Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v3.1
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/slab.h>
  11#include <linux/spinlock.h>
 
  12#include <linux/completion.h>
  13#include <linux/buffer_head.h>
  14#include <linux/pagemap.h>
  15#include <linux/uio.h>
  16#include <linux/blkdev.h>
  17#include <linux/mm.h>
  18#include <linux/mount.h>
  19#include <linux/fs.h>
  20#include <linux/gfs2_ondisk.h>
  21#include <linux/ext2_fs.h>
  22#include <linux/falloc.h>
  23#include <linux/swap.h>
  24#include <linux/crc32.h>
  25#include <linux/writeback.h>
  26#include <asm/uaccess.h>
  27#include <linux/dlm.h>
  28#include <linux/dlm_plock.h>
 
 
  29
  30#include "gfs2.h"
  31#include "incore.h"
  32#include "bmap.h"
 
  33#include "dir.h"
  34#include "glock.h"
  35#include "glops.h"
  36#include "inode.h"
  37#include "log.h"
  38#include "meta_io.h"
  39#include "quota.h"
  40#include "rgrp.h"
  41#include "trans.h"
  42#include "util.h"
  43
  44/**
  45 * gfs2_llseek - seek to a location in a file
  46 * @file: the file
  47 * @offset: the offset
  48 * @origin: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
  49 *
  50 * SEEK_END requires the glock for the file because it references the
  51 * file's size.
  52 *
  53 * Returns: The new offset, or errno
  54 */
  55
  56static loff_t gfs2_llseek(struct file *file, loff_t offset, int origin)
  57{
  58	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
  59	struct gfs2_holder i_gh;
  60	loff_t error;
  61
  62	if (origin == 2) {
 
  63		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
  64					   &i_gh);
  65		if (!error) {
  66			error = generic_file_llseek_unlocked(file, offset, origin);
  67			gfs2_glock_dq_uninit(&i_gh);
  68		}
  69	} else
  70		error = generic_file_llseek_unlocked(file, offset, origin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71
  72	return error;
  73}
  74
  75/**
  76 * gfs2_readdir - Read directory entries from a directory
  77 * @file: The directory to read from
  78 * @dirent: Buffer for dirents
  79 * @filldir: Function used to do the copying
  80 *
  81 * Returns: errno
  82 */
  83
  84static int gfs2_readdir(struct file *file, void *dirent, filldir_t filldir)
  85{
  86	struct inode *dir = file->f_mapping->host;
  87	struct gfs2_inode *dip = GFS2_I(dir);
  88	struct gfs2_holder d_gh;
  89	u64 offset = file->f_pos;
  90	int error;
  91
  92	gfs2_holder_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
  93	error = gfs2_glock_nq(&d_gh);
  94	if (error) {
  95		gfs2_holder_uninit(&d_gh);
  96		return error;
  97	}
  98
  99	error = gfs2_dir_read(dir, &offset, dirent, filldir);
 100
 101	gfs2_glock_dq_uninit(&d_gh);
 102
 103	file->f_pos = offset;
 104
 105	return error;
 106}
 107
 108/**
 109 * fsflags_cvt
 110 * @table: A table of 32 u32 flags
 111 * @val: a 32 bit value to convert
 112 *
 113 * This function can be used to convert between fsflags values and
 114 * GFS2's own flags values.
 115 *
 116 * Returns: the converted flags
 
 117 */
 118static u32 fsflags_cvt(const u32 *table, u32 val)
 119{
 120	u32 res = 0;
 121	while(val) {
 122		if (val & 1)
 123			res |= *table;
 124		table++;
 125		val >>= 1;
 126	}
 127	return res;
 128}
 129
 130static const u32 fsflags_to_gfs2[32] = {
 131	[3] = GFS2_DIF_SYNC,
 132	[4] = GFS2_DIF_IMMUTABLE,
 133	[5] = GFS2_DIF_APPENDONLY,
 134	[7] = GFS2_DIF_NOATIME,
 135	[12] = GFS2_DIF_EXHASH,
 136	[14] = GFS2_DIF_INHERIT_JDATA,
 137};
 138
 139static const u32 gfs2_to_fsflags[32] = {
 140	[gfs2fl_Sync] = FS_SYNC_FL,
 141	[gfs2fl_Immutable] = FS_IMMUTABLE_FL,
 142	[gfs2fl_AppendOnly] = FS_APPEND_FL,
 143	[gfs2fl_NoAtime] = FS_NOATIME_FL,
 144	[gfs2fl_ExHash] = FS_INDEX_FL,
 145	[gfs2fl_InheritJdata] = FS_JOURNAL_DATA_FL,
 146};
 
 
 
 
 
 
 
 147
 148static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
 149{
 150	struct inode *inode = filp->f_path.dentry->d_inode;
 151	struct gfs2_inode *ip = GFS2_I(inode);
 152	struct gfs2_holder gh;
 153	int error;
 154	u32 fsflags;
 155
 156	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 157	error = gfs2_glock_nq(&gh);
 158	if (error)
 159		return error;
 
 
 160
 161	fsflags = fsflags_cvt(gfs2_to_fsflags, ip->i_diskflags);
 162	if (!S_ISDIR(inode->i_mode) && ip->i_diskflags & GFS2_DIF_JDATA)
 163		fsflags |= FS_JOURNAL_DATA_FL;
 164	if (put_user(fsflags, ptr))
 165		error = -EFAULT;
 166
 167	gfs2_glock_dq(&gh);
 
 168	gfs2_holder_uninit(&gh);
 169	return error;
 170}
 171
 172void gfs2_set_inode_flags(struct inode *inode)
 173{
 174	struct gfs2_inode *ip = GFS2_I(inode);
 175	unsigned int flags = inode->i_flags;
 176
 177	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
 178	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
 179		inode->i_flags |= S_NOSEC;
 180	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
 181		flags |= S_IMMUTABLE;
 182	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
 183		flags |= S_APPEND;
 184	if (ip->i_diskflags & GFS2_DIF_NOATIME)
 185		flags |= S_NOATIME;
 186	if (ip->i_diskflags & GFS2_DIF_SYNC)
 187		flags |= S_SYNC;
 188	inode->i_flags = flags;
 189}
 190
 191/* Flags that can be set by user space */
 192#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
 193			     GFS2_DIF_IMMUTABLE|		\
 194			     GFS2_DIF_APPENDONLY|		\
 195			     GFS2_DIF_NOATIME|			\
 196			     GFS2_DIF_SYNC|			\
 197			     GFS2_DIF_SYSTEM|			\
 198			     GFS2_DIF_INHERIT_JDATA)
 199
 200/**
 201 * gfs2_set_flags - set flags on an inode
 202 * @inode: The inode
 203 * @flags: The flags to set
 204 * @mask: Indicates which flags are valid
 
 205 *
 206 */
 207static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
 
 208{
 209	struct inode *inode = filp->f_path.dentry->d_inode;
 210	struct gfs2_inode *ip = GFS2_I(inode);
 211	struct gfs2_sbd *sdp = GFS2_SB(inode);
 212	struct buffer_head *bh;
 213	struct gfs2_holder gh;
 214	int error;
 215	u32 new_flags, flags;
 216
 217	error = mnt_want_write(filp->f_path.mnt);
 218	if (error)
 219		return error;
 220
 221	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 222	if (error)
 223		goto out_drop_write;
 224
 
 
 
 
 
 225	error = -EACCES;
 226	if (!inode_owner_or_capable(inode))
 227		goto out;
 228
 229	error = 0;
 230	flags = ip->i_diskflags;
 231	new_flags = (flags & ~mask) | (reqflags & mask);
 232	if ((new_flags ^ flags) == 0)
 233		goto out;
 234
 235	error = -EINVAL;
 236	if ((new_flags ^ flags) & ~GFS2_FLAGS_USER_SET)
 237		goto out;
 238
 239	error = -EPERM;
 240	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
 241		goto out;
 242	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
 243		goto out;
 244	if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
 245	    !capable(CAP_LINUX_IMMUTABLE))
 246		goto out;
 247	if (!IS_IMMUTABLE(inode)) {
 248		error = gfs2_permission(inode, MAY_WRITE);
 249		if (error)
 250			goto out;
 251	}
 252	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
 253		if (flags & GFS2_DIF_JDATA)
 254			gfs2_log_flush(sdp, ip->i_gl);
 
 
 255		error = filemap_fdatawrite(inode->i_mapping);
 256		if (error)
 257			goto out;
 258		error = filemap_fdatawait(inode->i_mapping);
 259		if (error)
 260			goto out;
 
 
 261	}
 262	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
 263	if (error)
 264		goto out;
 265	error = gfs2_meta_inode_buffer(ip, &bh);
 266	if (error)
 267		goto out_trans_end;
 268	gfs2_trans_add_bh(ip->i_gl, bh, 1);
 
 269	ip->i_diskflags = new_flags;
 270	gfs2_dinode_out(ip, bh->b_data);
 271	brelse(bh);
 272	gfs2_set_inode_flags(inode);
 273	gfs2_set_aops(inode);
 274out_trans_end:
 275	gfs2_trans_end(sdp);
 276out:
 277	gfs2_glock_dq_uninit(&gh);
 278out_drop_write:
 279	mnt_drop_write(filp->f_path.mnt);
 280	return error;
 281}
 282
 283static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
 284{
 285	struct inode *inode = filp->f_path.dentry->d_inode;
 286	u32 fsflags, gfsflags;
 
 
 287
 288	if (get_user(fsflags, ptr))
 289		return -EFAULT;
 290
 291	gfsflags = fsflags_cvt(fsflags_to_gfs2, fsflags);
 292	if (!S_ISDIR(inode->i_mode)) {
 293		if (gfsflags & GFS2_DIF_INHERIT_JDATA)
 294			gfsflags ^= (GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA);
 295		return do_gfs2_set_flags(filp, gfsflags, ~0);
 296	}
 297	return do_gfs2_set_flags(filp, gfsflags, ~GFS2_DIF_JDATA);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298}
 299
 300static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 301{
 302	switch(cmd) {
 303	case FS_IOC_GETFLAGS:
 304		return gfs2_get_flags(filp, (u32 __user *)arg);
 305	case FS_IOC_SETFLAGS:
 306		return gfs2_set_flags(filp, (u32 __user *)arg);
 
 
 
 
 307	}
 
 308	return -ENOTTY;
 309}
 310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311/**
 312 * gfs2_allocate_page_backing - Use bmap to allocate blocks
 313 * @page: The (locked) page to allocate backing for
 
 
 
 
 
 
 314 *
 315 * We try to allocate all the blocks required for the page in
 316 * one go. This might fail for various reasons, so we keep
 317 * trying until all the blocks to back this page are allocated.
 318 * If some of the blocks are already allocated, thats ok too.
 319 */
 320
 321static int gfs2_allocate_page_backing(struct page *page)
 322{
 323	struct inode *inode = page->mapping->host;
 324	struct buffer_head bh;
 325	unsigned long size = PAGE_CACHE_SIZE;
 326	u64 lblock = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327
 328	do {
 329		bh.b_state = 0;
 330		bh.b_size = size;
 331		gfs2_block_map(inode, lblock, &bh, 1);
 332		if (!buffer_mapped(&bh))
 333			return -EIO;
 334		size -= bh.b_size;
 335		lblock += (bh.b_size >> inode->i_blkbits);
 336	} while(size > 0);
 
 
 
 
 337	return 0;
 338}
 339
 340/**
 341 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
 342 * @vma: The virtual memory area
 343 * @page: The page which is about to become writable
 344 *
 345 * When the page becomes writable, we need to ensure that we have
 346 * blocks allocated on disk to back that page.
 347 */
 348
 349static int gfs2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
 350{
 351	struct page *page = vmf->page;
 352	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
 353	struct gfs2_inode *ip = GFS2_I(inode);
 354	struct gfs2_sbd *sdp = GFS2_SB(inode);
 355	unsigned long last_index;
 356	u64 pos = page->index << PAGE_CACHE_SHIFT;
 357	unsigned int data_blocks, ind_blocks, rblocks;
 358	struct gfs2_holder gh;
 359	struct gfs2_alloc *al;
 
 360	int ret;
 361
 
 
 362	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 363	ret = gfs2_glock_nq(&gh);
 364	if (ret)
 365		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
 368	set_bit(GIF_SW_PAGED, &ip->i_flags);
 369
 370	if (!gfs2_write_alloc_required(ip, pos, PAGE_CACHE_SIZE))
 
 
 
 
 
 
 
 
 
 
 
 371		goto out_unlock;
 372	ret = -ENOMEM;
 373	al = gfs2_alloc_get(ip);
 374	if (al == NULL)
 
 375		goto out_unlock;
 376
 377	ret = gfs2_quota_lock_check(ip);
 
 
 378	if (ret)
 379		goto out_alloc_put;
 380	gfs2_write_calc_reserv(ip, PAGE_CACHE_SIZE, &data_blocks, &ind_blocks);
 381	al->al_requested = data_blocks + ind_blocks;
 382	ret = gfs2_inplace_reserve(ip);
 383	if (ret)
 384		goto out_quota_unlock;
 385
 386	rblocks = RES_DINODE + ind_blocks;
 387	if (gfs2_is_jdata(ip))
 388		rblocks += data_blocks ? data_blocks : 1;
 389	if (ind_blocks || data_blocks) {
 390		rblocks += RES_STATFS + RES_QUOTA;
 391		rblocks += gfs2_rg_blocks(al);
 392	}
 393	ret = gfs2_trans_begin(sdp, rblocks, 0);
 394	if (ret)
 395		goto out_trans_fail;
 396
 397	lock_page(page);
 398	ret = -EINVAL;
 399	last_index = ip->i_inode.i_size >> PAGE_CACHE_SHIFT;
 400	if (page->index > last_index)
 401		goto out_unlock_page;
 
 
 
 
 402	ret = 0;
 403	if (!PageUptodate(page) || page->mapping != ip->i_inode.i_mapping)
 404		goto out_unlock_page;
 405	if (gfs2_is_stuffed(ip)) {
 406		ret = gfs2_unstuff_dinode(ip, page);
 407		if (ret)
 408			goto out_unlock_page;
 409	}
 410	ret = gfs2_allocate_page_backing(page);
 411
 412out_unlock_page:
 413	unlock_page(page);
 
 414	gfs2_trans_end(sdp);
 415out_trans_fail:
 416	gfs2_inplace_release(ip);
 417out_quota_unlock:
 418	gfs2_quota_unlock(ip);
 419out_alloc_put:
 420	gfs2_alloc_put(ip);
 421out_unlock:
 422	gfs2_glock_dq(&gh);
 423out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	gfs2_holder_uninit(&gh);
 425	if (ret == -ENOMEM)
 426		ret = VM_FAULT_OOM;
 427	else if (ret)
 428		ret = VM_FAULT_SIGBUS;
 429	return ret;
 430}
 431
 432static const struct vm_operations_struct gfs2_vm_ops = {
 433	.fault = filemap_fault,
 
 434	.page_mkwrite = gfs2_page_mkwrite,
 435};
 436
 437/**
 438 * gfs2_mmap -
 439 * @file: The file to map
 440 * @vma: The VMA which described the mapping
 441 *
 442 * There is no need to get a lock here unless we should be updating
 443 * atime. We ignore any locking errors since the only consequence is
 444 * a missed atime update (which will just be deferred until later).
 445 *
 446 * Returns: 0
 447 */
 448
 449static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
 450{
 451	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 452
 453	if (!(file->f_flags & O_NOATIME) &&
 454	    !IS_NOATIME(&ip->i_inode)) {
 455		struct gfs2_holder i_gh;
 456		int error;
 457
 458		gfs2_holder_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 459		error = gfs2_glock_nq(&i_gh);
 460		if (error == 0) {
 461			file_accessed(file);
 462			gfs2_glock_dq(&i_gh);
 463		}
 464		gfs2_holder_uninit(&i_gh);
 465		if (error)
 466			return error;
 
 
 
 467	}
 468	vma->vm_ops = &gfs2_vm_ops;
 469	vma->vm_flags |= VM_CAN_NONLINEAR;
 470
 471	return 0;
 472}
 473
 474/**
 475 * gfs2_open - open a file
 476 * @inode: the inode to open
 477 * @file: the struct file for this opening
 
 
 
 
 
 478 *
 479 * Returns: errno
 480 */
 481
 482static int gfs2_open(struct inode *inode, struct file *file)
 483{
 484	struct gfs2_inode *ip = GFS2_I(inode);
 485	struct gfs2_holder i_gh;
 486	struct gfs2_file *fp;
 487	int error;
 
 
 
 
 
 
 488
 489	fp = kzalloc(sizeof(struct gfs2_file), GFP_KERNEL);
 490	if (!fp)
 491		return -ENOMEM;
 492
 493	mutex_init(&fp->f_fl_mutex);
 494
 495	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
 496	file->private_data = fp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498	if (S_ISREG(ip->i_inode.i_mode)) {
 499		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 500					   &i_gh);
 501		if (error)
 502			goto fail;
 
 
 503
 504		if (!(file->f_flags & O_LARGEFILE) &&
 505		    i_size_read(inode) > MAX_NON_LFS) {
 506			error = -EOVERFLOW;
 507			goto fail_gunlock;
 508		}
 509
 
 510		gfs2_glock_dq_uninit(&i_gh);
 511	}
 512
 513	return 0;
 514
 515fail_gunlock:
 516	gfs2_glock_dq_uninit(&i_gh);
 517fail:
 518	file->private_data = NULL;
 519	kfree(fp);
 520	return error;
 521}
 522
 523/**
 524 * gfs2_close - called to close a struct file
 525 * @inode: the inode the struct file belongs to
 526 * @file: the struct file being closed
 527 *
 528 * Returns: errno
 529 */
 530
 531static int gfs2_close(struct inode *inode, struct file *file)
 532{
 533	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 534	struct gfs2_file *fp;
 535
 536	fp = file->private_data;
 537	file->private_data = NULL;
 538
 539	if (gfs2_assert_warn(sdp, fp))
 540		return -EIO;
 541
 542	kfree(fp);
 543
 544	return 0;
 545}
 546
 547/**
 548 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 549 * @file: the file that points to the dentry
 550 * @start: the start position in the file to sync
 551 * @end: the end position in the file to sync
 552 * @datasync: set if we can ignore timestamp changes
 553 *
 554 * The VFS will flush data for us. We only need to worry
 555 * about metadata here.
 
 
 
 
 
 
 
 
 556 *
 557 * Returns: errno
 558 */
 559
 560static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
 561		      int datasync)
 562{
 563	struct inode *inode = file->f_mapping->host;
 564	int sync_state = inode->i_state & (I_DIRTY_SYNC|I_DIRTY_DATASYNC);
 
 565	struct gfs2_inode *ip = GFS2_I(inode);
 566	int ret;
 567
 568	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 569	if (ret)
 570		return ret;
 571	mutex_lock(&inode->i_mutex);
 
 572
 
 
 573	if (datasync)
 574		sync_state &= ~I_DIRTY_SYNC;
 575
 576	if (sync_state) {
 577		ret = sync_inode_metadata(inode, 1);
 578		if (ret) {
 579			mutex_unlock(&inode->i_mutex);
 580			return ret;
 581		}
 582		gfs2_ail_flush(ip->i_gl);
 
 
 
 583	}
 584
 585	mutex_unlock(&inode->i_mutex);
 586	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587}
 588
 589/**
 590 * gfs2_file_aio_write - Perform a write to a file
 591 * @iocb: The io context
 592 * @iov: The data to write
 593 * @nr_segs: Number of @iov segments
 594 * @pos: The file position
 595 *
 596 * We have to do a lock/unlock here to refresh the inode size for
 597 * O_APPEND writes, otherwise we can land up writing at the wrong
 598 * offset. There is still a race, but provided the app is using its
 599 * own file locking, this will make O_APPEND work as expected.
 600 *
 601 */
 602
 603static ssize_t gfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
 604				   unsigned long nr_segs, loff_t pos)
 605{
 606	struct file *file = iocb->ki_filp;
 
 
 
 
 607
 608	if (file->f_flags & O_APPEND) {
 609		struct dentry *dentry = file->f_dentry;
 610		struct gfs2_inode *ip = GFS2_I(dentry->d_inode);
 611		struct gfs2_holder gh;
 612		int ret;
 613
 
 614		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 615		if (ret)
 616			return ret;
 617		gfs2_glock_dq_uninit(&gh);
 618	}
 619
 620	return generic_file_aio_write(iocb, iov, nr_segs, pos);
 621}
 622
 623static int empty_write_end(struct page *page, unsigned from,
 624			   unsigned to, int mode)
 625{
 626	struct inode *inode = page->mapping->host;
 627	struct gfs2_inode *ip = GFS2_I(inode);
 628	struct buffer_head *bh;
 629	unsigned offset, blksize = 1 << inode->i_blkbits;
 630	pgoff_t end_index = i_size_read(inode) >> PAGE_CACHE_SHIFT;
 631
 632	zero_user(page, from, to-from);
 633	mark_page_accessed(page);
 634
 635	if (page->index < end_index || !(mode & FALLOC_FL_KEEP_SIZE)) {
 636		if (!gfs2_is_writeback(ip))
 637			gfs2_page_add_databufs(ip, page, from, to);
 638
 639		block_commit_write(page, from, to);
 640		return 0;
 641	}
 642
 643	offset = 0;
 644	bh = page_buffers(page);
 645	while (offset < to) {
 646		if (offset >= from) {
 647			set_buffer_uptodate(bh);
 648			mark_buffer_dirty(bh);
 649			clear_buffer_new(bh);
 650			write_dirty_buffer(bh, WRITE);
 651		}
 652		offset += blksize;
 653		bh = bh->b_this_page;
 654	}
 655
 656	offset = 0;
 657	bh = page_buffers(page);
 658	while (offset < to) {
 659		if (offset >= from) {
 660			wait_on_buffer(bh);
 661			if (!buffer_uptodate(bh))
 662				return -EIO;
 663		}
 664		offset += blksize;
 665		bh = bh->b_this_page;
 666	}
 667	return 0;
 668}
 669
 670static int needs_empty_write(sector_t block, struct inode *inode)
 671{
 672	int error;
 673	struct buffer_head bh_map = { .b_state = 0, .b_blocknr = 0 };
 674
 675	bh_map.b_size = 1 << inode->i_blkbits;
 676	error = gfs2_block_map(inode, block, &bh_map, 0);
 677	if (unlikely(error))
 678		return error;
 679	return !buffer_mapped(&bh_map);
 680}
 681
 682static int write_empty_blocks(struct page *page, unsigned from, unsigned to,
 683			      int mode)
 684{
 685	struct inode *inode = page->mapping->host;
 686	unsigned start, end, next, blksize;
 687	sector_t block = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
 688	int ret;
 689
 690	blksize = 1 << inode->i_blkbits;
 691	next = end = 0;
 692	while (next < from) {
 693		next += blksize;
 694		block++;
 695	}
 696	start = next;
 697	do {
 698		next += blksize;
 699		ret = needs_empty_write(block, inode);
 700		if (unlikely(ret < 0))
 701			return ret;
 702		if (ret == 0) {
 703			if (end) {
 704				ret = __block_write_begin(page, start, end - start,
 705							  gfs2_block_map);
 706				if (unlikely(ret))
 707					return ret;
 708				ret = empty_write_end(page, start, end, mode);
 709				if (unlikely(ret))
 710					return ret;
 711				end = 0;
 712			}
 713			start = next;
 714		}
 715		else
 716			end = next;
 717		block++;
 718	} while (next < to);
 719
 720	if (end) {
 721		ret = __block_write_begin(page, start, end - start, gfs2_block_map);
 722		if (unlikely(ret))
 723			return ret;
 724		ret = empty_write_end(page, start, end, mode);
 725		if (unlikely(ret))
 726			return ret;
 727	}
 728
 729	return 0;
 
 
 730}
 731
 732static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
 733			   int mode)
 734{
 
 735	struct gfs2_inode *ip = GFS2_I(inode);
 
 736	struct buffer_head *dibh;
 737	int error;
 738	u64 start = offset >> PAGE_CACHE_SHIFT;
 739	unsigned int start_offset = offset & ~PAGE_CACHE_MASK;
 740	u64 end = (offset + len - 1) >> PAGE_CACHE_SHIFT;
 741	pgoff_t curr;
 742	struct page *page;
 743	unsigned int end_offset = (offset + len) & ~PAGE_CACHE_MASK;
 744	unsigned int from, to;
 745
 746	if (!end_offset)
 747		end_offset = PAGE_CACHE_SIZE;
 748
 749	error = gfs2_meta_inode_buffer(ip, &dibh);
 750	if (unlikely(error))
 751		goto out;
 752
 753	gfs2_trans_add_bh(ip->i_gl, dibh, 1);
 754
 755	if (gfs2_is_stuffed(ip)) {
 756		error = gfs2_unstuff_dinode(ip, NULL);
 757		if (unlikely(error))
 758			goto out;
 759	}
 760
 761	curr = start;
 762	offset = start << PAGE_CACHE_SHIFT;
 763	from = start_offset;
 764	to = PAGE_CACHE_SIZE;
 765	while (curr <= end) {
 766		page = grab_cache_page_write_begin(inode->i_mapping, curr,
 767						   AOP_FLAG_NOFS);
 768		if (unlikely(!page)) {
 769			error = -ENOMEM;
 770			goto out;
 771		}
 772
 773		if (curr == end)
 774			to = end_offset;
 775		error = write_empty_blocks(page, from, to, mode);
 776		if (!error && offset + to > inode->i_size &&
 777		    !(mode & FALLOC_FL_KEEP_SIZE)) {
 778			i_size_write(inode, offset + to);
 779		}
 780		unlock_page(page);
 781		page_cache_release(page);
 782		if (error)
 783			goto out;
 784		curr++;
 785		offset += PAGE_CACHE_SIZE;
 786		from = 0;
 
 
 
 
 
 
 
 787	}
 788
 789	gfs2_dinode_out(ip, dibh->b_data);
 790	mark_inode_dirty(inode);
 791
 792	brelse(dibh);
 793
 794out:
 
 795	return error;
 796}
 797
 798static void calc_max_reserv(struct gfs2_inode *ip, loff_t max, loff_t *len,
 799			    unsigned int *data_blocks, unsigned int *ind_blocks)
 
 
 
 
 
 
 
 
 
 
 
 
 800{
 
 801	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 802	unsigned int max_blocks = ip->i_alloc->al_rgd->rd_free_clone;
 803	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
 804
 805	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
 806		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
 807		max_data -= tmp;
 808	}
 809	/* This calculation isn't the exact reverse of gfs2_write_calc_reserve,
 810	   so it might end up with fewer data blocks */
 811	if (max_data <= *data_blocks)
 812		return;
 813	*data_blocks = max_data;
 814	*ind_blocks = max_blocks - max_data;
 815	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
 816	if (*len > max) {
 817		*len = max;
 818		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
 819	}
 820}
 821
 822static long gfs2_fallocate(struct file *file, int mode, loff_t offset,
 823			   loff_t len)
 824{
 825	struct inode *inode = file->f_path.dentry->d_inode;
 826	struct gfs2_sbd *sdp = GFS2_SB(inode);
 827	struct gfs2_inode *ip = GFS2_I(inode);
 
 828	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 829	loff_t bytes, max_bytes;
 830	struct gfs2_alloc *al;
 831	int error;
 
 
 832	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
 833	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
 834	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
 835
 836	/* We only support the FALLOC_FL_KEEP_SIZE mode */
 837	if (mode & ~FALLOC_FL_KEEP_SIZE)
 838		return -EOPNOTSUPP;
 839
 840	offset &= bsize_mask;
 841
 842	len = next - offset;
 843	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
 844	if (!bytes)
 845		bytes = UINT_MAX;
 846	bytes &= bsize_mask;
 847	if (bytes == 0)
 848		bytes = sdp->sd_sb.sb_bsize;
 849
 850	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 851	error = gfs2_glock_nq(&ip->i_gh);
 852	if (unlikely(error))
 853		goto out_uninit;
 854
 855	if (!gfs2_write_alloc_required(ip, offset, len))
 856		goto out_unlock;
 857
 858	while (len > 0) {
 859		if (len < bytes)
 860			bytes = len;
 861		al = gfs2_alloc_get(ip);
 862		if (!al) {
 863			error = -ENOMEM;
 864			goto out_unlock;
 865		}
 866
 867		error = gfs2_quota_lock_check(ip);
 868		if (error)
 869			goto out_alloc_put;
 870
 871retry:
 
 
 
 
 
 872		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
 
 873
 874		al->al_requested = data_blocks + ind_blocks;
 875		error = gfs2_inplace_reserve(ip);
 876		if (error) {
 877			if (error == -ENOSPC && bytes > sdp->sd_sb.sb_bsize) {
 878				bytes >>= 1;
 879				bytes &= bsize_mask;
 880				if (bytes == 0)
 881					bytes = sdp->sd_sb.sb_bsize;
 882				goto retry;
 883			}
 
 884			goto out_qunlock;
 885		}
 886		max_bytes = bytes;
 887		calc_max_reserv(ip, len, &max_bytes, &data_blocks, &ind_blocks);
 888		al->al_requested = data_blocks + ind_blocks;
 
 
 
 
 
 
 889
 890		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
 891			  RES_RG_HDR + gfs2_rg_blocks(al);
 892		if (gfs2_is_jdata(ip))
 893			rblocks += data_blocks ? data_blocks : 1;
 894
 895		error = gfs2_trans_begin(sdp, rblocks,
 896					 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
 897		if (error)
 898			goto out_trans_fail;
 899
 900		error = fallocate_chunk(inode, offset, max_bytes, mode);
 901		gfs2_trans_end(sdp);
 902
 903		if (error)
 904			goto out_trans_fail;
 905
 906		len -= max_bytes;
 907		offset += max_bytes;
 908		gfs2_inplace_release(ip);
 909		gfs2_quota_unlock(ip);
 910		gfs2_alloc_put(ip);
 911	}
 912	goto out_unlock;
 
 
 
 
 
 
 
 
 
 913
 914out_trans_fail:
 915	gfs2_inplace_release(ip);
 916out_qunlock:
 917	gfs2_quota_unlock(ip);
 918out_alloc_put:
 919	gfs2_alloc_put(ip);
 920out_unlock:
 921	gfs2_glock_dq(&ip->i_gh);
 922out_uninit:
 923	gfs2_holder_uninit(&ip->i_gh);
 924	return error;
 925}
 926
 927#ifdef CONFIG_GFS2_FS_LOCKING_DLM
 
 
 
 
 
 
 928
 929/**
 930 * gfs2_setlease - acquire/release a file lease
 931 * @file: the file pointer
 932 * @arg: lease type
 933 * @fl: file lock
 934 *
 935 * We don't currently have a way to enforce a lease across the whole
 936 * cluster; until we do, disable leases (by just returning -EINVAL),
 937 * unless the administrator has requested purely local locking.
 938 *
 939 * Locking: called under lock_flocks
 940 *
 941 * Returns: errno
 942 */
 943
 944static int gfs2_setlease(struct file *file, long arg, struct file_lock **fl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945{
 946	return -EINVAL;
 
 
 
 
 
 947}
 948
 
 
 949/**
 950 * gfs2_lock - acquire/release a posix lock on a file
 951 * @file: the file pointer
 952 * @cmd: either modify or retrieve lock state, possibly wait
 953 * @fl: type and range of lock
 954 *
 955 * Returns: errno
 956 */
 957
 958static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
 959{
 960	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 961	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
 962	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
 963
 964	if (!(fl->fl_flags & FL_POSIX))
 965		return -ENOLCK;
 966	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
 967		return -ENOLCK;
 968
 969	if (cmd == F_CANCELLK) {
 970		/* Hack: */
 971		cmd = F_SETLK;
 972		fl->fl_type = F_UNLCK;
 973	}
 974	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 
 
 975		return -EIO;
 
 976	if (IS_GETLK(cmd))
 977		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
 978	else if (fl->fl_type == F_UNLCK)
 979		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
 980	else
 981		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
 982}
 983
 984static int do_flock(struct file *file, int cmd, struct file_lock *fl)
 985{
 986	struct gfs2_file *fp = file->private_data;
 987	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
 988	struct gfs2_inode *ip = GFS2_I(file->f_path.dentry->d_inode);
 989	struct gfs2_glock *gl;
 990	unsigned int state;
 991	int flags;
 992	int error = 0;
 
 993
 994	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
 995	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY) | GL_EXACT | GL_NOCACHE;
 996
 997	mutex_lock(&fp->f_fl_mutex);
 998
 999	gl = fl_gh->gh_gl;
1000	if (gl) {
1001		if (fl_gh->gh_state == state)
1002			goto out;
1003		flock_lock_file_wait(file,
1004				     &(struct file_lock){.fl_type = F_UNLCK});
1005		gfs2_glock_dq_wait(fl_gh);
 
 
1006		gfs2_holder_reinit(state, flags, fl_gh);
1007	} else {
1008		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1009				       &gfs2_flock_glops, CREATE, &gl);
1010		if (error)
1011			goto out;
1012		gfs2_holder_init(gl, state, flags, fl_gh);
1013		gfs2_glock_put(gl);
1014	}
1015	error = gfs2_glock_nq(fl_gh);
 
 
 
 
 
 
 
1016	if (error) {
1017		gfs2_holder_uninit(fl_gh);
1018		if (error == GLR_TRYFAILED)
1019			error = -EAGAIN;
1020	} else {
1021		error = flock_lock_file_wait(file, fl);
1022		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1023	}
1024
1025out:
1026	mutex_unlock(&fp->f_fl_mutex);
1027	return error;
1028}
1029
1030static void do_unflock(struct file *file, struct file_lock *fl)
1031{
1032	struct gfs2_file *fp = file->private_data;
1033	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1034
1035	mutex_lock(&fp->f_fl_mutex);
1036	flock_lock_file_wait(file, fl);
1037	if (fl_gh->gh_gl) {
1038		gfs2_glock_dq_wait(fl_gh);
1039		gfs2_holder_uninit(fl_gh);
1040	}
1041	mutex_unlock(&fp->f_fl_mutex);
1042}
1043
1044/**
1045 * gfs2_flock - acquire/release a flock lock on a file
1046 * @file: the file pointer
1047 * @cmd: either modify or retrieve lock state, possibly wait
1048 * @fl: type and range of lock
1049 *
1050 * Returns: errno
1051 */
1052
1053static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1054{
1055	if (!(fl->fl_flags & FL_FLOCK))
1056		return -ENOLCK;
1057	if (fl->fl_type & LOCK_MAND)
1058		return -EOPNOTSUPP;
1059
1060	if (fl->fl_type == F_UNLCK) {
1061		do_unflock(file, fl);
1062		return 0;
1063	} else {
1064		return do_flock(file, cmd, fl);
1065	}
1066}
1067
1068const struct file_operations gfs2_file_fops = {
1069	.llseek		= gfs2_llseek,
1070	.read		= do_sync_read,
1071	.aio_read	= generic_file_aio_read,
1072	.write		= do_sync_write,
1073	.aio_write	= gfs2_file_aio_write,
1074	.unlocked_ioctl	= gfs2_ioctl,
 
1075	.mmap		= gfs2_mmap,
1076	.open		= gfs2_open,
1077	.release	= gfs2_close,
1078	.fsync		= gfs2_fsync,
1079	.lock		= gfs2_lock,
1080	.flock		= gfs2_flock,
1081	.splice_read	= generic_file_splice_read,
1082	.splice_write	= generic_file_splice_write,
1083	.setlease	= gfs2_setlease,
1084	.fallocate	= gfs2_fallocate,
1085};
1086
1087const struct file_operations gfs2_dir_fops = {
1088	.readdir	= gfs2_readdir,
1089	.unlocked_ioctl	= gfs2_ioctl,
 
1090	.open		= gfs2_open,
1091	.release	= gfs2_close,
1092	.fsync		= gfs2_fsync,
1093	.lock		= gfs2_lock,
1094	.flock		= gfs2_flock,
1095	.llseek		= default_llseek,
1096};
1097
1098#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1099
1100const struct file_operations gfs2_file_fops_nolock = {
1101	.llseek		= gfs2_llseek,
1102	.read		= do_sync_read,
1103	.aio_read	= generic_file_aio_read,
1104	.write		= do_sync_write,
1105	.aio_write	= gfs2_file_aio_write,
1106	.unlocked_ioctl	= gfs2_ioctl,
 
1107	.mmap		= gfs2_mmap,
1108	.open		= gfs2_open,
1109	.release	= gfs2_close,
1110	.fsync		= gfs2_fsync,
1111	.splice_read	= generic_file_splice_read,
1112	.splice_write	= generic_file_splice_write,
1113	.setlease	= generic_setlease,
1114	.fallocate	= gfs2_fallocate,
1115};
1116
1117const struct file_operations gfs2_dir_fops_nolock = {
1118	.readdir	= gfs2_readdir,
1119	.unlocked_ioctl	= gfs2_ioctl,
 
1120	.open		= gfs2_open,
1121	.release	= gfs2_close,
1122	.fsync		= gfs2_fsync,
1123	.llseek		= default_llseek,
1124};
1125
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   4 * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
 
 
 
 
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/spinlock.h>
   9#include <linux/compat.h>
  10#include <linux/completion.h>
  11#include <linux/buffer_head.h>
  12#include <linux/pagemap.h>
  13#include <linux/uio.h>
  14#include <linux/blkdev.h>
  15#include <linux/mm.h>
  16#include <linux/mount.h>
  17#include <linux/fs.h>
  18#include <linux/gfs2_ondisk.h>
 
  19#include <linux/falloc.h>
  20#include <linux/swap.h>
  21#include <linux/crc32.h>
  22#include <linux/writeback.h>
  23#include <linux/uaccess.h>
  24#include <linux/dlm.h>
  25#include <linux/dlm_plock.h>
  26#include <linux/delay.h>
  27#include <linux/backing-dev.h>
  28
  29#include "gfs2.h"
  30#include "incore.h"
  31#include "bmap.h"
  32#include "aops.h"
  33#include "dir.h"
  34#include "glock.h"
  35#include "glops.h"
  36#include "inode.h"
  37#include "log.h"
  38#include "meta_io.h"
  39#include "quota.h"
  40#include "rgrp.h"
  41#include "trans.h"
  42#include "util.h"
  43
  44/**
  45 * gfs2_llseek - seek to a location in a file
  46 * @file: the file
  47 * @offset: the offset
  48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
  49 *
  50 * SEEK_END requires the glock for the file because it references the
  51 * file's size.
  52 *
  53 * Returns: The new offset, or errno
  54 */
  55
  56static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
  57{
  58	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
  59	struct gfs2_holder i_gh;
  60	loff_t error;
  61
  62	switch (whence) {
  63	case SEEK_END:
  64		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
  65					   &i_gh);
  66		if (!error) {
  67			error = generic_file_llseek(file, offset, whence);
  68			gfs2_glock_dq_uninit(&i_gh);
  69		}
  70		break;
  71
  72	case SEEK_DATA:
  73		error = gfs2_seek_data(file, offset);
  74		break;
  75
  76	case SEEK_HOLE:
  77		error = gfs2_seek_hole(file, offset);
  78		break;
  79
  80	case SEEK_CUR:
  81	case SEEK_SET:
  82		/*
  83		 * These don't reference inode->i_size and don't depend on the
  84		 * block mapping, so we don't need the glock.
  85		 */
  86		error = generic_file_llseek(file, offset, whence);
  87		break;
  88	default:
  89		error = -EINVAL;
  90	}
  91
  92	return error;
  93}
  94
  95/**
  96 * gfs2_readdir - Iterator for a directory
  97 * @file: The directory to read from
  98 * @ctx: What to feed directory entries to
 
  99 *
 100 * Returns: errno
 101 */
 102
 103static int gfs2_readdir(struct file *file, struct dir_context *ctx)
 104{
 105	struct inode *dir = file->f_mapping->host;
 106	struct gfs2_inode *dip = GFS2_I(dir);
 107	struct gfs2_holder d_gh;
 
 108	int error;
 109
 110	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
 111	if (error)
 
 
 112		return error;
 
 113
 114	error = gfs2_dir_read(dir, ctx, &file->f_ra);
 115
 116	gfs2_glock_dq_uninit(&d_gh);
 117
 
 
 118	return error;
 119}
 120
 121/**
 122 * fsflag_gfs2flag
 
 
 
 
 
 123 *
 124 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
 125 * and to GFS2_DIF_JDATA for non-directories.
 126 */
 127static struct {
 128	u32 fsflag;
 129	u32 gfsflag;
 130} fsflag_gfs2flag[] = {
 131	{FS_SYNC_FL, GFS2_DIF_SYNC},
 132	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
 133	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
 134	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
 135	{FS_INDEX_FL, GFS2_DIF_EXHASH},
 136	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
 137	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
 
 
 
 
 
 
 
 
 138};
 139
 140static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
 141{
 142	int i;
 143	u32 fsflags = 0;
 144
 145	if (S_ISDIR(inode->i_mode))
 146		gfsflags &= ~GFS2_DIF_JDATA;
 147	else
 148		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
 149
 150	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
 151		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
 152			fsflags |= fsflag_gfs2flag[i].fsflag;
 153	return fsflags;
 154}
 155
 156static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
 157{
 158	struct inode *inode = file_inode(filp);
 159	struct gfs2_inode *ip = GFS2_I(inode);
 160	struct gfs2_holder gh;
 161	int error;
 162	u32 fsflags;
 163
 164	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 165	error = gfs2_glock_nq(&gh);
 166	if (error)
 167		goto out_uninit;
 168
 169	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
 170
 
 
 
 171	if (put_user(fsflags, ptr))
 172		error = -EFAULT;
 173
 174	gfs2_glock_dq(&gh);
 175out_uninit:
 176	gfs2_holder_uninit(&gh);
 177	return error;
 178}
 179
 180void gfs2_set_inode_flags(struct inode *inode)
 181{
 182	struct gfs2_inode *ip = GFS2_I(inode);
 183	unsigned int flags = inode->i_flags;
 184
 185	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
 186	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
 187		flags |= S_NOSEC;
 188	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
 189		flags |= S_IMMUTABLE;
 190	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
 191		flags |= S_APPEND;
 192	if (ip->i_diskflags & GFS2_DIF_NOATIME)
 193		flags |= S_NOATIME;
 194	if (ip->i_diskflags & GFS2_DIF_SYNC)
 195		flags |= S_SYNC;
 196	inode->i_flags = flags;
 197}
 198
 199/* Flags that can be set by user space */
 200#define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
 201			     GFS2_DIF_IMMUTABLE|		\
 202			     GFS2_DIF_APPENDONLY|		\
 203			     GFS2_DIF_NOATIME|			\
 204			     GFS2_DIF_SYNC|			\
 205			     GFS2_DIF_TOPDIR|			\
 206			     GFS2_DIF_INHERIT_JDATA)
 207
 208/**
 209 * do_gfs2_set_flags - set flags on an inode
 210 * @filp: file pointer
 211 * @reqflags: The flags to set
 212 * @mask: Indicates which flags are valid
 213 * @fsflags: The FS_* inode flags passed in
 214 *
 215 */
 216static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask,
 217			     const u32 fsflags)
 218{
 219	struct inode *inode = file_inode(filp);
 220	struct gfs2_inode *ip = GFS2_I(inode);
 221	struct gfs2_sbd *sdp = GFS2_SB(inode);
 222	struct buffer_head *bh;
 223	struct gfs2_holder gh;
 224	int error;
 225	u32 new_flags, flags, oldflags;
 226
 227	error = mnt_want_write_file(filp);
 228	if (error)
 229		return error;
 230
 231	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 232	if (error)
 233		goto out_drop_write;
 234
 235	oldflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
 236	error = vfs_ioc_setflags_prepare(inode, oldflags, fsflags);
 237	if (error)
 238		goto out;
 239
 240	error = -EACCES;
 241	if (!inode_owner_or_capable(inode))
 242		goto out;
 243
 244	error = 0;
 245	flags = ip->i_diskflags;
 246	new_flags = (flags & ~mask) | (reqflags & mask);
 247	if ((new_flags ^ flags) == 0)
 248		goto out;
 249
 
 
 
 
 250	error = -EPERM;
 251	if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
 252		goto out;
 253	if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
 254		goto out;
 255	if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
 256	    !capable(CAP_LINUX_IMMUTABLE))
 257		goto out;
 258	if (!IS_IMMUTABLE(inode)) {
 259		error = gfs2_permission(inode, MAY_WRITE);
 260		if (error)
 261			goto out;
 262	}
 263	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
 264		if (new_flags & GFS2_DIF_JDATA)
 265			gfs2_log_flush(sdp, ip->i_gl,
 266				       GFS2_LOG_HEAD_FLUSH_NORMAL |
 267				       GFS2_LFC_SET_FLAGS);
 268		error = filemap_fdatawrite(inode->i_mapping);
 269		if (error)
 270			goto out;
 271		error = filemap_fdatawait(inode->i_mapping);
 272		if (error)
 273			goto out;
 274		if (new_flags & GFS2_DIF_JDATA)
 275			gfs2_ordered_del_inode(ip);
 276	}
 277	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
 278	if (error)
 279		goto out;
 280	error = gfs2_meta_inode_buffer(ip, &bh);
 281	if (error)
 282		goto out_trans_end;
 283	inode->i_ctime = current_time(inode);
 284	gfs2_trans_add_meta(ip->i_gl, bh);
 285	ip->i_diskflags = new_flags;
 286	gfs2_dinode_out(ip, bh->b_data);
 287	brelse(bh);
 288	gfs2_set_inode_flags(inode);
 289	gfs2_set_aops(inode);
 290out_trans_end:
 291	gfs2_trans_end(sdp);
 292out:
 293	gfs2_glock_dq_uninit(&gh);
 294out_drop_write:
 295	mnt_drop_write_file(filp);
 296	return error;
 297}
 298
 299static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
 300{
 301	struct inode *inode = file_inode(filp);
 302	u32 fsflags, gfsflags = 0;
 303	u32 mask;
 304	int i;
 305
 306	if (get_user(fsflags, ptr))
 307		return -EFAULT;
 308
 309	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
 310		if (fsflags & fsflag_gfs2flag[i].fsflag) {
 311			fsflags &= ~fsflag_gfs2flag[i].fsflag;
 312			gfsflags |= fsflag_gfs2flag[i].gfsflag;
 313		}
 314	}
 315	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
 316		return -EINVAL;
 317
 318	mask = GFS2_FLAGS_USER_SET;
 319	if (S_ISDIR(inode->i_mode)) {
 320		mask &= ~GFS2_DIF_JDATA;
 321	} else {
 322		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
 323		if (gfsflags & GFS2_DIF_TOPDIR)
 324			return -EINVAL;
 325		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
 326	}
 327
 328	return do_gfs2_set_flags(filp, gfsflags, mask, fsflags);
 329}
 330
 331static int gfs2_getlabel(struct file *filp, char __user *label)
 332{
 333	struct inode *inode = file_inode(filp);
 334	struct gfs2_sbd *sdp = GFS2_SB(inode);
 335
 336	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
 337		return -EFAULT;
 338
 339	return 0;
 340}
 341
 342static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 343{
 344	switch(cmd) {
 345	case FS_IOC_GETFLAGS:
 346		return gfs2_get_flags(filp, (u32 __user *)arg);
 347	case FS_IOC_SETFLAGS:
 348		return gfs2_set_flags(filp, (u32 __user *)arg);
 349	case FITRIM:
 350		return gfs2_fitrim(filp, (void __user *)arg);
 351	case FS_IOC_GETFSLABEL:
 352		return gfs2_getlabel(filp, (char __user *)arg);
 353	}
 354
 355	return -ENOTTY;
 356}
 357
 358#ifdef CONFIG_COMPAT
 359static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 360{
 361	switch(cmd) {
 362	/* These are just misnamed, they actually get/put from/to user an int */
 363	case FS_IOC32_GETFLAGS:
 364		cmd = FS_IOC_GETFLAGS;
 365		break;
 366	case FS_IOC32_SETFLAGS:
 367		cmd = FS_IOC_SETFLAGS;
 368		break;
 369	/* Keep this list in sync with gfs2_ioctl */
 370	case FITRIM:
 371	case FS_IOC_GETFSLABEL:
 372		break;
 373	default:
 374		return -ENOIOCTLCMD;
 375	}
 376
 377	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
 378}
 379#else
 380#define gfs2_compat_ioctl NULL
 381#endif
 382
 383/**
 384 * gfs2_size_hint - Give a hint to the size of a write request
 385 * @filep: The struct file
 386 * @offset: The file offset of the write
 387 * @size: The length of the write
 388 *
 389 * When we are about to do a write, this function records the total
 390 * write size in order to provide a suitable hint to the lower layers
 391 * about how many blocks will be required.
 392 *
 
 
 
 
 393 */
 394
 395static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
 396{
 397	struct inode *inode = file_inode(filep);
 398	struct gfs2_sbd *sdp = GFS2_SB(inode);
 399	struct gfs2_inode *ip = GFS2_I(inode);
 400	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
 401	int hint = min_t(size_t, INT_MAX, blks);
 402
 403	if (hint > atomic_read(&ip->i_sizehint))
 404		atomic_set(&ip->i_sizehint, hint);
 405}
 406
 407/**
 408 * gfs2_allocate_page_backing - Allocate blocks for a write fault
 409 * @page: The (locked) page to allocate backing for
 410 * @length: Size of the allocation
 411 *
 412 * We try to allocate all the blocks required for the page in one go.  This
 413 * might fail for various reasons, so we keep trying until all the blocks to
 414 * back this page are allocated.  If some of the blocks are already allocated,
 415 * that is ok too.
 416 */
 417static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
 418{
 419	u64 pos = page_offset(page);
 420
 421	do {
 422		struct iomap iomap = { };
 423
 424		if (gfs2_iomap_get_alloc(page->mapping->host, pos, length, &iomap))
 
 425			return -EIO;
 426
 427		if (length < iomap.length)
 428			iomap.length = length;
 429		length -= iomap.length;
 430		pos += iomap.length;
 431	} while (length > 0);
 432
 433	return 0;
 434}
 435
 436/**
 437 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
 438 * @vma: The virtual memory area
 439 * @vmf: The virtual memory fault containing the page to become writable
 440 *
 441 * When the page becomes writable, we need to ensure that we have
 442 * blocks allocated on disk to back that page.
 443 */
 444
 445static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
 446{
 447	struct page *page = vmf->page;
 448	struct inode *inode = file_inode(vmf->vma->vm_file);
 449	struct gfs2_inode *ip = GFS2_I(inode);
 450	struct gfs2_sbd *sdp = GFS2_SB(inode);
 451	struct gfs2_alloc_parms ap = { .aflags = 0, };
 452	u64 offset = page_offset(page);
 453	unsigned int data_blocks, ind_blocks, rblocks;
 454	struct gfs2_holder gh;
 455	unsigned int length;
 456	loff_t size;
 457	int ret;
 458
 459	sb_start_pagefault(inode->i_sb);
 460
 461	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
 462	ret = gfs2_glock_nq(&gh);
 463	if (ret)
 464		goto out_uninit;
 465
 466	/* Check page index against inode size */
 467	size = i_size_read(inode);
 468	if (offset >= size) {
 469		ret = -EINVAL;
 470		goto out_unlock;
 471	}
 472
 473	/* Update file times before taking page lock */
 474	file_update_time(vmf->vma->vm_file);
 475
 476	/* page is wholly or partially inside EOF */
 477	if (offset > size - PAGE_SIZE)
 478		length = offset_in_page(size);
 479	else
 480		length = PAGE_SIZE;
 481
 482	gfs2_size_hint(vmf->vma->vm_file, offset, length);
 483
 484	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
 485	set_bit(GIF_SW_PAGED, &ip->i_flags);
 486
 487	/*
 488	 * iomap_writepage / iomap_writepages currently don't support inline
 489	 * files, so always unstuff here.
 490	 */
 491
 492	if (!gfs2_is_stuffed(ip) &&
 493	    !gfs2_write_alloc_required(ip, offset, length)) {
 494		lock_page(page);
 495		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
 496			ret = -EAGAIN;
 497			unlock_page(page);
 498		}
 499		goto out_unlock;
 500	}
 501
 502	ret = gfs2_rindex_update(sdp);
 503	if (ret)
 504		goto out_unlock;
 505
 506	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
 507	ap.target = data_blocks + ind_blocks;
 508	ret = gfs2_quota_lock_check(ip, &ap);
 509	if (ret)
 510		goto out_unlock;
 511	ret = gfs2_inplace_reserve(ip, &ap);
 
 
 512	if (ret)
 513		goto out_quota_unlock;
 514
 515	rblocks = RES_DINODE + ind_blocks;
 516	if (gfs2_is_jdata(ip))
 517		rblocks += data_blocks ? data_blocks : 1;
 518	if (ind_blocks || data_blocks) {
 519		rblocks += RES_STATFS + RES_QUOTA;
 520		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
 521	}
 522	ret = gfs2_trans_begin(sdp, rblocks, 0);
 523	if (ret)
 524		goto out_trans_fail;
 525
 526	lock_page(page);
 527	ret = -EAGAIN;
 528	/* If truncated, we must retry the operation, we may have raced
 529	 * with the glock demotion code.
 530	 */
 531	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
 532		goto out_trans_end;
 533
 534	/* Unstuff, if required, and allocate backing blocks for page */
 535	ret = 0;
 536	if (gfs2_is_stuffed(ip))
 
 
 537		ret = gfs2_unstuff_dinode(ip, page);
 538	if (ret == 0)
 539		ret = gfs2_allocate_page_backing(page, length);
 
 
 540
 541out_trans_end:
 542	if (ret)
 543		unlock_page(page);
 544	gfs2_trans_end(sdp);
 545out_trans_fail:
 546	gfs2_inplace_release(ip);
 547out_quota_unlock:
 548	gfs2_quota_unlock(ip);
 
 
 549out_unlock:
 550	gfs2_glock_dq(&gh);
 551out_uninit:
 552	gfs2_holder_uninit(&gh);
 553	if (ret == 0) {
 554		set_page_dirty(page);
 555		wait_for_stable_page(page);
 556	}
 557	sb_end_pagefault(inode->i_sb);
 558	return block_page_mkwrite_return(ret);
 559}
 560
 561static vm_fault_t gfs2_fault(struct vm_fault *vmf)
 562{
 563	struct inode *inode = file_inode(vmf->vma->vm_file);
 564	struct gfs2_inode *ip = GFS2_I(inode);
 565	struct gfs2_holder gh;
 566	vm_fault_t ret;
 567	int err;
 568
 569	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 570	err = gfs2_glock_nq(&gh);
 571	if (err) {
 572		ret = block_page_mkwrite_return(err);
 573		goto out_uninit;
 574	}
 575	ret = filemap_fault(vmf);
 576	gfs2_glock_dq(&gh);
 577out_uninit:
 578	gfs2_holder_uninit(&gh);
 
 
 
 
 579	return ret;
 580}
 581
 582static const struct vm_operations_struct gfs2_vm_ops = {
 583	.fault = gfs2_fault,
 584	.map_pages = filemap_map_pages,
 585	.page_mkwrite = gfs2_page_mkwrite,
 586};
 587
 588/**
 589 * gfs2_mmap -
 590 * @file: The file to map
 591 * @vma: The VMA which described the mapping
 592 *
 593 * There is no need to get a lock here unless we should be updating
 594 * atime. We ignore any locking errors since the only consequence is
 595 * a missed atime update (which will just be deferred until later).
 596 *
 597 * Returns: 0
 598 */
 599
 600static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
 601{
 602	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 603
 604	if (!(file->f_flags & O_NOATIME) &&
 605	    !IS_NOATIME(&ip->i_inode)) {
 606		struct gfs2_holder i_gh;
 607		int error;
 608
 609		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 610					   &i_gh);
 
 
 
 
 
 611		if (error)
 612			return error;
 613		/* grab lock to update inode */
 614		gfs2_glock_dq_uninit(&i_gh);
 615		file_accessed(file);
 616	}
 617	vma->vm_ops = &gfs2_vm_ops;
 
 618
 619	return 0;
 620}
 621
 622/**
 623 * gfs2_open_common - This is common to open and atomic_open
 624 * @inode: The inode being opened
 625 * @file: The file being opened
 626 *
 627 * This maybe called under a glock or not depending upon how it has
 628 * been called. We must always be called under a glock for regular
 629 * files, however. For other file types, it does not matter whether
 630 * we hold the glock or not.
 631 *
 632 * Returns: Error code or 0 for success
 633 */
 634
 635int gfs2_open_common(struct inode *inode, struct file *file)
 636{
 
 
 637	struct gfs2_file *fp;
 638	int ret;
 639
 640	if (S_ISREG(inode->i_mode)) {
 641		ret = generic_file_open(inode, file);
 642		if (ret)
 643			return ret;
 644	}
 645
 646	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
 647	if (!fp)
 648		return -ENOMEM;
 649
 650	mutex_init(&fp->f_fl_mutex);
 651
 652	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
 653	file->private_data = fp;
 654	if (file->f_mode & FMODE_WRITE) {
 655		ret = gfs2_qa_get(GFS2_I(inode));
 656		if (ret)
 657			goto fail;
 658	}
 659	return 0;
 660
 661fail:
 662	kfree(file->private_data);
 663	file->private_data = NULL;
 664	return ret;
 665}
 666
 667/**
 668 * gfs2_open - open a file
 669 * @inode: the inode to open
 670 * @file: the struct file for this opening
 671 *
 672 * After atomic_open, this function is only used for opening files
 673 * which are already cached. We must still get the glock for regular
 674 * files to ensure that we have the file size uptodate for the large
 675 * file check which is in the common code. That is only an issue for
 676 * regular files though.
 677 *
 678 * Returns: errno
 679 */
 680
 681static int gfs2_open(struct inode *inode, struct file *file)
 682{
 683	struct gfs2_inode *ip = GFS2_I(inode);
 684	struct gfs2_holder i_gh;
 685	int error;
 686	bool need_unlock = false;
 687
 688	if (S_ISREG(ip->i_inode.i_mode)) {
 689		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
 690					   &i_gh);
 691		if (error)
 692			return error;
 693		need_unlock = true;
 694	}
 695
 696	error = gfs2_open_common(inode, file);
 
 
 
 
 697
 698	if (need_unlock)
 699		gfs2_glock_dq_uninit(&i_gh);
 
 700
 
 
 
 
 
 
 
 701	return error;
 702}
 703
 704/**
 705 * gfs2_release - called to close a struct file
 706 * @inode: the inode the struct file belongs to
 707 * @file: the struct file being closed
 708 *
 709 * Returns: errno
 710 */
 711
 712static int gfs2_release(struct inode *inode, struct file *file)
 713{
 714	struct gfs2_inode *ip = GFS2_I(inode);
 
 715
 716	kfree(file->private_data);
 717	file->private_data = NULL;
 718
 719	if (file->f_mode & FMODE_WRITE) {
 720		gfs2_rs_delete(ip, &inode->i_writecount);
 721		gfs2_qa_put(ip);
 722	}
 
 723	return 0;
 724}
 725
 726/**
 727 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 728 * @file: the file that points to the dentry
 729 * @start: the start position in the file to sync
 730 * @end: the end position in the file to sync
 731 * @datasync: set if we can ignore timestamp changes
 732 *
 733 * We split the data flushing here so that we don't wait for the data
 734 * until after we've also sent the metadata to disk. Note that for
 735 * data=ordered, we will write & wait for the data at the log flush
 736 * stage anyway, so this is unlikely to make much of a difference
 737 * except in the data=writeback case.
 738 *
 739 * If the fdatawrite fails due to any reason except -EIO, we will
 740 * continue the remainder of the fsync, although we'll still report
 741 * the error at the end. This is to match filemap_write_and_wait_range()
 742 * behaviour.
 743 *
 744 * Returns: errno
 745 */
 746
 747static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
 748		      int datasync)
 749{
 750	struct address_space *mapping = file->f_mapping;
 751	struct inode *inode = mapping->host;
 752	int sync_state = inode->i_state & I_DIRTY_ALL;
 753	struct gfs2_inode *ip = GFS2_I(inode);
 754	int ret = 0, ret1 = 0;
 755
 756	if (mapping->nrpages) {
 757		ret1 = filemap_fdatawrite_range(mapping, start, end);
 758		if (ret1 == -EIO)
 759			return ret1;
 760	}
 761
 762	if (!gfs2_is_jdata(ip))
 763		sync_state &= ~I_DIRTY_PAGES;
 764	if (datasync)
 765		sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
 766
 767	if (sync_state) {
 768		ret = sync_inode_metadata(inode, 1);
 769		if (ret)
 
 770			return ret;
 771		if (gfs2_is_jdata(ip))
 772			ret = file_write_and_wait(file);
 773		if (ret)
 774			return ret;
 775		gfs2_ail_flush(ip->i_gl, 1);
 776	}
 777
 778	if (mapping->nrpages)
 779		ret = file_fdatawait_range(file, start, end);
 780
 781	return ret ? ret : ret1;
 782}
 783
 784static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
 785				     struct gfs2_holder *gh)
 786{
 787	struct file *file = iocb->ki_filp;
 788	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
 789	size_t count = iov_iter_count(to);
 790	ssize_t ret;
 791
 792	if (!count)
 793		return 0; /* skip atime */
 794
 795	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
 796	ret = gfs2_glock_nq(gh);
 797	if (ret)
 798		goto out_uninit;
 799
 800	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
 801			   is_sync_kiocb(iocb));
 802
 803	gfs2_glock_dq(gh);
 804out_uninit:
 805	gfs2_holder_uninit(gh);
 806	return ret;
 807}
 808
 809static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
 810				      struct gfs2_holder *gh)
 811{
 812	struct file *file = iocb->ki_filp;
 813	struct inode *inode = file->f_mapping->host;
 814	struct gfs2_inode *ip = GFS2_I(inode);
 815	size_t len = iov_iter_count(from);
 816	loff_t offset = iocb->ki_pos;
 817	ssize_t ret;
 818
 819	/*
 820	 * Deferred lock, even if its a write, since we do no allocation on
 821	 * this path. All we need to change is the atime, and this lock mode
 822	 * ensures that other nodes have flushed their buffered read caches
 823	 * (i.e. their page cache entries for this inode). We do not,
 824	 * unfortunately, have the option of only flushing a range like the
 825	 * VFS does.
 826	 */
 827	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
 828	ret = gfs2_glock_nq(gh);
 829	if (ret)
 830		goto out_uninit;
 831
 832	/* Silently fall back to buffered I/O when writing beyond EOF */
 833	if (offset + len > i_size_read(&ip->i_inode))
 834		goto out;
 835
 836	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
 837			   is_sync_kiocb(iocb));
 838	if (ret == -ENOTBLK)
 839		ret = 0;
 840out:
 841	gfs2_glock_dq(gh);
 842out_uninit:
 843	gfs2_holder_uninit(gh);
 844	return ret;
 845}
 846
 847static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 848{
 849	struct gfs2_inode *ip;
 850	struct gfs2_holder gh;
 851	size_t written = 0;
 852	ssize_t ret;
 853
 854	if (iocb->ki_flags & IOCB_DIRECT) {
 855		ret = gfs2_file_direct_read(iocb, to, &gh);
 856		if (likely(ret != -ENOTBLK))
 857			return ret;
 858		iocb->ki_flags &= ~IOCB_DIRECT;
 859	}
 860	iocb->ki_flags |= IOCB_NOIO;
 861	ret = generic_file_read_iter(iocb, to);
 862	iocb->ki_flags &= ~IOCB_NOIO;
 863	if (ret >= 0) {
 864		if (!iov_iter_count(to))
 865			return ret;
 866		written = ret;
 867	} else {
 868		if (ret != -EAGAIN)
 869			return ret;
 870		if (iocb->ki_flags & IOCB_NOWAIT)
 871			return ret;
 872	}
 873	ip = GFS2_I(iocb->ki_filp->f_mapping->host);
 874	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 875	ret = gfs2_glock_nq(&gh);
 876	if (ret)
 877		goto out_uninit;
 878	ret = generic_file_read_iter(iocb, to);
 879	if (ret > 0)
 880		written += ret;
 881	gfs2_glock_dq(&gh);
 882out_uninit:
 883	gfs2_holder_uninit(&gh);
 884	return written ? written : ret;
 885}
 886
 887/**
 888 * gfs2_file_write_iter - Perform a write to a file
 889 * @iocb: The io context
 890 * @from: The data to write
 
 
 891 *
 892 * We have to do a lock/unlock here to refresh the inode size for
 893 * O_APPEND writes, otherwise we can land up writing at the wrong
 894 * offset. There is still a race, but provided the app is using its
 895 * own file locking, this will make O_APPEND work as expected.
 896 *
 897 */
 898
 899static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 900{
 901	struct file *file = iocb->ki_filp;
 902	struct inode *inode = file_inode(file);
 903	struct gfs2_inode *ip = GFS2_I(inode);
 904	struct gfs2_holder gh;
 905	ssize_t ret;
 906
 907	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
 
 
 
 
 908
 909	if (iocb->ki_flags & IOCB_APPEND) {
 910		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 911		if (ret)
 912			return ret;
 913		gfs2_glock_dq_uninit(&gh);
 914	}
 915
 916	inode_lock(inode);
 917	ret = generic_write_checks(iocb, from);
 918	if (ret <= 0)
 919		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920
 921	ret = file_remove_privs(file);
 922	if (ret)
 923		goto out_unlock;
 
 
 
 
 
 
 
 
 
 924
 925	ret = file_update_time(file);
 926	if (ret)
 927		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 928
 929	if (iocb->ki_flags & IOCB_DIRECT) {
 930		struct address_space *mapping = file->f_mapping;
 931		ssize_t buffered, ret2;
 
 932
 933		ret = gfs2_file_direct_write(iocb, from, &gh);
 934		if (ret < 0 || !iov_iter_count(from))
 935			goto out_unlock;
 
 
 
 936
 937		iocb->ki_flags |= IOCB_DSYNC;
 938		current->backing_dev_info = inode_to_bdi(inode);
 939		buffered = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 940		current->backing_dev_info = NULL;
 941		if (unlikely(buffered <= 0))
 942			goto out_unlock;
 
 943
 944		/*
 945		 * We need to ensure that the page cache pages are written to
 946		 * disk and invalidated to preserve the expected O_DIRECT
 947		 * semantics.  If the writeback or invalidate fails, only report
 948		 * the direct I/O range as we don't know if the buffered pages
 949		 * made it to disk.
 950		 */
 951		iocb->ki_pos += buffered;
 952		ret2 = generic_write_sync(iocb, buffered);
 953		invalidate_mapping_pages(mapping,
 954				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
 955				(iocb->ki_pos - 1) >> PAGE_SHIFT);
 956		if (!ret || ret2 > 0)
 957			ret += ret2;
 958	} else {
 959		current->backing_dev_info = inode_to_bdi(inode);
 960		ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
 961		current->backing_dev_info = NULL;
 962		if (likely(ret > 0)) {
 963			iocb->ki_pos += ret;
 964			ret = generic_write_sync(iocb, ret);
 
 
 
 965		}
 
 
 
 
 
 
 
 
 
 
 
 
 966	}
 967
 968out_unlock:
 969	inode_unlock(inode);
 970	return ret;
 971}
 972
 973static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
 974			   int mode)
 975{
 976	struct super_block *sb = inode->i_sb;
 977	struct gfs2_inode *ip = GFS2_I(inode);
 978	loff_t end = offset + len;
 979	struct buffer_head *dibh;
 980	int error;
 
 
 
 
 
 
 
 
 
 
 981
 982	error = gfs2_meta_inode_buffer(ip, &dibh);
 983	if (unlikely(error))
 984		return error;
 985
 986	gfs2_trans_add_meta(ip->i_gl, dibh);
 987
 988	if (gfs2_is_stuffed(ip)) {
 989		error = gfs2_unstuff_dinode(ip, NULL);
 990		if (unlikely(error))
 991			goto out;
 992	}
 993
 994	while (offset < end) {
 995		struct iomap iomap = { };
 
 
 
 
 
 
 
 
 
 996
 997		error = gfs2_iomap_get_alloc(inode, offset, end - offset,
 998					     &iomap);
 
 
 
 
 
 
 
 999		if (error)
1000			goto out;
1001		offset = iomap.offset + iomap.length;
1002		if (!(iomap.flags & IOMAP_F_NEW))
1003			continue;
1004		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1005					 iomap.length >> inode->i_blkbits,
1006					 GFP_NOFS);
1007		if (error) {
1008			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1009			goto out;
1010		}
1011	}
 
 
 
 
 
 
1012out:
1013	brelse(dibh);
1014	return error;
1015}
1016
1017/**
1018 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1019 *                     blocks, determine how many bytes can be written.
1020 * @ip:          The inode in question.
1021 * @len:         Max cap of bytes. What we return in *len must be <= this.
1022 * @data_blocks: Compute and return the number of data blocks needed
1023 * @ind_blocks:  Compute and return the number of indirect blocks needed
1024 * @max_blocks:  The total blocks available to work with.
1025 *
1026 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1027 */
1028static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1029			    unsigned int *data_blocks, unsigned int *ind_blocks,
1030			    unsigned int max_blocks)
1031{
1032	loff_t max = *len;
1033	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 
1034	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1035
1036	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1037		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1038		max_data -= tmp;
1039	}
1040
 
 
 
1041	*data_blocks = max_data;
1042	*ind_blocks = max_blocks - max_data;
1043	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1044	if (*len > max) {
1045		*len = max;
1046		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1047	}
1048}
1049
1050static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
 
1051{
1052	struct inode *inode = file_inode(file);
1053	struct gfs2_sbd *sdp = GFS2_SB(inode);
1054	struct gfs2_inode *ip = GFS2_I(inode);
1055	struct gfs2_alloc_parms ap = { .aflags = 0, };
1056	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1057	loff_t bytes, max_bytes, max_blks;
 
1058	int error;
1059	const loff_t pos = offset;
1060	const loff_t count = len;
1061	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1062	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1063	loff_t max_chunk_size = UINT_MAX & bsize_mask;
1064
1065	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
 
 
1066
1067	offset &= bsize_mask;
1068
1069	len = next - offset;
1070	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1071	if (!bytes)
1072		bytes = UINT_MAX;
1073	bytes &= bsize_mask;
1074	if (bytes == 0)
1075		bytes = sdp->sd_sb.sb_bsize;
1076
1077	gfs2_size_hint(file, offset, len);
 
 
 
1078
1079	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1080	ap.min_target = data_blocks + ind_blocks;
1081
1082	while (len > 0) {
1083		if (len < bytes)
1084			bytes = len;
1085		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1086			len -= bytes;
1087			offset += bytes;
1088			continue;
1089		}
1090
1091		/* We need to determine how many bytes we can actually
1092		 * fallocate without exceeding quota or going over the
1093		 * end of the fs. We start off optimistically by assuming
1094		 * we can write max_bytes */
1095		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1096
1097		/* Since max_bytes is most likely a theoretical max, we
1098		 * calculate a more realistic 'bytes' to serve as a good
1099		 * starting point for the number of bytes we may be able
1100		 * to write */
1101		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1102		ap.target = data_blocks + ind_blocks;
1103
1104		error = gfs2_quota_lock_check(ip, &ap);
1105		if (error)
1106			return error;
1107		/* ap.allowed tells us how many blocks quota will allow
1108		 * us to write. Check if this reduces max_blks */
1109		max_blks = UINT_MAX;
1110		if (ap.allowed)
1111			max_blks = ap.allowed;
1112
1113		error = gfs2_inplace_reserve(ip, &ap);
1114		if (error)
1115			goto out_qunlock;
1116
1117		/* check if the selected rgrp limits our max_blks further */
1118		if (ap.allowed && ap.allowed < max_blks)
1119			max_blks = ap.allowed;
1120
1121		/* Almost done. Calculate bytes that can be written using
1122		 * max_blks. We also recompute max_bytes, data_blocks and
1123		 * ind_blocks */
1124		calc_max_reserv(ip, &max_bytes, &data_blocks,
1125				&ind_blocks, max_blks);
1126
1127		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1128			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1129		if (gfs2_is_jdata(ip))
1130			rblocks += data_blocks ? data_blocks : 1;
1131
1132		error = gfs2_trans_begin(sdp, rblocks,
1133					 PAGE_SIZE >> inode->i_blkbits);
1134		if (error)
1135			goto out_trans_fail;
1136
1137		error = fallocate_chunk(inode, offset, max_bytes, mode);
1138		gfs2_trans_end(sdp);
1139
1140		if (error)
1141			goto out_trans_fail;
1142
1143		len -= max_bytes;
1144		offset += max_bytes;
1145		gfs2_inplace_release(ip);
1146		gfs2_quota_unlock(ip);
 
1147	}
1148
1149	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1150		i_size_write(inode, pos + count);
1151	file_update_time(file);
1152	mark_inode_dirty(inode);
1153
1154	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1155		return vfs_fsync_range(file, pos, pos + count - 1,
1156			       (file->f_flags & __O_SYNC) ? 0 : 1);
1157	return 0;
1158
1159out_trans_fail:
1160	gfs2_inplace_release(ip);
1161out_qunlock:
1162	gfs2_quota_unlock(ip);
 
 
 
 
 
 
1163	return error;
1164}
1165
1166static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1167{
1168	struct inode *inode = file_inode(file);
1169	struct gfs2_sbd *sdp = GFS2_SB(inode);
1170	struct gfs2_inode *ip = GFS2_I(inode);
1171	struct gfs2_holder gh;
1172	int ret;
1173
1174	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1175		return -EOPNOTSUPP;
1176	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1177	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1178		return -EOPNOTSUPP;
1179
1180	inode_lock(inode);
 
 
 
 
 
 
 
1181
1182	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1183	ret = gfs2_glock_nq(&gh);
1184	if (ret)
1185		goto out_uninit;
1186
1187	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1188	    (offset + len) > inode->i_size) {
1189		ret = inode_newsize_ok(inode, offset + len);
1190		if (ret)
1191			goto out_unlock;
1192	}
1193
1194	ret = get_write_access(inode);
1195	if (ret)
1196		goto out_unlock;
1197
1198	if (mode & FALLOC_FL_PUNCH_HOLE) {
1199		ret = __gfs2_punch_hole(file, offset, len);
1200	} else {
1201		ret = __gfs2_fallocate(file, mode, offset, len);
1202		if (ret)
1203			gfs2_rs_deltree(&ip->i_res);
1204	}
1205
1206	put_write_access(inode);
1207out_unlock:
1208	gfs2_glock_dq(&gh);
1209out_uninit:
1210	gfs2_holder_uninit(&gh);
1211	inode_unlock(inode);
1212	return ret;
1213}
1214
1215static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1216				      struct file *out, loff_t *ppos,
1217				      size_t len, unsigned int flags)
1218{
1219	ssize_t ret;
1220
1221	gfs2_size_hint(out, *ppos, len);
1222
1223	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1224	return ret;
1225}
1226
1227#ifdef CONFIG_GFS2_FS_LOCKING_DLM
1228
1229/**
1230 * gfs2_lock - acquire/release a posix lock on a file
1231 * @file: the file pointer
1232 * @cmd: either modify or retrieve lock state, possibly wait
1233 * @fl: type and range of lock
1234 *
1235 * Returns: errno
1236 */
1237
1238static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1239{
1240	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1241	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1242	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1243
1244	if (!(fl->fl_flags & FL_POSIX))
1245		return -ENOLCK;
1246	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1247		return -ENOLCK;
1248
1249	if (cmd == F_CANCELLK) {
1250		/* Hack: */
1251		cmd = F_SETLK;
1252		fl->fl_type = F_UNLCK;
1253	}
1254	if (unlikely(gfs2_withdrawn(sdp))) {
1255		if (fl->fl_type == F_UNLCK)
1256			locks_lock_file_wait(file, fl);
1257		return -EIO;
1258	}
1259	if (IS_GETLK(cmd))
1260		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1261	else if (fl->fl_type == F_UNLCK)
1262		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1263	else
1264		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1265}
1266
1267static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1268{
1269	struct gfs2_file *fp = file->private_data;
1270	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1271	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1272	struct gfs2_glock *gl;
1273	unsigned int state;
1274	u16 flags;
1275	int error = 0;
1276	int sleeptime;
1277
1278	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1279	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1280
1281	mutex_lock(&fp->f_fl_mutex);
1282
1283	if (gfs2_holder_initialized(fl_gh)) {
1284		struct file_lock request;
1285		if (fl_gh->gh_state == state)
1286			goto out;
1287		locks_init_lock(&request);
1288		request.fl_type = F_UNLCK;
1289		request.fl_flags = FL_FLOCK;
1290		locks_lock_file_wait(file, &request);
1291		gfs2_glock_dq(fl_gh);
1292		gfs2_holder_reinit(state, flags, fl_gh);
1293	} else {
1294		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1295				       &gfs2_flock_glops, CREATE, &gl);
1296		if (error)
1297			goto out;
1298		gfs2_holder_init(gl, state, flags, fl_gh);
1299		gfs2_glock_put(gl);
1300	}
1301	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1302		error = gfs2_glock_nq(fl_gh);
1303		if (error != GLR_TRYFAILED)
1304			break;
1305		fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1306		fl_gh->gh_error = 0;
1307		msleep(sleeptime);
1308	}
1309	if (error) {
1310		gfs2_holder_uninit(fl_gh);
1311		if (error == GLR_TRYFAILED)
1312			error = -EAGAIN;
1313	} else {
1314		error = locks_lock_file_wait(file, fl);
1315		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1316	}
1317
1318out:
1319	mutex_unlock(&fp->f_fl_mutex);
1320	return error;
1321}
1322
1323static void do_unflock(struct file *file, struct file_lock *fl)
1324{
1325	struct gfs2_file *fp = file->private_data;
1326	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1327
1328	mutex_lock(&fp->f_fl_mutex);
1329	locks_lock_file_wait(file, fl);
1330	if (gfs2_holder_initialized(fl_gh)) {
1331		gfs2_glock_dq(fl_gh);
1332		gfs2_holder_uninit(fl_gh);
1333	}
1334	mutex_unlock(&fp->f_fl_mutex);
1335}
1336
1337/**
1338 * gfs2_flock - acquire/release a flock lock on a file
1339 * @file: the file pointer
1340 * @cmd: either modify or retrieve lock state, possibly wait
1341 * @fl: type and range of lock
1342 *
1343 * Returns: errno
1344 */
1345
1346static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1347{
1348	if (!(fl->fl_flags & FL_FLOCK))
1349		return -ENOLCK;
1350	if (fl->fl_type & LOCK_MAND)
1351		return -EOPNOTSUPP;
1352
1353	if (fl->fl_type == F_UNLCK) {
1354		do_unflock(file, fl);
1355		return 0;
1356	} else {
1357		return do_flock(file, cmd, fl);
1358	}
1359}
1360
1361const struct file_operations gfs2_file_fops = {
1362	.llseek		= gfs2_llseek,
1363	.read_iter	= gfs2_file_read_iter,
1364	.write_iter	= gfs2_file_write_iter,
1365	.iopoll		= iomap_dio_iopoll,
 
1366	.unlocked_ioctl	= gfs2_ioctl,
1367	.compat_ioctl	= gfs2_compat_ioctl,
1368	.mmap		= gfs2_mmap,
1369	.open		= gfs2_open,
1370	.release	= gfs2_release,
1371	.fsync		= gfs2_fsync,
1372	.lock		= gfs2_lock,
1373	.flock		= gfs2_flock,
1374	.splice_read	= generic_file_splice_read,
1375	.splice_write	= gfs2_file_splice_write,
1376	.setlease	= simple_nosetlease,
1377	.fallocate	= gfs2_fallocate,
1378};
1379
1380const struct file_operations gfs2_dir_fops = {
1381	.iterate_shared	= gfs2_readdir,
1382	.unlocked_ioctl	= gfs2_ioctl,
1383	.compat_ioctl	= gfs2_compat_ioctl,
1384	.open		= gfs2_open,
1385	.release	= gfs2_release,
1386	.fsync		= gfs2_fsync,
1387	.lock		= gfs2_lock,
1388	.flock		= gfs2_flock,
1389	.llseek		= default_llseek,
1390};
1391
1392#endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1393
1394const struct file_operations gfs2_file_fops_nolock = {
1395	.llseek		= gfs2_llseek,
1396	.read_iter	= gfs2_file_read_iter,
1397	.write_iter	= gfs2_file_write_iter,
1398	.iopoll		= iomap_dio_iopoll,
 
1399	.unlocked_ioctl	= gfs2_ioctl,
1400	.compat_ioctl	= gfs2_compat_ioctl,
1401	.mmap		= gfs2_mmap,
1402	.open		= gfs2_open,
1403	.release	= gfs2_release,
1404	.fsync		= gfs2_fsync,
1405	.splice_read	= generic_file_splice_read,
1406	.splice_write	= gfs2_file_splice_write,
1407	.setlease	= generic_setlease,
1408	.fallocate	= gfs2_fallocate,
1409};
1410
1411const struct file_operations gfs2_dir_fops_nolock = {
1412	.iterate_shared	= gfs2_readdir,
1413	.unlocked_ioctl	= gfs2_ioctl,
1414	.compat_ioctl	= gfs2_compat_ioctl,
1415	.open		= gfs2_open,
1416	.release	= gfs2_release,
1417	.fsync		= gfs2_fsync,
1418	.llseek		= default_llseek,
1419};
1420