Loading...
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/capability.h>
27#include <linux/fs.h>
28#include <linux/types.h>
29#include <linux/slab.h>
30#include <linux/highmem.h>
31#include <linux/pagemap.h>
32#include <linux/uio.h>
33#include <linux/sched.h>
34#include <linux/splice.h>
35#include <linux/mount.h>
36#include <linux/writeback.h>
37#include <linux/falloc.h>
38#include <linux/quotaops.h>
39#include <linux/blkdev.h>
40
41#include <cluster/masklog.h>
42
43#include "ocfs2.h"
44
45#include "alloc.h"
46#include "aops.h"
47#include "dir.h"
48#include "dlmglue.h"
49#include "extent_map.h"
50#include "file.h"
51#include "sysfile.h"
52#include "inode.h"
53#include "ioctl.h"
54#include "journal.h"
55#include "locks.h"
56#include "mmap.h"
57#include "suballoc.h"
58#include "super.h"
59#include "xattr.h"
60#include "acl.h"
61#include "quota.h"
62#include "refcounttree.h"
63#include "ocfs2_trace.h"
64
65#include "buffer_head_io.h"
66
67static int ocfs2_init_file_private(struct inode *inode, struct file *file)
68{
69 struct ocfs2_file_private *fp;
70
71 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
72 if (!fp)
73 return -ENOMEM;
74
75 fp->fp_file = file;
76 mutex_init(&fp->fp_mutex);
77 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
78 file->private_data = fp;
79
80 return 0;
81}
82
83static void ocfs2_free_file_private(struct inode *inode, struct file *file)
84{
85 struct ocfs2_file_private *fp = file->private_data;
86 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
87
88 if (fp) {
89 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
90 ocfs2_lock_res_free(&fp->fp_flock);
91 kfree(fp);
92 file->private_data = NULL;
93 }
94}
95
96static int ocfs2_file_open(struct inode *inode, struct file *file)
97{
98 int status;
99 int mode = file->f_flags;
100 struct ocfs2_inode_info *oi = OCFS2_I(inode);
101
102 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
103 (unsigned long long)OCFS2_I(inode)->ip_blkno,
104 file->f_path.dentry->d_name.len,
105 file->f_path.dentry->d_name.name, mode);
106
107 if (file->f_mode & FMODE_WRITE)
108 dquot_initialize(inode);
109
110 spin_lock(&oi->ip_lock);
111
112 /* Check that the inode hasn't been wiped from disk by another
113 * node. If it hasn't then we're safe as long as we hold the
114 * spin lock until our increment of open count. */
115 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
116 spin_unlock(&oi->ip_lock);
117
118 status = -ENOENT;
119 goto leave;
120 }
121
122 if (mode & O_DIRECT)
123 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
124
125 oi->ip_open_count++;
126 spin_unlock(&oi->ip_lock);
127
128 status = ocfs2_init_file_private(inode, file);
129 if (status) {
130 /*
131 * We want to set open count back if we're failing the
132 * open.
133 */
134 spin_lock(&oi->ip_lock);
135 oi->ip_open_count--;
136 spin_unlock(&oi->ip_lock);
137 }
138
139leave:
140 return status;
141}
142
143static int ocfs2_file_release(struct inode *inode, struct file *file)
144{
145 struct ocfs2_inode_info *oi = OCFS2_I(inode);
146
147 spin_lock(&oi->ip_lock);
148 if (!--oi->ip_open_count)
149 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
150
151 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
152 oi->ip_blkno,
153 file->f_path.dentry->d_name.len,
154 file->f_path.dentry->d_name.name,
155 oi->ip_open_count);
156 spin_unlock(&oi->ip_lock);
157
158 ocfs2_free_file_private(inode, file);
159
160 return 0;
161}
162
163static int ocfs2_dir_open(struct inode *inode, struct file *file)
164{
165 return ocfs2_init_file_private(inode, file);
166}
167
168static int ocfs2_dir_release(struct inode *inode, struct file *file)
169{
170 ocfs2_free_file_private(inode, file);
171 return 0;
172}
173
174static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
175 int datasync)
176{
177 int err = 0;
178 journal_t *journal;
179 struct inode *inode = file->f_mapping->host;
180 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
181
182 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
183 OCFS2_I(inode)->ip_blkno,
184 file->f_path.dentry->d_name.len,
185 file->f_path.dentry->d_name.name,
186 (unsigned long long)datasync);
187
188 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
189 if (err)
190 return err;
191
192 /*
193 * Probably don't need the i_mutex at all in here, just putting it here
194 * to be consistent with how fsync used to be called, someone more
195 * familiar with the fs could possibly remove it.
196 */
197 mutex_lock(&inode->i_mutex);
198 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) {
199 /*
200 * We still have to flush drive's caches to get data to the
201 * platter
202 */
203 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
204 blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
205 goto bail;
206 }
207
208 journal = osb->journal->j_journal;
209 err = jbd2_journal_force_commit(journal);
210
211bail:
212 if (err)
213 mlog_errno(err);
214 mutex_unlock(&inode->i_mutex);
215
216 return (err < 0) ? -EIO : 0;
217}
218
219int ocfs2_should_update_atime(struct inode *inode,
220 struct vfsmount *vfsmnt)
221{
222 struct timespec now;
223 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
224
225 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
226 return 0;
227
228 if ((inode->i_flags & S_NOATIME) ||
229 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
230 return 0;
231
232 /*
233 * We can be called with no vfsmnt structure - NFSD will
234 * sometimes do this.
235 *
236 * Note that our action here is different than touch_atime() -
237 * if we can't tell whether this is a noatime mount, then we
238 * don't know whether to trust the value of s_atime_quantum.
239 */
240 if (vfsmnt == NULL)
241 return 0;
242
243 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
244 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
245 return 0;
246
247 if (vfsmnt->mnt_flags & MNT_RELATIME) {
248 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
249 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
250 return 1;
251
252 return 0;
253 }
254
255 now = CURRENT_TIME;
256 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
257 return 0;
258 else
259 return 1;
260}
261
262int ocfs2_update_inode_atime(struct inode *inode,
263 struct buffer_head *bh)
264{
265 int ret;
266 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
267 handle_t *handle;
268 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
269
270 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
271 if (IS_ERR(handle)) {
272 ret = PTR_ERR(handle);
273 mlog_errno(ret);
274 goto out;
275 }
276
277 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
278 OCFS2_JOURNAL_ACCESS_WRITE);
279 if (ret) {
280 mlog_errno(ret);
281 goto out_commit;
282 }
283
284 /*
285 * Don't use ocfs2_mark_inode_dirty() here as we don't always
286 * have i_mutex to guard against concurrent changes to other
287 * inode fields.
288 */
289 inode->i_atime = CURRENT_TIME;
290 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
291 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
292 ocfs2_journal_dirty(handle, bh);
293
294out_commit:
295 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
296out:
297 return ret;
298}
299
300static int ocfs2_set_inode_size(handle_t *handle,
301 struct inode *inode,
302 struct buffer_head *fe_bh,
303 u64 new_i_size)
304{
305 int status;
306
307 i_size_write(inode, new_i_size);
308 inode->i_blocks = ocfs2_inode_sector_count(inode);
309 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
310
311 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312 if (status < 0) {
313 mlog_errno(status);
314 goto bail;
315 }
316
317bail:
318 return status;
319}
320
321int ocfs2_simple_size_update(struct inode *inode,
322 struct buffer_head *di_bh,
323 u64 new_i_size)
324{
325 int ret;
326 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
327 handle_t *handle = NULL;
328
329 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
330 if (IS_ERR(handle)) {
331 ret = PTR_ERR(handle);
332 mlog_errno(ret);
333 goto out;
334 }
335
336 ret = ocfs2_set_inode_size(handle, inode, di_bh,
337 new_i_size);
338 if (ret < 0)
339 mlog_errno(ret);
340
341 ocfs2_commit_trans(osb, handle);
342out:
343 return ret;
344}
345
346static int ocfs2_cow_file_pos(struct inode *inode,
347 struct buffer_head *fe_bh,
348 u64 offset)
349{
350 int status;
351 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
352 unsigned int num_clusters = 0;
353 unsigned int ext_flags = 0;
354
355 /*
356 * If the new offset is aligned to the range of the cluster, there is
357 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
358 * CoW either.
359 */
360 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
361 return 0;
362
363 status = ocfs2_get_clusters(inode, cpos, &phys,
364 &num_clusters, &ext_flags);
365 if (status) {
366 mlog_errno(status);
367 goto out;
368 }
369
370 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
371 goto out;
372
373 return ocfs2_refcount_cow(inode, NULL, fe_bh, cpos, 1, cpos+1);
374
375out:
376 return status;
377}
378
379static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
380 struct inode *inode,
381 struct buffer_head *fe_bh,
382 u64 new_i_size)
383{
384 int status;
385 handle_t *handle;
386 struct ocfs2_dinode *di;
387 u64 cluster_bytes;
388
389 /*
390 * We need to CoW the cluster contains the offset if it is reflinked
391 * since we will call ocfs2_zero_range_for_truncate later which will
392 * write "0" from offset to the end of the cluster.
393 */
394 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
395 if (status) {
396 mlog_errno(status);
397 return status;
398 }
399
400 /* TODO: This needs to actually orphan the inode in this
401 * transaction. */
402
403 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
404 if (IS_ERR(handle)) {
405 status = PTR_ERR(handle);
406 mlog_errno(status);
407 goto out;
408 }
409
410 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
411 OCFS2_JOURNAL_ACCESS_WRITE);
412 if (status < 0) {
413 mlog_errno(status);
414 goto out_commit;
415 }
416
417 /*
418 * Do this before setting i_size.
419 */
420 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
421 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
422 cluster_bytes);
423 if (status) {
424 mlog_errno(status);
425 goto out_commit;
426 }
427
428 i_size_write(inode, new_i_size);
429 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
430
431 di = (struct ocfs2_dinode *) fe_bh->b_data;
432 di->i_size = cpu_to_le64(new_i_size);
433 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
434 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
435
436 ocfs2_journal_dirty(handle, fe_bh);
437
438out_commit:
439 ocfs2_commit_trans(osb, handle);
440out:
441 return status;
442}
443
444static int ocfs2_truncate_file(struct inode *inode,
445 struct buffer_head *di_bh,
446 u64 new_i_size)
447{
448 int status = 0;
449 struct ocfs2_dinode *fe = NULL;
450 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
451
452 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
453 * already validated it */
454 fe = (struct ocfs2_dinode *) di_bh->b_data;
455
456 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
457 (unsigned long long)le64_to_cpu(fe->i_size),
458 (unsigned long long)new_i_size);
459
460 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
461 "Inode %llu, inode i_size = %lld != di "
462 "i_size = %llu, i_flags = 0x%x\n",
463 (unsigned long long)OCFS2_I(inode)->ip_blkno,
464 i_size_read(inode),
465 (unsigned long long)le64_to_cpu(fe->i_size),
466 le32_to_cpu(fe->i_flags));
467
468 if (new_i_size > le64_to_cpu(fe->i_size)) {
469 trace_ocfs2_truncate_file_error(
470 (unsigned long long)le64_to_cpu(fe->i_size),
471 (unsigned long long)new_i_size);
472 status = -EINVAL;
473 mlog_errno(status);
474 goto bail;
475 }
476
477 /* lets handle the simple truncate cases before doing any more
478 * cluster locking. */
479 if (new_i_size == le64_to_cpu(fe->i_size))
480 goto bail;
481
482 down_write(&OCFS2_I(inode)->ip_alloc_sem);
483
484 ocfs2_resv_discard(&osb->osb_la_resmap,
485 &OCFS2_I(inode)->ip_la_data_resv);
486
487 /*
488 * The inode lock forced other nodes to sync and drop their
489 * pages, which (correctly) happens even if we have a truncate
490 * without allocation change - ocfs2 cluster sizes can be much
491 * greater than page size, so we have to truncate them
492 * anyway.
493 */
494 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495 truncate_inode_pages(inode->i_mapping, new_i_size);
496
497 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 i_size_read(inode), 1);
500 if (status)
501 mlog_errno(status);
502
503 goto bail_unlock_sem;
504 }
505
506 /* alright, we're going to need to do a full blown alloc size
507 * change. Orphan the inode so that recovery can complete the
508 * truncate if necessary. This does the task of marking
509 * i_size. */
510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
511 if (status < 0) {
512 mlog_errno(status);
513 goto bail_unlock_sem;
514 }
515
516 status = ocfs2_commit_truncate(osb, inode, di_bh);
517 if (status < 0) {
518 mlog_errno(status);
519 goto bail_unlock_sem;
520 }
521
522 /* TODO: orphan dir cleanup here. */
523bail_unlock_sem:
524 up_write(&OCFS2_I(inode)->ip_alloc_sem);
525
526bail:
527 if (!status && OCFS2_I(inode)->ip_clusters == 0)
528 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
529
530 return status;
531}
532
533/*
534 * extend file allocation only here.
535 * we'll update all the disk stuff, and oip->alloc_size
536 *
537 * expect stuff to be locked, a transaction started and enough data /
538 * metadata reservations in the contexts.
539 *
540 * Will return -EAGAIN, and a reason if a restart is needed.
541 * If passed in, *reason will always be set, even in error.
542 */
543int ocfs2_add_inode_data(struct ocfs2_super *osb,
544 struct inode *inode,
545 u32 *logical_offset,
546 u32 clusters_to_add,
547 int mark_unwritten,
548 struct buffer_head *fe_bh,
549 handle_t *handle,
550 struct ocfs2_alloc_context *data_ac,
551 struct ocfs2_alloc_context *meta_ac,
552 enum ocfs2_alloc_restarted *reason_ret)
553{
554 int ret;
555 struct ocfs2_extent_tree et;
556
557 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
558 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
559 clusters_to_add, mark_unwritten,
560 data_ac, meta_ac, reason_ret);
561
562 return ret;
563}
564
565static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
566 u32 clusters_to_add, int mark_unwritten)
567{
568 int status = 0;
569 int restart_func = 0;
570 int credits;
571 u32 prev_clusters;
572 struct buffer_head *bh = NULL;
573 struct ocfs2_dinode *fe = NULL;
574 handle_t *handle = NULL;
575 struct ocfs2_alloc_context *data_ac = NULL;
576 struct ocfs2_alloc_context *meta_ac = NULL;
577 enum ocfs2_alloc_restarted why;
578 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
579 struct ocfs2_extent_tree et;
580 int did_quota = 0;
581
582 /*
583 * This function only exists for file systems which don't
584 * support holes.
585 */
586 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
587
588 status = ocfs2_read_inode_block(inode, &bh);
589 if (status < 0) {
590 mlog_errno(status);
591 goto leave;
592 }
593 fe = (struct ocfs2_dinode *) bh->b_data;
594
595restart_all:
596 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
597
598 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
599 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
600 &data_ac, &meta_ac);
601 if (status) {
602 mlog_errno(status);
603 goto leave;
604 }
605
606 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
607 clusters_to_add);
608 handle = ocfs2_start_trans(osb, credits);
609 if (IS_ERR(handle)) {
610 status = PTR_ERR(handle);
611 handle = NULL;
612 mlog_errno(status);
613 goto leave;
614 }
615
616restarted_transaction:
617 trace_ocfs2_extend_allocation(
618 (unsigned long long)OCFS2_I(inode)->ip_blkno,
619 (unsigned long long)i_size_read(inode),
620 le32_to_cpu(fe->i_clusters), clusters_to_add,
621 why, restart_func);
622
623 status = dquot_alloc_space_nodirty(inode,
624 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
625 if (status)
626 goto leave;
627 did_quota = 1;
628
629 /* reserve a write to the file entry early on - that we if we
630 * run out of credits in the allocation path, we can still
631 * update i_size. */
632 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
633 OCFS2_JOURNAL_ACCESS_WRITE);
634 if (status < 0) {
635 mlog_errno(status);
636 goto leave;
637 }
638
639 prev_clusters = OCFS2_I(inode)->ip_clusters;
640
641 status = ocfs2_add_inode_data(osb,
642 inode,
643 &logical_start,
644 clusters_to_add,
645 mark_unwritten,
646 bh,
647 handle,
648 data_ac,
649 meta_ac,
650 &why);
651 if ((status < 0) && (status != -EAGAIN)) {
652 if (status != -ENOSPC)
653 mlog_errno(status);
654 goto leave;
655 }
656
657 ocfs2_journal_dirty(handle, bh);
658
659 spin_lock(&OCFS2_I(inode)->ip_lock);
660 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
661 spin_unlock(&OCFS2_I(inode)->ip_lock);
662 /* Release unused quota reservation */
663 dquot_free_space(inode,
664 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
665 did_quota = 0;
666
667 if (why != RESTART_NONE && clusters_to_add) {
668 if (why == RESTART_META) {
669 restart_func = 1;
670 status = 0;
671 } else {
672 BUG_ON(why != RESTART_TRANS);
673
674 /* TODO: This can be more intelligent. */
675 credits = ocfs2_calc_extend_credits(osb->sb,
676 &fe->id2.i_list,
677 clusters_to_add);
678 status = ocfs2_extend_trans(handle, credits);
679 if (status < 0) {
680 /* handle still has to be committed at
681 * this point. */
682 status = -ENOMEM;
683 mlog_errno(status);
684 goto leave;
685 }
686 goto restarted_transaction;
687 }
688 }
689
690 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
691 le32_to_cpu(fe->i_clusters),
692 (unsigned long long)le64_to_cpu(fe->i_size),
693 OCFS2_I(inode)->ip_clusters,
694 (unsigned long long)i_size_read(inode));
695
696leave:
697 if (status < 0 && did_quota)
698 dquot_free_space(inode,
699 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
700 if (handle) {
701 ocfs2_commit_trans(osb, handle);
702 handle = NULL;
703 }
704 if (data_ac) {
705 ocfs2_free_alloc_context(data_ac);
706 data_ac = NULL;
707 }
708 if (meta_ac) {
709 ocfs2_free_alloc_context(meta_ac);
710 meta_ac = NULL;
711 }
712 if ((!status) && restart_func) {
713 restart_func = 0;
714 goto restart_all;
715 }
716 brelse(bh);
717 bh = NULL;
718
719 return status;
720}
721
722/*
723 * While a write will already be ordering the data, a truncate will not.
724 * Thus, we need to explicitly order the zeroed pages.
725 */
726static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
727{
728 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
729 handle_t *handle = NULL;
730 int ret = 0;
731
732 if (!ocfs2_should_order_data(inode))
733 goto out;
734
735 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
736 if (IS_ERR(handle)) {
737 ret = -ENOMEM;
738 mlog_errno(ret);
739 goto out;
740 }
741
742 ret = ocfs2_jbd2_file_inode(handle, inode);
743 if (ret < 0)
744 mlog_errno(ret);
745
746out:
747 if (ret) {
748 if (!IS_ERR(handle))
749 ocfs2_commit_trans(osb, handle);
750 handle = ERR_PTR(ret);
751 }
752 return handle;
753}
754
755/* Some parts of this taken from generic_cont_expand, which turned out
756 * to be too fragile to do exactly what we need without us having to
757 * worry about recursive locking in ->write_begin() and ->write_end(). */
758static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
759 u64 abs_to)
760{
761 struct address_space *mapping = inode->i_mapping;
762 struct page *page;
763 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
764 handle_t *handle = NULL;
765 int ret = 0;
766 unsigned zero_from, zero_to, block_start, block_end;
767
768 BUG_ON(abs_from >= abs_to);
769 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
770 BUG_ON(abs_from & (inode->i_blkbits - 1));
771
772 page = find_or_create_page(mapping, index, GFP_NOFS);
773 if (!page) {
774 ret = -ENOMEM;
775 mlog_errno(ret);
776 goto out;
777 }
778
779 /* Get the offsets within the page that we want to zero */
780 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
781 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
782 if (!zero_to)
783 zero_to = PAGE_CACHE_SIZE;
784
785 trace_ocfs2_write_zero_page(
786 (unsigned long long)OCFS2_I(inode)->ip_blkno,
787 (unsigned long long)abs_from,
788 (unsigned long long)abs_to,
789 index, zero_from, zero_to);
790
791 /* We know that zero_from is block aligned */
792 for (block_start = zero_from; block_start < zero_to;
793 block_start = block_end) {
794 block_end = block_start + (1 << inode->i_blkbits);
795
796 /*
797 * block_start is block-aligned. Bump it by one to force
798 * __block_write_begin and block_commit_write to zero the
799 * whole block.
800 */
801 ret = __block_write_begin(page, block_start + 1, 0,
802 ocfs2_get_block);
803 if (ret < 0) {
804 mlog_errno(ret);
805 goto out_unlock;
806 }
807
808 if (!handle) {
809 handle = ocfs2_zero_start_ordered_transaction(inode);
810 if (IS_ERR(handle)) {
811 ret = PTR_ERR(handle);
812 handle = NULL;
813 break;
814 }
815 }
816
817 /* must not update i_size! */
818 ret = block_commit_write(page, block_start + 1,
819 block_start + 1);
820 if (ret < 0)
821 mlog_errno(ret);
822 else
823 ret = 0;
824 }
825
826 if (handle)
827 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
828
829out_unlock:
830 unlock_page(page);
831 page_cache_release(page);
832out:
833 return ret;
834}
835
836/*
837 * Find the next range to zero. We do this in terms of bytes because
838 * that's what ocfs2_zero_extend() wants, and it is dealing with the
839 * pagecache. We may return multiple extents.
840 *
841 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
842 * needs to be zeroed. range_start and range_end return the next zeroing
843 * range. A subsequent call should pass the previous range_end as its
844 * zero_start. If range_end is 0, there's nothing to do.
845 *
846 * Unwritten extents are skipped over. Refcounted extents are CoWd.
847 */
848static int ocfs2_zero_extend_get_range(struct inode *inode,
849 struct buffer_head *di_bh,
850 u64 zero_start, u64 zero_end,
851 u64 *range_start, u64 *range_end)
852{
853 int rc = 0, needs_cow = 0;
854 u32 p_cpos, zero_clusters = 0;
855 u32 zero_cpos =
856 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
857 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
858 unsigned int num_clusters = 0;
859 unsigned int ext_flags = 0;
860
861 while (zero_cpos < last_cpos) {
862 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
863 &num_clusters, &ext_flags);
864 if (rc) {
865 mlog_errno(rc);
866 goto out;
867 }
868
869 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
870 zero_clusters = num_clusters;
871 if (ext_flags & OCFS2_EXT_REFCOUNTED)
872 needs_cow = 1;
873 break;
874 }
875
876 zero_cpos += num_clusters;
877 }
878 if (!zero_clusters) {
879 *range_end = 0;
880 goto out;
881 }
882
883 while ((zero_cpos + zero_clusters) < last_cpos) {
884 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
885 &p_cpos, &num_clusters,
886 &ext_flags);
887 if (rc) {
888 mlog_errno(rc);
889 goto out;
890 }
891
892 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
893 break;
894 if (ext_flags & OCFS2_EXT_REFCOUNTED)
895 needs_cow = 1;
896 zero_clusters += num_clusters;
897 }
898 if ((zero_cpos + zero_clusters) > last_cpos)
899 zero_clusters = last_cpos - zero_cpos;
900
901 if (needs_cow) {
902 rc = ocfs2_refcount_cow(inode, NULL, di_bh, zero_cpos,
903 zero_clusters, UINT_MAX);
904 if (rc) {
905 mlog_errno(rc);
906 goto out;
907 }
908 }
909
910 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
911 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
912 zero_cpos + zero_clusters);
913
914out:
915 return rc;
916}
917
918/*
919 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
920 * has made sure that the entire range needs zeroing.
921 */
922static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
923 u64 range_end)
924{
925 int rc = 0;
926 u64 next_pos;
927 u64 zero_pos = range_start;
928
929 trace_ocfs2_zero_extend_range(
930 (unsigned long long)OCFS2_I(inode)->ip_blkno,
931 (unsigned long long)range_start,
932 (unsigned long long)range_end);
933 BUG_ON(range_start >= range_end);
934
935 while (zero_pos < range_end) {
936 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
937 if (next_pos > range_end)
938 next_pos = range_end;
939 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
940 if (rc < 0) {
941 mlog_errno(rc);
942 break;
943 }
944 zero_pos = next_pos;
945
946 /*
947 * Very large extends have the potential to lock up
948 * the cpu for extended periods of time.
949 */
950 cond_resched();
951 }
952
953 return rc;
954}
955
956int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
957 loff_t zero_to_size)
958{
959 int ret = 0;
960 u64 zero_start, range_start = 0, range_end = 0;
961 struct super_block *sb = inode->i_sb;
962
963 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
964 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
965 (unsigned long long)zero_start,
966 (unsigned long long)i_size_read(inode));
967 while (zero_start < zero_to_size) {
968 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
969 zero_to_size,
970 &range_start,
971 &range_end);
972 if (ret) {
973 mlog_errno(ret);
974 break;
975 }
976 if (!range_end)
977 break;
978 /* Trim the ends */
979 if (range_start < zero_start)
980 range_start = zero_start;
981 if (range_end > zero_to_size)
982 range_end = zero_to_size;
983
984 ret = ocfs2_zero_extend_range(inode, range_start,
985 range_end);
986 if (ret) {
987 mlog_errno(ret);
988 break;
989 }
990 zero_start = range_end;
991 }
992
993 return ret;
994}
995
996int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
997 u64 new_i_size, u64 zero_to)
998{
999 int ret;
1000 u32 clusters_to_add;
1001 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1002
1003 /*
1004 * Only quota files call this without a bh, and they can't be
1005 * refcounted.
1006 */
1007 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1008 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1009
1010 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1011 if (clusters_to_add < oi->ip_clusters)
1012 clusters_to_add = 0;
1013 else
1014 clusters_to_add -= oi->ip_clusters;
1015
1016 if (clusters_to_add) {
1017 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1018 clusters_to_add, 0);
1019 if (ret) {
1020 mlog_errno(ret);
1021 goto out;
1022 }
1023 }
1024
1025 /*
1026 * Call this even if we don't add any clusters to the tree. We
1027 * still need to zero the area between the old i_size and the
1028 * new i_size.
1029 */
1030 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1031 if (ret < 0)
1032 mlog_errno(ret);
1033
1034out:
1035 return ret;
1036}
1037
1038static int ocfs2_extend_file(struct inode *inode,
1039 struct buffer_head *di_bh,
1040 u64 new_i_size)
1041{
1042 int ret = 0;
1043 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1044
1045 BUG_ON(!di_bh);
1046
1047 /* setattr sometimes calls us like this. */
1048 if (new_i_size == 0)
1049 goto out;
1050
1051 if (i_size_read(inode) == new_i_size)
1052 goto out;
1053 BUG_ON(new_i_size < i_size_read(inode));
1054
1055 /*
1056 * The alloc sem blocks people in read/write from reading our
1057 * allocation until we're done changing it. We depend on
1058 * i_mutex to block other extend/truncate calls while we're
1059 * here. We even have to hold it for sparse files because there
1060 * might be some tail zeroing.
1061 */
1062 down_write(&oi->ip_alloc_sem);
1063
1064 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1065 /*
1066 * We can optimize small extends by keeping the inodes
1067 * inline data.
1068 */
1069 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1070 up_write(&oi->ip_alloc_sem);
1071 goto out_update_size;
1072 }
1073
1074 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1075 if (ret) {
1076 up_write(&oi->ip_alloc_sem);
1077 mlog_errno(ret);
1078 goto out;
1079 }
1080 }
1081
1082 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1083 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1084 else
1085 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1086 new_i_size);
1087
1088 up_write(&oi->ip_alloc_sem);
1089
1090 if (ret < 0) {
1091 mlog_errno(ret);
1092 goto out;
1093 }
1094
1095out_update_size:
1096 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1097 if (ret < 0)
1098 mlog_errno(ret);
1099
1100out:
1101 return ret;
1102}
1103
1104int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1105{
1106 int status = 0, size_change;
1107 struct inode *inode = dentry->d_inode;
1108 struct super_block *sb = inode->i_sb;
1109 struct ocfs2_super *osb = OCFS2_SB(sb);
1110 struct buffer_head *bh = NULL;
1111 handle_t *handle = NULL;
1112 struct dquot *transfer_to[MAXQUOTAS] = { };
1113 int qtype;
1114
1115 trace_ocfs2_setattr(inode, dentry,
1116 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1117 dentry->d_name.len, dentry->d_name.name,
1118 attr->ia_valid, attr->ia_mode,
1119 attr->ia_uid, attr->ia_gid);
1120
1121 /* ensuring we don't even attempt to truncate a symlink */
1122 if (S_ISLNK(inode->i_mode))
1123 attr->ia_valid &= ~ATTR_SIZE;
1124
1125#define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1126 | ATTR_GID | ATTR_UID | ATTR_MODE)
1127 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1128 return 0;
1129
1130 status = inode_change_ok(inode, attr);
1131 if (status)
1132 return status;
1133
1134 if (is_quota_modification(inode, attr))
1135 dquot_initialize(inode);
1136 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1137 if (size_change) {
1138 status = ocfs2_rw_lock(inode, 1);
1139 if (status < 0) {
1140 mlog_errno(status);
1141 goto bail;
1142 }
1143 }
1144
1145 status = ocfs2_inode_lock(inode, &bh, 1);
1146 if (status < 0) {
1147 if (status != -ENOENT)
1148 mlog_errno(status);
1149 goto bail_unlock_rw;
1150 }
1151
1152 if (size_change && attr->ia_size != i_size_read(inode)) {
1153 status = inode_newsize_ok(inode, attr->ia_size);
1154 if (status)
1155 goto bail_unlock;
1156
1157 inode_dio_wait(inode);
1158
1159 if (i_size_read(inode) > attr->ia_size) {
1160 if (ocfs2_should_order_data(inode)) {
1161 status = ocfs2_begin_ordered_truncate(inode,
1162 attr->ia_size);
1163 if (status)
1164 goto bail_unlock;
1165 }
1166 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1167 } else
1168 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1169 if (status < 0) {
1170 if (status != -ENOSPC)
1171 mlog_errno(status);
1172 status = -ENOSPC;
1173 goto bail_unlock;
1174 }
1175 }
1176
1177 if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1178 (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1179 /*
1180 * Gather pointers to quota structures so that allocation /
1181 * freeing of quota structures happens here and not inside
1182 * dquot_transfer() where we have problems with lock ordering
1183 */
1184 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1185 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1186 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1187 transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1188 USRQUOTA);
1189 if (!transfer_to[USRQUOTA]) {
1190 status = -ESRCH;
1191 goto bail_unlock;
1192 }
1193 }
1194 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1195 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1196 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1197 transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1198 GRPQUOTA);
1199 if (!transfer_to[GRPQUOTA]) {
1200 status = -ESRCH;
1201 goto bail_unlock;
1202 }
1203 }
1204 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1205 2 * ocfs2_quota_trans_credits(sb));
1206 if (IS_ERR(handle)) {
1207 status = PTR_ERR(handle);
1208 mlog_errno(status);
1209 goto bail_unlock;
1210 }
1211 status = __dquot_transfer(inode, transfer_to);
1212 if (status < 0)
1213 goto bail_commit;
1214 } else {
1215 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1216 if (IS_ERR(handle)) {
1217 status = PTR_ERR(handle);
1218 mlog_errno(status);
1219 goto bail_unlock;
1220 }
1221 }
1222
1223 /*
1224 * This will intentionally not wind up calling truncate_setsize(),
1225 * since all the work for a size change has been done above.
1226 * Otherwise, we could get into problems with truncate as
1227 * ip_alloc_sem is used there to protect against i_size
1228 * changes.
1229 *
1230 * XXX: this means the conditional below can probably be removed.
1231 */
1232 if ((attr->ia_valid & ATTR_SIZE) &&
1233 attr->ia_size != i_size_read(inode)) {
1234 status = vmtruncate(inode, attr->ia_size);
1235 if (status) {
1236 mlog_errno(status);
1237 goto bail_commit;
1238 }
1239 }
1240
1241 setattr_copy(inode, attr);
1242 mark_inode_dirty(inode);
1243
1244 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1245 if (status < 0)
1246 mlog_errno(status);
1247
1248bail_commit:
1249 ocfs2_commit_trans(osb, handle);
1250bail_unlock:
1251 ocfs2_inode_unlock(inode, 1);
1252bail_unlock_rw:
1253 if (size_change)
1254 ocfs2_rw_unlock(inode, 1);
1255bail:
1256 brelse(bh);
1257
1258 /* Release quota pointers in case we acquired them */
1259 for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1260 dqput(transfer_to[qtype]);
1261
1262 if (!status && attr->ia_valid & ATTR_MODE) {
1263 status = ocfs2_acl_chmod(inode);
1264 if (status < 0)
1265 mlog_errno(status);
1266 }
1267
1268 return status;
1269}
1270
1271int ocfs2_getattr(struct vfsmount *mnt,
1272 struct dentry *dentry,
1273 struct kstat *stat)
1274{
1275 struct inode *inode = dentry->d_inode;
1276 struct super_block *sb = dentry->d_inode->i_sb;
1277 struct ocfs2_super *osb = sb->s_fs_info;
1278 int err;
1279
1280 err = ocfs2_inode_revalidate(dentry);
1281 if (err) {
1282 if (err != -ENOENT)
1283 mlog_errno(err);
1284 goto bail;
1285 }
1286
1287 generic_fillattr(inode, stat);
1288
1289 /* We set the blksize from the cluster size for performance */
1290 stat->blksize = osb->s_clustersize;
1291
1292bail:
1293 return err;
1294}
1295
1296int ocfs2_permission(struct inode *inode, int mask)
1297{
1298 int ret;
1299
1300 if (mask & MAY_NOT_BLOCK)
1301 return -ECHILD;
1302
1303 ret = ocfs2_inode_lock(inode, NULL, 0);
1304 if (ret) {
1305 if (ret != -ENOENT)
1306 mlog_errno(ret);
1307 goto out;
1308 }
1309
1310 ret = generic_permission(inode, mask);
1311
1312 ocfs2_inode_unlock(inode, 0);
1313out:
1314 return ret;
1315}
1316
1317static int __ocfs2_write_remove_suid(struct inode *inode,
1318 struct buffer_head *bh)
1319{
1320 int ret;
1321 handle_t *handle;
1322 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1323 struct ocfs2_dinode *di;
1324
1325 trace_ocfs2_write_remove_suid(
1326 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1327 inode->i_mode);
1328
1329 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1330 if (IS_ERR(handle)) {
1331 ret = PTR_ERR(handle);
1332 mlog_errno(ret);
1333 goto out;
1334 }
1335
1336 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1337 OCFS2_JOURNAL_ACCESS_WRITE);
1338 if (ret < 0) {
1339 mlog_errno(ret);
1340 goto out_trans;
1341 }
1342
1343 inode->i_mode &= ~S_ISUID;
1344 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1345 inode->i_mode &= ~S_ISGID;
1346
1347 di = (struct ocfs2_dinode *) bh->b_data;
1348 di->i_mode = cpu_to_le16(inode->i_mode);
1349
1350 ocfs2_journal_dirty(handle, bh);
1351
1352out_trans:
1353 ocfs2_commit_trans(osb, handle);
1354out:
1355 return ret;
1356}
1357
1358/*
1359 * Will look for holes and unwritten extents in the range starting at
1360 * pos for count bytes (inclusive).
1361 */
1362static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1363 size_t count)
1364{
1365 int ret = 0;
1366 unsigned int extent_flags;
1367 u32 cpos, clusters, extent_len, phys_cpos;
1368 struct super_block *sb = inode->i_sb;
1369
1370 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1371 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1372
1373 while (clusters) {
1374 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1375 &extent_flags);
1376 if (ret < 0) {
1377 mlog_errno(ret);
1378 goto out;
1379 }
1380
1381 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1382 ret = 1;
1383 break;
1384 }
1385
1386 if (extent_len > clusters)
1387 extent_len = clusters;
1388
1389 clusters -= extent_len;
1390 cpos += extent_len;
1391 }
1392out:
1393 return ret;
1394}
1395
1396static int ocfs2_write_remove_suid(struct inode *inode)
1397{
1398 int ret;
1399 struct buffer_head *bh = NULL;
1400
1401 ret = ocfs2_read_inode_block(inode, &bh);
1402 if (ret < 0) {
1403 mlog_errno(ret);
1404 goto out;
1405 }
1406
1407 ret = __ocfs2_write_remove_suid(inode, bh);
1408out:
1409 brelse(bh);
1410 return ret;
1411}
1412
1413/*
1414 * Allocate enough extents to cover the region starting at byte offset
1415 * start for len bytes. Existing extents are skipped, any extents
1416 * added are marked as "unwritten".
1417 */
1418static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1419 u64 start, u64 len)
1420{
1421 int ret;
1422 u32 cpos, phys_cpos, clusters, alloc_size;
1423 u64 end = start + len;
1424 struct buffer_head *di_bh = NULL;
1425
1426 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1427 ret = ocfs2_read_inode_block(inode, &di_bh);
1428 if (ret) {
1429 mlog_errno(ret);
1430 goto out;
1431 }
1432
1433 /*
1434 * Nothing to do if the requested reservation range
1435 * fits within the inode.
1436 */
1437 if (ocfs2_size_fits_inline_data(di_bh, end))
1438 goto out;
1439
1440 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1441 if (ret) {
1442 mlog_errno(ret);
1443 goto out;
1444 }
1445 }
1446
1447 /*
1448 * We consider both start and len to be inclusive.
1449 */
1450 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1451 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1452 clusters -= cpos;
1453
1454 while (clusters) {
1455 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1456 &alloc_size, NULL);
1457 if (ret) {
1458 mlog_errno(ret);
1459 goto out;
1460 }
1461
1462 /*
1463 * Hole or existing extent len can be arbitrary, so
1464 * cap it to our own allocation request.
1465 */
1466 if (alloc_size > clusters)
1467 alloc_size = clusters;
1468
1469 if (phys_cpos) {
1470 /*
1471 * We already have an allocation at this
1472 * region so we can safely skip it.
1473 */
1474 goto next;
1475 }
1476
1477 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1478 if (ret) {
1479 if (ret != -ENOSPC)
1480 mlog_errno(ret);
1481 goto out;
1482 }
1483
1484next:
1485 cpos += alloc_size;
1486 clusters -= alloc_size;
1487 }
1488
1489 ret = 0;
1490out:
1491
1492 brelse(di_bh);
1493 return ret;
1494}
1495
1496/*
1497 * Truncate a byte range, avoiding pages within partial clusters. This
1498 * preserves those pages for the zeroing code to write to.
1499 */
1500static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1501 u64 byte_len)
1502{
1503 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1504 loff_t start, end;
1505 struct address_space *mapping = inode->i_mapping;
1506
1507 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1508 end = byte_start + byte_len;
1509 end = end & ~(osb->s_clustersize - 1);
1510
1511 if (start < end) {
1512 unmap_mapping_range(mapping, start, end - start, 0);
1513 truncate_inode_pages_range(mapping, start, end - 1);
1514 }
1515}
1516
1517static int ocfs2_zero_partial_clusters(struct inode *inode,
1518 u64 start, u64 len)
1519{
1520 int ret = 0;
1521 u64 tmpend, end = start + len;
1522 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1523 unsigned int csize = osb->s_clustersize;
1524 handle_t *handle;
1525
1526 /*
1527 * The "start" and "end" values are NOT necessarily part of
1528 * the range whose allocation is being deleted. Rather, this
1529 * is what the user passed in with the request. We must zero
1530 * partial clusters here. There's no need to worry about
1531 * physical allocation - the zeroing code knows to skip holes.
1532 */
1533 trace_ocfs2_zero_partial_clusters(
1534 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1535 (unsigned long long)start, (unsigned long long)end);
1536
1537 /*
1538 * If both edges are on a cluster boundary then there's no
1539 * zeroing required as the region is part of the allocation to
1540 * be truncated.
1541 */
1542 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1543 goto out;
1544
1545 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1546 if (IS_ERR(handle)) {
1547 ret = PTR_ERR(handle);
1548 mlog_errno(ret);
1549 goto out;
1550 }
1551
1552 /*
1553 * We want to get the byte offset of the end of the 1st cluster.
1554 */
1555 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1556 if (tmpend > end)
1557 tmpend = end;
1558
1559 trace_ocfs2_zero_partial_clusters_range1((unsigned long long)start,
1560 (unsigned long long)tmpend);
1561
1562 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1563 if (ret)
1564 mlog_errno(ret);
1565
1566 if (tmpend < end) {
1567 /*
1568 * This may make start and end equal, but the zeroing
1569 * code will skip any work in that case so there's no
1570 * need to catch it up here.
1571 */
1572 start = end & ~(osb->s_clustersize - 1);
1573
1574 trace_ocfs2_zero_partial_clusters_range2(
1575 (unsigned long long)start, (unsigned long long)end);
1576
1577 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1578 if (ret)
1579 mlog_errno(ret);
1580 }
1581
1582 ocfs2_commit_trans(osb, handle);
1583out:
1584 return ret;
1585}
1586
1587static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1588{
1589 int i;
1590 struct ocfs2_extent_rec *rec = NULL;
1591
1592 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1593
1594 rec = &el->l_recs[i];
1595
1596 if (le32_to_cpu(rec->e_cpos) < pos)
1597 break;
1598 }
1599
1600 return i;
1601}
1602
1603/*
1604 * Helper to calculate the punching pos and length in one run, we handle the
1605 * following three cases in order:
1606 *
1607 * - remove the entire record
1608 * - remove a partial record
1609 * - no record needs to be removed (hole-punching completed)
1610*/
1611static void ocfs2_calc_trunc_pos(struct inode *inode,
1612 struct ocfs2_extent_list *el,
1613 struct ocfs2_extent_rec *rec,
1614 u32 trunc_start, u32 *trunc_cpos,
1615 u32 *trunc_len, u32 *trunc_end,
1616 u64 *blkno, int *done)
1617{
1618 int ret = 0;
1619 u32 coff, range;
1620
1621 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1622
1623 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1624 /*
1625 * remove an entire extent record.
1626 */
1627 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1628 /*
1629 * Skip holes if any.
1630 */
1631 if (range < *trunc_end)
1632 *trunc_end = range;
1633 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1634 *blkno = le64_to_cpu(rec->e_blkno);
1635 *trunc_end = le32_to_cpu(rec->e_cpos);
1636 } else if (range > trunc_start) {
1637 /*
1638 * remove a partial extent record, which means we're
1639 * removing the last extent record.
1640 */
1641 *trunc_cpos = trunc_start;
1642 /*
1643 * skip hole if any.
1644 */
1645 if (range < *trunc_end)
1646 *trunc_end = range;
1647 *trunc_len = *trunc_end - trunc_start;
1648 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1649 *blkno = le64_to_cpu(rec->e_blkno) +
1650 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1651 *trunc_end = trunc_start;
1652 } else {
1653 /*
1654 * It may have two following possibilities:
1655 *
1656 * - last record has been removed
1657 * - trunc_start was within a hole
1658 *
1659 * both two cases mean the completion of hole punching.
1660 */
1661 ret = 1;
1662 }
1663
1664 *done = ret;
1665}
1666
1667static int ocfs2_remove_inode_range(struct inode *inode,
1668 struct buffer_head *di_bh, u64 byte_start,
1669 u64 byte_len)
1670{
1671 int ret = 0, flags = 0, done = 0, i;
1672 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1673 u32 cluster_in_el;
1674 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1675 struct ocfs2_cached_dealloc_ctxt dealloc;
1676 struct address_space *mapping = inode->i_mapping;
1677 struct ocfs2_extent_tree et;
1678 struct ocfs2_path *path = NULL;
1679 struct ocfs2_extent_list *el = NULL;
1680 struct ocfs2_extent_rec *rec = NULL;
1681 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1682 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1683
1684 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1685 ocfs2_init_dealloc_ctxt(&dealloc);
1686
1687 trace_ocfs2_remove_inode_range(
1688 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1689 (unsigned long long)byte_start,
1690 (unsigned long long)byte_len);
1691
1692 if (byte_len == 0)
1693 return 0;
1694
1695 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1696 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1697 byte_start + byte_len, 0);
1698 if (ret) {
1699 mlog_errno(ret);
1700 goto out;
1701 }
1702 /*
1703 * There's no need to get fancy with the page cache
1704 * truncate of an inline-data inode. We're talking
1705 * about less than a page here, which will be cached
1706 * in the dinode buffer anyway.
1707 */
1708 unmap_mapping_range(mapping, 0, 0, 0);
1709 truncate_inode_pages(mapping, 0);
1710 goto out;
1711 }
1712
1713 /*
1714 * For reflinks, we may need to CoW 2 clusters which might be
1715 * partially zero'd later, if hole's start and end offset were
1716 * within one cluster(means is not exactly aligned to clustersize).
1717 */
1718
1719 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1720
1721 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1722 if (ret) {
1723 mlog_errno(ret);
1724 goto out;
1725 }
1726
1727 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1728 if (ret) {
1729 mlog_errno(ret);
1730 goto out;
1731 }
1732 }
1733
1734 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1735 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1736 cluster_in_el = trunc_end;
1737
1738 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1739 if (ret) {
1740 mlog_errno(ret);
1741 goto out;
1742 }
1743
1744 path = ocfs2_new_path_from_et(&et);
1745 if (!path) {
1746 ret = -ENOMEM;
1747 mlog_errno(ret);
1748 goto out;
1749 }
1750
1751 while (trunc_end > trunc_start) {
1752
1753 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1754 cluster_in_el);
1755 if (ret) {
1756 mlog_errno(ret);
1757 goto out;
1758 }
1759
1760 el = path_leaf_el(path);
1761
1762 i = ocfs2_find_rec(el, trunc_end);
1763 /*
1764 * Need to go to previous extent block.
1765 */
1766 if (i < 0) {
1767 if (path->p_tree_depth == 0)
1768 break;
1769
1770 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1771 path,
1772 &cluster_in_el);
1773 if (ret) {
1774 mlog_errno(ret);
1775 goto out;
1776 }
1777
1778 /*
1779 * We've reached the leftmost extent block,
1780 * it's safe to leave.
1781 */
1782 if (cluster_in_el == 0)
1783 break;
1784
1785 /*
1786 * The 'pos' searched for previous extent block is
1787 * always one cluster less than actual trunc_end.
1788 */
1789 trunc_end = cluster_in_el + 1;
1790
1791 ocfs2_reinit_path(path, 1);
1792
1793 continue;
1794
1795 } else
1796 rec = &el->l_recs[i];
1797
1798 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1799 &trunc_len, &trunc_end, &blkno, &done);
1800 if (done)
1801 break;
1802
1803 flags = rec->e_flags;
1804 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1805
1806 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1807 phys_cpos, trunc_len, flags,
1808 &dealloc, refcount_loc);
1809 if (ret < 0) {
1810 mlog_errno(ret);
1811 goto out;
1812 }
1813
1814 cluster_in_el = trunc_end;
1815
1816 ocfs2_reinit_path(path, 1);
1817 }
1818
1819 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1820
1821out:
1822 ocfs2_schedule_truncate_log_flush(osb, 1);
1823 ocfs2_run_deallocs(osb, &dealloc);
1824
1825 return ret;
1826}
1827
1828/*
1829 * Parts of this function taken from xfs_change_file_space()
1830 */
1831static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1832 loff_t f_pos, unsigned int cmd,
1833 struct ocfs2_space_resv *sr,
1834 int change_size)
1835{
1836 int ret;
1837 s64 llen;
1838 loff_t size;
1839 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1840 struct buffer_head *di_bh = NULL;
1841 handle_t *handle;
1842 unsigned long long max_off = inode->i_sb->s_maxbytes;
1843
1844 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1845 return -EROFS;
1846
1847 mutex_lock(&inode->i_mutex);
1848
1849 /*
1850 * This prevents concurrent writes on other nodes
1851 */
1852 ret = ocfs2_rw_lock(inode, 1);
1853 if (ret) {
1854 mlog_errno(ret);
1855 goto out;
1856 }
1857
1858 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1859 if (ret) {
1860 mlog_errno(ret);
1861 goto out_rw_unlock;
1862 }
1863
1864 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1865 ret = -EPERM;
1866 goto out_inode_unlock;
1867 }
1868
1869 switch (sr->l_whence) {
1870 case 0: /*SEEK_SET*/
1871 break;
1872 case 1: /*SEEK_CUR*/
1873 sr->l_start += f_pos;
1874 break;
1875 case 2: /*SEEK_END*/
1876 sr->l_start += i_size_read(inode);
1877 break;
1878 default:
1879 ret = -EINVAL;
1880 goto out_inode_unlock;
1881 }
1882 sr->l_whence = 0;
1883
1884 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1885
1886 if (sr->l_start < 0
1887 || sr->l_start > max_off
1888 || (sr->l_start + llen) < 0
1889 || (sr->l_start + llen) > max_off) {
1890 ret = -EINVAL;
1891 goto out_inode_unlock;
1892 }
1893 size = sr->l_start + sr->l_len;
1894
1895 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1896 if (sr->l_len <= 0) {
1897 ret = -EINVAL;
1898 goto out_inode_unlock;
1899 }
1900 }
1901
1902 if (file && should_remove_suid(file->f_path.dentry)) {
1903 ret = __ocfs2_write_remove_suid(inode, di_bh);
1904 if (ret) {
1905 mlog_errno(ret);
1906 goto out_inode_unlock;
1907 }
1908 }
1909
1910 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1911 switch (cmd) {
1912 case OCFS2_IOC_RESVSP:
1913 case OCFS2_IOC_RESVSP64:
1914 /*
1915 * This takes unsigned offsets, but the signed ones we
1916 * pass have been checked against overflow above.
1917 */
1918 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1919 sr->l_len);
1920 break;
1921 case OCFS2_IOC_UNRESVSP:
1922 case OCFS2_IOC_UNRESVSP64:
1923 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1924 sr->l_len);
1925 break;
1926 default:
1927 ret = -EINVAL;
1928 }
1929 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1930 if (ret) {
1931 mlog_errno(ret);
1932 goto out_inode_unlock;
1933 }
1934
1935 /*
1936 * We update c/mtime for these changes
1937 */
1938 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1939 if (IS_ERR(handle)) {
1940 ret = PTR_ERR(handle);
1941 mlog_errno(ret);
1942 goto out_inode_unlock;
1943 }
1944
1945 if (change_size && i_size_read(inode) < size)
1946 i_size_write(inode, size);
1947
1948 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1949 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1950 if (ret < 0)
1951 mlog_errno(ret);
1952
1953 ocfs2_commit_trans(osb, handle);
1954
1955out_inode_unlock:
1956 brelse(di_bh);
1957 ocfs2_inode_unlock(inode, 1);
1958out_rw_unlock:
1959 ocfs2_rw_unlock(inode, 1);
1960
1961out:
1962 mutex_unlock(&inode->i_mutex);
1963 return ret;
1964}
1965
1966int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1967 struct ocfs2_space_resv *sr)
1968{
1969 struct inode *inode = file->f_path.dentry->d_inode;
1970 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1971
1972 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1973 !ocfs2_writes_unwritten_extents(osb))
1974 return -ENOTTY;
1975 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1976 !ocfs2_sparse_alloc(osb))
1977 return -ENOTTY;
1978
1979 if (!S_ISREG(inode->i_mode))
1980 return -EINVAL;
1981
1982 if (!(file->f_mode & FMODE_WRITE))
1983 return -EBADF;
1984
1985 return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1986}
1987
1988static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
1989 loff_t len)
1990{
1991 struct inode *inode = file->f_path.dentry->d_inode;
1992 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1993 struct ocfs2_space_resv sr;
1994 int change_size = 1;
1995 int cmd = OCFS2_IOC_RESVSP64;
1996
1997 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
1998 return -EOPNOTSUPP;
1999 if (!ocfs2_writes_unwritten_extents(osb))
2000 return -EOPNOTSUPP;
2001
2002 if (mode & FALLOC_FL_KEEP_SIZE)
2003 change_size = 0;
2004
2005 if (mode & FALLOC_FL_PUNCH_HOLE)
2006 cmd = OCFS2_IOC_UNRESVSP64;
2007
2008 sr.l_whence = 0;
2009 sr.l_start = (s64)offset;
2010 sr.l_len = (s64)len;
2011
2012 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2013 change_size);
2014}
2015
2016int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2017 size_t count)
2018{
2019 int ret = 0;
2020 unsigned int extent_flags;
2021 u32 cpos, clusters, extent_len, phys_cpos;
2022 struct super_block *sb = inode->i_sb;
2023
2024 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2025 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2026 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2027 return 0;
2028
2029 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2030 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2031
2032 while (clusters) {
2033 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2034 &extent_flags);
2035 if (ret < 0) {
2036 mlog_errno(ret);
2037 goto out;
2038 }
2039
2040 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2041 ret = 1;
2042 break;
2043 }
2044
2045 if (extent_len > clusters)
2046 extent_len = clusters;
2047
2048 clusters -= extent_len;
2049 cpos += extent_len;
2050 }
2051out:
2052 return ret;
2053}
2054
2055static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2056 struct file *file,
2057 loff_t pos, size_t count,
2058 int *meta_level)
2059{
2060 int ret;
2061 struct buffer_head *di_bh = NULL;
2062 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2063 u32 clusters =
2064 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2065
2066 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2067 if (ret) {
2068 mlog_errno(ret);
2069 goto out;
2070 }
2071
2072 *meta_level = 1;
2073
2074 ret = ocfs2_refcount_cow(inode, file, di_bh, cpos, clusters, UINT_MAX);
2075 if (ret)
2076 mlog_errno(ret);
2077out:
2078 brelse(di_bh);
2079 return ret;
2080}
2081
2082static int ocfs2_prepare_inode_for_write(struct file *file,
2083 loff_t *ppos,
2084 size_t count,
2085 int appending,
2086 int *direct_io,
2087 int *has_refcount)
2088{
2089 int ret = 0, meta_level = 0;
2090 struct dentry *dentry = file->f_path.dentry;
2091 struct inode *inode = dentry->d_inode;
2092 loff_t saved_pos = 0, end;
2093
2094 /*
2095 * We start with a read level meta lock and only jump to an ex
2096 * if we need to make modifications here.
2097 */
2098 for(;;) {
2099 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2100 if (ret < 0) {
2101 meta_level = -1;
2102 mlog_errno(ret);
2103 goto out;
2104 }
2105
2106 /* Clear suid / sgid if necessary. We do this here
2107 * instead of later in the write path because
2108 * remove_suid() calls ->setattr without any hint that
2109 * we may have already done our cluster locking. Since
2110 * ocfs2_setattr() *must* take cluster locks to
2111 * proceeed, this will lead us to recursively lock the
2112 * inode. There's also the dinode i_size state which
2113 * can be lost via setattr during extending writes (we
2114 * set inode->i_size at the end of a write. */
2115 if (should_remove_suid(dentry)) {
2116 if (meta_level == 0) {
2117 ocfs2_inode_unlock(inode, meta_level);
2118 meta_level = 1;
2119 continue;
2120 }
2121
2122 ret = ocfs2_write_remove_suid(inode);
2123 if (ret < 0) {
2124 mlog_errno(ret);
2125 goto out_unlock;
2126 }
2127 }
2128
2129 /* work on a copy of ppos until we're sure that we won't have
2130 * to recalculate it due to relocking. */
2131 if (appending)
2132 saved_pos = i_size_read(inode);
2133 else
2134 saved_pos = *ppos;
2135
2136 end = saved_pos + count;
2137
2138 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2139 if (ret == 1) {
2140 ocfs2_inode_unlock(inode, meta_level);
2141 meta_level = -1;
2142
2143 ret = ocfs2_prepare_inode_for_refcount(inode,
2144 file,
2145 saved_pos,
2146 count,
2147 &meta_level);
2148 if (has_refcount)
2149 *has_refcount = 1;
2150 if (direct_io)
2151 *direct_io = 0;
2152 }
2153
2154 if (ret < 0) {
2155 mlog_errno(ret);
2156 goto out_unlock;
2157 }
2158
2159 /*
2160 * Skip the O_DIRECT checks if we don't need
2161 * them.
2162 */
2163 if (!direct_io || !(*direct_io))
2164 break;
2165
2166 /*
2167 * There's no sane way to do direct writes to an inode
2168 * with inline data.
2169 */
2170 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2171 *direct_io = 0;
2172 break;
2173 }
2174
2175 /*
2176 * Allowing concurrent direct writes means
2177 * i_size changes wouldn't be synchronized, so
2178 * one node could wind up truncating another
2179 * nodes writes.
2180 */
2181 if (end > i_size_read(inode)) {
2182 *direct_io = 0;
2183 break;
2184 }
2185
2186 /*
2187 * We don't fill holes during direct io, so
2188 * check for them here. If any are found, the
2189 * caller will have to retake some cluster
2190 * locks and initiate the io as buffered.
2191 */
2192 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2193 if (ret == 1) {
2194 *direct_io = 0;
2195 ret = 0;
2196 } else if (ret < 0)
2197 mlog_errno(ret);
2198 break;
2199 }
2200
2201 if (appending)
2202 *ppos = saved_pos;
2203
2204out_unlock:
2205 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2206 saved_pos, appending, count,
2207 direct_io, has_refcount);
2208
2209 if (meta_level >= 0)
2210 ocfs2_inode_unlock(inode, meta_level);
2211
2212out:
2213 return ret;
2214}
2215
2216static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2217 const struct iovec *iov,
2218 unsigned long nr_segs,
2219 loff_t pos)
2220{
2221 int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
2222 int can_do_direct, has_refcount = 0;
2223 ssize_t written = 0;
2224 size_t ocount; /* original count */
2225 size_t count; /* after file limit checks */
2226 loff_t old_size, *ppos = &iocb->ki_pos;
2227 u32 old_clusters;
2228 struct file *file = iocb->ki_filp;
2229 struct inode *inode = file->f_path.dentry->d_inode;
2230 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2231 int full_coherency = !(osb->s_mount_opt &
2232 OCFS2_MOUNT_COHERENCY_BUFFERED);
2233
2234 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2235 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2236 file->f_path.dentry->d_name.len,
2237 file->f_path.dentry->d_name.name,
2238 (unsigned int)nr_segs);
2239
2240 if (iocb->ki_left == 0)
2241 return 0;
2242
2243 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2244
2245 appending = file->f_flags & O_APPEND ? 1 : 0;
2246 direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2247
2248 mutex_lock(&inode->i_mutex);
2249
2250 ocfs2_iocb_clear_sem_locked(iocb);
2251
2252relock:
2253 /* to match setattr's i_mutex -> rw_lock ordering */
2254 if (direct_io) {
2255 have_alloc_sem = 1;
2256 /* communicate with ocfs2_dio_end_io */
2257 ocfs2_iocb_set_sem_locked(iocb);
2258 }
2259
2260 /*
2261 * Concurrent O_DIRECT writes are allowed with
2262 * mount_option "coherency=buffered".
2263 */
2264 rw_level = (!direct_io || full_coherency);
2265
2266 ret = ocfs2_rw_lock(inode, rw_level);
2267 if (ret < 0) {
2268 mlog_errno(ret);
2269 goto out_sems;
2270 }
2271
2272 /*
2273 * O_DIRECT writes with "coherency=full" need to take EX cluster
2274 * inode_lock to guarantee coherency.
2275 */
2276 if (direct_io && full_coherency) {
2277 /*
2278 * We need to take and drop the inode lock to force
2279 * other nodes to drop their caches. Buffered I/O
2280 * already does this in write_begin().
2281 */
2282 ret = ocfs2_inode_lock(inode, NULL, 1);
2283 if (ret < 0) {
2284 mlog_errno(ret);
2285 goto out_sems;
2286 }
2287
2288 ocfs2_inode_unlock(inode, 1);
2289 }
2290
2291 can_do_direct = direct_io;
2292 ret = ocfs2_prepare_inode_for_write(file, ppos,
2293 iocb->ki_left, appending,
2294 &can_do_direct, &has_refcount);
2295 if (ret < 0) {
2296 mlog_errno(ret);
2297 goto out;
2298 }
2299
2300 /*
2301 * We can't complete the direct I/O as requested, fall back to
2302 * buffered I/O.
2303 */
2304 if (direct_io && !can_do_direct) {
2305 ocfs2_rw_unlock(inode, rw_level);
2306
2307 have_alloc_sem = 0;
2308 rw_level = -1;
2309
2310 direct_io = 0;
2311 goto relock;
2312 }
2313
2314 /*
2315 * To later detect whether a journal commit for sync writes is
2316 * necessary, we sample i_size, and cluster count here.
2317 */
2318 old_size = i_size_read(inode);
2319 old_clusters = OCFS2_I(inode)->ip_clusters;
2320
2321 /* communicate with ocfs2_dio_end_io */
2322 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2323
2324 ret = generic_segment_checks(iov, &nr_segs, &ocount,
2325 VERIFY_READ);
2326 if (ret)
2327 goto out_dio;
2328
2329 count = ocount;
2330 ret = generic_write_checks(file, ppos, &count,
2331 S_ISBLK(inode->i_mode));
2332 if (ret)
2333 goto out_dio;
2334
2335 if (direct_io) {
2336 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2337 ppos, count, ocount);
2338 if (written < 0) {
2339 ret = written;
2340 goto out_dio;
2341 }
2342 } else {
2343 current->backing_dev_info = file->f_mapping->backing_dev_info;
2344 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2345 ppos, count, 0);
2346 current->backing_dev_info = NULL;
2347 }
2348
2349out_dio:
2350 /* buffered aio wouldn't have proper lock coverage today */
2351 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2352
2353 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2354 ((file->f_flags & O_DIRECT) && !direct_io)) {
2355 ret = filemap_fdatawrite_range(file->f_mapping, pos,
2356 pos + count - 1);
2357 if (ret < 0)
2358 written = ret;
2359
2360 if (!ret && ((old_size != i_size_read(inode)) ||
2361 (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2362 has_refcount)) {
2363 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2364 if (ret < 0)
2365 written = ret;
2366 }
2367
2368 if (!ret)
2369 ret = filemap_fdatawait_range(file->f_mapping, pos,
2370 pos + count - 1);
2371 }
2372
2373 /*
2374 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2375 * function pointer which is called when o_direct io completes so that
2376 * it can unlock our rw lock.
2377 * Unfortunately there are error cases which call end_io and others
2378 * that don't. so we don't have to unlock the rw_lock if either an
2379 * async dio is going to do it in the future or an end_io after an
2380 * error has already done it.
2381 */
2382 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2383 rw_level = -1;
2384 have_alloc_sem = 0;
2385 }
2386
2387out:
2388 if (rw_level != -1)
2389 ocfs2_rw_unlock(inode, rw_level);
2390
2391out_sems:
2392 if (have_alloc_sem)
2393 ocfs2_iocb_clear_sem_locked(iocb);
2394
2395 mutex_unlock(&inode->i_mutex);
2396
2397 if (written)
2398 ret = written;
2399 return ret;
2400}
2401
2402static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2403 struct file *out,
2404 struct splice_desc *sd)
2405{
2406 int ret;
2407
2408 ret = ocfs2_prepare_inode_for_write(out, &sd->pos,
2409 sd->total_len, 0, NULL, NULL);
2410 if (ret < 0) {
2411 mlog_errno(ret);
2412 return ret;
2413 }
2414
2415 return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2416}
2417
2418static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2419 struct file *out,
2420 loff_t *ppos,
2421 size_t len,
2422 unsigned int flags)
2423{
2424 int ret;
2425 struct address_space *mapping = out->f_mapping;
2426 struct inode *inode = mapping->host;
2427 struct splice_desc sd = {
2428 .total_len = len,
2429 .flags = flags,
2430 .pos = *ppos,
2431 .u.file = out,
2432 };
2433
2434
2435 trace_ocfs2_file_splice_write(inode, out, out->f_path.dentry,
2436 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2437 out->f_path.dentry->d_name.len,
2438 out->f_path.dentry->d_name.name, len);
2439
2440 if (pipe->inode)
2441 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2442
2443 splice_from_pipe_begin(&sd);
2444 do {
2445 ret = splice_from_pipe_next(pipe, &sd);
2446 if (ret <= 0)
2447 break;
2448
2449 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2450 ret = ocfs2_rw_lock(inode, 1);
2451 if (ret < 0)
2452 mlog_errno(ret);
2453 else {
2454 ret = ocfs2_splice_to_file(pipe, out, &sd);
2455 ocfs2_rw_unlock(inode, 1);
2456 }
2457 mutex_unlock(&inode->i_mutex);
2458 } while (ret > 0);
2459 splice_from_pipe_end(pipe, &sd);
2460
2461 if (pipe->inode)
2462 mutex_unlock(&pipe->inode->i_mutex);
2463
2464 if (sd.num_spliced)
2465 ret = sd.num_spliced;
2466
2467 if (ret > 0) {
2468 unsigned long nr_pages;
2469 int err;
2470
2471 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2472
2473 err = generic_write_sync(out, *ppos, ret);
2474 if (err)
2475 ret = err;
2476 else
2477 *ppos += ret;
2478
2479 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2480 }
2481
2482 return ret;
2483}
2484
2485static ssize_t ocfs2_file_splice_read(struct file *in,
2486 loff_t *ppos,
2487 struct pipe_inode_info *pipe,
2488 size_t len,
2489 unsigned int flags)
2490{
2491 int ret = 0, lock_level = 0;
2492 struct inode *inode = in->f_path.dentry->d_inode;
2493
2494 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2495 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2496 in->f_path.dentry->d_name.len,
2497 in->f_path.dentry->d_name.name, len);
2498
2499 /*
2500 * See the comment in ocfs2_file_aio_read()
2501 */
2502 ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2503 if (ret < 0) {
2504 mlog_errno(ret);
2505 goto bail;
2506 }
2507 ocfs2_inode_unlock(inode, lock_level);
2508
2509 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2510
2511bail:
2512 return ret;
2513}
2514
2515static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2516 const struct iovec *iov,
2517 unsigned long nr_segs,
2518 loff_t pos)
2519{
2520 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2521 struct file *filp = iocb->ki_filp;
2522 struct inode *inode = filp->f_path.dentry->d_inode;
2523
2524 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2525 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2526 filp->f_path.dentry->d_name.len,
2527 filp->f_path.dentry->d_name.name, nr_segs);
2528
2529
2530 if (!inode) {
2531 ret = -EINVAL;
2532 mlog_errno(ret);
2533 goto bail;
2534 }
2535
2536 ocfs2_iocb_clear_sem_locked(iocb);
2537
2538 /*
2539 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2540 * need locks to protect pending reads from racing with truncate.
2541 */
2542 if (filp->f_flags & O_DIRECT) {
2543 have_alloc_sem = 1;
2544 ocfs2_iocb_set_sem_locked(iocb);
2545
2546 ret = ocfs2_rw_lock(inode, 0);
2547 if (ret < 0) {
2548 mlog_errno(ret);
2549 goto bail;
2550 }
2551 rw_level = 0;
2552 /* communicate with ocfs2_dio_end_io */
2553 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2554 }
2555
2556 /*
2557 * We're fine letting folks race truncates and extending
2558 * writes with read across the cluster, just like they can
2559 * locally. Hence no rw_lock during read.
2560 *
2561 * Take and drop the meta data lock to update inode fields
2562 * like i_size. This allows the checks down below
2563 * generic_file_aio_read() a chance of actually working.
2564 */
2565 ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2566 if (ret < 0) {
2567 mlog_errno(ret);
2568 goto bail;
2569 }
2570 ocfs2_inode_unlock(inode, lock_level);
2571
2572 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2573 trace_generic_file_aio_read_ret(ret);
2574
2575 /* buffered aio wouldn't have proper lock coverage today */
2576 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2577
2578 /* see ocfs2_file_aio_write */
2579 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2580 rw_level = -1;
2581 have_alloc_sem = 0;
2582 }
2583
2584bail:
2585 if (have_alloc_sem)
2586 ocfs2_iocb_clear_sem_locked(iocb);
2587
2588 if (rw_level != -1)
2589 ocfs2_rw_unlock(inode, rw_level);
2590
2591 return ret;
2592}
2593
2594const struct inode_operations ocfs2_file_iops = {
2595 .setattr = ocfs2_setattr,
2596 .getattr = ocfs2_getattr,
2597 .permission = ocfs2_permission,
2598 .setxattr = generic_setxattr,
2599 .getxattr = generic_getxattr,
2600 .listxattr = ocfs2_listxattr,
2601 .removexattr = generic_removexattr,
2602 .fiemap = ocfs2_fiemap,
2603 .get_acl = ocfs2_iop_get_acl,
2604};
2605
2606const struct inode_operations ocfs2_special_file_iops = {
2607 .setattr = ocfs2_setattr,
2608 .getattr = ocfs2_getattr,
2609 .permission = ocfs2_permission,
2610 .get_acl = ocfs2_iop_get_acl,
2611};
2612
2613/*
2614 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2615 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2616 */
2617const struct file_operations ocfs2_fops = {
2618 .llseek = generic_file_llseek,
2619 .read = do_sync_read,
2620 .write = do_sync_write,
2621 .mmap = ocfs2_mmap,
2622 .fsync = ocfs2_sync_file,
2623 .release = ocfs2_file_release,
2624 .open = ocfs2_file_open,
2625 .aio_read = ocfs2_file_aio_read,
2626 .aio_write = ocfs2_file_aio_write,
2627 .unlocked_ioctl = ocfs2_ioctl,
2628#ifdef CONFIG_COMPAT
2629 .compat_ioctl = ocfs2_compat_ioctl,
2630#endif
2631 .lock = ocfs2_lock,
2632 .flock = ocfs2_flock,
2633 .splice_read = ocfs2_file_splice_read,
2634 .splice_write = ocfs2_file_splice_write,
2635 .fallocate = ocfs2_fallocate,
2636};
2637
2638const struct file_operations ocfs2_dops = {
2639 .llseek = generic_file_llseek,
2640 .read = generic_read_dir,
2641 .readdir = ocfs2_readdir,
2642 .fsync = ocfs2_sync_file,
2643 .release = ocfs2_dir_release,
2644 .open = ocfs2_dir_open,
2645 .unlocked_ioctl = ocfs2_ioctl,
2646#ifdef CONFIG_COMPAT
2647 .compat_ioctl = ocfs2_compat_ioctl,
2648#endif
2649 .lock = ocfs2_lock,
2650 .flock = ocfs2_flock,
2651};
2652
2653/*
2654 * POSIX-lockless variants of our file_operations.
2655 *
2656 * These will be used if the underlying cluster stack does not support
2657 * posix file locking, if the user passes the "localflocks" mount
2658 * option, or if we have a local-only fs.
2659 *
2660 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2661 * so we still want it in the case of no stack support for
2662 * plocks. Internally, it will do the right thing when asked to ignore
2663 * the cluster.
2664 */
2665const struct file_operations ocfs2_fops_no_plocks = {
2666 .llseek = generic_file_llseek,
2667 .read = do_sync_read,
2668 .write = do_sync_write,
2669 .mmap = ocfs2_mmap,
2670 .fsync = ocfs2_sync_file,
2671 .release = ocfs2_file_release,
2672 .open = ocfs2_file_open,
2673 .aio_read = ocfs2_file_aio_read,
2674 .aio_write = ocfs2_file_aio_write,
2675 .unlocked_ioctl = ocfs2_ioctl,
2676#ifdef CONFIG_COMPAT
2677 .compat_ioctl = ocfs2_compat_ioctl,
2678#endif
2679 .flock = ocfs2_flock,
2680 .splice_read = ocfs2_file_splice_read,
2681 .splice_write = ocfs2_file_splice_write,
2682 .fallocate = ocfs2_fallocate,
2683};
2684
2685const struct file_operations ocfs2_dops_no_plocks = {
2686 .llseek = generic_file_llseek,
2687 .read = generic_read_dir,
2688 .readdir = ocfs2_readdir,
2689 .fsync = ocfs2_sync_file,
2690 .release = ocfs2_dir_release,
2691 .open = ocfs2_dir_open,
2692 .unlocked_ioctl = ocfs2_ioctl,
2693#ifdef CONFIG_COMPAT
2694 .compat_ioctl = ocfs2_compat_ioctl,
2695#endif
2696 .flock = ocfs2_flock,
2697};
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * file.c
6 *
7 * File open, close, extend, truncate
8 *
9 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 */
11
12#include <linux/capability.h>
13#include <linux/fs.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/highmem.h>
17#include <linux/pagemap.h>
18#include <linux/uio.h>
19#include <linux/sched.h>
20#include <linux/splice.h>
21#include <linux/mount.h>
22#include <linux/writeback.h>
23#include <linux/falloc.h>
24#include <linux/quotaops.h>
25#include <linux/blkdev.h>
26#include <linux/backing-dev.h>
27
28#include <cluster/masklog.h>
29
30#include "ocfs2.h"
31
32#include "alloc.h"
33#include "aops.h"
34#include "dir.h"
35#include "dlmglue.h"
36#include "extent_map.h"
37#include "file.h"
38#include "sysfile.h"
39#include "inode.h"
40#include "ioctl.h"
41#include "journal.h"
42#include "locks.h"
43#include "mmap.h"
44#include "suballoc.h"
45#include "super.h"
46#include "xattr.h"
47#include "acl.h"
48#include "quota.h"
49#include "refcounttree.h"
50#include "ocfs2_trace.h"
51
52#include "buffer_head_io.h"
53
54static int ocfs2_init_file_private(struct inode *inode, struct file *file)
55{
56 struct ocfs2_file_private *fp;
57
58 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
59 if (!fp)
60 return -ENOMEM;
61
62 fp->fp_file = file;
63 mutex_init(&fp->fp_mutex);
64 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
65 file->private_data = fp;
66
67 return 0;
68}
69
70static void ocfs2_free_file_private(struct inode *inode, struct file *file)
71{
72 struct ocfs2_file_private *fp = file->private_data;
73 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74
75 if (fp) {
76 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
77 ocfs2_lock_res_free(&fp->fp_flock);
78 kfree(fp);
79 file->private_data = NULL;
80 }
81}
82
83static int ocfs2_file_open(struct inode *inode, struct file *file)
84{
85 int status;
86 int mode = file->f_flags;
87 struct ocfs2_inode_info *oi = OCFS2_I(inode);
88
89 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
90 (unsigned long long)oi->ip_blkno,
91 file->f_path.dentry->d_name.len,
92 file->f_path.dentry->d_name.name, mode);
93
94 if (file->f_mode & FMODE_WRITE) {
95 status = dquot_initialize(inode);
96 if (status)
97 goto leave;
98 }
99
100 spin_lock(&oi->ip_lock);
101
102 /* Check that the inode hasn't been wiped from disk by another
103 * node. If it hasn't then we're safe as long as we hold the
104 * spin lock until our increment of open count. */
105 if (oi->ip_flags & OCFS2_INODE_DELETED) {
106 spin_unlock(&oi->ip_lock);
107
108 status = -ENOENT;
109 goto leave;
110 }
111
112 if (mode & O_DIRECT)
113 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114
115 oi->ip_open_count++;
116 spin_unlock(&oi->ip_lock);
117
118 status = ocfs2_init_file_private(inode, file);
119 if (status) {
120 /*
121 * We want to set open count back if we're failing the
122 * open.
123 */
124 spin_lock(&oi->ip_lock);
125 oi->ip_open_count--;
126 spin_unlock(&oi->ip_lock);
127 }
128
129 file->f_mode |= FMODE_NOWAIT;
130
131leave:
132 return status;
133}
134
135static int ocfs2_file_release(struct inode *inode, struct file *file)
136{
137 struct ocfs2_inode_info *oi = OCFS2_I(inode);
138
139 spin_lock(&oi->ip_lock);
140 if (!--oi->ip_open_count)
141 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
142
143 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
144 oi->ip_blkno,
145 file->f_path.dentry->d_name.len,
146 file->f_path.dentry->d_name.name,
147 oi->ip_open_count);
148 spin_unlock(&oi->ip_lock);
149
150 ocfs2_free_file_private(inode, file);
151
152 return 0;
153}
154
155static int ocfs2_dir_open(struct inode *inode, struct file *file)
156{
157 return ocfs2_init_file_private(inode, file);
158}
159
160static int ocfs2_dir_release(struct inode *inode, struct file *file)
161{
162 ocfs2_free_file_private(inode, file);
163 return 0;
164}
165
166static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
167 int datasync)
168{
169 int err = 0;
170 struct inode *inode = file->f_mapping->host;
171 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
172 struct ocfs2_inode_info *oi = OCFS2_I(inode);
173 journal_t *journal = osb->journal->j_journal;
174 int ret;
175 tid_t commit_tid;
176 bool needs_barrier = false;
177
178 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
179 oi->ip_blkno,
180 file->f_path.dentry->d_name.len,
181 file->f_path.dentry->d_name.name,
182 (unsigned long long)datasync);
183
184 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185 return -EROFS;
186
187 err = file_write_and_wait_range(file, start, end);
188 if (err)
189 return err;
190
191 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
192 if (journal->j_flags & JBD2_BARRIER &&
193 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
194 needs_barrier = true;
195 err = jbd2_complete_transaction(journal, commit_tid);
196 if (needs_barrier) {
197 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
198 if (!err)
199 err = ret;
200 }
201
202 if (err)
203 mlog_errno(err);
204
205 return (err < 0) ? -EIO : 0;
206}
207
208int ocfs2_should_update_atime(struct inode *inode,
209 struct vfsmount *vfsmnt)
210{
211 struct timespec64 now;
212 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
213
214 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215 return 0;
216
217 if ((inode->i_flags & S_NOATIME) ||
218 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
219 return 0;
220
221 /*
222 * We can be called with no vfsmnt structure - NFSD will
223 * sometimes do this.
224 *
225 * Note that our action here is different than touch_atime() -
226 * if we can't tell whether this is a noatime mount, then we
227 * don't know whether to trust the value of s_atime_quantum.
228 */
229 if (vfsmnt == NULL)
230 return 0;
231
232 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
233 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 return 0;
235
236 if (vfsmnt->mnt_flags & MNT_RELATIME) {
237 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
239 return 1;
240
241 return 0;
242 }
243
244 now = current_time(inode);
245 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
246 return 0;
247 else
248 return 1;
249}
250
251int ocfs2_update_inode_atime(struct inode *inode,
252 struct buffer_head *bh)
253{
254 int ret;
255 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
256 handle_t *handle;
257 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258
259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 if (IS_ERR(handle)) {
261 ret = PTR_ERR(handle);
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 OCFS2_JOURNAL_ACCESS_WRITE);
268 if (ret) {
269 mlog_errno(ret);
270 goto out_commit;
271 }
272
273 /*
274 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 * have i_mutex to guard against concurrent changes to other
276 * inode fields.
277 */
278 inode->i_atime = current_time(inode);
279 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 ocfs2_journal_dirty(handle, bh);
283
284out_commit:
285 ocfs2_commit_trans(osb, handle);
286out:
287 return ret;
288}
289
290int ocfs2_set_inode_size(handle_t *handle,
291 struct inode *inode,
292 struct buffer_head *fe_bh,
293 u64 new_i_size)
294{
295 int status;
296
297 i_size_write(inode, new_i_size);
298 inode->i_blocks = ocfs2_inode_sector_count(inode);
299 inode->i_ctime = inode->i_mtime = current_time(inode);
300
301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
302 if (status < 0) {
303 mlog_errno(status);
304 goto bail;
305 }
306
307bail:
308 return status;
309}
310
311int ocfs2_simple_size_update(struct inode *inode,
312 struct buffer_head *di_bh,
313 u64 new_i_size)
314{
315 int ret;
316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 handle_t *handle = NULL;
318
319 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 if (IS_ERR(handle)) {
321 ret = PTR_ERR(handle);
322 mlog_errno(ret);
323 goto out;
324 }
325
326 ret = ocfs2_set_inode_size(handle, inode, di_bh,
327 new_i_size);
328 if (ret < 0)
329 mlog_errno(ret);
330
331 ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 ocfs2_commit_trans(osb, handle);
333out:
334 return ret;
335}
336
337static int ocfs2_cow_file_pos(struct inode *inode,
338 struct buffer_head *fe_bh,
339 u64 offset)
340{
341 int status;
342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 unsigned int num_clusters = 0;
344 unsigned int ext_flags = 0;
345
346 /*
347 * If the new offset is aligned to the range of the cluster, there is
348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
349 * CoW either.
350 */
351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
352 return 0;
353
354 status = ocfs2_get_clusters(inode, cpos, &phys,
355 &num_clusters, &ext_flags);
356 if (status) {
357 mlog_errno(status);
358 goto out;
359 }
360
361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
362 goto out;
363
364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
365
366out:
367 return status;
368}
369
370static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
371 struct inode *inode,
372 struct buffer_head *fe_bh,
373 u64 new_i_size)
374{
375 int status;
376 handle_t *handle;
377 struct ocfs2_dinode *di;
378 u64 cluster_bytes;
379
380 /*
381 * We need to CoW the cluster contains the offset if it is reflinked
382 * since we will call ocfs2_zero_range_for_truncate later which will
383 * write "0" from offset to the end of the cluster.
384 */
385 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
386 if (status) {
387 mlog_errno(status);
388 return status;
389 }
390
391 /* TODO: This needs to actually orphan the inode in this
392 * transaction. */
393
394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 if (IS_ERR(handle)) {
396 status = PTR_ERR(handle);
397 mlog_errno(status);
398 goto out;
399 }
400
401 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 OCFS2_JOURNAL_ACCESS_WRITE);
403 if (status < 0) {
404 mlog_errno(status);
405 goto out_commit;
406 }
407
408 /*
409 * Do this before setting i_size.
410 */
411 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
413 cluster_bytes);
414 if (status) {
415 mlog_errno(status);
416 goto out_commit;
417 }
418
419 i_size_write(inode, new_i_size);
420 inode->i_ctime = inode->i_mtime = current_time(inode);
421
422 di = (struct ocfs2_dinode *) fe_bh->b_data;
423 di->i_size = cpu_to_le64(new_i_size);
424 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
425 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
426 ocfs2_update_inode_fsync_trans(handle, inode, 0);
427
428 ocfs2_journal_dirty(handle, fe_bh);
429
430out_commit:
431 ocfs2_commit_trans(osb, handle);
432out:
433 return status;
434}
435
436int ocfs2_truncate_file(struct inode *inode,
437 struct buffer_head *di_bh,
438 u64 new_i_size)
439{
440 int status = 0;
441 struct ocfs2_dinode *fe = NULL;
442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
443
444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 * already validated it */
446 fe = (struct ocfs2_dinode *) di_bh->b_data;
447
448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 (unsigned long long)le64_to_cpu(fe->i_size),
450 (unsigned long long)new_i_size);
451
452 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 "Inode %llu, inode i_size = %lld != di "
454 "i_size = %llu, i_flags = 0x%x\n",
455 (unsigned long long)OCFS2_I(inode)->ip_blkno,
456 i_size_read(inode),
457 (unsigned long long)le64_to_cpu(fe->i_size),
458 le32_to_cpu(fe->i_flags));
459
460 if (new_i_size > le64_to_cpu(fe->i_size)) {
461 trace_ocfs2_truncate_file_error(
462 (unsigned long long)le64_to_cpu(fe->i_size),
463 (unsigned long long)new_i_size);
464 status = -EINVAL;
465 mlog_errno(status);
466 goto bail;
467 }
468
469 down_write(&OCFS2_I(inode)->ip_alloc_sem);
470
471 ocfs2_resv_discard(&osb->osb_la_resmap,
472 &OCFS2_I(inode)->ip_la_data_resv);
473
474 /*
475 * The inode lock forced other nodes to sync and drop their
476 * pages, which (correctly) happens even if we have a truncate
477 * without allocation change - ocfs2 cluster sizes can be much
478 * greater than page size, so we have to truncate them
479 * anyway.
480 */
481 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
482 truncate_inode_pages(inode->i_mapping, new_i_size);
483
484 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
485 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
486 i_size_read(inode), 1);
487 if (status)
488 mlog_errno(status);
489
490 goto bail_unlock_sem;
491 }
492
493 /* alright, we're going to need to do a full blown alloc size
494 * change. Orphan the inode so that recovery can complete the
495 * truncate if necessary. This does the task of marking
496 * i_size. */
497 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
498 if (status < 0) {
499 mlog_errno(status);
500 goto bail_unlock_sem;
501 }
502
503 status = ocfs2_commit_truncate(osb, inode, di_bh);
504 if (status < 0) {
505 mlog_errno(status);
506 goto bail_unlock_sem;
507 }
508
509 /* TODO: orphan dir cleanup here. */
510bail_unlock_sem:
511 up_write(&OCFS2_I(inode)->ip_alloc_sem);
512
513bail:
514 if (!status && OCFS2_I(inode)->ip_clusters == 0)
515 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
516
517 return status;
518}
519
520/*
521 * extend file allocation only here.
522 * we'll update all the disk stuff, and oip->alloc_size
523 *
524 * expect stuff to be locked, a transaction started and enough data /
525 * metadata reservations in the contexts.
526 *
527 * Will return -EAGAIN, and a reason if a restart is needed.
528 * If passed in, *reason will always be set, even in error.
529 */
530int ocfs2_add_inode_data(struct ocfs2_super *osb,
531 struct inode *inode,
532 u32 *logical_offset,
533 u32 clusters_to_add,
534 int mark_unwritten,
535 struct buffer_head *fe_bh,
536 handle_t *handle,
537 struct ocfs2_alloc_context *data_ac,
538 struct ocfs2_alloc_context *meta_ac,
539 enum ocfs2_alloc_restarted *reason_ret)
540{
541 int ret;
542 struct ocfs2_extent_tree et;
543
544 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
545 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
546 clusters_to_add, mark_unwritten,
547 data_ac, meta_ac, reason_ret);
548
549 return ret;
550}
551
552static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
553 u32 clusters_to_add, int mark_unwritten)
554{
555 int status = 0;
556 int restart_func = 0;
557 int credits;
558 u32 prev_clusters;
559 struct buffer_head *bh = NULL;
560 struct ocfs2_dinode *fe = NULL;
561 handle_t *handle = NULL;
562 struct ocfs2_alloc_context *data_ac = NULL;
563 struct ocfs2_alloc_context *meta_ac = NULL;
564 enum ocfs2_alloc_restarted why = RESTART_NONE;
565 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
566 struct ocfs2_extent_tree et;
567 int did_quota = 0;
568
569 /*
570 * Unwritten extent only exists for file systems which
571 * support holes.
572 */
573 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
574
575 status = ocfs2_read_inode_block(inode, &bh);
576 if (status < 0) {
577 mlog_errno(status);
578 goto leave;
579 }
580 fe = (struct ocfs2_dinode *) bh->b_data;
581
582restart_all:
583 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
584
585 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
586 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
587 &data_ac, &meta_ac);
588 if (status) {
589 mlog_errno(status);
590 goto leave;
591 }
592
593 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
594 handle = ocfs2_start_trans(osb, credits);
595 if (IS_ERR(handle)) {
596 status = PTR_ERR(handle);
597 handle = NULL;
598 mlog_errno(status);
599 goto leave;
600 }
601
602restarted_transaction:
603 trace_ocfs2_extend_allocation(
604 (unsigned long long)OCFS2_I(inode)->ip_blkno,
605 (unsigned long long)i_size_read(inode),
606 le32_to_cpu(fe->i_clusters), clusters_to_add,
607 why, restart_func);
608
609 status = dquot_alloc_space_nodirty(inode,
610 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
611 if (status)
612 goto leave;
613 did_quota = 1;
614
615 /* reserve a write to the file entry early on - that we if we
616 * run out of credits in the allocation path, we can still
617 * update i_size. */
618 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
619 OCFS2_JOURNAL_ACCESS_WRITE);
620 if (status < 0) {
621 mlog_errno(status);
622 goto leave;
623 }
624
625 prev_clusters = OCFS2_I(inode)->ip_clusters;
626
627 status = ocfs2_add_inode_data(osb,
628 inode,
629 &logical_start,
630 clusters_to_add,
631 mark_unwritten,
632 bh,
633 handle,
634 data_ac,
635 meta_ac,
636 &why);
637 if ((status < 0) && (status != -EAGAIN)) {
638 if (status != -ENOSPC)
639 mlog_errno(status);
640 goto leave;
641 }
642 ocfs2_update_inode_fsync_trans(handle, inode, 1);
643 ocfs2_journal_dirty(handle, bh);
644
645 spin_lock(&OCFS2_I(inode)->ip_lock);
646 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
647 spin_unlock(&OCFS2_I(inode)->ip_lock);
648 /* Release unused quota reservation */
649 dquot_free_space(inode,
650 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
651 did_quota = 0;
652
653 if (why != RESTART_NONE && clusters_to_add) {
654 if (why == RESTART_META) {
655 restart_func = 1;
656 status = 0;
657 } else {
658 BUG_ON(why != RESTART_TRANS);
659
660 status = ocfs2_allocate_extend_trans(handle, 1);
661 if (status < 0) {
662 /* handle still has to be committed at
663 * this point. */
664 status = -ENOMEM;
665 mlog_errno(status);
666 goto leave;
667 }
668 goto restarted_transaction;
669 }
670 }
671
672 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
673 le32_to_cpu(fe->i_clusters),
674 (unsigned long long)le64_to_cpu(fe->i_size),
675 OCFS2_I(inode)->ip_clusters,
676 (unsigned long long)i_size_read(inode));
677
678leave:
679 if (status < 0 && did_quota)
680 dquot_free_space(inode,
681 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
682 if (handle) {
683 ocfs2_commit_trans(osb, handle);
684 handle = NULL;
685 }
686 if (data_ac) {
687 ocfs2_free_alloc_context(data_ac);
688 data_ac = NULL;
689 }
690 if (meta_ac) {
691 ocfs2_free_alloc_context(meta_ac);
692 meta_ac = NULL;
693 }
694 if ((!status) && restart_func) {
695 restart_func = 0;
696 goto restart_all;
697 }
698 brelse(bh);
699 bh = NULL;
700
701 return status;
702}
703
704/*
705 * While a write will already be ordering the data, a truncate will not.
706 * Thus, we need to explicitly order the zeroed pages.
707 */
708static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
709 struct buffer_head *di_bh,
710 loff_t start_byte,
711 loff_t length)
712{
713 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
714 handle_t *handle = NULL;
715 int ret = 0;
716
717 if (!ocfs2_should_order_data(inode))
718 goto out;
719
720 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
721 if (IS_ERR(handle)) {
722 ret = -ENOMEM;
723 mlog_errno(ret);
724 goto out;
725 }
726
727 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
728 if (ret < 0) {
729 mlog_errno(ret);
730 goto out;
731 }
732
733 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
734 OCFS2_JOURNAL_ACCESS_WRITE);
735 if (ret)
736 mlog_errno(ret);
737 ocfs2_update_inode_fsync_trans(handle, inode, 1);
738
739out:
740 if (ret) {
741 if (!IS_ERR(handle))
742 ocfs2_commit_trans(osb, handle);
743 handle = ERR_PTR(ret);
744 }
745 return handle;
746}
747
748/* Some parts of this taken from generic_cont_expand, which turned out
749 * to be too fragile to do exactly what we need without us having to
750 * worry about recursive locking in ->write_begin() and ->write_end(). */
751static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
752 u64 abs_to, struct buffer_head *di_bh)
753{
754 struct address_space *mapping = inode->i_mapping;
755 struct page *page;
756 unsigned long index = abs_from >> PAGE_SHIFT;
757 handle_t *handle;
758 int ret = 0;
759 unsigned zero_from, zero_to, block_start, block_end;
760 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
761
762 BUG_ON(abs_from >= abs_to);
763 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
764 BUG_ON(abs_from & (inode->i_blkbits - 1));
765
766 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
767 abs_from,
768 abs_to - abs_from);
769 if (IS_ERR(handle)) {
770 ret = PTR_ERR(handle);
771 goto out;
772 }
773
774 page = find_or_create_page(mapping, index, GFP_NOFS);
775 if (!page) {
776 ret = -ENOMEM;
777 mlog_errno(ret);
778 goto out_commit_trans;
779 }
780
781 /* Get the offsets within the page that we want to zero */
782 zero_from = abs_from & (PAGE_SIZE - 1);
783 zero_to = abs_to & (PAGE_SIZE - 1);
784 if (!zero_to)
785 zero_to = PAGE_SIZE;
786
787 trace_ocfs2_write_zero_page(
788 (unsigned long long)OCFS2_I(inode)->ip_blkno,
789 (unsigned long long)abs_from,
790 (unsigned long long)abs_to,
791 index, zero_from, zero_to);
792
793 /* We know that zero_from is block aligned */
794 for (block_start = zero_from; block_start < zero_to;
795 block_start = block_end) {
796 block_end = block_start + i_blocksize(inode);
797
798 /*
799 * block_start is block-aligned. Bump it by one to force
800 * __block_write_begin and block_commit_write to zero the
801 * whole block.
802 */
803 ret = __block_write_begin(page, block_start + 1, 0,
804 ocfs2_get_block);
805 if (ret < 0) {
806 mlog_errno(ret);
807 goto out_unlock;
808 }
809
810
811 /* must not update i_size! */
812 ret = block_commit_write(page, block_start + 1,
813 block_start + 1);
814 if (ret < 0)
815 mlog_errno(ret);
816 else
817 ret = 0;
818 }
819
820 /*
821 * fs-writeback will release the dirty pages without page lock
822 * whose offset are over inode size, the release happens at
823 * block_write_full_page().
824 */
825 i_size_write(inode, abs_to);
826 inode->i_blocks = ocfs2_inode_sector_count(inode);
827 di->i_size = cpu_to_le64((u64)i_size_read(inode));
828 inode->i_mtime = inode->i_ctime = current_time(inode);
829 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
830 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
831 di->i_mtime_nsec = di->i_ctime_nsec;
832 if (handle) {
833 ocfs2_journal_dirty(handle, di_bh);
834 ocfs2_update_inode_fsync_trans(handle, inode, 1);
835 }
836
837out_unlock:
838 unlock_page(page);
839 put_page(page);
840out_commit_trans:
841 if (handle)
842 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
843out:
844 return ret;
845}
846
847/*
848 * Find the next range to zero. We do this in terms of bytes because
849 * that's what ocfs2_zero_extend() wants, and it is dealing with the
850 * pagecache. We may return multiple extents.
851 *
852 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
853 * needs to be zeroed. range_start and range_end return the next zeroing
854 * range. A subsequent call should pass the previous range_end as its
855 * zero_start. If range_end is 0, there's nothing to do.
856 *
857 * Unwritten extents are skipped over. Refcounted extents are CoWd.
858 */
859static int ocfs2_zero_extend_get_range(struct inode *inode,
860 struct buffer_head *di_bh,
861 u64 zero_start, u64 zero_end,
862 u64 *range_start, u64 *range_end)
863{
864 int rc = 0, needs_cow = 0;
865 u32 p_cpos, zero_clusters = 0;
866 u32 zero_cpos =
867 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
868 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
869 unsigned int num_clusters = 0;
870 unsigned int ext_flags = 0;
871
872 while (zero_cpos < last_cpos) {
873 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
874 &num_clusters, &ext_flags);
875 if (rc) {
876 mlog_errno(rc);
877 goto out;
878 }
879
880 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
881 zero_clusters = num_clusters;
882 if (ext_flags & OCFS2_EXT_REFCOUNTED)
883 needs_cow = 1;
884 break;
885 }
886
887 zero_cpos += num_clusters;
888 }
889 if (!zero_clusters) {
890 *range_end = 0;
891 goto out;
892 }
893
894 while ((zero_cpos + zero_clusters) < last_cpos) {
895 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
896 &p_cpos, &num_clusters,
897 &ext_flags);
898 if (rc) {
899 mlog_errno(rc);
900 goto out;
901 }
902
903 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
904 break;
905 if (ext_flags & OCFS2_EXT_REFCOUNTED)
906 needs_cow = 1;
907 zero_clusters += num_clusters;
908 }
909 if ((zero_cpos + zero_clusters) > last_cpos)
910 zero_clusters = last_cpos - zero_cpos;
911
912 if (needs_cow) {
913 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
914 zero_clusters, UINT_MAX);
915 if (rc) {
916 mlog_errno(rc);
917 goto out;
918 }
919 }
920
921 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
922 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
923 zero_cpos + zero_clusters);
924
925out:
926 return rc;
927}
928
929/*
930 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
931 * has made sure that the entire range needs zeroing.
932 */
933static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
934 u64 range_end, struct buffer_head *di_bh)
935{
936 int rc = 0;
937 u64 next_pos;
938 u64 zero_pos = range_start;
939
940 trace_ocfs2_zero_extend_range(
941 (unsigned long long)OCFS2_I(inode)->ip_blkno,
942 (unsigned long long)range_start,
943 (unsigned long long)range_end);
944 BUG_ON(range_start >= range_end);
945
946 while (zero_pos < range_end) {
947 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
948 if (next_pos > range_end)
949 next_pos = range_end;
950 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
951 if (rc < 0) {
952 mlog_errno(rc);
953 break;
954 }
955 zero_pos = next_pos;
956
957 /*
958 * Very large extends have the potential to lock up
959 * the cpu for extended periods of time.
960 */
961 cond_resched();
962 }
963
964 return rc;
965}
966
967int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
968 loff_t zero_to_size)
969{
970 int ret = 0;
971 u64 zero_start, range_start = 0, range_end = 0;
972 struct super_block *sb = inode->i_sb;
973
974 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
975 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
976 (unsigned long long)zero_start,
977 (unsigned long long)i_size_read(inode));
978 while (zero_start < zero_to_size) {
979 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
980 zero_to_size,
981 &range_start,
982 &range_end);
983 if (ret) {
984 mlog_errno(ret);
985 break;
986 }
987 if (!range_end)
988 break;
989 /* Trim the ends */
990 if (range_start < zero_start)
991 range_start = zero_start;
992 if (range_end > zero_to_size)
993 range_end = zero_to_size;
994
995 ret = ocfs2_zero_extend_range(inode, range_start,
996 range_end, di_bh);
997 if (ret) {
998 mlog_errno(ret);
999 break;
1000 }
1001 zero_start = range_end;
1002 }
1003
1004 return ret;
1005}
1006
1007int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1008 u64 new_i_size, u64 zero_to)
1009{
1010 int ret;
1011 u32 clusters_to_add;
1012 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1013
1014 /*
1015 * Only quota files call this without a bh, and they can't be
1016 * refcounted.
1017 */
1018 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1019 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1020
1021 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1022 if (clusters_to_add < oi->ip_clusters)
1023 clusters_to_add = 0;
1024 else
1025 clusters_to_add -= oi->ip_clusters;
1026
1027 if (clusters_to_add) {
1028 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1029 clusters_to_add, 0);
1030 if (ret) {
1031 mlog_errno(ret);
1032 goto out;
1033 }
1034 }
1035
1036 /*
1037 * Call this even if we don't add any clusters to the tree. We
1038 * still need to zero the area between the old i_size and the
1039 * new i_size.
1040 */
1041 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1042 if (ret < 0)
1043 mlog_errno(ret);
1044
1045out:
1046 return ret;
1047}
1048
1049static int ocfs2_extend_file(struct inode *inode,
1050 struct buffer_head *di_bh,
1051 u64 new_i_size)
1052{
1053 int ret = 0;
1054 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1055
1056 BUG_ON(!di_bh);
1057
1058 /* setattr sometimes calls us like this. */
1059 if (new_i_size == 0)
1060 goto out;
1061
1062 if (i_size_read(inode) == new_i_size)
1063 goto out;
1064 BUG_ON(new_i_size < i_size_read(inode));
1065
1066 /*
1067 * The alloc sem blocks people in read/write from reading our
1068 * allocation until we're done changing it. We depend on
1069 * i_mutex to block other extend/truncate calls while we're
1070 * here. We even have to hold it for sparse files because there
1071 * might be some tail zeroing.
1072 */
1073 down_write(&oi->ip_alloc_sem);
1074
1075 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1076 /*
1077 * We can optimize small extends by keeping the inodes
1078 * inline data.
1079 */
1080 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1081 up_write(&oi->ip_alloc_sem);
1082 goto out_update_size;
1083 }
1084
1085 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1086 if (ret) {
1087 up_write(&oi->ip_alloc_sem);
1088 mlog_errno(ret);
1089 goto out;
1090 }
1091 }
1092
1093 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1094 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1095 else
1096 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1097 new_i_size);
1098
1099 up_write(&oi->ip_alloc_sem);
1100
1101 if (ret < 0) {
1102 mlog_errno(ret);
1103 goto out;
1104 }
1105
1106out_update_size:
1107 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1108 if (ret < 0)
1109 mlog_errno(ret);
1110
1111out:
1112 return ret;
1113}
1114
1115int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1116{
1117 int status = 0, size_change;
1118 int inode_locked = 0;
1119 struct inode *inode = d_inode(dentry);
1120 struct super_block *sb = inode->i_sb;
1121 struct ocfs2_super *osb = OCFS2_SB(sb);
1122 struct buffer_head *bh = NULL;
1123 handle_t *handle = NULL;
1124 struct dquot *transfer_to[MAXQUOTAS] = { };
1125 int qtype;
1126 int had_lock;
1127 struct ocfs2_lock_holder oh;
1128
1129 trace_ocfs2_setattr(inode, dentry,
1130 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1131 dentry->d_name.len, dentry->d_name.name,
1132 attr->ia_valid, attr->ia_mode,
1133 from_kuid(&init_user_ns, attr->ia_uid),
1134 from_kgid(&init_user_ns, attr->ia_gid));
1135
1136 /* ensuring we don't even attempt to truncate a symlink */
1137 if (S_ISLNK(inode->i_mode))
1138 attr->ia_valid &= ~ATTR_SIZE;
1139
1140#define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1141 | ATTR_GID | ATTR_UID | ATTR_MODE)
1142 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1143 return 0;
1144
1145 status = setattr_prepare(dentry, attr);
1146 if (status)
1147 return status;
1148
1149 if (is_quota_modification(inode, attr)) {
1150 status = dquot_initialize(inode);
1151 if (status)
1152 return status;
1153 }
1154 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155 if (size_change) {
1156 /*
1157 * Here we should wait dio to finish before inode lock
1158 * to avoid a deadlock between ocfs2_setattr() and
1159 * ocfs2_dio_end_io_write()
1160 */
1161 inode_dio_wait(inode);
1162
1163 status = ocfs2_rw_lock(inode, 1);
1164 if (status < 0) {
1165 mlog_errno(status);
1166 goto bail;
1167 }
1168 }
1169
1170 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1171 if (had_lock < 0) {
1172 status = had_lock;
1173 goto bail_unlock_rw;
1174 } else if (had_lock) {
1175 /*
1176 * As far as we know, ocfs2_setattr() could only be the first
1177 * VFS entry point in the call chain of recursive cluster
1178 * locking issue.
1179 *
1180 * For instance:
1181 * chmod_common()
1182 * notify_change()
1183 * ocfs2_setattr()
1184 * posix_acl_chmod()
1185 * ocfs2_iop_get_acl()
1186 *
1187 * But, we're not 100% sure if it's always true, because the
1188 * ordering of the VFS entry points in the call chain is out
1189 * of our control. So, we'd better dump the stack here to
1190 * catch the other cases of recursive locking.
1191 */
1192 mlog(ML_ERROR, "Another case of recursive locking:\n");
1193 dump_stack();
1194 }
1195 inode_locked = 1;
1196
1197 if (size_change) {
1198 status = inode_newsize_ok(inode, attr->ia_size);
1199 if (status)
1200 goto bail_unlock;
1201
1202 if (i_size_read(inode) >= attr->ia_size) {
1203 if (ocfs2_should_order_data(inode)) {
1204 status = ocfs2_begin_ordered_truncate(inode,
1205 attr->ia_size);
1206 if (status)
1207 goto bail_unlock;
1208 }
1209 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1210 } else
1211 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1212 if (status < 0) {
1213 if (status != -ENOSPC)
1214 mlog_errno(status);
1215 status = -ENOSPC;
1216 goto bail_unlock;
1217 }
1218 }
1219
1220 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1221 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1222 /*
1223 * Gather pointers to quota structures so that allocation /
1224 * freeing of quota structures happens here and not inside
1225 * dquot_transfer() where we have problems with lock ordering
1226 */
1227 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1228 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1229 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1230 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1231 if (IS_ERR(transfer_to[USRQUOTA])) {
1232 status = PTR_ERR(transfer_to[USRQUOTA]);
1233 transfer_to[USRQUOTA] = NULL;
1234 goto bail_unlock;
1235 }
1236 }
1237 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1238 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1239 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1240 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1241 if (IS_ERR(transfer_to[GRPQUOTA])) {
1242 status = PTR_ERR(transfer_to[GRPQUOTA]);
1243 transfer_to[GRPQUOTA] = NULL;
1244 goto bail_unlock;
1245 }
1246 }
1247 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1248 2 * ocfs2_quota_trans_credits(sb));
1249 if (IS_ERR(handle)) {
1250 status = PTR_ERR(handle);
1251 mlog_errno(status);
1252 goto bail_unlock;
1253 }
1254 status = __dquot_transfer(inode, transfer_to);
1255 if (status < 0)
1256 goto bail_commit;
1257 } else {
1258 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1259 if (IS_ERR(handle)) {
1260 status = PTR_ERR(handle);
1261 mlog_errno(status);
1262 goto bail_unlock;
1263 }
1264 }
1265
1266 setattr_copy(inode, attr);
1267 mark_inode_dirty(inode);
1268
1269 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1270 if (status < 0)
1271 mlog_errno(status);
1272
1273bail_commit:
1274 ocfs2_commit_trans(osb, handle);
1275bail_unlock:
1276 if (status && inode_locked) {
1277 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1278 inode_locked = 0;
1279 }
1280bail_unlock_rw:
1281 if (size_change)
1282 ocfs2_rw_unlock(inode, 1);
1283bail:
1284
1285 /* Release quota pointers in case we acquired them */
1286 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1287 dqput(transfer_to[qtype]);
1288
1289 if (!status && attr->ia_valid & ATTR_MODE) {
1290 status = ocfs2_acl_chmod(inode, bh);
1291 if (status < 0)
1292 mlog_errno(status);
1293 }
1294 if (inode_locked)
1295 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1296
1297 brelse(bh);
1298 return status;
1299}
1300
1301int ocfs2_getattr(const struct path *path, struct kstat *stat,
1302 u32 request_mask, unsigned int flags)
1303{
1304 struct inode *inode = d_inode(path->dentry);
1305 struct super_block *sb = path->dentry->d_sb;
1306 struct ocfs2_super *osb = sb->s_fs_info;
1307 int err;
1308
1309 err = ocfs2_inode_revalidate(path->dentry);
1310 if (err) {
1311 if (err != -ENOENT)
1312 mlog_errno(err);
1313 goto bail;
1314 }
1315
1316 generic_fillattr(inode, stat);
1317 /*
1318 * If there is inline data in the inode, the inode will normally not
1319 * have data blocks allocated (it may have an external xattr block).
1320 * Report at least one sector for such files, so tools like tar, rsync,
1321 * others don't incorrectly think the file is completely sparse.
1322 */
1323 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1324 stat->blocks += (stat->size + 511)>>9;
1325
1326 /* We set the blksize from the cluster size for performance */
1327 stat->blksize = osb->s_clustersize;
1328
1329bail:
1330 return err;
1331}
1332
1333int ocfs2_permission(struct inode *inode, int mask)
1334{
1335 int ret, had_lock;
1336 struct ocfs2_lock_holder oh;
1337
1338 if (mask & MAY_NOT_BLOCK)
1339 return -ECHILD;
1340
1341 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1342 if (had_lock < 0) {
1343 ret = had_lock;
1344 goto out;
1345 } else if (had_lock) {
1346 /* See comments in ocfs2_setattr() for details.
1347 * The call chain of this case could be:
1348 * do_sys_open()
1349 * may_open()
1350 * inode_permission()
1351 * ocfs2_permission()
1352 * ocfs2_iop_get_acl()
1353 */
1354 mlog(ML_ERROR, "Another case of recursive locking:\n");
1355 dump_stack();
1356 }
1357
1358 ret = generic_permission(inode, mask);
1359
1360 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1361out:
1362 return ret;
1363}
1364
1365static int __ocfs2_write_remove_suid(struct inode *inode,
1366 struct buffer_head *bh)
1367{
1368 int ret;
1369 handle_t *handle;
1370 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1371 struct ocfs2_dinode *di;
1372
1373 trace_ocfs2_write_remove_suid(
1374 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1375 inode->i_mode);
1376
1377 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1378 if (IS_ERR(handle)) {
1379 ret = PTR_ERR(handle);
1380 mlog_errno(ret);
1381 goto out;
1382 }
1383
1384 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1385 OCFS2_JOURNAL_ACCESS_WRITE);
1386 if (ret < 0) {
1387 mlog_errno(ret);
1388 goto out_trans;
1389 }
1390
1391 inode->i_mode &= ~S_ISUID;
1392 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1393 inode->i_mode &= ~S_ISGID;
1394
1395 di = (struct ocfs2_dinode *) bh->b_data;
1396 di->i_mode = cpu_to_le16(inode->i_mode);
1397 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1398
1399 ocfs2_journal_dirty(handle, bh);
1400
1401out_trans:
1402 ocfs2_commit_trans(osb, handle);
1403out:
1404 return ret;
1405}
1406
1407static int ocfs2_write_remove_suid(struct inode *inode)
1408{
1409 int ret;
1410 struct buffer_head *bh = NULL;
1411
1412 ret = ocfs2_read_inode_block(inode, &bh);
1413 if (ret < 0) {
1414 mlog_errno(ret);
1415 goto out;
1416 }
1417
1418 ret = __ocfs2_write_remove_suid(inode, bh);
1419out:
1420 brelse(bh);
1421 return ret;
1422}
1423
1424/*
1425 * Allocate enough extents to cover the region starting at byte offset
1426 * start for len bytes. Existing extents are skipped, any extents
1427 * added are marked as "unwritten".
1428 */
1429static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1430 u64 start, u64 len)
1431{
1432 int ret;
1433 u32 cpos, phys_cpos, clusters, alloc_size;
1434 u64 end = start + len;
1435 struct buffer_head *di_bh = NULL;
1436
1437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1438 ret = ocfs2_read_inode_block(inode, &di_bh);
1439 if (ret) {
1440 mlog_errno(ret);
1441 goto out;
1442 }
1443
1444 /*
1445 * Nothing to do if the requested reservation range
1446 * fits within the inode.
1447 */
1448 if (ocfs2_size_fits_inline_data(di_bh, end))
1449 goto out;
1450
1451 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1452 if (ret) {
1453 mlog_errno(ret);
1454 goto out;
1455 }
1456 }
1457
1458 /*
1459 * We consider both start and len to be inclusive.
1460 */
1461 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1462 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1463 clusters -= cpos;
1464
1465 while (clusters) {
1466 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1467 &alloc_size, NULL);
1468 if (ret) {
1469 mlog_errno(ret);
1470 goto out;
1471 }
1472
1473 /*
1474 * Hole or existing extent len can be arbitrary, so
1475 * cap it to our own allocation request.
1476 */
1477 if (alloc_size > clusters)
1478 alloc_size = clusters;
1479
1480 if (phys_cpos) {
1481 /*
1482 * We already have an allocation at this
1483 * region so we can safely skip it.
1484 */
1485 goto next;
1486 }
1487
1488 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1489 if (ret) {
1490 if (ret != -ENOSPC)
1491 mlog_errno(ret);
1492 goto out;
1493 }
1494
1495next:
1496 cpos += alloc_size;
1497 clusters -= alloc_size;
1498 }
1499
1500 ret = 0;
1501out:
1502
1503 brelse(di_bh);
1504 return ret;
1505}
1506
1507/*
1508 * Truncate a byte range, avoiding pages within partial clusters. This
1509 * preserves those pages for the zeroing code to write to.
1510 */
1511static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1512 u64 byte_len)
1513{
1514 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1515 loff_t start, end;
1516 struct address_space *mapping = inode->i_mapping;
1517
1518 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1519 end = byte_start + byte_len;
1520 end = end & ~(osb->s_clustersize - 1);
1521
1522 if (start < end) {
1523 unmap_mapping_range(mapping, start, end - start, 0);
1524 truncate_inode_pages_range(mapping, start, end - 1);
1525 }
1526}
1527
1528static int ocfs2_zero_partial_clusters(struct inode *inode,
1529 u64 start, u64 len)
1530{
1531 int ret = 0;
1532 u64 tmpend = 0;
1533 u64 end = start + len;
1534 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1535 unsigned int csize = osb->s_clustersize;
1536 handle_t *handle;
1537
1538 /*
1539 * The "start" and "end" values are NOT necessarily part of
1540 * the range whose allocation is being deleted. Rather, this
1541 * is what the user passed in with the request. We must zero
1542 * partial clusters here. There's no need to worry about
1543 * physical allocation - the zeroing code knows to skip holes.
1544 */
1545 trace_ocfs2_zero_partial_clusters(
1546 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1547 (unsigned long long)start, (unsigned long long)end);
1548
1549 /*
1550 * If both edges are on a cluster boundary then there's no
1551 * zeroing required as the region is part of the allocation to
1552 * be truncated.
1553 */
1554 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1555 goto out;
1556
1557 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1558 if (IS_ERR(handle)) {
1559 ret = PTR_ERR(handle);
1560 mlog_errno(ret);
1561 goto out;
1562 }
1563
1564 /*
1565 * If start is on a cluster boundary and end is somewhere in another
1566 * cluster, we have not COWed the cluster starting at start, unless
1567 * end is also within the same cluster. So, in this case, we skip this
1568 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1569 * to the next one.
1570 */
1571 if ((start & (csize - 1)) != 0) {
1572 /*
1573 * We want to get the byte offset of the end of the 1st
1574 * cluster.
1575 */
1576 tmpend = (u64)osb->s_clustersize +
1577 (start & ~(osb->s_clustersize - 1));
1578 if (tmpend > end)
1579 tmpend = end;
1580
1581 trace_ocfs2_zero_partial_clusters_range1(
1582 (unsigned long long)start,
1583 (unsigned long long)tmpend);
1584
1585 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1586 tmpend);
1587 if (ret)
1588 mlog_errno(ret);
1589 }
1590
1591 if (tmpend < end) {
1592 /*
1593 * This may make start and end equal, but the zeroing
1594 * code will skip any work in that case so there's no
1595 * need to catch it up here.
1596 */
1597 start = end & ~(osb->s_clustersize - 1);
1598
1599 trace_ocfs2_zero_partial_clusters_range2(
1600 (unsigned long long)start, (unsigned long long)end);
1601
1602 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1603 if (ret)
1604 mlog_errno(ret);
1605 }
1606 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1607
1608 ocfs2_commit_trans(osb, handle);
1609out:
1610 return ret;
1611}
1612
1613static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1614{
1615 int i;
1616 struct ocfs2_extent_rec *rec = NULL;
1617
1618 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1619
1620 rec = &el->l_recs[i];
1621
1622 if (le32_to_cpu(rec->e_cpos) < pos)
1623 break;
1624 }
1625
1626 return i;
1627}
1628
1629/*
1630 * Helper to calculate the punching pos and length in one run, we handle the
1631 * following three cases in order:
1632 *
1633 * - remove the entire record
1634 * - remove a partial record
1635 * - no record needs to be removed (hole-punching completed)
1636*/
1637static void ocfs2_calc_trunc_pos(struct inode *inode,
1638 struct ocfs2_extent_list *el,
1639 struct ocfs2_extent_rec *rec,
1640 u32 trunc_start, u32 *trunc_cpos,
1641 u32 *trunc_len, u32 *trunc_end,
1642 u64 *blkno, int *done)
1643{
1644 int ret = 0;
1645 u32 coff, range;
1646
1647 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1648
1649 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1650 /*
1651 * remove an entire extent record.
1652 */
1653 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1654 /*
1655 * Skip holes if any.
1656 */
1657 if (range < *trunc_end)
1658 *trunc_end = range;
1659 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1660 *blkno = le64_to_cpu(rec->e_blkno);
1661 *trunc_end = le32_to_cpu(rec->e_cpos);
1662 } else if (range > trunc_start) {
1663 /*
1664 * remove a partial extent record, which means we're
1665 * removing the last extent record.
1666 */
1667 *trunc_cpos = trunc_start;
1668 /*
1669 * skip hole if any.
1670 */
1671 if (range < *trunc_end)
1672 *trunc_end = range;
1673 *trunc_len = *trunc_end - trunc_start;
1674 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1675 *blkno = le64_to_cpu(rec->e_blkno) +
1676 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1677 *trunc_end = trunc_start;
1678 } else {
1679 /*
1680 * It may have two following possibilities:
1681 *
1682 * - last record has been removed
1683 * - trunc_start was within a hole
1684 *
1685 * both two cases mean the completion of hole punching.
1686 */
1687 ret = 1;
1688 }
1689
1690 *done = ret;
1691}
1692
1693int ocfs2_remove_inode_range(struct inode *inode,
1694 struct buffer_head *di_bh, u64 byte_start,
1695 u64 byte_len)
1696{
1697 int ret = 0, flags = 0, done = 0, i;
1698 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1699 u32 cluster_in_el;
1700 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1701 struct ocfs2_cached_dealloc_ctxt dealloc;
1702 struct address_space *mapping = inode->i_mapping;
1703 struct ocfs2_extent_tree et;
1704 struct ocfs2_path *path = NULL;
1705 struct ocfs2_extent_list *el = NULL;
1706 struct ocfs2_extent_rec *rec = NULL;
1707 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1708 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1709
1710 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1711 ocfs2_init_dealloc_ctxt(&dealloc);
1712
1713 trace_ocfs2_remove_inode_range(
1714 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1715 (unsigned long long)byte_start,
1716 (unsigned long long)byte_len);
1717
1718 if (byte_len == 0)
1719 return 0;
1720
1721 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1722 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1723 byte_start + byte_len, 0);
1724 if (ret) {
1725 mlog_errno(ret);
1726 goto out;
1727 }
1728 /*
1729 * There's no need to get fancy with the page cache
1730 * truncate of an inline-data inode. We're talking
1731 * about less than a page here, which will be cached
1732 * in the dinode buffer anyway.
1733 */
1734 unmap_mapping_range(mapping, 0, 0, 0);
1735 truncate_inode_pages(mapping, 0);
1736 goto out;
1737 }
1738
1739 /*
1740 * For reflinks, we may need to CoW 2 clusters which might be
1741 * partially zero'd later, if hole's start and end offset were
1742 * within one cluster(means is not exactly aligned to clustersize).
1743 */
1744
1745 if (ocfs2_is_refcount_inode(inode)) {
1746 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1750 }
1751
1752 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1753 if (ret) {
1754 mlog_errno(ret);
1755 goto out;
1756 }
1757 }
1758
1759 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1760 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1761 cluster_in_el = trunc_end;
1762
1763 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1764 if (ret) {
1765 mlog_errno(ret);
1766 goto out;
1767 }
1768
1769 path = ocfs2_new_path_from_et(&et);
1770 if (!path) {
1771 ret = -ENOMEM;
1772 mlog_errno(ret);
1773 goto out;
1774 }
1775
1776 while (trunc_end > trunc_start) {
1777
1778 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1779 cluster_in_el);
1780 if (ret) {
1781 mlog_errno(ret);
1782 goto out;
1783 }
1784
1785 el = path_leaf_el(path);
1786
1787 i = ocfs2_find_rec(el, trunc_end);
1788 /*
1789 * Need to go to previous extent block.
1790 */
1791 if (i < 0) {
1792 if (path->p_tree_depth == 0)
1793 break;
1794
1795 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1796 path,
1797 &cluster_in_el);
1798 if (ret) {
1799 mlog_errno(ret);
1800 goto out;
1801 }
1802
1803 /*
1804 * We've reached the leftmost extent block,
1805 * it's safe to leave.
1806 */
1807 if (cluster_in_el == 0)
1808 break;
1809
1810 /*
1811 * The 'pos' searched for previous extent block is
1812 * always one cluster less than actual trunc_end.
1813 */
1814 trunc_end = cluster_in_el + 1;
1815
1816 ocfs2_reinit_path(path, 1);
1817
1818 continue;
1819
1820 } else
1821 rec = &el->l_recs[i];
1822
1823 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1824 &trunc_len, &trunc_end, &blkno, &done);
1825 if (done)
1826 break;
1827
1828 flags = rec->e_flags;
1829 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1830
1831 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1832 phys_cpos, trunc_len, flags,
1833 &dealloc, refcount_loc, false);
1834 if (ret < 0) {
1835 mlog_errno(ret);
1836 goto out;
1837 }
1838
1839 cluster_in_el = trunc_end;
1840
1841 ocfs2_reinit_path(path, 1);
1842 }
1843
1844 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1845
1846out:
1847 ocfs2_free_path(path);
1848 ocfs2_schedule_truncate_log_flush(osb, 1);
1849 ocfs2_run_deallocs(osb, &dealloc);
1850
1851 return ret;
1852}
1853
1854/*
1855 * Parts of this function taken from xfs_change_file_space()
1856 */
1857static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1858 loff_t f_pos, unsigned int cmd,
1859 struct ocfs2_space_resv *sr,
1860 int change_size)
1861{
1862 int ret;
1863 s64 llen;
1864 loff_t size;
1865 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1866 struct buffer_head *di_bh = NULL;
1867 handle_t *handle;
1868 unsigned long long max_off = inode->i_sb->s_maxbytes;
1869
1870 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1871 return -EROFS;
1872
1873 inode_lock(inode);
1874
1875 /*
1876 * This prevents concurrent writes on other nodes
1877 */
1878 ret = ocfs2_rw_lock(inode, 1);
1879 if (ret) {
1880 mlog_errno(ret);
1881 goto out;
1882 }
1883
1884 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1885 if (ret) {
1886 mlog_errno(ret);
1887 goto out_rw_unlock;
1888 }
1889
1890 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1891 ret = -EPERM;
1892 goto out_inode_unlock;
1893 }
1894
1895 switch (sr->l_whence) {
1896 case 0: /*SEEK_SET*/
1897 break;
1898 case 1: /*SEEK_CUR*/
1899 sr->l_start += f_pos;
1900 break;
1901 case 2: /*SEEK_END*/
1902 sr->l_start += i_size_read(inode);
1903 break;
1904 default:
1905 ret = -EINVAL;
1906 goto out_inode_unlock;
1907 }
1908 sr->l_whence = 0;
1909
1910 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1911
1912 if (sr->l_start < 0
1913 || sr->l_start > max_off
1914 || (sr->l_start + llen) < 0
1915 || (sr->l_start + llen) > max_off) {
1916 ret = -EINVAL;
1917 goto out_inode_unlock;
1918 }
1919 size = sr->l_start + sr->l_len;
1920
1921 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1922 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1923 if (sr->l_len <= 0) {
1924 ret = -EINVAL;
1925 goto out_inode_unlock;
1926 }
1927 }
1928
1929 if (file && should_remove_suid(file->f_path.dentry)) {
1930 ret = __ocfs2_write_remove_suid(inode, di_bh);
1931 if (ret) {
1932 mlog_errno(ret);
1933 goto out_inode_unlock;
1934 }
1935 }
1936
1937 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1938 switch (cmd) {
1939 case OCFS2_IOC_RESVSP:
1940 case OCFS2_IOC_RESVSP64:
1941 /*
1942 * This takes unsigned offsets, but the signed ones we
1943 * pass have been checked against overflow above.
1944 */
1945 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1946 sr->l_len);
1947 break;
1948 case OCFS2_IOC_UNRESVSP:
1949 case OCFS2_IOC_UNRESVSP64:
1950 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1951 sr->l_len);
1952 break;
1953 default:
1954 ret = -EINVAL;
1955 }
1956 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1957 if (ret) {
1958 mlog_errno(ret);
1959 goto out_inode_unlock;
1960 }
1961
1962 /*
1963 * We update c/mtime for these changes
1964 */
1965 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1966 if (IS_ERR(handle)) {
1967 ret = PTR_ERR(handle);
1968 mlog_errno(ret);
1969 goto out_inode_unlock;
1970 }
1971
1972 if (change_size && i_size_read(inode) < size)
1973 i_size_write(inode, size);
1974
1975 inode->i_ctime = inode->i_mtime = current_time(inode);
1976 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1977 if (ret < 0)
1978 mlog_errno(ret);
1979
1980 if (file && (file->f_flags & O_SYNC))
1981 handle->h_sync = 1;
1982
1983 ocfs2_commit_trans(osb, handle);
1984
1985out_inode_unlock:
1986 brelse(di_bh);
1987 ocfs2_inode_unlock(inode, 1);
1988out_rw_unlock:
1989 ocfs2_rw_unlock(inode, 1);
1990
1991out:
1992 inode_unlock(inode);
1993 return ret;
1994}
1995
1996int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1997 struct ocfs2_space_resv *sr)
1998{
1999 struct inode *inode = file_inode(file);
2000 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2001 int ret;
2002
2003 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2004 !ocfs2_writes_unwritten_extents(osb))
2005 return -ENOTTY;
2006 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2007 !ocfs2_sparse_alloc(osb))
2008 return -ENOTTY;
2009
2010 if (!S_ISREG(inode->i_mode))
2011 return -EINVAL;
2012
2013 if (!(file->f_mode & FMODE_WRITE))
2014 return -EBADF;
2015
2016 ret = mnt_want_write_file(file);
2017 if (ret)
2018 return ret;
2019 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2020 mnt_drop_write_file(file);
2021 return ret;
2022}
2023
2024static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2025 loff_t len)
2026{
2027 struct inode *inode = file_inode(file);
2028 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2029 struct ocfs2_space_resv sr;
2030 int change_size = 1;
2031 int cmd = OCFS2_IOC_RESVSP64;
2032
2033 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2034 return -EOPNOTSUPP;
2035 if (!ocfs2_writes_unwritten_extents(osb))
2036 return -EOPNOTSUPP;
2037
2038 if (mode & FALLOC_FL_KEEP_SIZE)
2039 change_size = 0;
2040
2041 if (mode & FALLOC_FL_PUNCH_HOLE)
2042 cmd = OCFS2_IOC_UNRESVSP64;
2043
2044 sr.l_whence = 0;
2045 sr.l_start = (s64)offset;
2046 sr.l_len = (s64)len;
2047
2048 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2049 change_size);
2050}
2051
2052int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2053 size_t count)
2054{
2055 int ret = 0;
2056 unsigned int extent_flags;
2057 u32 cpos, clusters, extent_len, phys_cpos;
2058 struct super_block *sb = inode->i_sb;
2059
2060 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2061 !ocfs2_is_refcount_inode(inode) ||
2062 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2063 return 0;
2064
2065 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2066 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2067
2068 while (clusters) {
2069 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2070 &extent_flags);
2071 if (ret < 0) {
2072 mlog_errno(ret);
2073 goto out;
2074 }
2075
2076 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2077 ret = 1;
2078 break;
2079 }
2080
2081 if (extent_len > clusters)
2082 extent_len = clusters;
2083
2084 clusters -= extent_len;
2085 cpos += extent_len;
2086 }
2087out:
2088 return ret;
2089}
2090
2091static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2092{
2093 int blockmask = inode->i_sb->s_blocksize - 1;
2094 loff_t final_size = pos + count;
2095
2096 if ((pos & blockmask) || (final_size & blockmask))
2097 return 1;
2098 return 0;
2099}
2100
2101static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2102 struct buffer_head **di_bh,
2103 int meta_level,
2104 int write_sem,
2105 int wait)
2106{
2107 int ret = 0;
2108
2109 if (wait)
2110 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2111 else
2112 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2113 if (ret < 0)
2114 goto out;
2115
2116 if (wait) {
2117 if (write_sem)
2118 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2119 else
2120 down_read(&OCFS2_I(inode)->ip_alloc_sem);
2121 } else {
2122 if (write_sem)
2123 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2124 else
2125 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2126
2127 if (!ret) {
2128 ret = -EAGAIN;
2129 goto out_unlock;
2130 }
2131 }
2132
2133 return ret;
2134
2135out_unlock:
2136 brelse(*di_bh);
2137 *di_bh = NULL;
2138 ocfs2_inode_unlock(inode, meta_level);
2139out:
2140 return ret;
2141}
2142
2143static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2144 struct buffer_head **di_bh,
2145 int meta_level,
2146 int write_sem)
2147{
2148 if (write_sem)
2149 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2150 else
2151 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2152
2153 brelse(*di_bh);
2154 *di_bh = NULL;
2155
2156 if (meta_level >= 0)
2157 ocfs2_inode_unlock(inode, meta_level);
2158}
2159
2160static int ocfs2_prepare_inode_for_write(struct file *file,
2161 loff_t pos, size_t count, int wait)
2162{
2163 int ret = 0, meta_level = 0, overwrite_io = 0;
2164 int write_sem = 0;
2165 struct dentry *dentry = file->f_path.dentry;
2166 struct inode *inode = d_inode(dentry);
2167 struct buffer_head *di_bh = NULL;
2168 u32 cpos;
2169 u32 clusters;
2170
2171 /*
2172 * We start with a read level meta lock and only jump to an ex
2173 * if we need to make modifications here.
2174 */
2175 for(;;) {
2176 ret = ocfs2_inode_lock_for_extent_tree(inode,
2177 &di_bh,
2178 meta_level,
2179 write_sem,
2180 wait);
2181 if (ret < 0) {
2182 if (ret != -EAGAIN)
2183 mlog_errno(ret);
2184 goto out;
2185 }
2186
2187 /*
2188 * Check if IO will overwrite allocated blocks in case
2189 * IOCB_NOWAIT flag is set.
2190 */
2191 if (!wait && !overwrite_io) {
2192 overwrite_io = 1;
2193
2194 ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2195 if (ret < 0) {
2196 if (ret != -EAGAIN)
2197 mlog_errno(ret);
2198 goto out_unlock;
2199 }
2200 }
2201
2202 /* Clear suid / sgid if necessary. We do this here
2203 * instead of later in the write path because
2204 * remove_suid() calls ->setattr without any hint that
2205 * we may have already done our cluster locking. Since
2206 * ocfs2_setattr() *must* take cluster locks to
2207 * proceed, this will lead us to recursively lock the
2208 * inode. There's also the dinode i_size state which
2209 * can be lost via setattr during extending writes (we
2210 * set inode->i_size at the end of a write. */
2211 if (should_remove_suid(dentry)) {
2212 if (meta_level == 0) {
2213 ocfs2_inode_unlock_for_extent_tree(inode,
2214 &di_bh,
2215 meta_level,
2216 write_sem);
2217 meta_level = 1;
2218 continue;
2219 }
2220
2221 ret = ocfs2_write_remove_suid(inode);
2222 if (ret < 0) {
2223 mlog_errno(ret);
2224 goto out_unlock;
2225 }
2226 }
2227
2228 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2229 if (ret == 1) {
2230 ocfs2_inode_unlock_for_extent_tree(inode,
2231 &di_bh,
2232 meta_level,
2233 write_sem);
2234 meta_level = 1;
2235 write_sem = 1;
2236 ret = ocfs2_inode_lock_for_extent_tree(inode,
2237 &di_bh,
2238 meta_level,
2239 write_sem,
2240 wait);
2241 if (ret < 0) {
2242 if (ret != -EAGAIN)
2243 mlog_errno(ret);
2244 goto out;
2245 }
2246
2247 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2248 clusters =
2249 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2250 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2251 }
2252
2253 if (ret < 0) {
2254 if (ret != -EAGAIN)
2255 mlog_errno(ret);
2256 goto out_unlock;
2257 }
2258
2259 break;
2260 }
2261
2262out_unlock:
2263 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2264 pos, count, wait);
2265
2266 ocfs2_inode_unlock_for_extent_tree(inode,
2267 &di_bh,
2268 meta_level,
2269 write_sem);
2270
2271out:
2272 return ret;
2273}
2274
2275static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2276 struct iov_iter *from)
2277{
2278 int rw_level;
2279 ssize_t written = 0;
2280 ssize_t ret;
2281 size_t count = iov_iter_count(from);
2282 struct file *file = iocb->ki_filp;
2283 struct inode *inode = file_inode(file);
2284 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2285 int full_coherency = !(osb->s_mount_opt &
2286 OCFS2_MOUNT_COHERENCY_BUFFERED);
2287 void *saved_ki_complete = NULL;
2288 int append_write = ((iocb->ki_pos + count) >=
2289 i_size_read(inode) ? 1 : 0);
2290 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2291 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2292
2293 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2294 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2295 file->f_path.dentry->d_name.len,
2296 file->f_path.dentry->d_name.name,
2297 (unsigned int)from->nr_segs); /* GRRRRR */
2298
2299 if (!direct_io && nowait)
2300 return -EOPNOTSUPP;
2301
2302 if (count == 0)
2303 return 0;
2304
2305 if (nowait) {
2306 if (!inode_trylock(inode))
2307 return -EAGAIN;
2308 } else
2309 inode_lock(inode);
2310
2311 /*
2312 * Concurrent O_DIRECT writes are allowed with
2313 * mount_option "coherency=buffered".
2314 * For append write, we must take rw EX.
2315 */
2316 rw_level = (!direct_io || full_coherency || append_write);
2317
2318 if (nowait)
2319 ret = ocfs2_try_rw_lock(inode, rw_level);
2320 else
2321 ret = ocfs2_rw_lock(inode, rw_level);
2322 if (ret < 0) {
2323 if (ret != -EAGAIN)
2324 mlog_errno(ret);
2325 goto out_mutex;
2326 }
2327
2328 /*
2329 * O_DIRECT writes with "coherency=full" need to take EX cluster
2330 * inode_lock to guarantee coherency.
2331 */
2332 if (direct_io && full_coherency) {
2333 /*
2334 * We need to take and drop the inode lock to force
2335 * other nodes to drop their caches. Buffered I/O
2336 * already does this in write_begin().
2337 */
2338 if (nowait)
2339 ret = ocfs2_try_inode_lock(inode, NULL, 1);
2340 else
2341 ret = ocfs2_inode_lock(inode, NULL, 1);
2342 if (ret < 0) {
2343 if (ret != -EAGAIN)
2344 mlog_errno(ret);
2345 goto out;
2346 }
2347
2348 ocfs2_inode_unlock(inode, 1);
2349 }
2350
2351 ret = generic_write_checks(iocb, from);
2352 if (ret <= 0) {
2353 if (ret)
2354 mlog_errno(ret);
2355 goto out;
2356 }
2357 count = ret;
2358
2359 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2360 if (ret < 0) {
2361 if (ret != -EAGAIN)
2362 mlog_errno(ret);
2363 goto out;
2364 }
2365
2366 if (direct_io && !is_sync_kiocb(iocb) &&
2367 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2368 /*
2369 * Make it a sync io if it's an unaligned aio.
2370 */
2371 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2372 }
2373
2374 /* communicate with ocfs2_dio_end_io */
2375 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2376
2377 written = __generic_file_write_iter(iocb, from);
2378 /* buffered aio wouldn't have proper lock coverage today */
2379 BUG_ON(written == -EIOCBQUEUED && !direct_io);
2380
2381 /*
2382 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2383 * function pointer which is called when o_direct io completes so that
2384 * it can unlock our rw lock.
2385 * Unfortunately there are error cases which call end_io and others
2386 * that don't. so we don't have to unlock the rw_lock if either an
2387 * async dio is going to do it in the future or an end_io after an
2388 * error has already done it.
2389 */
2390 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2391 rw_level = -1;
2392 }
2393
2394 if (unlikely(written <= 0))
2395 goto out;
2396
2397 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2398 IS_SYNC(inode)) {
2399 ret = filemap_fdatawrite_range(file->f_mapping,
2400 iocb->ki_pos - written,
2401 iocb->ki_pos - 1);
2402 if (ret < 0)
2403 written = ret;
2404
2405 if (!ret) {
2406 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2407 if (ret < 0)
2408 written = ret;
2409 }
2410
2411 if (!ret)
2412 ret = filemap_fdatawait_range(file->f_mapping,
2413 iocb->ki_pos - written,
2414 iocb->ki_pos - 1);
2415 }
2416
2417out:
2418 if (saved_ki_complete)
2419 xchg(&iocb->ki_complete, saved_ki_complete);
2420
2421 if (rw_level != -1)
2422 ocfs2_rw_unlock(inode, rw_level);
2423
2424out_mutex:
2425 inode_unlock(inode);
2426
2427 if (written)
2428 ret = written;
2429 return ret;
2430}
2431
2432static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2433 struct iov_iter *to)
2434{
2435 int ret = 0, rw_level = -1, lock_level = 0;
2436 struct file *filp = iocb->ki_filp;
2437 struct inode *inode = file_inode(filp);
2438 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2439 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2440
2441 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2442 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2443 filp->f_path.dentry->d_name.len,
2444 filp->f_path.dentry->d_name.name,
2445 to->nr_segs); /* GRRRRR */
2446
2447
2448 if (!inode) {
2449 ret = -EINVAL;
2450 mlog_errno(ret);
2451 goto bail;
2452 }
2453
2454 if (!direct_io && nowait)
2455 return -EOPNOTSUPP;
2456
2457 /*
2458 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2459 * need locks to protect pending reads from racing with truncate.
2460 */
2461 if (direct_io) {
2462 if (nowait)
2463 ret = ocfs2_try_rw_lock(inode, 0);
2464 else
2465 ret = ocfs2_rw_lock(inode, 0);
2466
2467 if (ret < 0) {
2468 if (ret != -EAGAIN)
2469 mlog_errno(ret);
2470 goto bail;
2471 }
2472 rw_level = 0;
2473 /* communicate with ocfs2_dio_end_io */
2474 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2475 }
2476
2477 /*
2478 * We're fine letting folks race truncates and extending
2479 * writes with read across the cluster, just like they can
2480 * locally. Hence no rw_lock during read.
2481 *
2482 * Take and drop the meta data lock to update inode fields
2483 * like i_size. This allows the checks down below
2484 * generic_file_read_iter() a chance of actually working.
2485 */
2486 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2487 !nowait);
2488 if (ret < 0) {
2489 if (ret != -EAGAIN)
2490 mlog_errno(ret);
2491 goto bail;
2492 }
2493 ocfs2_inode_unlock(inode, lock_level);
2494
2495 ret = generic_file_read_iter(iocb, to);
2496 trace_generic_file_read_iter_ret(ret);
2497
2498 /* buffered aio wouldn't have proper lock coverage today */
2499 BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2500
2501 /* see ocfs2_file_write_iter */
2502 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2503 rw_level = -1;
2504 }
2505
2506bail:
2507 if (rw_level != -1)
2508 ocfs2_rw_unlock(inode, rw_level);
2509
2510 return ret;
2511}
2512
2513/* Refer generic_file_llseek_unlocked() */
2514static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2515{
2516 struct inode *inode = file->f_mapping->host;
2517 int ret = 0;
2518
2519 inode_lock(inode);
2520
2521 switch (whence) {
2522 case SEEK_SET:
2523 break;
2524 case SEEK_END:
2525 /* SEEK_END requires the OCFS2 inode lock for the file
2526 * because it references the file's size.
2527 */
2528 ret = ocfs2_inode_lock(inode, NULL, 0);
2529 if (ret < 0) {
2530 mlog_errno(ret);
2531 goto out;
2532 }
2533 offset += i_size_read(inode);
2534 ocfs2_inode_unlock(inode, 0);
2535 break;
2536 case SEEK_CUR:
2537 if (offset == 0) {
2538 offset = file->f_pos;
2539 goto out;
2540 }
2541 offset += file->f_pos;
2542 break;
2543 case SEEK_DATA:
2544 case SEEK_HOLE:
2545 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2546 if (ret)
2547 goto out;
2548 break;
2549 default:
2550 ret = -EINVAL;
2551 goto out;
2552 }
2553
2554 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2555
2556out:
2557 inode_unlock(inode);
2558 if (ret)
2559 return ret;
2560 return offset;
2561}
2562
2563static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2564 struct file *file_out, loff_t pos_out,
2565 loff_t len, unsigned int remap_flags)
2566{
2567 struct inode *inode_in = file_inode(file_in);
2568 struct inode *inode_out = file_inode(file_out);
2569 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2570 struct buffer_head *in_bh = NULL, *out_bh = NULL;
2571 bool same_inode = (inode_in == inode_out);
2572 loff_t remapped = 0;
2573 ssize_t ret;
2574
2575 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2576 return -EINVAL;
2577 if (!ocfs2_refcount_tree(osb))
2578 return -EOPNOTSUPP;
2579 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2580 return -EROFS;
2581
2582 /* Lock both files against IO */
2583 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2584 if (ret)
2585 return ret;
2586
2587 /* Check file eligibility and prepare for block sharing. */
2588 ret = -EINVAL;
2589 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2590 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2591 goto out_unlock;
2592
2593 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2594 &len, remap_flags);
2595 if (ret < 0 || len == 0)
2596 goto out_unlock;
2597
2598 /* Lock out changes to the allocation maps and remap. */
2599 down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2600 if (!same_inode)
2601 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2602 SINGLE_DEPTH_NESTING);
2603
2604 /* Zap any page cache for the destination file's range. */
2605 truncate_inode_pages_range(&inode_out->i_data,
2606 round_down(pos_out, PAGE_SIZE),
2607 round_up(pos_out + len, PAGE_SIZE) - 1);
2608
2609 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2610 inode_out, out_bh, pos_out, len);
2611 up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2612 if (!same_inode)
2613 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2614 if (remapped < 0) {
2615 ret = remapped;
2616 mlog_errno(ret);
2617 goto out_unlock;
2618 }
2619
2620 /*
2621 * Empty the extent map so that we may get the right extent
2622 * record from the disk.
2623 */
2624 ocfs2_extent_map_trunc(inode_in, 0);
2625 ocfs2_extent_map_trunc(inode_out, 0);
2626
2627 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2628 if (ret) {
2629 mlog_errno(ret);
2630 goto out_unlock;
2631 }
2632
2633out_unlock:
2634 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2635 return remapped > 0 ? remapped : ret;
2636}
2637
2638const struct inode_operations ocfs2_file_iops = {
2639 .setattr = ocfs2_setattr,
2640 .getattr = ocfs2_getattr,
2641 .permission = ocfs2_permission,
2642 .listxattr = ocfs2_listxattr,
2643 .fiemap = ocfs2_fiemap,
2644 .get_acl = ocfs2_iop_get_acl,
2645 .set_acl = ocfs2_iop_set_acl,
2646};
2647
2648const struct inode_operations ocfs2_special_file_iops = {
2649 .setattr = ocfs2_setattr,
2650 .getattr = ocfs2_getattr,
2651 .permission = ocfs2_permission,
2652 .get_acl = ocfs2_iop_get_acl,
2653 .set_acl = ocfs2_iop_set_acl,
2654};
2655
2656/*
2657 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2658 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2659 */
2660const struct file_operations ocfs2_fops = {
2661 .llseek = ocfs2_file_llseek,
2662 .mmap = ocfs2_mmap,
2663 .fsync = ocfs2_sync_file,
2664 .release = ocfs2_file_release,
2665 .open = ocfs2_file_open,
2666 .read_iter = ocfs2_file_read_iter,
2667 .write_iter = ocfs2_file_write_iter,
2668 .unlocked_ioctl = ocfs2_ioctl,
2669#ifdef CONFIG_COMPAT
2670 .compat_ioctl = ocfs2_compat_ioctl,
2671#endif
2672 .lock = ocfs2_lock,
2673 .flock = ocfs2_flock,
2674 .splice_read = generic_file_splice_read,
2675 .splice_write = iter_file_splice_write,
2676 .fallocate = ocfs2_fallocate,
2677 .remap_file_range = ocfs2_remap_file_range,
2678};
2679
2680const struct file_operations ocfs2_dops = {
2681 .llseek = generic_file_llseek,
2682 .read = generic_read_dir,
2683 .iterate = ocfs2_readdir,
2684 .fsync = ocfs2_sync_file,
2685 .release = ocfs2_dir_release,
2686 .open = ocfs2_dir_open,
2687 .unlocked_ioctl = ocfs2_ioctl,
2688#ifdef CONFIG_COMPAT
2689 .compat_ioctl = ocfs2_compat_ioctl,
2690#endif
2691 .lock = ocfs2_lock,
2692 .flock = ocfs2_flock,
2693};
2694
2695/*
2696 * POSIX-lockless variants of our file_operations.
2697 *
2698 * These will be used if the underlying cluster stack does not support
2699 * posix file locking, if the user passes the "localflocks" mount
2700 * option, or if we have a local-only fs.
2701 *
2702 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2703 * so we still want it in the case of no stack support for
2704 * plocks. Internally, it will do the right thing when asked to ignore
2705 * the cluster.
2706 */
2707const struct file_operations ocfs2_fops_no_plocks = {
2708 .llseek = ocfs2_file_llseek,
2709 .mmap = ocfs2_mmap,
2710 .fsync = ocfs2_sync_file,
2711 .release = ocfs2_file_release,
2712 .open = ocfs2_file_open,
2713 .read_iter = ocfs2_file_read_iter,
2714 .write_iter = ocfs2_file_write_iter,
2715 .unlocked_ioctl = ocfs2_ioctl,
2716#ifdef CONFIG_COMPAT
2717 .compat_ioctl = ocfs2_compat_ioctl,
2718#endif
2719 .flock = ocfs2_flock,
2720 .splice_read = generic_file_splice_read,
2721 .splice_write = iter_file_splice_write,
2722 .fallocate = ocfs2_fallocate,
2723 .remap_file_range = ocfs2_remap_file_range,
2724};
2725
2726const struct file_operations ocfs2_dops_no_plocks = {
2727 .llseek = generic_file_llseek,
2728 .read = generic_read_dir,
2729 .iterate = ocfs2_readdir,
2730 .fsync = ocfs2_sync_file,
2731 .release = ocfs2_dir_release,
2732 .open = ocfs2_dir_open,
2733 .unlocked_ioctl = ocfs2_ioctl,
2734#ifdef CONFIG_COMPAT
2735 .compat_ioctl = ocfs2_compat_ioctl,
2736#endif
2737 .flock = ocfs2_flock,
2738};