Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Special handling for DW DMA core
  4 *
  5 * Copyright (c) 2009, 2014 Intel Corporation.
  6 */
  7
  8#include <linux/completion.h>
  9#include <linux/dma-mapping.h>
 10#include <linux/dmaengine.h>
 11#include <linux/irqreturn.h>
 12#include <linux/jiffies.h>
 13#include <linux/pci.h>
 14#include <linux/platform_data/dma-dw.h>
 15#include <linux/spi/spi.h>
 16#include <linux/types.h>
 17
 18#include "spi-dw.h"
 19
 20#define WAIT_RETRIES	5
 21#define RX_BUSY		0
 22#define RX_BURST_LEVEL	16
 23#define TX_BUSY		1
 24#define TX_BURST_LEVEL	16
 25
 26static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
 27{
 28	struct dw_dma_slave *s = param;
 29
 30	if (s->dma_dev != chan->device->dev)
 31		return false;
 32
 33	chan->private = s;
 34	return true;
 35}
 36
 37static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
 38{
 39	struct dma_slave_caps caps;
 40	u32 max_burst, def_burst;
 41	int ret;
 42
 43	def_burst = dws->fifo_len / 2;
 44
 45	ret = dma_get_slave_caps(dws->rxchan, &caps);
 46	if (!ret && caps.max_burst)
 47		max_burst = caps.max_burst;
 48	else
 49		max_burst = RX_BURST_LEVEL;
 50
 51	dws->rxburst = min(max_burst, def_burst);
 52
 53	ret = dma_get_slave_caps(dws->txchan, &caps);
 54	if (!ret && caps.max_burst)
 55		max_burst = caps.max_burst;
 56	else
 57		max_burst = TX_BURST_LEVEL;
 58
 59	dws->txburst = min(max_burst, def_burst);
 60}
 61
 62static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
 63{
 64	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
 65	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
 66	struct pci_dev *dma_dev;
 67	dma_cap_mask_t mask;
 68
 69	/*
 70	 * Get pci device for DMA controller, currently it could only
 71	 * be the DMA controller of Medfield
 72	 */
 73	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
 74	if (!dma_dev)
 75		return -ENODEV;
 76
 77	dma_cap_zero(mask);
 78	dma_cap_set(DMA_SLAVE, mask);
 79
 80	/* 1. Init rx channel */
 81	rx->dma_dev = &dma_dev->dev;
 82	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
 83	if (!dws->rxchan)
 84		goto err_exit;
 85
 86	/* 2. Init tx channel */
 87	tx->dma_dev = &dma_dev->dev;
 88	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
 89	if (!dws->txchan)
 90		goto free_rxchan;
 91
 92	dws->master->dma_rx = dws->rxchan;
 93	dws->master->dma_tx = dws->txchan;
 94
 95	init_completion(&dws->dma_completion);
 96
 97	dw_spi_dma_maxburst_init(dws);
 98
 99	return 0;
100
101free_rxchan:
102	dma_release_channel(dws->rxchan);
103	dws->rxchan = NULL;
104err_exit:
105	return -EBUSY;
106}
107
108static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
109{
110	dws->rxchan = dma_request_slave_channel(dev, "rx");
111	if (!dws->rxchan)
112		return -ENODEV;
113
114	dws->txchan = dma_request_slave_channel(dev, "tx");
115	if (!dws->txchan) {
116		dma_release_channel(dws->rxchan);
117		dws->rxchan = NULL;
118		return -ENODEV;
119	}
120
121	dws->master->dma_rx = dws->rxchan;
122	dws->master->dma_tx = dws->txchan;
123
124	init_completion(&dws->dma_completion);
125
126	dw_spi_dma_maxburst_init(dws);
127
128	return 0;
129}
130
131static void dw_spi_dma_exit(struct dw_spi *dws)
132{
133	if (dws->txchan) {
134		dmaengine_terminate_sync(dws->txchan);
135		dma_release_channel(dws->txchan);
136	}
137
138	if (dws->rxchan) {
139		dmaengine_terminate_sync(dws->rxchan);
140		dma_release_channel(dws->rxchan);
141	}
142
143	dw_writel(dws, DW_SPI_DMACR, 0);
144}
145
146static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
147{
148	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
149
150	if (!irq_status)
151		return IRQ_NONE;
152
153	dw_readl(dws, DW_SPI_ICR);
154	spi_reset_chip(dws);
155
156	dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
157	dws->master->cur_msg->status = -EIO;
158	complete(&dws->dma_completion);
159	return IRQ_HANDLED;
160}
161
162static bool dw_spi_can_dma(struct spi_controller *master,
163			   struct spi_device *spi, struct spi_transfer *xfer)
164{
165	struct dw_spi *dws = spi_controller_get_devdata(master);
166
167	return xfer->len > dws->fifo_len;
168}
169
170static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
171{
172	if (n_bytes == 1)
173		return DMA_SLAVE_BUSWIDTH_1_BYTE;
174	else if (n_bytes == 2)
175		return DMA_SLAVE_BUSWIDTH_2_BYTES;
176
177	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
178}
179
180static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer)
181{
182	unsigned long long ms;
183
184	ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE;
185	do_div(ms, xfer->effective_speed_hz);
186	ms += ms + 200;
187
188	if (ms > UINT_MAX)
189		ms = UINT_MAX;
190
191	ms = wait_for_completion_timeout(&dws->dma_completion,
192					 msecs_to_jiffies(ms));
193
194	if (ms == 0) {
195		dev_err(&dws->master->cur_msg->spi->dev,
196			"DMA transaction timed out\n");
197		return -ETIMEDOUT;
198	}
199
200	return 0;
201}
202
203static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
204{
205	return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
206}
207
208static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
209				   struct spi_transfer *xfer)
210{
211	int retry = WAIT_RETRIES;
212	struct spi_delay delay;
213	u32 nents;
214
215	nents = dw_readl(dws, DW_SPI_TXFLR);
216	delay.unit = SPI_DELAY_UNIT_SCK;
217	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
218
219	while (dw_spi_dma_tx_busy(dws) && retry--)
220		spi_delay_exec(&delay, xfer);
221
222	if (retry < 0) {
223		dev_err(&dws->master->dev, "Tx hanged up\n");
224		return -EIO;
225	}
226
227	return 0;
228}
229
230/*
231 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
232 * channel will clear a corresponding bit.
233 */
234static void dw_spi_dma_tx_done(void *arg)
235{
236	struct dw_spi *dws = arg;
237
238	clear_bit(TX_BUSY, &dws->dma_chan_busy);
239	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
240		return;
241
242	dw_writel(dws, DW_SPI_DMACR, 0);
243	complete(&dws->dma_completion);
244}
245
246static struct dma_async_tx_descriptor *
247dw_spi_dma_prepare_tx(struct dw_spi *dws, struct spi_transfer *xfer)
248{
249	struct dma_slave_config txconf;
250	struct dma_async_tx_descriptor *txdesc;
251
252	if (!xfer->tx_buf)
253		return NULL;
254
255	memset(&txconf, 0, sizeof(txconf));
256	txconf.direction = DMA_MEM_TO_DEV;
257	txconf.dst_addr = dws->dma_addr;
258	txconf.dst_maxburst = dws->txburst;
259	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
260	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
261	txconf.device_fc = false;
262
263	dmaengine_slave_config(dws->txchan, &txconf);
264
265	txdesc = dmaengine_prep_slave_sg(dws->txchan,
266				xfer->tx_sg.sgl,
267				xfer->tx_sg.nents,
268				DMA_MEM_TO_DEV,
269				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
270	if (!txdesc)
271		return NULL;
272
273	txdesc->callback = dw_spi_dma_tx_done;
274	txdesc->callback_param = dws;
275
276	return txdesc;
277}
278
279static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
280{
281	return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
282}
283
284static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
285{
286	int retry = WAIT_RETRIES;
287	struct spi_delay delay;
288	unsigned long ns, us;
289	u32 nents;
290
291	/*
292	 * It's unlikely that DMA engine is still doing the data fetching, but
293	 * if it's let's give it some reasonable time. The timeout calculation
294	 * is based on the synchronous APB/SSI reference clock rate, on a
295	 * number of data entries left in the Rx FIFO, times a number of clock
296	 * periods normally needed for a single APB read/write transaction
297	 * without PREADY signal utilized (which is true for the DW APB SSI
298	 * controller).
299	 */
300	nents = dw_readl(dws, DW_SPI_RXFLR);
301	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
302	if (ns <= NSEC_PER_USEC) {
303		delay.unit = SPI_DELAY_UNIT_NSECS;
304		delay.value = ns;
305	} else {
306		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
307		delay.unit = SPI_DELAY_UNIT_USECS;
308		delay.value = clamp_val(us, 0, USHRT_MAX);
309	}
310
311	while (dw_spi_dma_rx_busy(dws) && retry--)
312		spi_delay_exec(&delay, NULL);
313
314	if (retry < 0) {
315		dev_err(&dws->master->dev, "Rx hanged up\n");
316		return -EIO;
317	}
318
319	return 0;
320}
321
322/*
323 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
324 * channel will clear a corresponding bit.
325 */
326static void dw_spi_dma_rx_done(void *arg)
327{
328	struct dw_spi *dws = arg;
329
330	clear_bit(RX_BUSY, &dws->dma_chan_busy);
331	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
332		return;
333
334	dw_writel(dws, DW_SPI_DMACR, 0);
335	complete(&dws->dma_completion);
336}
337
338static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
339		struct spi_transfer *xfer)
340{
341	struct dma_slave_config rxconf;
342	struct dma_async_tx_descriptor *rxdesc;
343
344	if (!xfer->rx_buf)
345		return NULL;
346
347	memset(&rxconf, 0, sizeof(rxconf));
348	rxconf.direction = DMA_DEV_TO_MEM;
349	rxconf.src_addr = dws->dma_addr;
350	rxconf.src_maxburst = dws->rxburst;
351	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
352	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
353	rxconf.device_fc = false;
354
355	dmaengine_slave_config(dws->rxchan, &rxconf);
356
357	rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
358				xfer->rx_sg.sgl,
359				xfer->rx_sg.nents,
360				DMA_DEV_TO_MEM,
361				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
362	if (!rxdesc)
363		return NULL;
364
365	rxdesc->callback = dw_spi_dma_rx_done;
366	rxdesc->callback_param = dws;
367
368	return rxdesc;
369}
370
371static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
372{
373	u16 imr = 0, dma_ctrl = 0;
374
375	/*
376	 * Having a Rx DMA channel serviced with higher priority than a Tx DMA
377	 * channel might not be enough to provide a well balanced DMA-based
378	 * SPI transfer interface. There might still be moments when the Tx DMA
379	 * channel is occasionally handled faster than the Rx DMA channel.
380	 * That in its turn will eventually cause the SPI Rx FIFO overflow if
381	 * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
382	 * cleared by the Rx DMA channel. In order to fix the problem the Tx
383	 * DMA activity is intentionally slowed down by limiting the SPI Tx
384	 * FIFO depth with a value twice bigger than the Tx burst length
385	 * calculated earlier by the dw_spi_dma_maxburst_init() method.
386	 */
387	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
388	dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
389
390	if (xfer->tx_buf)
391		dma_ctrl |= SPI_DMA_TDMAE;
392	if (xfer->rx_buf)
393		dma_ctrl |= SPI_DMA_RDMAE;
394	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
395
396	/* Set the interrupt mask */
397	if (xfer->tx_buf)
398		imr |= SPI_INT_TXOI;
399	if (xfer->rx_buf)
400		imr |= SPI_INT_RXUI | SPI_INT_RXOI;
401	spi_umask_intr(dws, imr);
402
403	reinit_completion(&dws->dma_completion);
404
405	dws->transfer_handler = dw_spi_dma_transfer_handler;
406
407	return 0;
408}
409
410static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
411{
412	struct dma_async_tx_descriptor *txdesc, *rxdesc;
413	int ret;
414
415	/* Prepare the TX dma transfer */
416	txdesc = dw_spi_dma_prepare_tx(dws, xfer);
417
418	/* Prepare the RX dma transfer */
419	rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
420
421	/* rx must be started before tx due to spi instinct */
422	if (rxdesc) {
423		set_bit(RX_BUSY, &dws->dma_chan_busy);
424		dmaengine_submit(rxdesc);
425		dma_async_issue_pending(dws->rxchan);
426	}
427
428	if (txdesc) {
429		set_bit(TX_BUSY, &dws->dma_chan_busy);
430		dmaengine_submit(txdesc);
431		dma_async_issue_pending(dws->txchan);
432	}
433
434	ret = dw_spi_dma_wait(dws, xfer);
435	if (ret)
436		return ret;
437
438	if (txdesc && dws->master->cur_msg->status == -EINPROGRESS) {
439		ret = dw_spi_dma_wait_tx_done(dws, xfer);
440		if (ret)
441			return ret;
442	}
443
444	if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS)
445		ret = dw_spi_dma_wait_rx_done(dws);
446
447	return ret;
448}
449
450static void dw_spi_dma_stop(struct dw_spi *dws)
451{
452	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
453		dmaengine_terminate_sync(dws->txchan);
454		clear_bit(TX_BUSY, &dws->dma_chan_busy);
455	}
456	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
457		dmaengine_terminate_sync(dws->rxchan);
458		clear_bit(RX_BUSY, &dws->dma_chan_busy);
459	}
460
461	dw_writel(dws, DW_SPI_DMACR, 0);
462}
463
464static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
465	.dma_init	= dw_spi_dma_init_mfld,
466	.dma_exit	= dw_spi_dma_exit,
467	.dma_setup	= dw_spi_dma_setup,
468	.can_dma	= dw_spi_can_dma,
469	.dma_transfer	= dw_spi_dma_transfer,
470	.dma_stop	= dw_spi_dma_stop,
471};
472
473void dw_spi_dma_setup_mfld(struct dw_spi *dws)
474{
475	dws->dma_ops = &dw_spi_dma_mfld_ops;
476}
477EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
478
479static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
480	.dma_init	= dw_spi_dma_init_generic,
481	.dma_exit	= dw_spi_dma_exit,
482	.dma_setup	= dw_spi_dma_setup,
483	.can_dma	= dw_spi_can_dma,
484	.dma_transfer	= dw_spi_dma_transfer,
485	.dma_stop	= dw_spi_dma_stop,
486};
487
488void dw_spi_dma_setup_generic(struct dw_spi *dws)
489{
490	dws->dma_ops = &dw_spi_dma_generic_ops;
491}
492EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);