first) {
607 first = 0;
608 /* Check root level and sqnum */
609 if (le16_to_cpu(idx->level) != d->old_zroot_level) {
610 err = 2;
611 goto out_dump;
612 }
613 if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
614 err = 3;
615 goto out_dump;
616 }
617 /* Set last values as though root had a parent */
618 last_level = le16_to_cpu(idx->level) + 1;
619 last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
620 key_read(c, ubifs_idx_key(c, idx), &lower_key);
621 highest_ino_key(c, &upper_key, INUM_WATERMARK);
622 }
623 key_copy(c, &upper_key, &i->upper_key);
624 if (le16_to_cpu(idx->level) != last_level - 1) {
625 err = 3;
626 goto out_dump;
627 }
628 /*
629 * The index is always written bottom up hence a child's sqnum
630 * is always less than the parents.
631 */
632 if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
633 err = 4;
634 goto out_dump;
635 }
636 /* Check key range */
637 key_read(c, ubifs_idx_key(c, idx), &l_key);
638 br = ubifs_idx_branch(c, idx, child_cnt - 1);
639 key_read(c, &br->key, &u_key);
640 if (keys_cmp(c, &lower_key, &l_key) > 0) {
641 err = 5;
642 goto out_dump;
643 }
644 if (keys_cmp(c, &upper_key, &u_key) < 0) {
645 err = 6;
646 goto out_dump;
647 }
648 if (keys_cmp(c, &upper_key, &u_key) == 0)
649 if (!is_hash_key(c, &u_key)) {
650 err = 7;
651 goto out_dump;
652 }
653 /* Go to next index node */
654 if (le16_to_cpu(idx->level) == 0) {
655 /* At the bottom, so go up until can go right */
656 while (1) {
657 /* Drop the bottom of the list */
658 list_del(&i->list);
659 kfree(i);
660 /* No more list means we are done */
661 if (list_empty(&list))
662 goto out;
663 /* Look at the new bottom */
664 i = list_entry(list.prev, struct idx_node,
665 list);
666 idx = &i->idx;
667 /* Can we go right */
668 if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
669 iip = iip + 1;
670 break;
671 } else
672 /* Nope, so go up again */
673 iip = i->iip;
674 }
675 } else
676 /* Go down left */
677 iip = 0;
678 /*
679 * We have the parent in 'idx' and now we set up for reading the
680 * child pointed to by slot 'iip'.
681 */
682 last_level = le16_to_cpu(idx->level);
683 last_sqnum = le64_to_cpu(idx->ch.sqnum);
684 br = ubifs_idx_branch(c, idx, iip);
685 lnum = le32_to_cpu(br->lnum);
686 offs = le32_to_cpu(br->offs);
687 len = le32_to_cpu(br->len);
688 key_read(c, &br->key, &lower_key);
689 if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
690 br = ubifs_idx_branch(c, idx, iip + 1);
691 key_read(c, &br->key, &upper_key);
692 } else
693 key_copy(c, &i->upper_key, &upper_key);
694 }
695out:
696 err = dbg_old_index_check_init(c, zroot);
697 if (err)
698 goto out_free;
699
700 return 0;
701
702out_dump:
703 ubifs_err(c, "dumping index node (iip=%d)", i->iip);
704 ubifs_dump_node(c, idx);
705 list_del(&i->list);
706 kfree(i);
707 if (!list_empty(&list)) {
708 i = list_entry(list.prev, struct idx_node, list);
709 ubifs_err(c, "dumping parent index node");
710 ubifs_dump_node(c, &i->idx);
711 }
712out_free:
713 while (!list_empty(&list)) {
714 i = list_entry(list.next, struct idx_node, list);
715 list_del(&i->list);
716 kfree(i);
717 }
718 ubifs_err(c, "failed, error %d", err);
719 if (err > 0)
720 err = -EINVAL;
721 return err;
722}