Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * fs/f2fs/f2fs.h
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#ifndef _LINUX_F2FS_H
   9#define _LINUX_F2FS_H
  10
  11#include <linux/uio.h>
  12#include <linux/types.h>
  13#include <linux/page-flags.h>
  14#include <linux/buffer_head.h>
  15#include <linux/slab.h>
  16#include <linux/crc32.h>
  17#include <linux/magic.h>
  18#include <linux/kobject.h>
  19#include <linux/sched.h>
  20#include <linux/cred.h>
  21#include <linux/vmalloc.h>
  22#include <linux/bio.h>
  23#include <linux/blkdev.h>
  24#include <linux/quotaops.h>
  25#include <linux/part_stat.h>
  26#include <crypto/hash.h>
  27
  28#include <linux/fscrypt.h>
  29#include <linux/fsverity.h>
  30
  31#ifdef CONFIG_F2FS_CHECK_FS
  32#define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
  33#else
  34#define f2fs_bug_on(sbi, condition)					\
  35	do {								\
  36		if (unlikely(condition)) {				\
  37			WARN_ON(1);					\
  38			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
  39		}							\
  40	} while (0)
  41#endif
  42
  43enum {
  44	FAULT_KMALLOC,
  45	FAULT_KVMALLOC,
  46	FAULT_PAGE_ALLOC,
  47	FAULT_PAGE_GET,
  48	FAULT_ALLOC_BIO,
  49	FAULT_ALLOC_NID,
  50	FAULT_ORPHAN,
  51	FAULT_BLOCK,
  52	FAULT_DIR_DEPTH,
  53	FAULT_EVICT_INODE,
  54	FAULT_TRUNCATE,
  55	FAULT_READ_IO,
  56	FAULT_CHECKPOINT,
  57	FAULT_DISCARD,
  58	FAULT_WRITE_IO,
  59	FAULT_MAX,
  60};
  61
  62#ifdef CONFIG_F2FS_FAULT_INJECTION
  63#define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
  64
  65struct f2fs_fault_info {
  66	atomic_t inject_ops;
  67	unsigned int inject_rate;
  68	unsigned int inject_type;
  69};
  70
  71extern const char *f2fs_fault_name[FAULT_MAX];
  72#define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
  73#endif
  74
  75/*
  76 * For mount options
  77 */
  78#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
  79#define F2FS_MOUNT_DISCARD		0x00000004
  80#define F2FS_MOUNT_NOHEAP		0x00000008
  81#define F2FS_MOUNT_XATTR_USER		0x00000010
  82#define F2FS_MOUNT_POSIX_ACL		0x00000020
  83#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
  84#define F2FS_MOUNT_INLINE_XATTR		0x00000080
  85#define F2FS_MOUNT_INLINE_DATA		0x00000100
  86#define F2FS_MOUNT_INLINE_DENTRY	0x00000200
  87#define F2FS_MOUNT_FLUSH_MERGE		0x00000400
  88#define F2FS_MOUNT_NOBARRIER		0x00000800
  89#define F2FS_MOUNT_FASTBOOT		0x00001000
  90#define F2FS_MOUNT_EXTENT_CACHE		0x00002000
  91#define F2FS_MOUNT_DATA_FLUSH		0x00008000
  92#define F2FS_MOUNT_FAULT_INJECTION	0x00010000
  93#define F2FS_MOUNT_USRQUOTA		0x00080000
  94#define F2FS_MOUNT_GRPQUOTA		0x00100000
  95#define F2FS_MOUNT_PRJQUOTA		0x00200000
  96#define F2FS_MOUNT_QUOTA		0x00400000
  97#define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
  98#define F2FS_MOUNT_RESERVE_ROOT		0x01000000
  99#define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
 100#define F2FS_MOUNT_NORECOVERY		0x04000000
 101
 102#define F2FS_OPTION(sbi)	((sbi)->mount_opt)
 103#define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
 104#define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
 105#define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
 106
 107#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
 108		typecheck(unsigned long long, b) &&			\
 109		((long long)((a) - (b)) > 0))
 110
 111typedef u32 block_t;	/*
 112			 * should not change u32, since it is the on-disk block
 113			 * address format, __le32.
 114			 */
 115typedef u32 nid_t;
 116
 117#define COMPRESS_EXT_NUM		16
 118
 119struct f2fs_mount_info {
 120	unsigned int opt;
 121	int write_io_size_bits;		/* Write IO size bits */
 122	block_t root_reserved_blocks;	/* root reserved blocks */
 123	kuid_t s_resuid;		/* reserved blocks for uid */
 124	kgid_t s_resgid;		/* reserved blocks for gid */
 125	int active_logs;		/* # of active logs */
 126	int inline_xattr_size;		/* inline xattr size */
 127#ifdef CONFIG_F2FS_FAULT_INJECTION
 128	struct f2fs_fault_info fault_info;	/* For fault injection */
 129#endif
 130#ifdef CONFIG_QUOTA
 131	/* Names of quota files with journalled quota */
 132	char *s_qf_names[MAXQUOTAS];
 133	int s_jquota_fmt;			/* Format of quota to use */
 134#endif
 135	/* For which write hints are passed down to block layer */
 136	int whint_mode;
 137	int alloc_mode;			/* segment allocation policy */
 138	int fsync_mode;			/* fsync policy */
 139	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
 140	int bggc_mode;			/* bggc mode: off, on or sync */
 141	struct fscrypt_dummy_context dummy_enc_ctx; /* test dummy encryption */
 142	block_t unusable_cap_perc;	/* percentage for cap */
 143	block_t unusable_cap;		/* Amount of space allowed to be
 144					 * unusable when disabling checkpoint
 145					 */
 146
 147	/* For compression */
 148	unsigned char compress_algorithm;	/* algorithm type */
 149	unsigned compress_log_size;		/* cluster log size */
 150	unsigned char compress_ext_cnt;		/* extension count */
 151	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
 152};
 153
 154#define F2FS_FEATURE_ENCRYPT		0x0001
 155#define F2FS_FEATURE_BLKZONED		0x0002
 156#define F2FS_FEATURE_ATOMIC_WRITE	0x0004
 157#define F2FS_FEATURE_EXTRA_ATTR		0x0008
 158#define F2FS_FEATURE_PRJQUOTA		0x0010
 159#define F2FS_FEATURE_INODE_CHKSUM	0x0020
 160#define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
 161#define F2FS_FEATURE_QUOTA_INO		0x0080
 162#define F2FS_FEATURE_INODE_CRTIME	0x0100
 163#define F2FS_FEATURE_LOST_FOUND		0x0200
 164#define F2FS_FEATURE_VERITY		0x0400
 165#define F2FS_FEATURE_SB_CHKSUM		0x0800
 166#define F2FS_FEATURE_CASEFOLD		0x1000
 167#define F2FS_FEATURE_COMPRESSION	0x2000
 168
 169#define __F2FS_HAS_FEATURE(raw_super, mask)				\
 170	((raw_super->feature & cpu_to_le32(mask)) != 0)
 171#define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
 172#define F2FS_SET_FEATURE(sbi, mask)					\
 173	(sbi->raw_super->feature |= cpu_to_le32(mask))
 174#define F2FS_CLEAR_FEATURE(sbi, mask)					\
 175	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
 176
 177/*
 178 * Default values for user and/or group using reserved blocks
 179 */
 180#define	F2FS_DEF_RESUID		0
 181#define	F2FS_DEF_RESGID		0
 182
 183/*
 184 * For checkpoint manager
 185 */
 186enum {
 187	NAT_BITMAP,
 188	SIT_BITMAP
 189};
 190
 191#define	CP_UMOUNT	0x00000001
 192#define	CP_FASTBOOT	0x00000002
 193#define	CP_SYNC		0x00000004
 194#define	CP_RECOVERY	0x00000008
 195#define	CP_DISCARD	0x00000010
 196#define CP_TRIMMED	0x00000020
 197#define CP_PAUSE	0x00000040
 198#define CP_RESIZE 	0x00000080
 199
 200#define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
 201#define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
 202#define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
 203#define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
 204#define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
 205#define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
 206#define DEF_CP_INTERVAL			60	/* 60 secs */
 207#define DEF_IDLE_INTERVAL		5	/* 5 secs */
 208#define DEF_DISABLE_INTERVAL		5	/* 5 secs */
 209#define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
 210#define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
 211
 212struct cp_control {
 213	int reason;
 214	__u64 trim_start;
 215	__u64 trim_end;
 216	__u64 trim_minlen;
 217};
 218
 219/*
 220 * indicate meta/data type
 221 */
 222enum {
 223	META_CP,
 224	META_NAT,
 225	META_SIT,
 226	META_SSA,
 227	META_MAX,
 228	META_POR,
 229	DATA_GENERIC,		/* check range only */
 230	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
 231	DATA_GENERIC_ENHANCE_READ,	/*
 232					 * strong check on range and segment
 233					 * bitmap but no warning due to race
 234					 * condition of read on truncated area
 235					 * by extent_cache
 236					 */
 237	META_GENERIC,
 238};
 239
 240/* for the list of ino */
 241enum {
 242	ORPHAN_INO,		/* for orphan ino list */
 243	APPEND_INO,		/* for append ino list */
 244	UPDATE_INO,		/* for update ino list */
 245	TRANS_DIR_INO,		/* for trasactions dir ino list */
 246	FLUSH_INO,		/* for multiple device flushing */
 247	MAX_INO_ENTRY,		/* max. list */
 248};
 249
 250struct ino_entry {
 251	struct list_head list;		/* list head */
 252	nid_t ino;			/* inode number */
 253	unsigned int dirty_device;	/* dirty device bitmap */
 254};
 255
 256/* for the list of inodes to be GCed */
 257struct inode_entry {
 258	struct list_head list;	/* list head */
 259	struct inode *inode;	/* vfs inode pointer */
 260};
 261
 262struct fsync_node_entry {
 263	struct list_head list;	/* list head */
 264	struct page *page;	/* warm node page pointer */
 265	unsigned int seq_id;	/* sequence id */
 266};
 267
 268/* for the bitmap indicate blocks to be discarded */
 269struct discard_entry {
 270	struct list_head list;	/* list head */
 271	block_t start_blkaddr;	/* start blockaddr of current segment */
 272	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
 273};
 274
 275/* default discard granularity of inner discard thread, unit: block count */
 276#define DEFAULT_DISCARD_GRANULARITY		16
 277
 278/* max discard pend list number */
 279#define MAX_PLIST_NUM		512
 280#define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
 281					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
 282
 283enum {
 284	D_PREP,			/* initial */
 285	D_PARTIAL,		/* partially submitted */
 286	D_SUBMIT,		/* all submitted */
 287	D_DONE,			/* finished */
 288};
 289
 290struct discard_info {
 291	block_t lstart;			/* logical start address */
 292	block_t len;			/* length */
 293	block_t start;			/* actual start address in dev */
 294};
 295
 296struct discard_cmd {
 297	struct rb_node rb_node;		/* rb node located in rb-tree */
 298	union {
 299		struct {
 300			block_t lstart;	/* logical start address */
 301			block_t len;	/* length */
 302			block_t start;	/* actual start address in dev */
 303		};
 304		struct discard_info di;	/* discard info */
 305
 306	};
 307	struct list_head list;		/* command list */
 308	struct completion wait;		/* compleation */
 309	struct block_device *bdev;	/* bdev */
 310	unsigned short ref;		/* reference count */
 311	unsigned char state;		/* state */
 312	unsigned char queued;		/* queued discard */
 313	int error;			/* bio error */
 314	spinlock_t lock;		/* for state/bio_ref updating */
 315	unsigned short bio_ref;		/* bio reference count */
 316};
 317
 318enum {
 319	DPOLICY_BG,
 320	DPOLICY_FORCE,
 321	DPOLICY_FSTRIM,
 322	DPOLICY_UMOUNT,
 323	MAX_DPOLICY,
 324};
 325
 326struct discard_policy {
 327	int type;			/* type of discard */
 328	unsigned int min_interval;	/* used for candidates exist */
 329	unsigned int mid_interval;	/* used for device busy */
 330	unsigned int max_interval;	/* used for candidates not exist */
 331	unsigned int max_requests;	/* # of discards issued per round */
 332	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
 333	bool io_aware;			/* issue discard in idle time */
 334	bool sync;			/* submit discard with REQ_SYNC flag */
 335	bool ordered;			/* issue discard by lba order */
 336	bool timeout;			/* discard timeout for put_super */
 337	unsigned int granularity;	/* discard granularity */
 338};
 339
 340struct discard_cmd_control {
 341	struct task_struct *f2fs_issue_discard;	/* discard thread */
 342	struct list_head entry_list;		/* 4KB discard entry list */
 343	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
 344	struct list_head wait_list;		/* store on-flushing entries */
 345	struct list_head fstrim_list;		/* in-flight discard from fstrim */
 346	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
 347	unsigned int discard_wake;		/* to wake up discard thread */
 348	struct mutex cmd_lock;
 349	unsigned int nr_discards;		/* # of discards in the list */
 350	unsigned int max_discards;		/* max. discards to be issued */
 351	unsigned int discard_granularity;	/* discard granularity */
 352	unsigned int undiscard_blks;		/* # of undiscard blocks */
 353	unsigned int next_pos;			/* next discard position */
 354	atomic_t issued_discard;		/* # of issued discard */
 355	atomic_t queued_discard;		/* # of queued discard */
 356	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
 357	struct rb_root_cached root;		/* root of discard rb-tree */
 358	bool rbtree_check;			/* config for consistence check */
 359};
 360
 361/* for the list of fsync inodes, used only during recovery */
 362struct fsync_inode_entry {
 363	struct list_head list;	/* list head */
 364	struct inode *inode;	/* vfs inode pointer */
 365	block_t blkaddr;	/* block address locating the last fsync */
 366	block_t last_dentry;	/* block address locating the last dentry */
 367};
 368
 369#define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
 370#define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
 371
 372#define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
 373#define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
 374#define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
 375#define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
 376
 377#define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
 378#define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
 379
 380static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
 381{
 382	int before = nats_in_cursum(journal);
 383
 384	journal->n_nats = cpu_to_le16(before + i);
 385	return before;
 386}
 387
 388static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
 389{
 390	int before = sits_in_cursum(journal);
 391
 392	journal->n_sits = cpu_to_le16(before + i);
 393	return before;
 394}
 395
 396static inline bool __has_cursum_space(struct f2fs_journal *journal,
 397							int size, int type)
 398{
 399	if (type == NAT_JOURNAL)
 400		return size <= MAX_NAT_JENTRIES(journal);
 401	return size <= MAX_SIT_JENTRIES(journal);
 402}
 403
 404/*
 405 * f2fs-specific ioctl commands
 406 */
 407#define F2FS_IOCTL_MAGIC		0xf5
 408#define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
 409#define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
 410#define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
 411#define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
 412#define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
 413#define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
 414#define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
 415#define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
 416						struct f2fs_defragment)
 417#define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
 418						struct f2fs_move_range)
 419#define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
 420						struct f2fs_flush_device)
 421#define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
 422						struct f2fs_gc_range)
 423#define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
 424#define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
 425#define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
 426#define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
 427#define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
 428#define F2FS_IOC_GET_COMPRESS_BLOCKS	_IOR(F2FS_IOCTL_MAGIC, 17, __u64)
 429#define F2FS_IOC_RELEASE_COMPRESS_BLOCKS				\
 430					_IOR(F2FS_IOCTL_MAGIC, 18, __u64)
 431#define F2FS_IOC_RESERVE_COMPRESS_BLOCKS				\
 432					_IOR(F2FS_IOCTL_MAGIC, 19, __u64)
 433#define F2FS_IOC_SEC_TRIM_FILE		_IOW(F2FS_IOCTL_MAGIC, 20,	\
 434						struct f2fs_sectrim_range)
 435
 436/*
 437 * should be same as XFS_IOC_GOINGDOWN.
 438 * Flags for going down operation used by FS_IOC_GOINGDOWN
 439 */
 440#define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
 441#define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
 442#define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
 443#define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
 444#define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
 445#define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
 446
 447/*
 448 * Flags used by F2FS_IOC_SEC_TRIM_FILE
 449 */
 450#define F2FS_TRIM_FILE_DISCARD		0x1	/* send discard command */
 451#define F2FS_TRIM_FILE_ZEROOUT		0x2	/* zero out */
 452#define F2FS_TRIM_FILE_MASK		0x3
 453
 454struct f2fs_gc_range {
 455	u32 sync;
 456	u64 start;
 457	u64 len;
 458};
 459
 460struct f2fs_defragment {
 461	u64 start;
 462	u64 len;
 463};
 464
 465struct f2fs_move_range {
 466	u32 dst_fd;		/* destination fd */
 467	u64 pos_in;		/* start position in src_fd */
 468	u64 pos_out;		/* start position in dst_fd */
 469	u64 len;		/* size to move */
 470};
 471
 472struct f2fs_flush_device {
 473	u32 dev_num;		/* device number to flush */
 474	u32 segments;		/* # of segments to flush */
 475};
 476
 477struct f2fs_sectrim_range {
 478	u64 start;
 479	u64 len;
 480	u64 flags;
 481};
 482
 483/* for inline stuff */
 484#define DEF_INLINE_RESERVED_SIZE	1
 485static inline int get_extra_isize(struct inode *inode);
 486static inline int get_inline_xattr_addrs(struct inode *inode);
 487#define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
 488				(CUR_ADDRS_PER_INODE(inode) -		\
 489				get_inline_xattr_addrs(inode) -	\
 490				DEF_INLINE_RESERVED_SIZE))
 491
 492/* for inline dir */
 493#define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
 494				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
 495				BITS_PER_BYTE + 1))
 496#define INLINE_DENTRY_BITMAP_SIZE(inode) \
 497	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
 498#define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
 499				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
 500				NR_INLINE_DENTRY(inode) + \
 501				INLINE_DENTRY_BITMAP_SIZE(inode)))
 502
 503/*
 504 * For INODE and NODE manager
 505 */
 506/* for directory operations */
 507
 508struct f2fs_filename {
 509	/*
 510	 * The filename the user specified.  This is NULL for some
 511	 * filesystem-internal operations, e.g. converting an inline directory
 512	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
 513	 */
 514	const struct qstr *usr_fname;
 515
 516	/*
 517	 * The on-disk filename.  For encrypted directories, this is encrypted.
 518	 * This may be NULL for lookups in an encrypted dir without the key.
 519	 */
 520	struct fscrypt_str disk_name;
 521
 522	/* The dirhash of this filename */
 523	f2fs_hash_t hash;
 524
 525#ifdef CONFIG_FS_ENCRYPTION
 526	/*
 527	 * For lookups in encrypted directories: either the buffer backing
 528	 * disk_name, or a buffer that holds the decoded no-key name.
 529	 */
 530	struct fscrypt_str crypto_buf;
 531#endif
 532#ifdef CONFIG_UNICODE
 533	/*
 534	 * For casefolded directories: the casefolded name, but it's left NULL
 535	 * if the original name is not valid Unicode or if the filesystem is
 536	 * doing an internal operation where usr_fname is also NULL.  In these
 537	 * cases we fall back to treating the name as an opaque byte sequence.
 538	 */
 539	struct fscrypt_str cf_name;
 540#endif
 541};
 542
 543struct f2fs_dentry_ptr {
 544	struct inode *inode;
 545	void *bitmap;
 546	struct f2fs_dir_entry *dentry;
 547	__u8 (*filename)[F2FS_SLOT_LEN];
 548	int max;
 549	int nr_bitmap;
 550};
 551
 552static inline void make_dentry_ptr_block(struct inode *inode,
 553		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
 554{
 555	d->inode = inode;
 556	d->max = NR_DENTRY_IN_BLOCK;
 557	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
 558	d->bitmap = t->dentry_bitmap;
 559	d->dentry = t->dentry;
 560	d->filename = t->filename;
 561}
 562
 563static inline void make_dentry_ptr_inline(struct inode *inode,
 564					struct f2fs_dentry_ptr *d, void *t)
 565{
 566	int entry_cnt = NR_INLINE_DENTRY(inode);
 567	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
 568	int reserved_size = INLINE_RESERVED_SIZE(inode);
 569
 570	d->inode = inode;
 571	d->max = entry_cnt;
 572	d->nr_bitmap = bitmap_size;
 573	d->bitmap = t;
 574	d->dentry = t + bitmap_size + reserved_size;
 575	d->filename = t + bitmap_size + reserved_size +
 576					SIZE_OF_DIR_ENTRY * entry_cnt;
 577}
 578
 579/*
 580 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
 581 * as its node offset to distinguish from index node blocks.
 582 * But some bits are used to mark the node block.
 583 */
 584#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
 585				>> OFFSET_BIT_SHIFT)
 586enum {
 587	ALLOC_NODE,			/* allocate a new node page if needed */
 588	LOOKUP_NODE,			/* look up a node without readahead */
 589	LOOKUP_NODE_RA,			/*
 590					 * look up a node with readahead called
 591					 * by get_data_block.
 592					 */
 593};
 594
 595#define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
 596
 597/* congestion wait timeout value, default: 20ms */
 598#define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
 599
 600/* maximum retry quota flush count */
 601#define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
 602
 603#define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
 604
 605#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
 606
 607/* for in-memory extent cache entry */
 608#define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
 609
 610/* number of extent info in extent cache we try to shrink */
 611#define EXTENT_CACHE_SHRINK_NUMBER	128
 612
 613struct rb_entry {
 614	struct rb_node rb_node;		/* rb node located in rb-tree */
 615	unsigned int ofs;		/* start offset of the entry */
 616	unsigned int len;		/* length of the entry */
 617};
 618
 619struct extent_info {
 620	unsigned int fofs;		/* start offset in a file */
 621	unsigned int len;		/* length of the extent */
 622	u32 blk;			/* start block address of the extent */
 623};
 624
 625struct extent_node {
 626	struct rb_node rb_node;		/* rb node located in rb-tree */
 627	struct extent_info ei;		/* extent info */
 628	struct list_head list;		/* node in global extent list of sbi */
 629	struct extent_tree *et;		/* extent tree pointer */
 630};
 631
 632struct extent_tree {
 633	nid_t ino;			/* inode number */
 634	struct rb_root_cached root;	/* root of extent info rb-tree */
 635	struct extent_node *cached_en;	/* recently accessed extent node */
 636	struct extent_info largest;	/* largested extent info */
 637	struct list_head list;		/* to be used by sbi->zombie_list */
 638	rwlock_t lock;			/* protect extent info rb-tree */
 639	atomic_t node_cnt;		/* # of extent node in rb-tree*/
 640	bool largest_updated;		/* largest extent updated */
 641};
 642
 643/*
 644 * This structure is taken from ext4_map_blocks.
 645 *
 646 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
 647 */
 648#define F2FS_MAP_NEW		(1 << BH_New)
 649#define F2FS_MAP_MAPPED		(1 << BH_Mapped)
 650#define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
 651#define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
 652				F2FS_MAP_UNWRITTEN)
 653
 654struct f2fs_map_blocks {
 655	block_t m_pblk;
 656	block_t m_lblk;
 657	unsigned int m_len;
 658	unsigned int m_flags;
 659	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
 660	pgoff_t *m_next_extent;		/* point to next possible extent */
 661	int m_seg_type;
 662	bool m_may_create;		/* indicate it is from write path */
 663};
 664
 665/* for flag in get_data_block */
 666enum {
 667	F2FS_GET_BLOCK_DEFAULT,
 668	F2FS_GET_BLOCK_FIEMAP,
 669	F2FS_GET_BLOCK_BMAP,
 670	F2FS_GET_BLOCK_DIO,
 671	F2FS_GET_BLOCK_PRE_DIO,
 672	F2FS_GET_BLOCK_PRE_AIO,
 673	F2FS_GET_BLOCK_PRECACHE,
 674};
 675
 676/*
 677 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
 678 */
 679#define FADVISE_COLD_BIT	0x01
 680#define FADVISE_LOST_PINO_BIT	0x02
 681#define FADVISE_ENCRYPT_BIT	0x04
 682#define FADVISE_ENC_NAME_BIT	0x08
 683#define FADVISE_KEEP_SIZE_BIT	0x10
 684#define FADVISE_HOT_BIT		0x20
 685#define FADVISE_VERITY_BIT	0x40
 686
 687#define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
 688
 689#define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
 690#define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
 691#define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
 692#define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
 693#define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
 694#define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
 695#define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
 696#define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
 697#define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
 698#define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
 699#define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
 700#define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
 701#define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
 702#define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
 703#define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
 704#define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
 705#define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
 706#define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
 707
 708#define DEF_DIR_LEVEL		0
 709
 710enum {
 711	GC_FAILURE_PIN,
 712	GC_FAILURE_ATOMIC,
 713	MAX_GC_FAILURE
 714};
 715
 716/* used for f2fs_inode_info->flags */
 717enum {
 718	FI_NEW_INODE,		/* indicate newly allocated inode */
 719	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
 720	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
 721	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
 722	FI_INC_LINK,		/* need to increment i_nlink */
 723	FI_ACL_MODE,		/* indicate acl mode */
 724	FI_NO_ALLOC,		/* should not allocate any blocks */
 725	FI_FREE_NID,		/* free allocated nide */
 726	FI_NO_EXTENT,		/* not to use the extent cache */
 727	FI_INLINE_XATTR,	/* used for inline xattr */
 728	FI_INLINE_DATA,		/* used for inline data*/
 729	FI_INLINE_DENTRY,	/* used for inline dentry */
 730	FI_APPEND_WRITE,	/* inode has appended data */
 731	FI_UPDATE_WRITE,	/* inode has in-place-update data */
 732	FI_NEED_IPU,		/* used for ipu per file */
 733	FI_ATOMIC_FILE,		/* indicate atomic file */
 734	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
 735	FI_VOLATILE_FILE,	/* indicate volatile file */
 736	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
 737	FI_DROP_CACHE,		/* drop dirty page cache */
 738	FI_DATA_EXIST,		/* indicate data exists */
 739	FI_INLINE_DOTS,		/* indicate inline dot dentries */
 740	FI_DO_DEFRAG,		/* indicate defragment is running */
 741	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
 742	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
 743	FI_HOT_DATA,		/* indicate file is hot */
 744	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
 745	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
 746	FI_PIN_FILE,		/* indicate file should not be gced */
 747	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
 748	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
 749	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
 750	FI_MMAP_FILE,		/* indicate file was mmapped */
 751	FI_MAX,			/* max flag, never be used */
 752};
 753
 754struct f2fs_inode_info {
 755	struct inode vfs_inode;		/* serve a vfs inode */
 756	unsigned long i_flags;		/* keep an inode flags for ioctl */
 757	unsigned char i_advise;		/* use to give file attribute hints */
 758	unsigned char i_dir_level;	/* use for dentry level for large dir */
 759	unsigned int i_current_depth;	/* only for directory depth */
 760	/* for gc failure statistic */
 761	unsigned int i_gc_failures[MAX_GC_FAILURE];
 762	unsigned int i_pino;		/* parent inode number */
 763	umode_t i_acl_mode;		/* keep file acl mode temporarily */
 764
 765	/* Use below internally in f2fs*/
 766	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
 767	struct rw_semaphore i_sem;	/* protect fi info */
 768	atomic_t dirty_pages;		/* # of dirty pages */
 769	f2fs_hash_t chash;		/* hash value of given file name */
 770	unsigned int clevel;		/* maximum level of given file name */
 771	struct task_struct *task;	/* lookup and create consistency */
 772	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
 773	nid_t i_xattr_nid;		/* node id that contains xattrs */
 774	loff_t	last_disk_size;		/* lastly written file size */
 775	spinlock_t i_size_lock;		/* protect last_disk_size */
 776
 777#ifdef CONFIG_QUOTA
 778	struct dquot *i_dquot[MAXQUOTAS];
 779
 780	/* quota space reservation, managed internally by quota code */
 781	qsize_t i_reserved_quota;
 782#endif
 783	struct list_head dirty_list;	/* dirty list for dirs and files */
 784	struct list_head gdirty_list;	/* linked in global dirty list */
 785	struct list_head inmem_ilist;	/* list for inmem inodes */
 786	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
 787	struct task_struct *inmem_task;	/* store inmemory task */
 788	struct mutex inmem_lock;	/* lock for inmemory pages */
 789	pgoff_t ra_offset;		/* ongoing readahead offset */
 790	struct extent_tree *extent_tree;	/* cached extent_tree entry */
 791
 792	/* avoid racing between foreground op and gc */
 793	struct rw_semaphore i_gc_rwsem[2];
 794	struct rw_semaphore i_mmap_sem;
 795	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
 796
 797	int i_extra_isize;		/* size of extra space located in i_addr */
 798	kprojid_t i_projid;		/* id for project quota */
 799	int i_inline_xattr_size;	/* inline xattr size */
 800	struct timespec64 i_crtime;	/* inode creation time */
 801	struct timespec64 i_disk_time[4];/* inode disk times */
 802
 803	/* for file compress */
 804	u64 i_compr_blocks;			/* # of compressed blocks */
 805	unsigned char i_compress_algorithm;	/* algorithm type */
 806	unsigned char i_log_cluster_size;	/* log of cluster size */
 807	unsigned int i_cluster_size;		/* cluster size */
 808};
 809
 810static inline void get_extent_info(struct extent_info *ext,
 811					struct f2fs_extent *i_ext)
 812{
 813	ext->fofs = le32_to_cpu(i_ext->fofs);
 814	ext->blk = le32_to_cpu(i_ext->blk);
 815	ext->len = le32_to_cpu(i_ext->len);
 816}
 817
 818static inline void set_raw_extent(struct extent_info *ext,
 819					struct f2fs_extent *i_ext)
 820{
 821	i_ext->fofs = cpu_to_le32(ext->fofs);
 822	i_ext->blk = cpu_to_le32(ext->blk);
 823	i_ext->len = cpu_to_le32(ext->len);
 824}
 825
 826static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
 827						u32 blk, unsigned int len)
 828{
 829	ei->fofs = fofs;
 830	ei->blk = blk;
 831	ei->len = len;
 832}
 833
 834static inline bool __is_discard_mergeable(struct discard_info *back,
 835			struct discard_info *front, unsigned int max_len)
 836{
 837	return (back->lstart + back->len == front->lstart) &&
 838		(back->len + front->len <= max_len);
 839}
 840
 841static inline bool __is_discard_back_mergeable(struct discard_info *cur,
 842			struct discard_info *back, unsigned int max_len)
 843{
 844	return __is_discard_mergeable(back, cur, max_len);
 845}
 846
 847static inline bool __is_discard_front_mergeable(struct discard_info *cur,
 848			struct discard_info *front, unsigned int max_len)
 849{
 850	return __is_discard_mergeable(cur, front, max_len);
 851}
 852
 853static inline bool __is_extent_mergeable(struct extent_info *back,
 854						struct extent_info *front)
 855{
 856	return (back->fofs + back->len == front->fofs &&
 857			back->blk + back->len == front->blk);
 858}
 859
 860static inline bool __is_back_mergeable(struct extent_info *cur,
 861						struct extent_info *back)
 862{
 863	return __is_extent_mergeable(back, cur);
 864}
 865
 866static inline bool __is_front_mergeable(struct extent_info *cur,
 867						struct extent_info *front)
 868{
 869	return __is_extent_mergeable(cur, front);
 870}
 871
 872extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
 873static inline void __try_update_largest_extent(struct extent_tree *et,
 874						struct extent_node *en)
 875{
 876	if (en->ei.len > et->largest.len) {
 877		et->largest = en->ei;
 878		et->largest_updated = true;
 879	}
 880}
 881
 882/*
 883 * For free nid management
 884 */
 885enum nid_state {
 886	FREE_NID,		/* newly added to free nid list */
 887	PREALLOC_NID,		/* it is preallocated */
 888	MAX_NID_STATE,
 889};
 890
 891struct f2fs_nm_info {
 892	block_t nat_blkaddr;		/* base disk address of NAT */
 893	nid_t max_nid;			/* maximum possible node ids */
 894	nid_t available_nids;		/* # of available node ids */
 895	nid_t next_scan_nid;		/* the next nid to be scanned */
 896	unsigned int ram_thresh;	/* control the memory footprint */
 897	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
 898	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
 899
 900	/* NAT cache management */
 901	struct radix_tree_root nat_root;/* root of the nat entry cache */
 902	struct radix_tree_root nat_set_root;/* root of the nat set cache */
 903	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
 904	struct list_head nat_entries;	/* cached nat entry list (clean) */
 905	spinlock_t nat_list_lock;	/* protect clean nat entry list */
 906	unsigned int nat_cnt;		/* the # of cached nat entries */
 907	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
 908	unsigned int nat_blocks;	/* # of nat blocks */
 909
 910	/* free node ids management */
 911	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
 912	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
 913	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
 914	spinlock_t nid_list_lock;	/* protect nid lists ops */
 915	struct mutex build_lock;	/* lock for build free nids */
 916	unsigned char **free_nid_bitmap;
 917	unsigned char *nat_block_bitmap;
 918	unsigned short *free_nid_count;	/* free nid count of NAT block */
 919
 920	/* for checkpoint */
 921	char *nat_bitmap;		/* NAT bitmap pointer */
 922
 923	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
 924	unsigned char *nat_bits;	/* NAT bits blocks */
 925	unsigned char *full_nat_bits;	/* full NAT pages */
 926	unsigned char *empty_nat_bits;	/* empty NAT pages */
 927#ifdef CONFIG_F2FS_CHECK_FS
 928	char *nat_bitmap_mir;		/* NAT bitmap mirror */
 929#endif
 930	int bitmap_size;		/* bitmap size */
 931};
 932
 933/*
 934 * this structure is used as one of function parameters.
 935 * all the information are dedicated to a given direct node block determined
 936 * by the data offset in a file.
 937 */
 938struct dnode_of_data {
 939	struct inode *inode;		/* vfs inode pointer */
 940	struct page *inode_page;	/* its inode page, NULL is possible */
 941	struct page *node_page;		/* cached direct node page */
 942	nid_t nid;			/* node id of the direct node block */
 943	unsigned int ofs_in_node;	/* data offset in the node page */
 944	bool inode_page_locked;		/* inode page is locked or not */
 945	bool node_changed;		/* is node block changed */
 946	char cur_level;			/* level of hole node page */
 947	char max_level;			/* level of current page located */
 948	block_t	data_blkaddr;		/* block address of the node block */
 949};
 950
 951static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
 952		struct page *ipage, struct page *npage, nid_t nid)
 953{
 954	memset(dn, 0, sizeof(*dn));
 955	dn->inode = inode;
 956	dn->inode_page = ipage;
 957	dn->node_page = npage;
 958	dn->nid = nid;
 959}
 960
 961/*
 962 * For SIT manager
 963 *
 964 * By default, there are 6 active log areas across the whole main area.
 965 * When considering hot and cold data separation to reduce cleaning overhead,
 966 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
 967 * respectively.
 968 * In the current design, you should not change the numbers intentionally.
 969 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
 970 * logs individually according to the underlying devices. (default: 6)
 971 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
 972 * data and 8 for node logs.
 973 */
 974#define	NR_CURSEG_DATA_TYPE	(3)
 975#define NR_CURSEG_NODE_TYPE	(3)
 976#define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
 977
 978enum {
 979	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
 980	CURSEG_WARM_DATA,	/* data blocks */
 981	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
 982	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
 983	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
 984	CURSEG_COLD_NODE,	/* indirect node blocks */
 985	NO_CHECK_TYPE,
 986	CURSEG_COLD_DATA_PINNED,/* cold data for pinned file */
 987};
 988
 989struct flush_cmd {
 990	struct completion wait;
 991	struct llist_node llnode;
 992	nid_t ino;
 993	int ret;
 994};
 995
 996struct flush_cmd_control {
 997	struct task_struct *f2fs_issue_flush;	/* flush thread */
 998	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
 999	atomic_t issued_flush;			/* # of issued flushes */
1000	atomic_t queued_flush;			/* # of queued flushes */
1001	struct llist_head issue_list;		/* list for command issue */
1002	struct llist_node *dispatch_list;	/* list for command dispatch */
1003};
1004
1005struct f2fs_sm_info {
1006	struct sit_info *sit_info;		/* whole segment information */
1007	struct free_segmap_info *free_info;	/* free segment information */
1008	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1009	struct curseg_info *curseg_array;	/* active segment information */
1010
1011	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1012
1013	block_t seg0_blkaddr;		/* block address of 0'th segment */
1014	block_t main_blkaddr;		/* start block address of main area */
1015	block_t ssa_blkaddr;		/* start block address of SSA area */
1016
1017	unsigned int segment_count;	/* total # of segments */
1018	unsigned int main_segments;	/* # of segments in main area */
1019	unsigned int reserved_segments;	/* # of reserved segments */
1020	unsigned int ovp_segments;	/* # of overprovision segments */
1021
1022	/* a threshold to reclaim prefree segments */
1023	unsigned int rec_prefree_segments;
1024
1025	/* for batched trimming */
1026	unsigned int trim_sections;		/* # of sections to trim */
1027
1028	struct list_head sit_entry_set;	/* sit entry set list */
1029
1030	unsigned int ipu_policy;	/* in-place-update policy */
1031	unsigned int min_ipu_util;	/* in-place-update threshold */
1032	unsigned int min_fsync_blocks;	/* threshold for fsync */
1033	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1034	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1035	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1036
1037	/* for flush command control */
1038	struct flush_cmd_control *fcc_info;
1039
1040	/* for discard command control */
1041	struct discard_cmd_control *dcc_info;
1042};
1043
1044/*
1045 * For superblock
1046 */
1047/*
1048 * COUNT_TYPE for monitoring
1049 *
1050 * f2fs monitors the number of several block types such as on-writeback,
1051 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1052 */
1053#define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1054enum count_type {
1055	F2FS_DIRTY_DENTS,
1056	F2FS_DIRTY_DATA,
1057	F2FS_DIRTY_QDATA,
1058	F2FS_DIRTY_NODES,
1059	F2FS_DIRTY_META,
1060	F2FS_INMEM_PAGES,
1061	F2FS_DIRTY_IMETA,
1062	F2FS_WB_CP_DATA,
1063	F2FS_WB_DATA,
1064	F2FS_RD_DATA,
1065	F2FS_RD_NODE,
1066	F2FS_RD_META,
1067	F2FS_DIO_WRITE,
1068	F2FS_DIO_READ,
1069	NR_COUNT_TYPE,
1070};
1071
1072/*
1073 * The below are the page types of bios used in submit_bio().
1074 * The available types are:
1075 * DATA			User data pages. It operates as async mode.
1076 * NODE			Node pages. It operates as async mode.
1077 * META			FS metadata pages such as SIT, NAT, CP.
1078 * NR_PAGE_TYPE		The number of page types.
1079 * META_FLUSH		Make sure the previous pages are written
1080 *			with waiting the bio's completion
1081 * ...			Only can be used with META.
1082 */
1083#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1084enum page_type {
1085	DATA,
1086	NODE,
1087	META,
1088	NR_PAGE_TYPE,
1089	META_FLUSH,
1090	INMEM,		/* the below types are used by tracepoints only. */
1091	INMEM_DROP,
1092	INMEM_INVALIDATE,
1093	INMEM_REVOKE,
1094	IPU,
1095	OPU,
1096};
1097
1098enum temp_type {
1099	HOT = 0,	/* must be zero for meta bio */
1100	WARM,
1101	COLD,
1102	NR_TEMP_TYPE,
1103};
1104
1105enum need_lock_type {
1106	LOCK_REQ = 0,
1107	LOCK_DONE,
1108	LOCK_RETRY,
1109};
1110
1111enum cp_reason_type {
1112	CP_NO_NEEDED,
1113	CP_NON_REGULAR,
1114	CP_COMPRESSED,
1115	CP_HARDLINK,
1116	CP_SB_NEED_CP,
1117	CP_WRONG_PINO,
1118	CP_NO_SPC_ROLL,
1119	CP_NODE_NEED_CP,
1120	CP_FASTBOOT_MODE,
1121	CP_SPEC_LOG_NUM,
1122	CP_RECOVER_DIR,
1123};
1124
1125enum iostat_type {
1126	/* WRITE IO */
1127	APP_DIRECT_IO,			/* app direct write IOs */
1128	APP_BUFFERED_IO,		/* app buffered write IOs */
1129	APP_WRITE_IO,			/* app write IOs */
1130	APP_MAPPED_IO,			/* app mapped IOs */
1131	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1132	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1133	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1134	FS_GC_DATA_IO,			/* data IOs from forground gc */
1135	FS_GC_NODE_IO,			/* node IOs from forground gc */
1136	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1137	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1138	FS_CP_META_IO,			/* meta IOs from checkpoint */
1139
1140	/* READ IO */
1141	APP_DIRECT_READ_IO,		/* app direct read IOs */
1142	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1143	APP_READ_IO,			/* app read IOs */
1144	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1145	FS_DATA_READ_IO,		/* data read IOs */
1146	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1147	FS_CDATA_READ_IO,		/* compressed data read IOs */
1148	FS_NODE_READ_IO,		/* node read IOs */
1149	FS_META_READ_IO,		/* meta read IOs */
1150
1151	/* other */
1152	FS_DISCARD,			/* discard */
1153	NR_IO_TYPE,
1154};
1155
1156struct f2fs_io_info {
1157	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1158	nid_t ino;		/* inode number */
1159	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1160	enum temp_type temp;	/* contains HOT/WARM/COLD */
1161	int op;			/* contains REQ_OP_ */
1162	int op_flags;		/* req_flag_bits */
1163	block_t new_blkaddr;	/* new block address to be written */
1164	block_t old_blkaddr;	/* old block address before Cow */
1165	struct page *page;	/* page to be written */
1166	struct page *encrypted_page;	/* encrypted page */
1167	struct page *compressed_page;	/* compressed page */
1168	struct list_head list;		/* serialize IOs */
1169	bool submitted;		/* indicate IO submission */
1170	int need_lock;		/* indicate we need to lock cp_rwsem */
1171	bool in_list;		/* indicate fio is in io_list */
1172	bool is_por;		/* indicate IO is from recovery or not */
1173	bool retry;		/* need to reallocate block address */
1174	int compr_blocks;	/* # of compressed block addresses */
1175	bool encrypted;		/* indicate file is encrypted */
1176	enum iostat_type io_type;	/* io type */
1177	struct writeback_control *io_wbc; /* writeback control */
1178	struct bio **bio;		/* bio for ipu */
1179	sector_t *last_block;		/* last block number in bio */
1180	unsigned char version;		/* version of the node */
1181};
1182
1183struct bio_entry {
1184	struct bio *bio;
1185	struct list_head list;
1186};
1187
1188#define is_read_io(rw) ((rw) == READ)
1189struct f2fs_bio_info {
1190	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1191	struct bio *bio;		/* bios to merge */
1192	sector_t last_block_in_bio;	/* last block number */
1193	struct f2fs_io_info fio;	/* store buffered io info. */
1194	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1195	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1196	struct list_head io_list;	/* track fios */
1197	struct list_head bio_list;	/* bio entry list head */
1198	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1199};
1200
1201#define FDEV(i)				(sbi->devs[i])
1202#define RDEV(i)				(raw_super->devs[i])
1203struct f2fs_dev_info {
1204	struct block_device *bdev;
1205	char path[MAX_PATH_LEN];
1206	unsigned int total_segments;
1207	block_t start_blk;
1208	block_t end_blk;
1209#ifdef CONFIG_BLK_DEV_ZONED
1210	unsigned int nr_blkz;		/* Total number of zones */
1211	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1212#endif
1213};
1214
1215enum inode_type {
1216	DIR_INODE,			/* for dirty dir inode */
1217	FILE_INODE,			/* for dirty regular/symlink inode */
1218	DIRTY_META,			/* for all dirtied inode metadata */
1219	ATOMIC_FILE,			/* for all atomic files */
1220	NR_INODE_TYPE,
1221};
1222
1223/* for inner inode cache management */
1224struct inode_management {
1225	struct radix_tree_root ino_root;	/* ino entry array */
1226	spinlock_t ino_lock;			/* for ino entry lock */
1227	struct list_head ino_list;		/* inode list head */
1228	unsigned long ino_num;			/* number of entries */
1229};
1230
1231/* For s_flag in struct f2fs_sb_info */
1232enum {
1233	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1234	SBI_IS_CLOSE,				/* specify unmounting */
1235	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1236	SBI_POR_DOING,				/* recovery is doing or not */
1237	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1238	SBI_NEED_CP,				/* need to checkpoint */
1239	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1240	SBI_IS_RECOVERED,			/* recovered orphan/data */
1241	SBI_CP_DISABLED,			/* CP was disabled last mount */
1242	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1243	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1244	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1245	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1246	SBI_IS_RESIZEFS,			/* resizefs is in process */
1247};
1248
1249enum {
1250	CP_TIME,
1251	REQ_TIME,
1252	DISCARD_TIME,
1253	GC_TIME,
1254	DISABLE_TIME,
1255	UMOUNT_DISCARD_TIMEOUT,
1256	MAX_TIME,
1257};
1258
1259enum {
1260	GC_NORMAL,
1261	GC_IDLE_CB,
1262	GC_IDLE_GREEDY,
1263	GC_URGENT_HIGH,
1264	GC_URGENT_LOW,
1265};
1266
1267enum {
1268	BGGC_MODE_ON,		/* background gc is on */
1269	BGGC_MODE_OFF,		/* background gc is off */
1270	BGGC_MODE_SYNC,		/*
1271				 * background gc is on, migrating blocks
1272				 * like foreground gc
1273				 */
1274};
1275
1276enum {
1277	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1278	FS_MODE_LFS,		/* use lfs allocation only */
1279};
1280
1281enum {
1282	WHINT_MODE_OFF,		/* not pass down write hints */
1283	WHINT_MODE_USER,	/* try to pass down hints given by users */
1284	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1285};
1286
1287enum {
1288	ALLOC_MODE_DEFAULT,	/* stay default */
1289	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1290};
1291
1292enum fsync_mode {
1293	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1294	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1295	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1296};
1297
1298/*
1299 * this value is set in page as a private data which indicate that
1300 * the page is atomically written, and it is in inmem_pages list.
1301 */
1302#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
1303#define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
1304
1305#define IS_ATOMIC_WRITTEN_PAGE(page)			\
1306		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
1307#define IS_DUMMY_WRITTEN_PAGE(page)			\
1308		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
1309
1310#ifdef CONFIG_F2FS_IO_TRACE
1311#define IS_IO_TRACED_PAGE(page)			\
1312		(page_private(page) > 0 &&		\
1313		 page_private(page) < (unsigned long)PID_MAX_LIMIT)
1314#else
1315#define IS_IO_TRACED_PAGE(page) (0)
1316#endif
1317
1318#ifdef CONFIG_FS_ENCRYPTION
1319#define DUMMY_ENCRYPTION_ENABLED(sbi) \
1320	(unlikely(F2FS_OPTION(sbi).dummy_enc_ctx.ctx != NULL))
1321#else
1322#define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1323#endif
1324
1325/* For compression */
1326enum compress_algorithm_type {
1327	COMPRESS_LZO,
1328	COMPRESS_LZ4,
1329	COMPRESS_ZSTD,
1330	COMPRESS_LZORLE,
1331	COMPRESS_MAX,
1332};
1333
1334#define COMPRESS_DATA_RESERVED_SIZE		5
1335struct compress_data {
1336	__le32 clen;			/* compressed data size */
1337	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1338	u8 cdata[];			/* compressed data */
1339};
1340
1341#define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1342
1343#define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1344
1345/* compress context */
1346struct compress_ctx {
1347	struct inode *inode;		/* inode the context belong to */
1348	pgoff_t cluster_idx;		/* cluster index number */
1349	unsigned int cluster_size;	/* page count in cluster */
1350	unsigned int log_cluster_size;	/* log of cluster size */
1351	struct page **rpages;		/* pages store raw data in cluster */
1352	unsigned int nr_rpages;		/* total page number in rpages */
1353	struct page **cpages;		/* pages store compressed data in cluster */
1354	unsigned int nr_cpages;		/* total page number in cpages */
1355	void *rbuf;			/* virtual mapped address on rpages */
1356	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1357	size_t rlen;			/* valid data length in rbuf */
1358	size_t clen;			/* valid data length in cbuf */
1359	void *private;			/* payload buffer for specified compression algorithm */
1360	void *private2;			/* extra payload buffer */
1361};
1362
1363/* compress context for write IO path */
1364struct compress_io_ctx {
1365	u32 magic;			/* magic number to indicate page is compressed */
1366	struct inode *inode;		/* inode the context belong to */
1367	struct page **rpages;		/* pages store raw data in cluster */
1368	unsigned int nr_rpages;		/* total page number in rpages */
1369	refcount_t ref;			/* referrence count of raw page */
1370};
1371
1372/* decompress io context for read IO path */
1373struct decompress_io_ctx {
1374	u32 magic;			/* magic number to indicate page is compressed */
1375	struct inode *inode;		/* inode the context belong to */
1376	pgoff_t cluster_idx;		/* cluster index number */
1377	unsigned int cluster_size;	/* page count in cluster */
1378	unsigned int log_cluster_size;	/* log of cluster size */
1379	struct page **rpages;		/* pages store raw data in cluster */
1380	unsigned int nr_rpages;		/* total page number in rpages */
1381	struct page **cpages;		/* pages store compressed data in cluster */
1382	unsigned int nr_cpages;		/* total page number in cpages */
1383	struct page **tpages;		/* temp pages to pad holes in cluster */
1384	void *rbuf;			/* virtual mapped address on rpages */
1385	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1386	size_t rlen;			/* valid data length in rbuf */
1387	size_t clen;			/* valid data length in cbuf */
1388	refcount_t ref;			/* referrence count of compressed page */
1389	bool failed;			/* indicate IO error during decompression */
1390	void *private;			/* payload buffer for specified decompression algorithm */
1391	void *private2;			/* extra payload buffer */
1392};
1393
1394#define NULL_CLUSTER			((unsigned int)(~0))
1395#define MIN_COMPRESS_LOG_SIZE		2
1396#define MAX_COMPRESS_LOG_SIZE		8
1397#define MAX_COMPRESS_WINDOW_SIZE	((PAGE_SIZE) << MAX_COMPRESS_LOG_SIZE)
1398
1399struct f2fs_sb_info {
1400	struct super_block *sb;			/* pointer to VFS super block */
1401	struct proc_dir_entry *s_proc;		/* proc entry */
1402	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1403	struct rw_semaphore sb_lock;		/* lock for raw super block */
1404	int valid_super_block;			/* valid super block no */
1405	unsigned long s_flag;				/* flags for sbi */
1406	struct mutex writepages;		/* mutex for writepages() */
1407#ifdef CONFIG_UNICODE
1408	struct unicode_map *s_encoding;
1409	__u16 s_encoding_flags;
1410#endif
1411
1412#ifdef CONFIG_BLK_DEV_ZONED
1413	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1414	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1415#endif
1416
1417	/* for node-related operations */
1418	struct f2fs_nm_info *nm_info;		/* node manager */
1419	struct inode *node_inode;		/* cache node blocks */
1420
1421	/* for segment-related operations */
1422	struct f2fs_sm_info *sm_info;		/* segment manager */
1423
1424	/* for bio operations */
1425	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1426	/* keep migration IO order for LFS mode */
1427	struct rw_semaphore io_order_lock;
1428	mempool_t *write_io_dummy;		/* Dummy pages */
1429
1430	/* for checkpoint */
1431	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1432	int cur_cp_pack;			/* remain current cp pack */
1433	spinlock_t cp_lock;			/* for flag in ckpt */
1434	struct inode *meta_inode;		/* cache meta blocks */
1435	struct mutex cp_mutex;			/* checkpoint procedure lock */
1436	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1437	struct rw_semaphore node_write;		/* locking node writes */
1438	struct rw_semaphore node_change;	/* locking node change */
1439	wait_queue_head_t cp_wait;
1440	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1441	long interval_time[MAX_TIME];		/* to store thresholds */
1442
1443	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1444
1445	spinlock_t fsync_node_lock;		/* for node entry lock */
1446	struct list_head fsync_node_list;	/* node list head */
1447	unsigned int fsync_seg_id;		/* sequence id */
1448	unsigned int fsync_node_num;		/* number of node entries */
1449
1450	/* for orphan inode, use 0'th array */
1451	unsigned int max_orphans;		/* max orphan inodes */
1452
1453	/* for inode management */
1454	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1455	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1456	struct mutex flush_lock;		/* for flush exclusion */
1457
1458	/* for extent tree cache */
1459	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1460	struct mutex extent_tree_lock;	/* locking extent radix tree */
1461	struct list_head extent_list;		/* lru list for shrinker */
1462	spinlock_t extent_lock;			/* locking extent lru list */
1463	atomic_t total_ext_tree;		/* extent tree count */
1464	struct list_head zombie_list;		/* extent zombie tree list */
1465	atomic_t total_zombie_tree;		/* extent zombie tree count */
1466	atomic_t total_ext_node;		/* extent info count */
1467
1468	/* basic filesystem units */
1469	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1470	unsigned int log_blocksize;		/* log2 block size */
1471	unsigned int blocksize;			/* block size */
1472	unsigned int root_ino_num;		/* root inode number*/
1473	unsigned int node_ino_num;		/* node inode number*/
1474	unsigned int meta_ino_num;		/* meta inode number*/
1475	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1476	unsigned int blocks_per_seg;		/* blocks per segment */
1477	unsigned int segs_per_sec;		/* segments per section */
1478	unsigned int secs_per_zone;		/* sections per zone */
1479	unsigned int total_sections;		/* total section count */
1480	unsigned int total_node_count;		/* total node block count */
1481	unsigned int total_valid_node_count;	/* valid node block count */
1482	loff_t max_file_blocks;			/* max block index of file */
1483	int dir_level;				/* directory level */
1484	int readdir_ra;				/* readahead inode in readdir */
1485
1486	block_t user_block_count;		/* # of user blocks */
1487	block_t total_valid_block_count;	/* # of valid blocks */
1488	block_t discard_blks;			/* discard command candidats */
1489	block_t last_valid_block_count;		/* for recovery */
1490	block_t reserved_blocks;		/* configurable reserved blocks */
1491	block_t current_reserved_blocks;	/* current reserved blocks */
1492
1493	/* Additional tracking for no checkpoint mode */
1494	block_t unusable_block_count;		/* # of blocks saved by last cp */
1495
1496	unsigned int nquota_files;		/* # of quota sysfile */
1497	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1498
1499	/* # of pages, see count_type */
1500	atomic_t nr_pages[NR_COUNT_TYPE];
1501	/* # of allocated blocks */
1502	struct percpu_counter alloc_valid_block_count;
1503
1504	/* writeback control */
1505	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1506
1507	/* valid inode count */
1508	struct percpu_counter total_valid_inode_count;
1509
1510	struct f2fs_mount_info mount_opt;	/* mount options */
1511
1512	/* for cleaning operations */
1513	struct rw_semaphore gc_lock;		/*
1514						 * semaphore for GC, avoid
1515						 * race between GC and GC or CP
1516						 */
1517	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1518	unsigned int cur_victim_sec;		/* current victim section num */
1519	unsigned int gc_mode;			/* current GC state */
1520	unsigned int next_victim_seg[2];	/* next segment in victim section */
1521
1522	/* for skip statistic */
1523	unsigned int atomic_files;		/* # of opened atomic file */
1524	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1525	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1526
1527	/* threshold for gc trials on pinned files */
1528	u64 gc_pin_file_threshold;
1529	struct rw_semaphore pin_sem;
1530
1531	/* maximum # of trials to find a victim segment for SSR and GC */
1532	unsigned int max_victim_search;
1533	/* migration granularity of garbage collection, unit: segment */
1534	unsigned int migration_granularity;
1535
1536	/*
1537	 * for stat information.
1538	 * one is for the LFS mode, and the other is for the SSR mode.
1539	 */
1540#ifdef CONFIG_F2FS_STAT_FS
1541	struct f2fs_stat_info *stat_info;	/* FS status information */
1542	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1543	unsigned int segment_count[2];		/* # of allocated segments */
1544	unsigned int block_count[2];		/* # of allocated blocks */
1545	atomic_t inplace_count;		/* # of inplace update */
1546	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1547	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1548	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1549	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1550	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1551	atomic_t inline_inode;			/* # of inline_data inodes */
1552	atomic_t inline_dir;			/* # of inline_dentry inodes */
1553	atomic_t compr_inode;			/* # of compressed inodes */
1554	atomic_t compr_blocks;			/* # of compressed blocks */
1555	atomic_t vw_cnt;			/* # of volatile writes */
1556	atomic_t max_aw_cnt;			/* max # of atomic writes */
1557	atomic_t max_vw_cnt;			/* max # of volatile writes */
1558	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1559	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1560	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1561#endif
1562	spinlock_t stat_lock;			/* lock for stat operations */
1563
1564	/* For app/fs IO statistics */
1565	spinlock_t iostat_lock;
1566	unsigned long long rw_iostat[NR_IO_TYPE];
1567	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1568	bool iostat_enable;
1569	unsigned long iostat_next_period;
1570	unsigned int iostat_period_ms;
1571
1572	/* to attach REQ_META|REQ_FUA flags */
1573	unsigned int data_io_flag;
1574	unsigned int node_io_flag;
1575
1576	/* For sysfs suppport */
1577	struct kobject s_kobj;
1578	struct completion s_kobj_unregister;
1579
1580	/* For shrinker support */
1581	struct list_head s_list;
1582	int s_ndevs;				/* number of devices */
1583	struct f2fs_dev_info *devs;		/* for device list */
1584	unsigned int dirty_device;		/* for checkpoint data flush */
1585	spinlock_t dev_lock;			/* protect dirty_device */
1586	struct mutex umount_mutex;
1587	unsigned int shrinker_run_no;
1588
1589	/* For write statistics */
1590	u64 sectors_written_start;
1591	u64 kbytes_written;
1592
1593	/* Reference to checksum algorithm driver via cryptoapi */
1594	struct crypto_shash *s_chksum_driver;
1595
1596	/* Precomputed FS UUID checksum for seeding other checksums */
1597	__u32 s_chksum_seed;
1598
1599	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1600
1601	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1602	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1603};
1604
1605struct f2fs_private_dio {
1606	struct inode *inode;
1607	void *orig_private;
1608	bio_end_io_t *orig_end_io;
1609	bool write;
1610};
1611
1612#ifdef CONFIG_F2FS_FAULT_INJECTION
1613#define f2fs_show_injection_info(sbi, type)					\
1614	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1615		KERN_INFO, sbi->sb->s_id,				\
1616		f2fs_fault_name[type],					\
1617		__func__, __builtin_return_address(0))
1618static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1619{
1620	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1621
1622	if (!ffi->inject_rate)
1623		return false;
1624
1625	if (!IS_FAULT_SET(ffi, type))
1626		return false;
1627
1628	atomic_inc(&ffi->inject_ops);
1629	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1630		atomic_set(&ffi->inject_ops, 0);
1631		return true;
1632	}
1633	return false;
1634}
1635#else
1636#define f2fs_show_injection_info(sbi, type) do { } while (0)
1637static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1638{
1639	return false;
1640}
1641#endif
1642
1643/*
1644 * Test if the mounted volume is a multi-device volume.
1645 *   - For a single regular disk volume, sbi->s_ndevs is 0.
1646 *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1647 *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1648 */
1649static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1650{
1651	return sbi->s_ndevs > 1;
1652}
1653
1654/* For write statistics. Suppose sector size is 512 bytes,
1655 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1656 */
1657#define BD_PART_WRITTEN(s)						 \
1658(((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1659		(s)->sectors_written_start) >> 1)
1660
1661static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1662{
1663	unsigned long now = jiffies;
1664
1665	sbi->last_time[type] = now;
1666
1667	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1668	if (type == REQ_TIME) {
1669		sbi->last_time[DISCARD_TIME] = now;
1670		sbi->last_time[GC_TIME] = now;
1671	}
1672}
1673
1674static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1675{
1676	unsigned long interval = sbi->interval_time[type] * HZ;
1677
1678	return time_after(jiffies, sbi->last_time[type] + interval);
1679}
1680
1681static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1682						int type)
1683{
1684	unsigned long interval = sbi->interval_time[type] * HZ;
1685	unsigned int wait_ms = 0;
1686	long delta;
1687
1688	delta = (sbi->last_time[type] + interval) - jiffies;
1689	if (delta > 0)
1690		wait_ms = jiffies_to_msecs(delta);
1691
1692	return wait_ms;
1693}
1694
1695/*
1696 * Inline functions
1697 */
1698static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1699			      const void *address, unsigned int length)
1700{
1701	struct {
1702		struct shash_desc shash;
1703		char ctx[4];
1704	} desc;
1705	int err;
1706
1707	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1708
1709	desc.shash.tfm = sbi->s_chksum_driver;
1710	*(u32 *)desc.ctx = crc;
1711
1712	err = crypto_shash_update(&desc.shash, address, length);
1713	BUG_ON(err);
1714
1715	return *(u32 *)desc.ctx;
1716}
1717
1718static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1719			   unsigned int length)
1720{
1721	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1722}
1723
1724static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1725				  void *buf, size_t buf_size)
1726{
1727	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1728}
1729
1730static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1731			      const void *address, unsigned int length)
1732{
1733	return __f2fs_crc32(sbi, crc, address, length);
1734}
1735
1736static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1737{
1738	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1739}
1740
1741static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1742{
1743	return sb->s_fs_info;
1744}
1745
1746static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1747{
1748	return F2FS_SB(inode->i_sb);
1749}
1750
1751static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1752{
1753	return F2FS_I_SB(mapping->host);
1754}
1755
1756static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1757{
1758	return F2FS_M_SB(page_file_mapping(page));
1759}
1760
1761static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1762{
1763	return (struct f2fs_super_block *)(sbi->raw_super);
1764}
1765
1766static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1767{
1768	return (struct f2fs_checkpoint *)(sbi->ckpt);
1769}
1770
1771static inline struct f2fs_node *F2FS_NODE(struct page *page)
1772{
1773	return (struct f2fs_node *)page_address(page);
1774}
1775
1776static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1777{
1778	return &((struct f2fs_node *)page_address(page))->i;
1779}
1780
1781static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1782{
1783	return (struct f2fs_nm_info *)(sbi->nm_info);
1784}
1785
1786static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1787{
1788	return (struct f2fs_sm_info *)(sbi->sm_info);
1789}
1790
1791static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1792{
1793	return (struct sit_info *)(SM_I(sbi)->sit_info);
1794}
1795
1796static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1797{
1798	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1799}
1800
1801static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1802{
1803	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1804}
1805
1806static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1807{
1808	return sbi->meta_inode->i_mapping;
1809}
1810
1811static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1812{
1813	return sbi->node_inode->i_mapping;
1814}
1815
1816static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1817{
1818	return test_bit(type, &sbi->s_flag);
1819}
1820
1821static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1822{
1823	set_bit(type, &sbi->s_flag);
1824}
1825
1826static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1827{
1828	clear_bit(type, &sbi->s_flag);
1829}
1830
1831static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1832{
1833	return le64_to_cpu(cp->checkpoint_ver);
1834}
1835
1836static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1837{
1838	if (type < F2FS_MAX_QUOTAS)
1839		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1840	return 0;
1841}
1842
1843static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1844{
1845	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1846	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1847}
1848
1849static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1850{
1851	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1852
1853	return ckpt_flags & f;
1854}
1855
1856static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1857{
1858	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1859}
1860
1861static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1862{
1863	unsigned int ckpt_flags;
1864
1865	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1866	ckpt_flags |= f;
1867	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1868}
1869
1870static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1871{
1872	unsigned long flags;
1873
1874	spin_lock_irqsave(&sbi->cp_lock, flags);
1875	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1876	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1877}
1878
1879static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1880{
1881	unsigned int ckpt_flags;
1882
1883	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1884	ckpt_flags &= (~f);
1885	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1886}
1887
1888static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1889{
1890	unsigned long flags;
1891
1892	spin_lock_irqsave(&sbi->cp_lock, flags);
1893	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1894	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1895}
1896
1897static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1898{
1899	unsigned long flags;
1900	unsigned char *nat_bits;
1901
1902	/*
1903	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1904	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1905	 * so let's rely on regular fsck or unclean shutdown.
1906	 */
1907
1908	if (lock)
1909		spin_lock_irqsave(&sbi->cp_lock, flags);
1910	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1911	nat_bits = NM_I(sbi)->nat_bits;
1912	NM_I(sbi)->nat_bits = NULL;
1913	if (lock)
1914		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1915
1916	kvfree(nat_bits);
1917}
1918
1919static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1920					struct cp_control *cpc)
1921{
1922	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1923
1924	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1925}
1926
1927static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1928{
1929	down_read(&sbi->cp_rwsem);
1930}
1931
1932static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1933{
1934	return down_read_trylock(&sbi->cp_rwsem);
1935}
1936
1937static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1938{
1939	up_read(&sbi->cp_rwsem);
1940}
1941
1942static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1943{
1944	down_write(&sbi->cp_rwsem);
1945}
1946
1947static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1948{
1949	up_write(&sbi->cp_rwsem);
1950}
1951
1952static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1953{
1954	int reason = CP_SYNC;
1955
1956	if (test_opt(sbi, FASTBOOT))
1957		reason = CP_FASTBOOT;
1958	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1959		reason = CP_UMOUNT;
1960	return reason;
1961}
1962
1963static inline bool __remain_node_summaries(int reason)
1964{
1965	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1966}
1967
1968static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1969{
1970	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1971			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1972}
1973
1974/*
1975 * Check whether the inode has blocks or not
1976 */
1977static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1978{
1979	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1980
1981	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1982}
1983
1984static inline bool f2fs_has_xattr_block(unsigned int ofs)
1985{
1986	return ofs == XATTR_NODE_OFFSET;
1987}
1988
1989static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1990					struct inode *inode, bool cap)
1991{
1992	if (!inode)
1993		return true;
1994	if (!test_opt(sbi, RESERVE_ROOT))
1995		return false;
1996	if (IS_NOQUOTA(inode))
1997		return true;
1998	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1999		return true;
2000	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2001					in_group_p(F2FS_OPTION(sbi).s_resgid))
2002		return true;
2003	if (cap && capable(CAP_SYS_RESOURCE))
2004		return true;
2005	return false;
2006}
2007
2008static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
2009static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2010				 struct inode *inode, blkcnt_t *count)
2011{
2012	blkcnt_t diff = 0, release = 0;
2013	block_t avail_user_block_count;
2014	int ret;
2015
2016	ret = dquot_reserve_block(inode, *count);
2017	if (ret)
2018		return ret;
2019
2020	if (time_to_inject(sbi, FAULT_BLOCK)) {
2021		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2022		release = *count;
2023		goto release_quota;
2024	}
2025
2026	/*
2027	 * let's increase this in prior to actual block count change in order
2028	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2029	 */
2030	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2031
2032	spin_lock(&sbi->stat_lock);
2033	sbi->total_valid_block_count += (block_t)(*count);
2034	avail_user_block_count = sbi->user_block_count -
2035					sbi->current_reserved_blocks;
2036
2037	if (!__allow_reserved_blocks(sbi, inode, true))
2038		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2039	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2040		if (avail_user_block_count > sbi->unusable_block_count)
2041			avail_user_block_count -= sbi->unusable_block_count;
2042		else
2043			avail_user_block_count = 0;
2044	}
2045	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2046		diff = sbi->total_valid_block_count - avail_user_block_count;
2047		if (diff > *count)
2048			diff = *count;
2049		*count -= diff;
2050		release = diff;
2051		sbi->total_valid_block_count -= diff;
2052		if (!*count) {
2053			spin_unlock(&sbi->stat_lock);
2054			goto enospc;
2055		}
2056	}
2057	spin_unlock(&sbi->stat_lock);
2058
2059	if (unlikely(release)) {
2060		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2061		dquot_release_reservation_block(inode, release);
2062	}
2063	f2fs_i_blocks_write(inode, *count, true, true);
2064	return 0;
2065
2066enospc:
2067	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2068release_quota:
2069	dquot_release_reservation_block(inode, release);
2070	return -ENOSPC;
2071}
2072
2073__printf(2, 3)
2074void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2075
2076#define f2fs_err(sbi, fmt, ...)						\
2077	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2078#define f2fs_warn(sbi, fmt, ...)					\
2079	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2080#define f2fs_notice(sbi, fmt, ...)					\
2081	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2082#define f2fs_info(sbi, fmt, ...)					\
2083	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2084#define f2fs_debug(sbi, fmt, ...)					\
2085	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2086
2087static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2088						struct inode *inode,
2089						block_t count)
2090{
2091	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2092
2093	spin_lock(&sbi->stat_lock);
2094	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2095	sbi->total_valid_block_count -= (block_t)count;
2096	if (sbi->reserved_blocks &&
2097		sbi->current_reserved_blocks < sbi->reserved_blocks)
2098		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2099					sbi->current_reserved_blocks + count);
2100	spin_unlock(&sbi->stat_lock);
2101	if (unlikely(inode->i_blocks < sectors)) {
2102		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2103			  inode->i_ino,
2104			  (unsigned long long)inode->i_blocks,
2105			  (unsigned long long)sectors);
2106		set_sbi_flag(sbi, SBI_NEED_FSCK);
2107		return;
2108	}
2109	f2fs_i_blocks_write(inode, count, false, true);
2110}
2111
2112static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2113{
2114	atomic_inc(&sbi->nr_pages[count_type]);
2115
2116	if (count_type == F2FS_DIRTY_DENTS ||
2117			count_type == F2FS_DIRTY_NODES ||
2118			count_type == F2FS_DIRTY_META ||
2119			count_type == F2FS_DIRTY_QDATA ||
2120			count_type == F2FS_DIRTY_IMETA)
2121		set_sbi_flag(sbi, SBI_IS_DIRTY);
2122}
2123
2124static inline void inode_inc_dirty_pages(struct inode *inode)
2125{
2126	atomic_inc(&F2FS_I(inode)->dirty_pages);
2127	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2128				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2129	if (IS_NOQUOTA(inode))
2130		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2131}
2132
2133static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2134{
2135	atomic_dec(&sbi->nr_pages[count_type]);
2136}
2137
2138static inline void inode_dec_dirty_pages(struct inode *inode)
2139{
2140	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2141			!S_ISLNK(inode->i_mode))
2142		return;
2143
2144	atomic_dec(&F2FS_I(inode)->dirty_pages);
2145	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2146				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2147	if (IS_NOQUOTA(inode))
2148		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2149}
2150
2151static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2152{
2153	return atomic_read(&sbi->nr_pages[count_type]);
2154}
2155
2156static inline int get_dirty_pages(struct inode *inode)
2157{
2158	return atomic_read(&F2FS_I(inode)->dirty_pages);
2159}
2160
2161static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2162{
2163	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2164	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2165						sbi->log_blocks_per_seg;
2166
2167	return segs / sbi->segs_per_sec;
2168}
2169
2170static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2171{
2172	return sbi->total_valid_block_count;
2173}
2174
2175static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2176{
2177	return sbi->discard_blks;
2178}
2179
2180static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2181{
2182	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2183
2184	/* return NAT or SIT bitmap */
2185	if (flag == NAT_BITMAP)
2186		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2187	else if (flag == SIT_BITMAP)
2188		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2189
2190	return 0;
2191}
2192
2193static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2194{
2195	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2196}
2197
2198static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2199{
2200	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2201	int offset;
2202
2203	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2204		offset = (flag == SIT_BITMAP) ?
2205			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2206		/*
2207		 * if large_nat_bitmap feature is enabled, leave checksum
2208		 * protection for all nat/sit bitmaps.
2209		 */
2210		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
2211	}
2212
2213	if (__cp_payload(sbi) > 0) {
2214		if (flag == NAT_BITMAP)
2215			return &ckpt->sit_nat_version_bitmap;
2216		else
2217			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2218	} else {
2219		offset = (flag == NAT_BITMAP) ?
2220			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2221		return &ckpt->sit_nat_version_bitmap + offset;
2222	}
2223}
2224
2225static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2226{
2227	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2228
2229	if (sbi->cur_cp_pack == 2)
2230		start_addr += sbi->blocks_per_seg;
2231	return start_addr;
2232}
2233
2234static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2235{
2236	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2237
2238	if (sbi->cur_cp_pack == 1)
2239		start_addr += sbi->blocks_per_seg;
2240	return start_addr;
2241}
2242
2243static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2244{
2245	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2246}
2247
2248static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2249{
2250	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2251}
2252
2253static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2254					struct inode *inode, bool is_inode)
2255{
2256	block_t	valid_block_count;
2257	unsigned int valid_node_count, user_block_count;
2258	int err;
2259
2260	if (is_inode) {
2261		if (inode) {
2262			err = dquot_alloc_inode(inode);
2263			if (err)
2264				return err;
2265		}
2266	} else {
2267		err = dquot_reserve_block(inode, 1);
2268		if (err)
2269			return err;
2270	}
2271
2272	if (time_to_inject(sbi, FAULT_BLOCK)) {
2273		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2274		goto enospc;
2275	}
2276
2277	spin_lock(&sbi->stat_lock);
2278
2279	valid_block_count = sbi->total_valid_block_count +
2280					sbi->current_reserved_blocks + 1;
2281
2282	if (!__allow_reserved_blocks(sbi, inode, false))
2283		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2284	user_block_count = sbi->user_block_count;
2285	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2286		user_block_count -= sbi->unusable_block_count;
2287
2288	if (unlikely(valid_block_count > user_block_count)) {
2289		spin_unlock(&sbi->stat_lock);
2290		goto enospc;
2291	}
2292
2293	valid_node_count = sbi->total_valid_node_count + 1;
2294	if (unlikely(valid_node_count > sbi->total_node_count)) {
2295		spin_unlock(&sbi->stat_lock);
2296		goto enospc;
2297	}
2298
2299	sbi->total_valid_node_count++;
2300	sbi->total_valid_block_count++;
2301	spin_unlock(&sbi->stat_lock);
2302
2303	if (inode) {
2304		if (is_inode)
2305			f2fs_mark_inode_dirty_sync(inode, true);
2306		else
2307			f2fs_i_blocks_write(inode, 1, true, true);
2308	}
2309
2310	percpu_counter_inc(&sbi->alloc_valid_block_count);
2311	return 0;
2312
2313enospc:
2314	if (is_inode) {
2315		if (inode)
2316			dquot_free_inode(inode);
2317	} else {
2318		dquot_release_reservation_block(inode, 1);
2319	}
2320	return -ENOSPC;
2321}
2322
2323static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2324					struct inode *inode, bool is_inode)
2325{
2326	spin_lock(&sbi->stat_lock);
2327
2328	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2329	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2330
2331	sbi->total_valid_node_count--;
2332	sbi->total_valid_block_count--;
2333	if (sbi->reserved_blocks &&
2334		sbi->current_reserved_blocks < sbi->reserved_blocks)
2335		sbi->current_reserved_blocks++;
2336
2337	spin_unlock(&sbi->stat_lock);
2338
2339	if (is_inode) {
2340		dquot_free_inode(inode);
2341	} else {
2342		if (unlikely(inode->i_blocks == 0)) {
2343			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2344				  inode->i_ino,
2345				  (unsigned long long)inode->i_blocks);
2346			set_sbi_flag(sbi, SBI_NEED_FSCK);
2347			return;
2348		}
2349		f2fs_i_blocks_write(inode, 1, false, true);
2350	}
2351}
2352
2353static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2354{
2355	return sbi->total_valid_node_count;
2356}
2357
2358static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2359{
2360	percpu_counter_inc(&sbi->total_valid_inode_count);
2361}
2362
2363static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2364{
2365	percpu_counter_dec(&sbi->total_valid_inode_count);
2366}
2367
2368static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2369{
2370	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2371}
2372
2373static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2374						pgoff_t index, bool for_write)
2375{
2376	struct page *page;
2377
2378	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2379		if (!for_write)
2380			page = find_get_page_flags(mapping, index,
2381							FGP_LOCK | FGP_ACCESSED);
2382		else
2383			page = find_lock_page(mapping, index);
2384		if (page)
2385			return page;
2386
2387		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2388			f2fs_show_injection_info(F2FS_M_SB(mapping),
2389							FAULT_PAGE_ALLOC);
2390			return NULL;
2391		}
2392	}
2393
2394	if (!for_write)
2395		return grab_cache_page(mapping, index);
2396	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2397}
2398
2399static inline struct page *f2fs_pagecache_get_page(
2400				struct address_space *mapping, pgoff_t index,
2401				int fgp_flags, gfp_t gfp_mask)
2402{
2403	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2404		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2405		return NULL;
2406	}
2407
2408	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2409}
2410
2411static inline void f2fs_copy_page(struct page *src, struct page *dst)
2412{
2413	char *src_kaddr = kmap(src);
2414	char *dst_kaddr = kmap(dst);
2415
2416	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2417	kunmap(dst);
2418	kunmap(src);
2419}
2420
2421static inline void f2fs_put_page(struct page *page, int unlock)
2422{
2423	if (!page)
2424		return;
2425
2426	if (unlock) {
2427		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2428		unlock_page(page);
2429	}
2430	put_page(page);
2431}
2432
2433static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2434{
2435	if (dn->node_page)
2436		f2fs_put_page(dn->node_page, 1);
2437	if (dn->inode_page && dn->node_page != dn->inode_page)
2438		f2fs_put_page(dn->inode_page, 0);
2439	dn->node_page = NULL;
2440	dn->inode_page = NULL;
2441}
2442
2443static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2444					size_t size)
2445{
2446	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2447}
2448
2449static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2450						gfp_t flags)
2451{
2452	void *entry;
2453
2454	entry = kmem_cache_alloc(cachep, flags);
2455	if (!entry)
2456		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2457	return entry;
2458}
2459
2460static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2461{
2462	if (sbi->gc_mode == GC_URGENT_HIGH)
2463		return true;
2464
2465	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2466		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2467		get_pages(sbi, F2FS_WB_CP_DATA) ||
2468		get_pages(sbi, F2FS_DIO_READ) ||
2469		get_pages(sbi, F2FS_DIO_WRITE))
2470		return false;
2471
2472	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2473			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2474		return false;
2475
2476	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2477			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2478		return false;
2479
2480	if (sbi->gc_mode == GC_URGENT_LOW &&
2481			(type == DISCARD_TIME || type == GC_TIME))
2482		return true;
2483
2484	return f2fs_time_over(sbi, type);
2485}
2486
2487static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2488				unsigned long index, void *item)
2489{
2490	while (radix_tree_insert(root, index, item))
2491		cond_resched();
2492}
2493
2494#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2495
2496static inline bool IS_INODE(struct page *page)
2497{
2498	struct f2fs_node *p = F2FS_NODE(page);
2499
2500	return RAW_IS_INODE(p);
2501}
2502
2503static inline int offset_in_addr(struct f2fs_inode *i)
2504{
2505	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2506			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2507}
2508
2509static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2510{
2511	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2512}
2513
2514static inline int f2fs_has_extra_attr(struct inode *inode);
2515static inline block_t data_blkaddr(struct inode *inode,
2516			struct page *node_page, unsigned int offset)
2517{
2518	struct f2fs_node *raw_node;
2519	__le32 *addr_array;
2520	int base = 0;
2521	bool is_inode = IS_INODE(node_page);
2522
2523	raw_node = F2FS_NODE(node_page);
2524
2525	if (is_inode) {
2526		if (!inode)
2527			/* from GC path only */
2528			base = offset_in_addr(&raw_node->i);
2529		else if (f2fs_has_extra_attr(inode))
2530			base = get_extra_isize(inode);
2531	}
2532
2533	addr_array = blkaddr_in_node(raw_node);
2534	return le32_to_cpu(addr_array[base + offset]);
2535}
2536
2537static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2538{
2539	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2540}
2541
2542static inline int f2fs_test_bit(unsigned int nr, char *addr)
2543{
2544	int mask;
2545
2546	addr += (nr >> 3);
2547	mask = 1 << (7 - (nr & 0x07));
2548	return mask & *addr;
2549}
2550
2551static inline void f2fs_set_bit(unsigned int nr, char *addr)
2552{
2553	int mask;
2554
2555	addr += (nr >> 3);
2556	mask = 1 << (7 - (nr & 0x07));
2557	*addr |= mask;
2558}
2559
2560static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2561{
2562	int mask;
2563
2564	addr += (nr >> 3);
2565	mask = 1 << (7 - (nr & 0x07));
2566	*addr &= ~mask;
2567}
2568
2569static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2570{
2571	int mask;
2572	int ret;
2573
2574	addr += (nr >> 3);
2575	mask = 1 << (7 - (nr & 0x07));
2576	ret = mask & *addr;
2577	*addr |= mask;
2578	return ret;
2579}
2580
2581static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2582{
2583	int mask;
2584	int ret;
2585
2586	addr += (nr >> 3);
2587	mask = 1 << (7 - (nr & 0x07));
2588	ret = mask & *addr;
2589	*addr &= ~mask;
2590	return ret;
2591}
2592
2593static inline void f2fs_change_bit(unsigned int nr, char *addr)
2594{
2595	int mask;
2596
2597	addr += (nr >> 3);
2598	mask = 1 << (7 - (nr & 0x07));
2599	*addr ^= mask;
2600}
2601
2602/*
2603 * On-disk inode flags (f2fs_inode::i_flags)
2604 */
2605#define F2FS_COMPR_FL			0x00000004 /* Compress file */
2606#define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2607#define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2608#define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2609#define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2610#define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2611#define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2612#define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2613#define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2614#define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2615#define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2616
2617/* Flags that should be inherited by new inodes from their parent. */
2618#define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2619			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2620			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2621
2622/* Flags that are appropriate for regular files (all but dir-specific ones). */
2623#define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2624				F2FS_CASEFOLD_FL))
2625
2626/* Flags that are appropriate for non-directories/regular files. */
2627#define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2628
2629static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2630{
2631	if (S_ISDIR(mode))
2632		return flags;
2633	else if (S_ISREG(mode))
2634		return flags & F2FS_REG_FLMASK;
2635	else
2636		return flags & F2FS_OTHER_FLMASK;
2637}
2638
2639static inline void __mark_inode_dirty_flag(struct inode *inode,
2640						int flag, bool set)
2641{
2642	switch (flag) {
2643	case FI_INLINE_XATTR:
2644	case FI_INLINE_DATA:
2645	case FI_INLINE_DENTRY:
2646	case FI_NEW_INODE:
2647		if (set)
2648			return;
2649		fallthrough;
2650	case FI_DATA_EXIST:
2651	case FI_INLINE_DOTS:
2652	case FI_PIN_FILE:
2653		f2fs_mark_inode_dirty_sync(inode, true);
2654	}
2655}
2656
2657static inline void set_inode_flag(struct inode *inode, int flag)
2658{
2659	set_bit(flag, F2FS_I(inode)->flags);
2660	__mark_inode_dirty_flag(inode, flag, true);
2661}
2662
2663static inline int is_inode_flag_set(struct inode *inode, int flag)
2664{
2665	return test_bit(flag, F2FS_I(inode)->flags);
2666}
2667
2668static inline void clear_inode_flag(struct inode *inode, int flag)
2669{
2670	clear_bit(flag, F2FS_I(inode)->flags);
2671	__mark_inode_dirty_flag(inode, flag, false);
2672}
2673
2674static inline bool f2fs_verity_in_progress(struct inode *inode)
2675{
2676	return IS_ENABLED(CONFIG_FS_VERITY) &&
2677	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2678}
2679
2680static inline void set_acl_inode(struct inode *inode, umode_t mode)
2681{
2682	F2FS_I(inode)->i_acl_mode = mode;
2683	set_inode_flag(inode, FI_ACL_MODE);
2684	f2fs_mark_inode_dirty_sync(inode, false);
2685}
2686
2687static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2688{
2689	if (inc)
2690		inc_nlink(inode);
2691	else
2692		drop_nlink(inode);
2693	f2fs_mark_inode_dirty_sync(inode, true);
2694}
2695
2696static inline void f2fs_i_blocks_write(struct inode *inode,
2697					block_t diff, bool add, bool claim)
2698{
2699	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2700	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2701
2702	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2703	if (add) {
2704		if (claim)
2705			dquot_claim_block(inode, diff);
2706		else
2707			dquot_alloc_block_nofail(inode, diff);
2708	} else {
2709		dquot_free_block(inode, diff);
2710	}
2711
2712	f2fs_mark_inode_dirty_sync(inode, true);
2713	if (clean || recover)
2714		set_inode_flag(inode, FI_AUTO_RECOVER);
2715}
2716
2717static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2718{
2719	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2720	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2721
2722	if (i_size_read(inode) == i_size)
2723		return;
2724
2725	i_size_write(inode, i_size);
2726	f2fs_mark_inode_dirty_sync(inode, true);
2727	if (clean || recover)
2728		set_inode_flag(inode, FI_AUTO_RECOVER);
2729}
2730
2731static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2732{
2733	F2FS_I(inode)->i_current_depth = depth;
2734	f2fs_mark_inode_dirty_sync(inode, true);
2735}
2736
2737static inline void f2fs_i_gc_failures_write(struct inode *inode,
2738					unsigned int count)
2739{
2740	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2741	f2fs_mark_inode_dirty_sync(inode, true);
2742}
2743
2744static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2745{
2746	F2FS_I(inode)->i_xattr_nid = xnid;
2747	f2fs_mark_inode_dirty_sync(inode, true);
2748}
2749
2750static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2751{
2752	F2FS_I(inode)->i_pino = pino;
2753	f2fs_mark_inode_dirty_sync(inode, true);
2754}
2755
2756static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2757{
2758	struct f2fs_inode_info *fi = F2FS_I(inode);
2759
2760	if (ri->i_inline & F2FS_INLINE_XATTR)
2761		set_bit(FI_INLINE_XATTR, fi->flags);
2762	if (ri->i_inline & F2FS_INLINE_DATA)
2763		set_bit(FI_INLINE_DATA, fi->flags);
2764	if (ri->i_inline & F2FS_INLINE_DENTRY)
2765		set_bit(FI_INLINE_DENTRY, fi->flags);
2766	if (ri->i_inline & F2FS_DATA_EXIST)
2767		set_bit(FI_DATA_EXIST, fi->flags);
2768	if (ri->i_inline & F2FS_INLINE_DOTS)
2769		set_bit(FI_INLINE_DOTS, fi->flags);
2770	if (ri->i_inline & F2FS_EXTRA_ATTR)
2771		set_bit(FI_EXTRA_ATTR, fi->flags);
2772	if (ri->i_inline & F2FS_PIN_FILE)
2773		set_bit(FI_PIN_FILE, fi->flags);
2774}
2775
2776static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2777{
2778	ri->i_inline = 0;
2779
2780	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2781		ri->i_inline |= F2FS_INLINE_XATTR;
2782	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2783		ri->i_inline |= F2FS_INLINE_DATA;
2784	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2785		ri->i_inline |= F2FS_INLINE_DENTRY;
2786	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2787		ri->i_inline |= F2FS_DATA_EXIST;
2788	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2789		ri->i_inline |= F2FS_INLINE_DOTS;
2790	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2791		ri->i_inline |= F2FS_EXTRA_ATTR;
2792	if (is_inode_flag_set(inode, FI_PIN_FILE))
2793		ri->i_inline |= F2FS_PIN_FILE;
2794}
2795
2796static inline int f2fs_has_extra_attr(struct inode *inode)
2797{
2798	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2799}
2800
2801static inline int f2fs_has_inline_xattr(struct inode *inode)
2802{
2803	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2804}
2805
2806static inline int f2fs_compressed_file(struct inode *inode)
2807{
2808	return S_ISREG(inode->i_mode) &&
2809		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2810}
2811
2812static inline unsigned int addrs_per_inode(struct inode *inode)
2813{
2814	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2815				get_inline_xattr_addrs(inode);
2816
2817	if (!f2fs_compressed_file(inode))
2818		return addrs;
2819	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
2820}
2821
2822static inline unsigned int addrs_per_block(struct inode *inode)
2823{
2824	if (!f2fs_compressed_file(inode))
2825		return DEF_ADDRS_PER_BLOCK;
2826	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
2827}
2828
2829static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2830{
2831	struct f2fs_inode *ri = F2FS_INODE(page);
2832
2833	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2834					get_inline_xattr_addrs(inode)]);
2835}
2836
2837static inline int inline_xattr_size(struct inode *inode)
2838{
2839	if (f2fs_has_inline_xattr(inode))
2840		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2841	return 0;
2842}
2843
2844static inline int f2fs_has_inline_data(struct inode *inode)
2845{
2846	return is_inode_flag_set(inode, FI_INLINE_DATA);
2847}
2848
2849static inline int f2fs_exist_data(struct inode *inode)
2850{
2851	return is_inode_flag_set(inode, FI_DATA_EXIST);
2852}
2853
2854static inline int f2fs_has_inline_dots(struct inode *inode)
2855{
2856	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2857}
2858
2859static inline int f2fs_is_mmap_file(struct inode *inode)
2860{
2861	return is_inode_flag_set(inode, FI_MMAP_FILE);
2862}
2863
2864static inline bool f2fs_is_pinned_file(struct inode *inode)
2865{
2866	return is_inode_flag_set(inode, FI_PIN_FILE);
2867}
2868
2869static inline bool f2fs_is_atomic_file(struct inode *inode)
2870{
2871	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2872}
2873
2874static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2875{
2876	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2877}
2878
2879static inline bool f2fs_is_volatile_file(struct inode *inode)
2880{
2881	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2882}
2883
2884static inline bool f2fs_is_first_block_written(struct inode *inode)
2885{
2886	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2887}
2888
2889static inline bool f2fs_is_drop_cache(struct inode *inode)
2890{
2891	return is_inode_flag_set(inode, FI_DROP_CACHE);
2892}
2893
2894static inline void *inline_data_addr(struct inode *inode, struct page *page)
2895{
2896	struct f2fs_inode *ri = F2FS_INODE(page);
2897	int extra_size = get_extra_isize(inode);
2898
2899	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2900}
2901
2902static inline int f2fs_has_inline_dentry(struct inode *inode)
2903{
2904	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2905}
2906
2907static inline int is_file(struct inode *inode, int type)
2908{
2909	return F2FS_I(inode)->i_advise & type;
2910}
2911
2912static inline void set_file(struct inode *inode, int type)
2913{
2914	F2FS_I(inode)->i_advise |= type;
2915	f2fs_mark_inode_dirty_sync(inode, true);
2916}
2917
2918static inline void clear_file(struct inode *inode, int type)
2919{
2920	F2FS_I(inode)->i_advise &= ~type;
2921	f2fs_mark_inode_dirty_sync(inode, true);
2922}
2923
2924static inline bool f2fs_is_time_consistent(struct inode *inode)
2925{
2926	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2927		return false;
2928	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2929		return false;
2930	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2931		return false;
2932	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2933						&F2FS_I(inode)->i_crtime))
2934		return false;
2935	return true;
2936}
2937
2938static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2939{
2940	bool ret;
2941
2942	if (dsync) {
2943		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2944
2945		spin_lock(&sbi->inode_lock[DIRTY_META]);
2946		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2947		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2948		return ret;
2949	}
2950	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2951			file_keep_isize(inode) ||
2952			i_size_read(inode) & ~PAGE_MASK)
2953		return false;
2954
2955	if (!f2fs_is_time_consistent(inode))
2956		return false;
2957
2958	spin_lock(&F2FS_I(inode)->i_size_lock);
2959	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2960	spin_unlock(&F2FS_I(inode)->i_size_lock);
2961
2962	return ret;
2963}
2964
2965static inline bool f2fs_readonly(struct super_block *sb)
2966{
2967	return sb_rdonly(sb);
2968}
2969
2970static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2971{
2972	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2973}
2974
2975static inline bool is_dot_dotdot(const u8 *name, size_t len)
2976{
2977	if (len == 1 && name[0] == '.')
2978		return true;
2979
2980	if (len == 2 && name[0] == '.' && name[1] == '.')
2981		return true;
2982
2983	return false;
2984}
2985
2986static inline bool f2fs_may_extent_tree(struct inode *inode)
2987{
2988	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2989
2990	if (!test_opt(sbi, EXTENT_CACHE) ||
2991			is_inode_flag_set(inode, FI_NO_EXTENT) ||
2992			is_inode_flag_set(inode, FI_COMPRESSED_FILE))
2993		return false;
2994
2995	/*
2996	 * for recovered files during mount do not create extents
2997	 * if shrinker is not registered.
2998	 */
2999	if (list_empty(&sbi->s_list))
3000		return false;
3001
3002	return S_ISREG(inode->i_mode);
3003}
3004
3005static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3006					size_t size, gfp_t flags)
3007{
3008	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3009		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3010		return NULL;
3011	}
3012
3013	return kmalloc(size, flags);
3014}
3015
3016static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3017					size_t size, gfp_t flags)
3018{
3019	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3020}
3021
3022static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3023					size_t size, gfp_t flags)
3024{
3025	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3026		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3027		return NULL;
3028	}
3029
3030	return kvmalloc(size, flags);
3031}
3032
3033static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3034					size_t size, gfp_t flags)
3035{
3036	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3037}
3038
3039static inline int get_extra_isize(struct inode *inode)
3040{
3041	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3042}
3043
3044static inline int get_inline_xattr_addrs(struct inode *inode)
3045{
3046	return F2FS_I(inode)->i_inline_xattr_size;
3047}
3048
3049#define f2fs_get_inode_mode(i) \
3050	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3051	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3052
3053#define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3054	(offsetof(struct f2fs_inode, i_extra_end) -	\
3055	offsetof(struct f2fs_inode, i_extra_isize))	\
3056
3057#define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3058#define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3059		((offsetof(typeof(*(f2fs_inode)), field) +	\
3060		sizeof((f2fs_inode)->field))			\
3061		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3062
3063#define DEFAULT_IOSTAT_PERIOD_MS	3000
3064#define MIN_IOSTAT_PERIOD_MS		100
3065/* maximum period of iostat tracing is 1 day */
3066#define MAX_IOSTAT_PERIOD_MS		8640000
3067
3068static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
3069{
3070	int i;
3071
3072	spin_lock(&sbi->iostat_lock);
3073	for (i = 0; i < NR_IO_TYPE; i++) {
3074		sbi->rw_iostat[i] = 0;
3075		sbi->prev_rw_iostat[i] = 0;
3076	}
3077	spin_unlock(&sbi->iostat_lock);
3078}
3079
3080extern void f2fs_record_iostat(struct f2fs_sb_info *sbi);
3081
3082static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
3083			enum iostat_type type, unsigned long long io_bytes)
3084{
3085	if (!sbi->iostat_enable)
3086		return;
3087	spin_lock(&sbi->iostat_lock);
3088	sbi->rw_iostat[type] += io_bytes;
3089
3090	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
3091		sbi->rw_iostat[APP_BUFFERED_IO] =
3092			sbi->rw_iostat[APP_WRITE_IO] -
3093			sbi->rw_iostat[APP_DIRECT_IO];
3094
3095	if (type == APP_READ_IO || type == APP_DIRECT_READ_IO)
3096		sbi->rw_iostat[APP_BUFFERED_READ_IO] =
3097			sbi->rw_iostat[APP_READ_IO] -
3098			sbi->rw_iostat[APP_DIRECT_READ_IO];
3099	spin_unlock(&sbi->iostat_lock);
3100
3101	f2fs_record_iostat(sbi);
3102}
3103
3104#define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3105
3106#define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3107
3108bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3109					block_t blkaddr, int type);
3110static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3111					block_t blkaddr, int type)
3112{
3113	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3114		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3115			 blkaddr, type);
3116		f2fs_bug_on(sbi, 1);
3117	}
3118}
3119
3120static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3121{
3122	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3123			blkaddr == COMPRESS_ADDR)
3124		return false;
3125	return true;
3126}
3127
3128static inline void f2fs_set_page_private(struct page *page,
3129						unsigned long data)
3130{
3131	if (PagePrivate(page))
3132		return;
3133
3134	attach_page_private(page, (void *)data);
3135}
3136
3137static inline void f2fs_clear_page_private(struct page *page)
3138{
3139	detach_page_private(page);
3140}
3141
3142/*
3143 * file.c
3144 */
3145int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3146void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3147int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3148int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3149int f2fs_truncate(struct inode *inode);
3150int f2fs_getattr(const struct path *path, struct kstat *stat,
3151			u32 request_mask, unsigned int flags);
3152int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
3153int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3154void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3155int f2fs_precache_extents(struct inode *inode);
3156long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3157long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3158int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3159int f2fs_pin_file_control(struct inode *inode, bool inc);
3160
3161/*
3162 * inode.c
3163 */
3164void f2fs_set_inode_flags(struct inode *inode);
3165bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3166void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3167struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3168struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3169int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3170void f2fs_update_inode(struct inode *inode, struct page *node_page);
3171void f2fs_update_inode_page(struct inode *inode);
3172int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3173void f2fs_evict_inode(struct inode *inode);
3174void f2fs_handle_failed_inode(struct inode *inode);
3175
3176/*
3177 * namei.c
3178 */
3179int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3180							bool hot, bool set);
3181struct dentry *f2fs_get_parent(struct dentry *child);
3182
3183/*
3184 * dir.c
3185 */
3186unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3187int f2fs_init_casefolded_name(const struct inode *dir,
3188			      struct f2fs_filename *fname);
3189int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3190			int lookup, struct f2fs_filename *fname);
3191int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3192			struct f2fs_filename *fname);
3193void f2fs_free_filename(struct f2fs_filename *fname);
3194struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3195			const struct f2fs_filename *fname, int *max_slots);
3196int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3197			unsigned int start_pos, struct fscrypt_str *fstr);
3198void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3199			struct f2fs_dentry_ptr *d);
3200struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3201			const struct f2fs_filename *fname, struct page *dpage);
3202void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3203			unsigned int current_depth);
3204int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3205void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3206struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3207					 const struct f2fs_filename *fname,
3208					 struct page **res_page);
3209struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3210			const struct qstr *child, struct page **res_page);
3211struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3212ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3213			struct page **page);
3214void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3215			struct page *page, struct inode *inode);
3216bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3217			  const struct f2fs_filename *fname);
3218void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3219			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3220			unsigned int bit_pos);
3221int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3222			struct inode *inode, nid_t ino, umode_t mode);
3223int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3224			struct inode *inode, nid_t ino, umode_t mode);
3225int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3226			struct inode *inode, nid_t ino, umode_t mode);
3227void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3228			struct inode *dir, struct inode *inode);
3229int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3230bool f2fs_empty_dir(struct inode *dir);
3231
3232static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3233{
3234	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3235				inode, inode->i_ino, inode->i_mode);
3236}
3237
3238/*
3239 * super.c
3240 */
3241int f2fs_inode_dirtied(struct inode *inode, bool sync);
3242void f2fs_inode_synced(struct inode *inode);
3243int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3244int f2fs_quota_sync(struct super_block *sb, int type);
3245void f2fs_quota_off_umount(struct super_block *sb);
3246int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3247int f2fs_sync_fs(struct super_block *sb, int sync);
3248int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3249
3250/*
3251 * hash.c
3252 */
3253void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3254
3255/*
3256 * node.c
3257 */
3258struct dnode_of_data;
3259struct node_info;
3260
3261int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3262bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3263bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3264void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3265void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3266void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3267int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3268bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3269bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3270int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3271						struct node_info *ni);
3272pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3273int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3274int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3275int f2fs_truncate_xattr_node(struct inode *inode);
3276int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3277					unsigned int seq_id);
3278int f2fs_remove_inode_page(struct inode *inode);
3279struct page *f2fs_new_inode_page(struct inode *inode);
3280struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3281void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3282struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3283struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3284int f2fs_move_node_page(struct page *node_page, int gc_type);
3285void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3286int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3287			struct writeback_control *wbc, bool atomic,
3288			unsigned int *seq_id);
3289int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3290			struct writeback_control *wbc,
3291			bool do_balance, enum iostat_type io_type);
3292int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3293bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3294void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3295void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3296int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3297int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3298int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3299int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3300int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3301			unsigned int segno, struct f2fs_summary_block *sum);
3302int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3303int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3304void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3305int __init f2fs_create_node_manager_caches(void);
3306void f2fs_destroy_node_manager_caches(void);
3307
3308/*
3309 * segment.c
3310 */
3311bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3312void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3313void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3314void f2fs_drop_inmem_pages(struct inode *inode);
3315void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3316int f2fs_commit_inmem_pages(struct inode *inode);
3317void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3318void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3319int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3320int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3321int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3322void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3323void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3324bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3325void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3326void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3327bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3328void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3329					struct cp_control *cpc);
3330void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3331block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3332int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3333void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3334int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3335void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3336					unsigned int start, unsigned int end);
3337void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type);
3338void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3339int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3340bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3341					struct cp_control *cpc);
3342struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3343void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3344					block_t blk_addr);
3345void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3346						enum iostat_type io_type);
3347void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3348void f2fs_outplace_write_data(struct dnode_of_data *dn,
3349			struct f2fs_io_info *fio);
3350int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3351void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3352			block_t old_blkaddr, block_t new_blkaddr,
3353			bool recover_curseg, bool recover_newaddr);
3354void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3355			block_t old_addr, block_t new_addr,
3356			unsigned char version, bool recover_curseg,
3357			bool recover_newaddr);
3358void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3359			block_t old_blkaddr, block_t *new_blkaddr,
3360			struct f2fs_summary *sum, int type,
3361			struct f2fs_io_info *fio);
3362void f2fs_wait_on_page_writeback(struct page *page,
3363			enum page_type type, bool ordered, bool locked);
3364void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3365void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3366								block_t len);
3367void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3368void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3369int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3370			unsigned int val, int alloc);
3371void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3372int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3373int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3374int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3375void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3376int __init f2fs_create_segment_manager_caches(void);
3377void f2fs_destroy_segment_manager_caches(void);
3378int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3379enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3380			enum page_type type, enum temp_type temp);
3381
3382/*
3383 * checkpoint.c
3384 */
3385void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3386struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3387struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3388struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3389struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3390bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3391					block_t blkaddr, int type);
3392int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3393			int type, bool sync);
3394void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3395long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3396			long nr_to_write, enum iostat_type io_type);
3397void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3398void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3399void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3400bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3401void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3402					unsigned int devidx, int type);
3403bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3404					unsigned int devidx, int type);
3405int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3406int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3407void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3408void f2fs_add_orphan_inode(struct inode *inode);
3409void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3410int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3411int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3412void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3413void f2fs_remove_dirty_inode(struct inode *inode);
3414int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3415void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3416int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3417void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3418int __init f2fs_create_checkpoint_caches(void);
3419void f2fs_destroy_checkpoint_caches(void);
3420
3421/*
3422 * data.c
3423 */
3424int __init f2fs_init_bioset(void);
3425void f2fs_destroy_bioset(void);
3426struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio);
3427int f2fs_init_bio_entry_cache(void);
3428void f2fs_destroy_bio_entry_cache(void);
3429void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3430				struct bio *bio, enum page_type type);
3431void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3432void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3433				struct inode *inode, struct page *page,
3434				nid_t ino, enum page_type type);
3435void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3436					struct bio **bio, struct page *page);
3437void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3438int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3439int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3440void f2fs_submit_page_write(struct f2fs_io_info *fio);
3441struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3442			block_t blk_addr, struct bio *bio);
3443int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3444void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3445void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3446int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3447int f2fs_reserve_new_block(struct dnode_of_data *dn);
3448int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3449int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3450int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3451struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3452			int op_flags, bool for_write);
3453struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3454struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3455			bool for_write);
3456struct page *f2fs_get_new_data_page(struct inode *inode,
3457			struct page *ipage, pgoff_t index, bool new_i_size);
3458int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3459void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3460int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3461			int create, int flag);
3462int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3463			u64 start, u64 len);
3464int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3465bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3466bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3467int f2fs_write_single_data_page(struct page *page, int *submitted,
3468				struct bio **bio, sector_t *last_block,
3469				struct writeback_control *wbc,
3470				enum iostat_type io_type,
3471				int compr_blocks);
3472void f2fs_invalidate_page(struct page *page, unsigned int offset,
3473			unsigned int length);
3474int f2fs_release_page(struct page *page, gfp_t wait);
3475#ifdef CONFIG_MIGRATION
3476int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3477			struct page *page, enum migrate_mode mode);
3478#endif
3479bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3480void f2fs_clear_page_cache_dirty_tag(struct page *page);
3481int f2fs_init_post_read_processing(void);
3482void f2fs_destroy_post_read_processing(void);
3483int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3484void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3485
3486/*
3487 * gc.c
3488 */
3489int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3490void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3491block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3492int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3493			unsigned int segno);
3494void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3495int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3496
3497/*
3498 * recovery.c
3499 */
3500int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3501bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3502
3503/*
3504 * debug.c
3505 */
3506#ifdef CONFIG_F2FS_STAT_FS
3507struct f2fs_stat_info {
3508	struct list_head stat_list;
3509	struct f2fs_sb_info *sbi;
3510	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3511	int main_area_segs, main_area_sections, main_area_zones;
3512	unsigned long long hit_largest, hit_cached, hit_rbtree;
3513	unsigned long long hit_total, total_ext;
3514	int ext_tree, zombie_tree, ext_node;
3515	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3516	int ndirty_data, ndirty_qdata;
3517	int inmem_pages;
3518	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3519	int nats, dirty_nats, sits, dirty_sits;
3520	int free_nids, avail_nids, alloc_nids;
3521	int total_count, utilization;
3522	int bg_gc, nr_wb_cp_data, nr_wb_data;
3523	int nr_rd_data, nr_rd_node, nr_rd_meta;
3524	int nr_dio_read, nr_dio_write;
3525	unsigned int io_skip_bggc, other_skip_bggc;
3526	int nr_flushing, nr_flushed, flush_list_empty;
3527	int nr_discarding, nr_discarded;
3528	int nr_discard_cmd;
3529	unsigned int undiscard_blks;
3530	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3531	int compr_inode, compr_blocks;
3532	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3533	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3534	unsigned int bimodal, avg_vblocks;
3535	int util_free, util_valid, util_invalid;
3536	int rsvd_segs, overp_segs;
3537	int dirty_count, node_pages, meta_pages;
3538	int prefree_count, call_count, cp_count, bg_cp_count;
3539	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3540	int bg_node_segs, bg_data_segs;
3541	int tot_blks, data_blks, node_blks;
3542	int bg_data_blks, bg_node_blks;
3543	unsigned long long skipped_atomic_files[2];
3544	int curseg[NR_CURSEG_TYPE];
3545	int cursec[NR_CURSEG_TYPE];
3546	int curzone[NR_CURSEG_TYPE];
3547	unsigned int dirty_seg[NR_CURSEG_TYPE];
3548	unsigned int full_seg[NR_CURSEG_TYPE];
3549	unsigned int valid_blks[NR_CURSEG_TYPE];
3550
3551	unsigned int meta_count[META_MAX];
3552	unsigned int segment_count[2];
3553	unsigned int block_count[2];
3554	unsigned int inplace_count;
3555	unsigned long long base_mem, cache_mem, page_mem;
3556};
3557
3558static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3559{
3560	return (struct f2fs_stat_info *)sbi->stat_info;
3561}
3562
3563#define stat_inc_cp_count(si)		((si)->cp_count++)
3564#define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3565#define stat_inc_call_count(si)		((si)->call_count++)
3566#define stat_inc_bggc_count(si)		((si)->bg_gc++)
3567#define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3568#define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3569#define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3570#define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3571#define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3572#define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3573#define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3574#define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3575#define stat_inc_inline_xattr(inode)					\
3576	do {								\
3577		if (f2fs_has_inline_xattr(inode))			\
3578			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3579	} while (0)
3580#define stat_dec_inline_xattr(inode)					\
3581	do {								\
3582		if (f2fs_has_inline_xattr(inode))			\
3583			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3584	} while (0)
3585#define stat_inc_inline_inode(inode)					\
3586	do {								\
3587		if (f2fs_has_inline_data(inode))			\
3588			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3589	} while (0)
3590#define stat_dec_inline_inode(inode)					\
3591	do {								\
3592		if (f2fs_has_inline_data(inode))			\
3593			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3594	} while (0)
3595#define stat_inc_inline_dir(inode)					\
3596	do {								\
3597		if (f2fs_has_inline_dentry(inode))			\
3598			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3599	} while (0)
3600#define stat_dec_inline_dir(inode)					\
3601	do {								\
3602		if (f2fs_has_inline_dentry(inode))			\
3603			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3604	} while (0)
3605#define stat_inc_compr_inode(inode)					\
3606	do {								\
3607		if (f2fs_compressed_file(inode))			\
3608			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3609	} while (0)
3610#define stat_dec_compr_inode(inode)					\
3611	do {								\
3612		if (f2fs_compressed_file(inode))			\
3613			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3614	} while (0)
3615#define stat_add_compr_blocks(inode, blocks)				\
3616		(atomic_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3617#define stat_sub_compr_blocks(inode, blocks)				\
3618		(atomic_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3619#define stat_inc_meta_count(sbi, blkaddr)				\
3620	do {								\
3621		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3622			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3623		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3624			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3625		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3626			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3627		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3628			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3629	} while (0)
3630#define stat_inc_seg_type(sbi, curseg)					\
3631		((sbi)->segment_count[(curseg)->alloc_type]++)
3632#define stat_inc_block_count(sbi, curseg)				\
3633		((sbi)->block_count[(curseg)->alloc_type]++)
3634#define stat_inc_inplace_blocks(sbi)					\
3635		(atomic_inc(&(sbi)->inplace_count))
3636#define stat_update_max_atomic_write(inode)				\
3637	do {								\
3638		int cur = F2FS_I_SB(inode)->atomic_files;	\
3639		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3640		if (cur > max)						\
3641			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3642	} while (0)
3643#define stat_inc_volatile_write(inode)					\
3644		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3645#define stat_dec_volatile_write(inode)					\
3646		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3647#define stat_update_max_volatile_write(inode)				\
3648	do {								\
3649		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3650		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3651		if (cur > max)						\
3652			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3653	} while (0)
3654#define stat_inc_seg_count(sbi, type, gc_type)				\
3655	do {								\
3656		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3657		si->tot_segs++;						\
3658		if ((type) == SUM_TYPE_DATA) {				\
3659			si->data_segs++;				\
3660			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3661		} else {						\
3662			si->node_segs++;				\
3663			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3664		}							\
3665	} while (0)
3666
3667#define stat_inc_tot_blk_count(si, blks)				\
3668	((si)->tot_blks += (blks))
3669
3670#define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3671	do {								\
3672		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3673		stat_inc_tot_blk_count(si, blks);			\
3674		si->data_blks += (blks);				\
3675		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3676	} while (0)
3677
3678#define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3679	do {								\
3680		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3681		stat_inc_tot_blk_count(si, blks);			\
3682		si->node_blks += (blks);				\
3683		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3684	} while (0)
3685
3686int f2fs_build_stats(struct f2fs_sb_info *sbi);
3687void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3688void __init f2fs_create_root_stats(void);
3689void f2fs_destroy_root_stats(void);
3690void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3691#else
3692#define stat_inc_cp_count(si)				do { } while (0)
3693#define stat_inc_bg_cp_count(si)			do { } while (0)
3694#define stat_inc_call_count(si)				do { } while (0)
3695#define stat_inc_bggc_count(si)				do { } while (0)
3696#define stat_io_skip_bggc_count(sbi)			do { } while (0)
3697#define stat_other_skip_bggc_count(sbi)			do { } while (0)
3698#define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3699#define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3700#define stat_inc_total_hit(sbi)				do { } while (0)
3701#define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3702#define stat_inc_largest_node_hit(sbi)			do { } while (0)
3703#define stat_inc_cached_node_hit(sbi)			do { } while (0)
3704#define stat_inc_inline_xattr(inode)			do { } while (0)
3705#define stat_dec_inline_xattr(inode)			do { } while (0)
3706#define stat_inc_inline_inode(inode)			do { } while (0)
3707#define stat_dec_inline_inode(inode)			do { } while (0)
3708#define stat_inc_inline_dir(inode)			do { } while (0)
3709#define stat_dec_inline_dir(inode)			do { } while (0)
3710#define stat_inc_compr_inode(inode)			do { } while (0)
3711#define stat_dec_compr_inode(inode)			do { } while (0)
3712#define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3713#define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3714#define stat_inc_atomic_write(inode)			do { } while (0)
3715#define stat_dec_atomic_write(inode)			do { } while (0)
3716#define stat_update_max_atomic_write(inode)		do { } while (0)
3717#define stat_inc_volatile_write(inode)			do { } while (0)
3718#define stat_dec_volatile_write(inode)			do { } while (0)
3719#define stat_update_max_volatile_write(inode)		do { } while (0)
3720#define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3721#define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3722#define stat_inc_block_count(sbi, curseg)		do { } while (0)
3723#define stat_inc_inplace_blocks(sbi)			do { } while (0)
3724#define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3725#define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3726#define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3727#define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3728
3729static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
3730static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
3731static inline void __init f2fs_create_root_stats(void) { }
3732static inline void f2fs_destroy_root_stats(void) { }
3733static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3734#endif
3735
3736extern const struct file_operations f2fs_dir_operations;
3737#ifdef CONFIG_UNICODE
3738extern const struct dentry_operations f2fs_dentry_ops;
3739#endif
3740extern const struct file_operations f2fs_file_operations;
3741extern const struct inode_operations f2fs_file_inode_operations;
3742extern const struct address_space_operations f2fs_dblock_aops;
3743extern const struct address_space_operations f2fs_node_aops;
3744extern const struct address_space_operations f2fs_meta_aops;
3745extern const struct inode_operations f2fs_dir_inode_operations;
3746extern const struct inode_operations f2fs_symlink_inode_operations;
3747extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3748extern const struct inode_operations f2fs_special_inode_operations;
3749extern struct kmem_cache *f2fs_inode_entry_slab;
3750
3751/*
3752 * inline.c
3753 */
3754bool f2fs_may_inline_data(struct inode *inode);
3755bool f2fs_may_inline_dentry(struct inode *inode);
3756void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3757void f2fs_truncate_inline_inode(struct inode *inode,
3758						struct page *ipage, u64 from);
3759int f2fs_read_inline_data(struct inode *inode, struct page *page);
3760int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3761int f2fs_convert_inline_inode(struct inode *inode);
3762int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3763int f2fs_write_inline_data(struct inode *inode, struct page *page);
3764int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3765struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3766					const struct f2fs_filename *fname,
3767					struct page **res_page);
3768int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3769			struct page *ipage);
3770int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3771			struct inode *inode, nid_t ino, umode_t mode);
3772void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3773				struct page *page, struct inode *dir,
3774				struct inode *inode);
3775bool f2fs_empty_inline_dir(struct inode *dir);
3776int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3777			struct fscrypt_str *fstr);
3778int f2fs_inline_data_fiemap(struct inode *inode,
3779			struct fiemap_extent_info *fieinfo,
3780			__u64 start, __u64 len);
3781
3782/*
3783 * shrinker.c
3784 */
3785unsigned long f2fs_shrink_count(struct shrinker *shrink,
3786			struct shrink_control *sc);
3787unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3788			struct shrink_control *sc);
3789void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3790void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3791
3792/*
3793 * extent_cache.c
3794 */
3795struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3796				struct rb_entry *cached_re, unsigned int ofs);
3797struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3798				struct rb_root_cached *root,
3799				struct rb_node **parent,
3800				unsigned int ofs, bool *leftmost);
3801struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3802		struct rb_entry *cached_re, unsigned int ofs,
3803		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3804		struct rb_node ***insert_p, struct rb_node **insert_parent,
3805		bool force, bool *leftmost);
3806bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3807						struct rb_root_cached *root);
3808unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3809void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3810void f2fs_drop_extent_tree(struct inode *inode);
3811unsigned int f2fs_destroy_extent_node(struct inode *inode);
3812void f2fs_destroy_extent_tree(struct inode *inode);
3813bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3814			struct extent_info *ei);
3815void f2fs_update_extent_cache(struct dnode_of_data *dn);
3816void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3817			pgoff_t fofs, block_t blkaddr, unsigned int len);
3818void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3819int __init f2fs_create_extent_cache(void);
3820void f2fs_destroy_extent_cache(void);
3821
3822/*
3823 * sysfs.c
3824 */
3825int __init f2fs_init_sysfs(void);
3826void f2fs_exit_sysfs(void);
3827int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3828void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3829
3830/* verity.c */
3831extern const struct fsverity_operations f2fs_verityops;
3832
3833/*
3834 * crypto support
3835 */
3836static inline bool f2fs_encrypted_file(struct inode *inode)
3837{
3838	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3839}
3840
3841static inline void f2fs_set_encrypted_inode(struct inode *inode)
3842{
3843#ifdef CONFIG_FS_ENCRYPTION
3844	file_set_encrypt(inode);
3845	f2fs_set_inode_flags(inode);
3846#endif
3847}
3848
3849/*
3850 * Returns true if the reads of the inode's data need to undergo some
3851 * postprocessing step, like decryption or authenticity verification.
3852 */
3853static inline bool f2fs_post_read_required(struct inode *inode)
3854{
3855	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
3856		f2fs_compressed_file(inode);
3857}
3858
3859/*
3860 * compress.c
3861 */
3862#ifdef CONFIG_F2FS_FS_COMPRESSION
3863bool f2fs_is_compressed_page(struct page *page);
3864struct page *f2fs_compress_control_page(struct page *page);
3865int f2fs_prepare_compress_overwrite(struct inode *inode,
3866			struct page **pagep, pgoff_t index, void **fsdata);
3867bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
3868					pgoff_t index, unsigned copied);
3869int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
3870void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
3871bool f2fs_is_compress_backend_ready(struct inode *inode);
3872int f2fs_init_compress_mempool(void);
3873void f2fs_destroy_compress_mempool(void);
3874void f2fs_decompress_pages(struct bio *bio, struct page *page, bool verity);
3875bool f2fs_cluster_is_empty(struct compress_ctx *cc);
3876bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
3877void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
3878int f2fs_write_multi_pages(struct compress_ctx *cc,
3879						int *submitted,
3880						struct writeback_control *wbc,
3881						enum iostat_type io_type);
3882int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
3883int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
3884				unsigned nr_pages, sector_t *last_block_in_bio,
3885				bool is_readahead, bool for_write);
3886struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
3887void f2fs_free_dic(struct decompress_io_ctx *dic);
3888void f2fs_decompress_end_io(struct page **rpages,
3889			unsigned int cluster_size, bool err, bool verity);
3890int f2fs_init_compress_ctx(struct compress_ctx *cc);
3891void f2fs_destroy_compress_ctx(struct compress_ctx *cc);
3892void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
3893#else
3894static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
3895static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
3896{
3897	if (!f2fs_compressed_file(inode))
3898		return true;
3899	/* not support compression */
3900	return false;
3901}
3902static inline struct page *f2fs_compress_control_page(struct page *page)
3903{
3904	WARN_ON_ONCE(1);
3905	return ERR_PTR(-EINVAL);
3906}
3907static inline int f2fs_init_compress_mempool(void) { return 0; }
3908static inline void f2fs_destroy_compress_mempool(void) { }
3909#endif
3910
3911static inline void set_compress_context(struct inode *inode)
3912{
3913	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3914
3915	F2FS_I(inode)->i_compress_algorithm =
3916			F2FS_OPTION(sbi).compress_algorithm;
3917	F2FS_I(inode)->i_log_cluster_size =
3918			F2FS_OPTION(sbi).compress_log_size;
3919	F2FS_I(inode)->i_cluster_size =
3920			1 << F2FS_I(inode)->i_log_cluster_size;
3921	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
3922	set_inode_flag(inode, FI_COMPRESSED_FILE);
3923	stat_inc_compr_inode(inode);
3924	f2fs_mark_inode_dirty_sync(inode, true);
3925}
3926
3927static inline u64 f2fs_disable_compressed_file(struct inode *inode)
3928{
3929	struct f2fs_inode_info *fi = F2FS_I(inode);
3930
3931	if (!f2fs_compressed_file(inode))
3932		return 0;
3933	if (S_ISREG(inode->i_mode)) {
3934		if (get_dirty_pages(inode))
3935			return 1;
3936		if (fi->i_compr_blocks)
3937			return fi->i_compr_blocks;
3938	}
3939
3940	fi->i_flags &= ~F2FS_COMPR_FL;
3941	stat_dec_compr_inode(inode);
3942	clear_inode_flag(inode, FI_COMPRESSED_FILE);
3943	f2fs_mark_inode_dirty_sync(inode, true);
3944	return 0;
3945}
3946
3947#define F2FS_FEATURE_FUNCS(name, flagname) \
3948static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3949{ \
3950	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3951}
3952
3953F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3954F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3955F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3956F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3957F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3958F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3959F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3960F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3961F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3962F2FS_FEATURE_FUNCS(verity, VERITY);
3963F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3964F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3965F2FS_FEATURE_FUNCS(compression, COMPRESSION);
3966
3967#ifdef CONFIG_BLK_DEV_ZONED
3968static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3969				    block_t blkaddr)
3970{
3971	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3972
3973	return test_bit(zno, FDEV(devi).blkz_seq);
3974}
3975#endif
3976
3977static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3978{
3979	return f2fs_sb_has_blkzoned(sbi);
3980}
3981
3982static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3983{
3984	return blk_queue_discard(bdev_get_queue(bdev)) ||
3985	       bdev_is_zoned(bdev);
3986}
3987
3988static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3989{
3990	int i;
3991
3992	if (!f2fs_is_multi_device(sbi))
3993		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3994
3995	for (i = 0; i < sbi->s_ndevs; i++)
3996		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3997			return true;
3998	return false;
3999}
4000
4001static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4002{
4003	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4004					f2fs_hw_should_discard(sbi);
4005}
4006
4007static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4008{
4009	int i;
4010
4011	if (!f2fs_is_multi_device(sbi))
4012		return bdev_read_only(sbi->sb->s_bdev);
4013
4014	for (i = 0; i < sbi->s_ndevs; i++)
4015		if (bdev_read_only(FDEV(i).bdev))
4016			return true;
4017	return false;
4018}
4019
4020static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4021{
4022	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4023}
4024
4025static inline bool f2fs_may_encrypt(struct inode *dir, struct inode *inode)
4026{
4027#ifdef CONFIG_FS_ENCRYPTION
4028	struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
4029	umode_t mode = inode->i_mode;
4030
4031	/*
4032	 * If the directory encrypted or dummy encryption enabled,
4033	 * then we should encrypt the inode.
4034	 */
4035	if (IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi))
4036		return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
4037#endif
4038	return false;
4039}
4040
4041static inline bool f2fs_may_compress(struct inode *inode)
4042{
4043	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4044				f2fs_is_atomic_file(inode) ||
4045				f2fs_is_volatile_file(inode))
4046		return false;
4047	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4048}
4049
4050static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4051						u64 blocks, bool add)
4052{
4053	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4054
4055	/* don't update i_compr_blocks if saved blocks were released */
4056	if (!add && !F2FS_I(inode)->i_compr_blocks)
4057		return;
4058
4059	if (add) {
4060		F2FS_I(inode)->i_compr_blocks += diff;
4061		stat_add_compr_blocks(inode, diff);
4062	} else {
4063		F2FS_I(inode)->i_compr_blocks -= diff;
4064		stat_sub_compr_blocks(inode, diff);
4065	}
4066	f2fs_mark_inode_dirty_sync(inode, true);
4067}
4068
4069static inline int block_unaligned_IO(struct inode *inode,
4070				struct kiocb *iocb, struct iov_iter *iter)
4071{
4072	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4073	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4074	loff_t offset = iocb->ki_pos;
4075	unsigned long align = offset | iov_iter_alignment(iter);
4076
4077	return align & blocksize_mask;
4078}
4079
4080static inline int allow_outplace_dio(struct inode *inode,
4081				struct kiocb *iocb, struct iov_iter *iter)
4082{
4083	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4084	int rw = iov_iter_rw(iter);
4085
4086	return (f2fs_lfs_mode(sbi) && (rw == WRITE) &&
4087				!block_unaligned_IO(inode, iocb, iter));
4088}
4089
4090static inline bool f2fs_force_buffered_io(struct inode *inode,
4091				struct kiocb *iocb, struct iov_iter *iter)
4092{
4093	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4094	int rw = iov_iter_rw(iter);
4095
4096	if (f2fs_post_read_required(inode))
4097		return true;
4098	if (f2fs_is_multi_device(sbi))
4099		return true;
4100	/*
4101	 * for blkzoned device, fallback direct IO to buffered IO, so
4102	 * all IOs can be serialized by log-structured write.
4103	 */
4104	if (f2fs_sb_has_blkzoned(sbi))
4105		return true;
4106	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4107		if (block_unaligned_IO(inode, iocb, iter))
4108			return true;
4109		if (F2FS_IO_ALIGNED(sbi))
4110			return true;
4111	}
4112	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
4113					!IS_SWAPFILE(inode))
4114		return true;
4115
4116	return false;
4117}
4118
4119#ifdef CONFIG_F2FS_FAULT_INJECTION
4120extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4121							unsigned int type);
4122#else
4123#define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4124#endif
4125
4126static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4127{
4128#ifdef CONFIG_QUOTA
4129	if (f2fs_sb_has_quota_ino(sbi))
4130		return true;
4131	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4132		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4133		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4134		return true;
4135#endif
4136	return false;
4137}
4138
4139#define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4140#define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4141
4142#endif /* _LINUX_F2FS_H */