Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/jiffies.h>
  4#include <linux/kernel.h>
  5#include <linux/ktime.h>
  6#include <linux/list.h>
  7#include <linux/math64.h>
  8#include <linux/sizes.h>
  9#include <linux/workqueue.h>
 10#include "ctree.h"
 11#include "block-group.h"
 12#include "discard.h"
 13#include "free-space-cache.h"
 14
 15/*
 16 * This contains the logic to handle async discard.
 17 *
 18 * Async discard manages trimming of free space outside of transaction commit.
 19 * Discarding is done by managing the block_groups on a LRU list based on free
 20 * space recency.  Two passes are used to first prioritize discarding extents
 21 * and then allow for trimming in the bitmap the best opportunity to coalesce.
 22 * The block_groups are maintained on multiple lists to allow for multiple
 23 * passes with different discard filter requirements.  A delayed work item is
 24 * used to manage discarding with timeout determined by a max of the delay
 25 * incurred by the iops rate limit, the byte rate limit, and the max delay of
 26 * BTRFS_DISCARD_MAX_DELAY.
 27 *
 28 * Note, this only keeps track of block_groups that are explicitly for data.
 29 * Mixed block_groups are not supported.
 30 *
 31 * The first list is special to manage discarding of fully free block groups.
 32 * This is necessary because we issue a final trim for a full free block group
 33 * after forgetting it.  When a block group becomes unused, instead of directly
 34 * being added to the unused_bgs list, we add it to this first list.  Then
 35 * from there, if it becomes fully discarded, we place it onto the unused_bgs
 36 * list.
 37 *
 38 * The in-memory free space cache serves as the backing state for discard.
 39 * Consequently this means there is no persistence.  We opt to load all the
 40 * block groups in as not discarded, so the mount case degenerates to the
 41 * crashing case.
 42 *
 43 * As the free space cache uses bitmaps, there exists a tradeoff between
 44 * ease/efficiency for find_free_extent() and the accuracy of discard state.
 45 * Here we opt to let untrimmed regions merge with everything while only letting
 46 * trimmed regions merge with other trimmed regions.  This can cause
 47 * overtrimming, but the coalescing benefit seems to be worth it.  Additionally,
 48 * bitmap state is tracked as a whole.  If we're able to fully trim a bitmap,
 49 * the trimmed flag is set on the bitmap.  Otherwise, if an allocation comes in,
 50 * this resets the state and we will retry trimming the whole bitmap.  This is a
 51 * tradeoff between discard state accuracy and the cost of accounting.
 52 */
 53
 54/* This is an initial delay to give some chance for block reuse */
 55#define BTRFS_DISCARD_DELAY		(120ULL * NSEC_PER_SEC)
 56#define BTRFS_DISCARD_UNUSED_DELAY	(10ULL * NSEC_PER_SEC)
 57
 58/* Target completion latency of discarding all discardable extents */
 59#define BTRFS_DISCARD_TARGET_MSEC	(6 * 60 * 60UL * MSEC_PER_SEC)
 60#define BTRFS_DISCARD_MIN_DELAY_MSEC	(1UL)
 61#define BTRFS_DISCARD_MAX_DELAY_MSEC	(1000UL)
 62#define BTRFS_DISCARD_MAX_IOPS		(10U)
 63
 64/* Montonically decreasing minimum length filters after index 0 */
 65static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
 66	0,
 67	BTRFS_ASYNC_DISCARD_MAX_FILTER,
 68	BTRFS_ASYNC_DISCARD_MIN_FILTER
 69};
 70
 71static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
 72					  struct btrfs_block_group *block_group)
 73{
 74	return &discard_ctl->discard_list[block_group->discard_index];
 75}
 76
 77static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
 78				  struct btrfs_block_group *block_group)
 79{
 80	if (!btrfs_run_discard_work(discard_ctl))
 81		return;
 82
 83	if (list_empty(&block_group->discard_list) ||
 84	    block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
 85		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
 86			block_group->discard_index = BTRFS_DISCARD_INDEX_START;
 87		block_group->discard_eligible_time = (ktime_get_ns() +
 88						      BTRFS_DISCARD_DELAY);
 89		block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
 90	}
 91
 92	list_move_tail(&block_group->discard_list,
 93		       get_discard_list(discard_ctl, block_group));
 94}
 95
 96static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
 97				struct btrfs_block_group *block_group)
 98{
 99	if (!btrfs_is_block_group_data_only(block_group))
100		return;
101
102	spin_lock(&discard_ctl->lock);
103	__add_to_discard_list(discard_ctl, block_group);
104	spin_unlock(&discard_ctl->lock);
105}
106
107static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
108				       struct btrfs_block_group *block_group)
109{
110	spin_lock(&discard_ctl->lock);
111
112	if (!btrfs_run_discard_work(discard_ctl)) {
113		spin_unlock(&discard_ctl->lock);
114		return;
115	}
116
117	list_del_init(&block_group->discard_list);
118
119	block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
120	block_group->discard_eligible_time = (ktime_get_ns() +
121					      BTRFS_DISCARD_UNUSED_DELAY);
122	block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
123	list_add_tail(&block_group->discard_list,
124		      &discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
125
126	spin_unlock(&discard_ctl->lock);
127}
128
129static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
130				     struct btrfs_block_group *block_group)
131{
132	bool running = false;
133
134	spin_lock(&discard_ctl->lock);
135
136	if (block_group == discard_ctl->block_group) {
137		running = true;
138		discard_ctl->block_group = NULL;
139	}
140
141	block_group->discard_eligible_time = 0;
142	list_del_init(&block_group->discard_list);
143
144	spin_unlock(&discard_ctl->lock);
145
146	return running;
147}
148
149/**
150 * find_next_block_group - find block_group that's up next for discarding
151 * @discard_ctl: discard control
152 * @now: current time
153 *
154 * Iterate over the discard lists to find the next block_group up for
155 * discarding checking the discard_eligible_time of block_group.
156 */
157static struct btrfs_block_group *find_next_block_group(
158					struct btrfs_discard_ctl *discard_ctl,
159					u64 now)
160{
161	struct btrfs_block_group *ret_block_group = NULL, *block_group;
162	int i;
163
164	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
165		struct list_head *discard_list = &discard_ctl->discard_list[i];
166
167		if (!list_empty(discard_list)) {
168			block_group = list_first_entry(discard_list,
169						       struct btrfs_block_group,
170						       discard_list);
171
172			if (!ret_block_group)
173				ret_block_group = block_group;
174
175			if (ret_block_group->discard_eligible_time < now)
176				break;
177
178			if (ret_block_group->discard_eligible_time >
179			    block_group->discard_eligible_time)
180				ret_block_group = block_group;
181		}
182	}
183
184	return ret_block_group;
185}
186
187/**
188 * peek_discard_list - wrap find_next_block_group()
189 * @discard_ctl: discard control
190 * @discard_state: the discard_state of the block_group after state management
191 * @discard_index: the discard_index of the block_group after state management
192 *
193 * This wraps find_next_block_group() and sets the block_group to be in use.
194 * discard_state's control flow is managed here.  Variables related to
195 * discard_state are reset here as needed (eg discard_cursor).  @discard_state
196 * and @discard_index are remembered as it may change while we're discarding,
197 * but we want the discard to execute in the context determined here.
198 */
199static struct btrfs_block_group *peek_discard_list(
200					struct btrfs_discard_ctl *discard_ctl,
201					enum btrfs_discard_state *discard_state,
202					int *discard_index)
203{
204	struct btrfs_block_group *block_group;
205	const u64 now = ktime_get_ns();
206
207	spin_lock(&discard_ctl->lock);
208again:
209	block_group = find_next_block_group(discard_ctl, now);
210
211	if (block_group && now > block_group->discard_eligible_time) {
212		if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
213		    block_group->used != 0) {
214			if (btrfs_is_block_group_data_only(block_group))
215				__add_to_discard_list(discard_ctl, block_group);
216			else
217				list_del_init(&block_group->discard_list);
218			goto again;
219		}
220		if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
221			block_group->discard_cursor = block_group->start;
222			block_group->discard_state = BTRFS_DISCARD_EXTENTS;
223		}
224		discard_ctl->block_group = block_group;
225		*discard_state = block_group->discard_state;
226		*discard_index = block_group->discard_index;
227	} else {
228		block_group = NULL;
229	}
230
231	spin_unlock(&discard_ctl->lock);
232
233	return block_group;
234}
235
236/**
237 * btrfs_discard_check_filter - updates a block groups filters
238 * @block_group: block group of interest
239 * @bytes: recently freed region size after coalescing
240 *
241 * Async discard maintains multiple lists with progressively smaller filters
242 * to prioritize discarding based on size.  Should a free space that matches
243 * a larger filter be returned to the free_space_cache, prioritize that discard
244 * by moving @block_group to the proper filter.
245 */
246void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
247				u64 bytes)
248{
249	struct btrfs_discard_ctl *discard_ctl;
250
251	if (!block_group ||
252	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
253		return;
254
255	discard_ctl = &block_group->fs_info->discard_ctl;
256
257	if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
258	    bytes >= discard_minlen[block_group->discard_index - 1]) {
259		int i;
260
261		remove_from_discard_list(discard_ctl, block_group);
262
263		for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
264		     i++) {
265			if (bytes >= discard_minlen[i]) {
266				block_group->discard_index = i;
267				add_to_discard_list(discard_ctl, block_group);
268				break;
269			}
270		}
271	}
272}
273
274/**
275 * btrfs_update_discard_index - moves a block group along the discard lists
276 * @discard_ctl: discard control
277 * @block_group: block_group of interest
278 *
279 * Increment @block_group's discard_index.  If it falls of the list, let it be.
280 * Otherwise add it back to the appropriate list.
281 */
282static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
283				       struct btrfs_block_group *block_group)
284{
285	block_group->discard_index++;
286	if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
287		block_group->discard_index = 1;
288		return;
289	}
290
291	add_to_discard_list(discard_ctl, block_group);
292}
293
294/**
295 * btrfs_discard_cancel_work - remove a block_group from the discard lists
296 * @discard_ctl: discard control
297 * @block_group: block_group of interest
298 *
299 * This removes @block_group from the discard lists.  If necessary, it waits on
300 * the current work and then reschedules the delayed work.
301 */
302void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
303			       struct btrfs_block_group *block_group)
304{
305	if (remove_from_discard_list(discard_ctl, block_group)) {
306		cancel_delayed_work_sync(&discard_ctl->work);
307		btrfs_discard_schedule_work(discard_ctl, true);
308	}
309}
310
311/**
312 * btrfs_discard_queue_work - handles queuing the block_groups
313 * @discard_ctl: discard control
314 * @block_group: block_group of interest
315 *
316 * This maintains the LRU order of the discard lists.
317 */
318void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
319			      struct btrfs_block_group *block_group)
320{
321	if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
322		return;
323
324	if (block_group->used == 0)
325		add_to_discard_unused_list(discard_ctl, block_group);
326	else
327		add_to_discard_list(discard_ctl, block_group);
328
329	if (!delayed_work_pending(&discard_ctl->work))
330		btrfs_discard_schedule_work(discard_ctl, false);
331}
332
333/**
334 * btrfs_discard_schedule_work - responsible for scheduling the discard work
335 * @discard_ctl: discard control
336 * @override: override the current timer
337 *
338 * Discards are issued by a delayed workqueue item.  @override is used to
339 * update the current delay as the baseline delay interval is reevaluated on
340 * transaction commit.  This is also maxed with any other rate limit.
341 */
342void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
343				 bool override)
344{
345	struct btrfs_block_group *block_group;
346	const u64 now = ktime_get_ns();
347
348	spin_lock(&discard_ctl->lock);
349
350	if (!btrfs_run_discard_work(discard_ctl))
351		goto out;
352
353	if (!override && delayed_work_pending(&discard_ctl->work))
354		goto out;
355
356	block_group = find_next_block_group(discard_ctl, now);
357	if (block_group) {
358		unsigned long delay = discard_ctl->delay;
359		u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
360
361		/*
362		 * A single delayed workqueue item is responsible for
363		 * discarding, so we can manage the bytes rate limit by keeping
364		 * track of the previous discard.
365		 */
366		if (kbps_limit && discard_ctl->prev_discard) {
367			u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
368			u64 bps_delay = div64_u64(discard_ctl->prev_discard *
369						  MSEC_PER_SEC, bps_limit);
370
371			delay = max(delay, msecs_to_jiffies(bps_delay));
372		}
373
374		/*
375		 * This timeout is to hopefully prevent immediate discarding
376		 * in a recently allocated block group.
377		 */
378		if (now < block_group->discard_eligible_time) {
379			u64 bg_timeout = block_group->discard_eligible_time - now;
380
381			delay = max(delay, nsecs_to_jiffies(bg_timeout));
382		}
383
384		mod_delayed_work(discard_ctl->discard_workers,
385				 &discard_ctl->work, delay);
386	}
387out:
388	spin_unlock(&discard_ctl->lock);
389}
390
391/**
392 * btrfs_finish_discard_pass - determine next step of a block_group
393 * @discard_ctl: discard control
394 * @block_group: block_group of interest
395 *
396 * This determines the next step for a block group after it's finished going
397 * through a pass on a discard list.  If it is unused and fully trimmed, we can
398 * mark it unused and send it to the unused_bgs path.  Otherwise, pass it onto
399 * the appropriate filter list or let it fall off.
400 */
401static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
402				      struct btrfs_block_group *block_group)
403{
404	remove_from_discard_list(discard_ctl, block_group);
405
406	if (block_group->used == 0) {
407		if (btrfs_is_free_space_trimmed(block_group))
408			btrfs_mark_bg_unused(block_group);
409		else
410			add_to_discard_unused_list(discard_ctl, block_group);
411	} else {
412		btrfs_update_discard_index(discard_ctl, block_group);
413	}
414}
415
416/**
417 * btrfs_discard_workfn - discard work function
418 * @work: work
419 *
420 * This finds the next block_group to start discarding and then discards a
421 * single region.  It does this in a two-pass fashion: first extents and second
422 * bitmaps.  Completely discarded block groups are sent to the unused_bgs path.
423 */
424static void btrfs_discard_workfn(struct work_struct *work)
425{
426	struct btrfs_discard_ctl *discard_ctl;
427	struct btrfs_block_group *block_group;
428	enum btrfs_discard_state discard_state;
429	int discard_index = 0;
430	u64 trimmed = 0;
431	u64 minlen = 0;
432
433	discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
434
435	block_group = peek_discard_list(discard_ctl, &discard_state,
436					&discard_index);
437	if (!block_group || !btrfs_run_discard_work(discard_ctl))
438		return;
439
440	/* Perform discarding */
441	minlen = discard_minlen[discard_index];
442
443	if (discard_state == BTRFS_DISCARD_BITMAPS) {
444		u64 maxlen = 0;
445
446		/*
447		 * Use the previous levels minimum discard length as the max
448		 * length filter.  In the case something is added to make a
449		 * region go beyond the max filter, the entire bitmap is set
450		 * back to BTRFS_TRIM_STATE_UNTRIMMED.
451		 */
452		if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
453			maxlen = discard_minlen[discard_index - 1];
454
455		btrfs_trim_block_group_bitmaps(block_group, &trimmed,
456				       block_group->discard_cursor,
457				       btrfs_block_group_end(block_group),
458				       minlen, maxlen, true);
459		discard_ctl->discard_bitmap_bytes += trimmed;
460	} else {
461		btrfs_trim_block_group_extents(block_group, &trimmed,
462				       block_group->discard_cursor,
463				       btrfs_block_group_end(block_group),
464				       minlen, true);
465		discard_ctl->discard_extent_bytes += trimmed;
466	}
467
468	discard_ctl->prev_discard = trimmed;
469
470	/* Determine next steps for a block_group */
471	if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
472		if (discard_state == BTRFS_DISCARD_BITMAPS) {
473			btrfs_finish_discard_pass(discard_ctl, block_group);
474		} else {
475			block_group->discard_cursor = block_group->start;
476			spin_lock(&discard_ctl->lock);
477			if (block_group->discard_state !=
478			    BTRFS_DISCARD_RESET_CURSOR)
479				block_group->discard_state =
480							BTRFS_DISCARD_BITMAPS;
481			spin_unlock(&discard_ctl->lock);
482		}
483	}
484
485	spin_lock(&discard_ctl->lock);
486	discard_ctl->block_group = NULL;
487	spin_unlock(&discard_ctl->lock);
488
489	btrfs_discard_schedule_work(discard_ctl, false);
490}
491
492/**
493 * btrfs_run_discard_work - determines if async discard should be running
494 * @discard_ctl: discard control
495 *
496 * Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
497 */
498bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
499{
500	struct btrfs_fs_info *fs_info = container_of(discard_ctl,
501						     struct btrfs_fs_info,
502						     discard_ctl);
503
504	return (!(fs_info->sb->s_flags & SB_RDONLY) &&
505		test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
506}
507
508/**
509 * btrfs_discard_calc_delay - recalculate the base delay
510 * @discard_ctl: discard control
511 *
512 * Recalculate the base delay which is based off the total number of
513 * discardable_extents.  Clamp this between the lower_limit (iops_limit or 1ms)
514 * and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
515 */
516void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
517{
518	s32 discardable_extents;
519	s64 discardable_bytes;
520	u32 iops_limit;
521	unsigned long delay;
522	unsigned long lower_limit = BTRFS_DISCARD_MIN_DELAY_MSEC;
523
524	discardable_extents = atomic_read(&discard_ctl->discardable_extents);
525	if (!discardable_extents)
526		return;
527
528	spin_lock(&discard_ctl->lock);
529
530	/*
531	 * The following is to fix a potential -1 discrepenancy that we're not
532	 * sure how to reproduce. But given that this is the only place that
533	 * utilizes these numbers and this is only called by from
534	 * btrfs_finish_extent_commit() which is synchronized, we can correct
535	 * here.
536	 */
537	if (discardable_extents < 0)
538		atomic_add(-discardable_extents,
539			   &discard_ctl->discardable_extents);
540
541	discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
542	if (discardable_bytes < 0)
543		atomic64_add(-discardable_bytes,
544			     &discard_ctl->discardable_bytes);
545
546	if (discardable_extents <= 0) {
547		spin_unlock(&discard_ctl->lock);
548		return;
549	}
550
551	iops_limit = READ_ONCE(discard_ctl->iops_limit);
552	if (iops_limit)
553		lower_limit = max_t(unsigned long, lower_limit,
554				    MSEC_PER_SEC / iops_limit);
555
556	delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
557	delay = clamp(delay, lower_limit, BTRFS_DISCARD_MAX_DELAY_MSEC);
558	discard_ctl->delay = msecs_to_jiffies(delay);
559
560	spin_unlock(&discard_ctl->lock);
561}
562
563/**
564 * btrfs_discard_update_discardable - propagate discard counters
565 * @block_group: block_group of interest
566 * @ctl: free_space_ctl of @block_group
567 *
568 * This propagates deltas of counters up to the discard_ctl.  It maintains a
569 * current counter and a previous counter passing the delta up to the global
570 * stat.  Then the current counter value becomes the previous counter value.
571 */
572void btrfs_discard_update_discardable(struct btrfs_block_group *block_group,
573				      struct btrfs_free_space_ctl *ctl)
574{
575	struct btrfs_discard_ctl *discard_ctl;
576	s32 extents_delta;
577	s64 bytes_delta;
578
579	if (!block_group ||
580	    !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
581	    !btrfs_is_block_group_data_only(block_group))
582		return;
583
584	discard_ctl = &block_group->fs_info->discard_ctl;
585
586	extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
587			ctl->discardable_extents[BTRFS_STAT_PREV];
588	if (extents_delta) {
589		atomic_add(extents_delta, &discard_ctl->discardable_extents);
590		ctl->discardable_extents[BTRFS_STAT_PREV] =
591			ctl->discardable_extents[BTRFS_STAT_CURR];
592	}
593
594	bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
595		      ctl->discardable_bytes[BTRFS_STAT_PREV];
596	if (bytes_delta) {
597		atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
598		ctl->discardable_bytes[BTRFS_STAT_PREV] =
599			ctl->discardable_bytes[BTRFS_STAT_CURR];
600	}
601}
602
603/**
604 * btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
605 * @fs_info: fs_info of interest
606 *
607 * The unused_bgs list needs to be punted to the discard lists because the
608 * order of operations is changed.  In the normal sychronous discard path, the
609 * block groups are trimmed via a single large trim in transaction commit.  This
610 * is ultimately what we are trying to avoid with asynchronous discard.  Thus,
611 * it must be done before going down the unused_bgs path.
612 */
613void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
614{
615	struct btrfs_block_group *block_group, *next;
616
617	spin_lock(&fs_info->unused_bgs_lock);
618	/* We enabled async discard, so punt all to the queue */
619	list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
620				 bg_list) {
621		list_del_init(&block_group->bg_list);
622		btrfs_put_block_group(block_group);
623		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
624	}
625	spin_unlock(&fs_info->unused_bgs_lock);
626}
627
628/**
629 * btrfs_discard_purge_list - purge discard lists
630 * @discard_ctl: discard control
631 *
632 * If we are disabling async discard, we may have intercepted block groups that
633 * are completely free and ready for the unused_bgs path.  As discarding will
634 * now happen in transaction commit or not at all, we can safely mark the
635 * corresponding block groups as unused and they will be sent on their merry
636 * way to the unused_bgs list.
637 */
638static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
639{
640	struct btrfs_block_group *block_group, *next;
641	int i;
642
643	spin_lock(&discard_ctl->lock);
644	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
645		list_for_each_entry_safe(block_group, next,
646					 &discard_ctl->discard_list[i],
647					 discard_list) {
648			list_del_init(&block_group->discard_list);
649			spin_unlock(&discard_ctl->lock);
650			if (block_group->used == 0)
651				btrfs_mark_bg_unused(block_group);
652			spin_lock(&discard_ctl->lock);
653		}
654	}
655	spin_unlock(&discard_ctl->lock);
656}
657
658void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
659{
660	if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
661		btrfs_discard_cleanup(fs_info);
662		return;
663	}
664
665	btrfs_discard_punt_unused_bgs_list(fs_info);
666
667	set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
668}
669
670void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
671{
672	clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
673}
674
675void btrfs_discard_init(struct btrfs_fs_info *fs_info)
676{
677	struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
678	int i;
679
680	spin_lock_init(&discard_ctl->lock);
681	INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
682
683	for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
684		INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
685
686	discard_ctl->prev_discard = 0;
687	atomic_set(&discard_ctl->discardable_extents, 0);
688	atomic64_set(&discard_ctl->discardable_bytes, 0);
689	discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
690	discard_ctl->delay = BTRFS_DISCARD_MAX_DELAY_MSEC;
691	discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
692	discard_ctl->kbps_limit = 0;
693	discard_ctl->discard_extent_bytes = 0;
694	discard_ctl->discard_bitmap_bytes = 0;
695	atomic64_set(&discard_ctl->discard_bytes_saved, 0);
696}
697
698void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
699{
700	btrfs_discard_stop(fs_info);
701	cancel_delayed_work_sync(&fs_info->discard_ctl.work);
702	btrfs_discard_purge_list(&fs_info->discard_ctl);
703}