Loading...
1/*
2 * Real Time Clock interface for XScale PXA27x and PXA3xx
3 *
4 * Copyright (C) 2008 Robert Jarzmik
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 */
21
22#include <linux/init.h>
23#include <linux/platform_device.h>
24#include <linux/module.h>
25#include <linux/rtc.h>
26#include <linux/seq_file.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/slab.h>
30
31#include <mach/hardware.h>
32
33#define TIMER_FREQ CLOCK_TICK_RATE
34#define RTC_DEF_DIVIDER (32768 - 1)
35#define RTC_DEF_TRIM 0
36#define MAXFREQ_PERIODIC 1000
37
38/*
39 * PXA Registers and bits definitions
40 */
41#define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
42#define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
43#define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
44#define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
45#define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
46#define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
47#define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
48#define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
49#define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
50#define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
51#define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
52#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
53#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
54#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
55#define RTSR_AL (1 << 0) /* RTC alarm detected */
56#define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
57 | RTSR_SWAL1 | RTSR_SWAL2)
58#define RYxR_YEAR_S 9
59#define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
60#define RYxR_MONTH_S 5
61#define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
62#define RYxR_DAY_MASK 0x1f
63#define RDxR_HOUR_S 12
64#define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
65#define RDxR_MIN_S 6
66#define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
67#define RDxR_SEC_MASK 0x3f
68
69#define RTSR 0x08
70#define RTTR 0x0c
71#define RDCR 0x10
72#define RYCR 0x14
73#define RDAR1 0x18
74#define RYAR1 0x1c
75#define RTCPICR 0x34
76#define PIAR 0x38
77
78#define rtc_readl(pxa_rtc, reg) \
79 __raw_readl((pxa_rtc)->base + (reg))
80#define rtc_writel(pxa_rtc, reg, value) \
81 __raw_writel((value), (pxa_rtc)->base + (reg))
82
83struct pxa_rtc {
84 struct resource *ress;
85 void __iomem *base;
86 int irq_1Hz;
87 int irq_Alrm;
88 struct rtc_device *rtc;
89 spinlock_t lock; /* Protects this structure */
90};
91
92static u32 ryxr_calc(struct rtc_time *tm)
93{
94 return ((tm->tm_year + 1900) << RYxR_YEAR_S)
95 | ((tm->tm_mon + 1) << RYxR_MONTH_S)
96 | tm->tm_mday;
97}
98
99static u32 rdxr_calc(struct rtc_time *tm)
100{
101 return (tm->tm_hour << RDxR_HOUR_S) | (tm->tm_min << RDxR_MIN_S)
102 | tm->tm_sec;
103}
104
105static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
106{
107 tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
108 tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
109 tm->tm_mday = (rycr & RYxR_DAY_MASK);
110 tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
111 tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
112 tm->tm_sec = rdcr & RDxR_SEC_MASK;
113}
114
115static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
116{
117 u32 rtsr;
118
119 rtsr = rtc_readl(pxa_rtc, RTSR);
120 rtsr &= ~RTSR_TRIG_MASK;
121 rtsr &= ~mask;
122 rtc_writel(pxa_rtc, RTSR, rtsr);
123}
124
125static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
126{
127 u32 rtsr;
128
129 rtsr = rtc_readl(pxa_rtc, RTSR);
130 rtsr &= ~RTSR_TRIG_MASK;
131 rtsr |= mask;
132 rtc_writel(pxa_rtc, RTSR, rtsr);
133}
134
135static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
136{
137 struct platform_device *pdev = to_platform_device(dev_id);
138 struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
139 u32 rtsr;
140 unsigned long events = 0;
141
142 spin_lock(&pxa_rtc->lock);
143
144 /* clear interrupt sources */
145 rtsr = rtc_readl(pxa_rtc, RTSR);
146 rtc_writel(pxa_rtc, RTSR, rtsr);
147
148 /* temporary disable rtc interrupts */
149 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
150
151 /* clear alarm interrupt if it has occurred */
152 if (rtsr & RTSR_RDAL1)
153 rtsr &= ~RTSR_RDALE1;
154
155 /* update irq data & counter */
156 if (rtsr & RTSR_RDAL1)
157 events |= RTC_AF | RTC_IRQF;
158 if (rtsr & RTSR_HZ)
159 events |= RTC_UF | RTC_IRQF;
160 if (rtsr & RTSR_PIAL)
161 events |= RTC_PF | RTC_IRQF;
162
163 rtc_update_irq(pxa_rtc->rtc, 1, events);
164
165 /* enable back rtc interrupts */
166 rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
167
168 spin_unlock(&pxa_rtc->lock);
169 return IRQ_HANDLED;
170}
171
172static int pxa_rtc_open(struct device *dev)
173{
174 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
175 int ret;
176
177 ret = request_irq(pxa_rtc->irq_1Hz, pxa_rtc_irq, IRQF_DISABLED,
178 "rtc 1Hz", dev);
179 if (ret < 0) {
180 dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_1Hz,
181 ret);
182 goto err_irq_1Hz;
183 }
184 ret = request_irq(pxa_rtc->irq_Alrm, pxa_rtc_irq, IRQF_DISABLED,
185 "rtc Alrm", dev);
186 if (ret < 0) {
187 dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_Alrm,
188 ret);
189 goto err_irq_Alrm;
190 }
191
192 return 0;
193
194err_irq_Alrm:
195 free_irq(pxa_rtc->irq_1Hz, dev);
196err_irq_1Hz:
197 return ret;
198}
199
200static void pxa_rtc_release(struct device *dev)
201{
202 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
203
204 spin_lock_irq(&pxa_rtc->lock);
205 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
206 spin_unlock_irq(&pxa_rtc->lock);
207
208 free_irq(pxa_rtc->irq_Alrm, dev);
209 free_irq(pxa_rtc->irq_1Hz, dev);
210}
211
212static int pxa_alarm_irq_enable(struct device *dev, unsigned int enabled)
213{
214 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
215
216 spin_lock_irq(&pxa_rtc->lock);
217
218 if (enabled)
219 rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
220 else
221 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
222
223 spin_unlock_irq(&pxa_rtc->lock);
224 return 0;
225}
226
227static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
228{
229 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
230 u32 rycr, rdcr;
231
232 rycr = rtc_readl(pxa_rtc, RYCR);
233 rdcr = rtc_readl(pxa_rtc, RDCR);
234
235 tm_calc(rycr, rdcr, tm);
236 return 0;
237}
238
239static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
240{
241 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
242
243 rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
244 rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
245
246 return 0;
247}
248
249static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
250{
251 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
252 u32 rtsr, ryar, rdar;
253
254 ryar = rtc_readl(pxa_rtc, RYAR1);
255 rdar = rtc_readl(pxa_rtc, RDAR1);
256 tm_calc(ryar, rdar, &alrm->time);
257
258 rtsr = rtc_readl(pxa_rtc, RTSR);
259 alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
260 alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
261 return 0;
262}
263
264static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
265{
266 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
267 u32 rtsr;
268
269 spin_lock_irq(&pxa_rtc->lock);
270
271 rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
272 rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
273
274 rtsr = rtc_readl(pxa_rtc, RTSR);
275 if (alrm->enabled)
276 rtsr |= RTSR_RDALE1;
277 else
278 rtsr &= ~RTSR_RDALE1;
279 rtc_writel(pxa_rtc, RTSR, rtsr);
280
281 spin_unlock_irq(&pxa_rtc->lock);
282
283 return 0;
284}
285
286static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
287{
288 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
289
290 seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
291 seq_printf(seq, "update_IRQ\t: %s\n",
292 (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
293 seq_printf(seq, "periodic_IRQ\t: %s\n",
294 (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
295 seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
296
297 return 0;
298}
299
300static const struct rtc_class_ops pxa_rtc_ops = {
301 .open = pxa_rtc_open,
302 .release = pxa_rtc_release,
303 .read_time = pxa_rtc_read_time,
304 .set_time = pxa_rtc_set_time,
305 .read_alarm = pxa_rtc_read_alarm,
306 .set_alarm = pxa_rtc_set_alarm,
307 .alarm_irq_enable = pxa_alarm_irq_enable,
308 .proc = pxa_rtc_proc,
309};
310
311static int __init pxa_rtc_probe(struct platform_device *pdev)
312{
313 struct device *dev = &pdev->dev;
314 struct pxa_rtc *pxa_rtc;
315 int ret;
316 u32 rttr;
317
318 pxa_rtc = kzalloc(sizeof(struct pxa_rtc), GFP_KERNEL);
319 if (!pxa_rtc)
320 return -ENOMEM;
321
322 spin_lock_init(&pxa_rtc->lock);
323 platform_set_drvdata(pdev, pxa_rtc);
324
325 ret = -ENXIO;
326 pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
327 if (!pxa_rtc->ress) {
328 dev_err(dev, "No I/O memory resource defined\n");
329 goto err_ress;
330 }
331
332 pxa_rtc->irq_1Hz = platform_get_irq(pdev, 0);
333 if (pxa_rtc->irq_1Hz < 0) {
334 dev_err(dev, "No 1Hz IRQ resource defined\n");
335 goto err_ress;
336 }
337 pxa_rtc->irq_Alrm = platform_get_irq(pdev, 1);
338 if (pxa_rtc->irq_Alrm < 0) {
339 dev_err(dev, "No alarm IRQ resource defined\n");
340 goto err_ress;
341 }
342
343 ret = -ENOMEM;
344 pxa_rtc->base = ioremap(pxa_rtc->ress->start,
345 resource_size(pxa_rtc->ress));
346 if (!pxa_rtc->base) {
347 dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
348 goto err_map;
349 }
350
351 /*
352 * If the clock divider is uninitialized then reset it to the
353 * default value to get the 1Hz clock.
354 */
355 if (rtc_readl(pxa_rtc, RTTR) == 0) {
356 rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
357 rtc_writel(pxa_rtc, RTTR, rttr);
358 dev_warn(dev, "warning: initializing default clock"
359 " divider/trim value\n");
360 }
361
362 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
363
364 pxa_rtc->rtc = rtc_device_register("pxa-rtc", &pdev->dev, &pxa_rtc_ops,
365 THIS_MODULE);
366 ret = PTR_ERR(pxa_rtc->rtc);
367 if (IS_ERR(pxa_rtc->rtc)) {
368 dev_err(dev, "Failed to register RTC device -> %d\n", ret);
369 goto err_rtc_reg;
370 }
371
372 device_init_wakeup(dev, 1);
373
374 return 0;
375
376err_rtc_reg:
377 iounmap(pxa_rtc->base);
378err_ress:
379err_map:
380 kfree(pxa_rtc);
381 return ret;
382}
383
384static int __exit pxa_rtc_remove(struct platform_device *pdev)
385{
386 struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev);
387
388 rtc_device_unregister(pxa_rtc->rtc);
389
390 spin_lock_irq(&pxa_rtc->lock);
391 iounmap(pxa_rtc->base);
392 spin_unlock_irq(&pxa_rtc->lock);
393
394 kfree(pxa_rtc);
395
396 return 0;
397}
398
399#ifdef CONFIG_PM
400static int pxa_rtc_suspend(struct device *dev)
401{
402 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
403
404 if (device_may_wakeup(dev))
405 enable_irq_wake(pxa_rtc->irq_Alrm);
406 return 0;
407}
408
409static int pxa_rtc_resume(struct device *dev)
410{
411 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
412
413 if (device_may_wakeup(dev))
414 disable_irq_wake(pxa_rtc->irq_Alrm);
415 return 0;
416}
417
418static const struct dev_pm_ops pxa_rtc_pm_ops = {
419 .suspend = pxa_rtc_suspend,
420 .resume = pxa_rtc_resume,
421};
422#endif
423
424static struct platform_driver pxa_rtc_driver = {
425 .remove = __exit_p(pxa_rtc_remove),
426 .driver = {
427 .name = "pxa-rtc",
428#ifdef CONFIG_PM
429 .pm = &pxa_rtc_pm_ops,
430#endif
431 },
432};
433
434static int __init pxa_rtc_init(void)
435{
436 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
437 return platform_driver_probe(&pxa_rtc_driver, pxa_rtc_probe);
438
439 return -ENODEV;
440}
441
442static void __exit pxa_rtc_exit(void)
443{
444 platform_driver_unregister(&pxa_rtc_driver);
445}
446
447module_init(pxa_rtc_init);
448module_exit(pxa_rtc_exit);
449
450MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
451MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
452MODULE_LICENSE("GPL");
453MODULE_ALIAS("platform:pxa-rtc");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Real Time Clock interface for XScale PXA27x and PXA3xx
4 *
5 * Copyright (C) 2008 Robert Jarzmik
6 */
7
8#include <linux/init.h>
9#include <linux/platform_device.h>
10#include <linux/module.h>
11#include <linux/rtc.h>
12#include <linux/seq_file.h>
13#include <linux/interrupt.h>
14#include <linux/io.h>
15#include <linux/slab.h>
16#include <linux/of.h>
17#include <linux/of_device.h>
18
19#include <mach/hardware.h>
20
21#include "rtc-sa1100.h"
22
23#define RTC_DEF_DIVIDER (32768 - 1)
24#define RTC_DEF_TRIM 0
25#define MAXFREQ_PERIODIC 1000
26
27/*
28 * PXA Registers and bits definitions
29 */
30#define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */
31#define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */
32#define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */
33#define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */
34#define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */
35#define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */
36#define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */
37#define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */
38#define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */
39#define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */
40#define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */
41#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
42#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
43#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
44#define RTSR_AL (1 << 0) /* RTC alarm detected */
45#define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\
46 | RTSR_SWAL1 | RTSR_SWAL2)
47#define RYxR_YEAR_S 9
48#define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S)
49#define RYxR_MONTH_S 5
50#define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S)
51#define RYxR_DAY_MASK 0x1f
52#define RDxR_WOM_S 20
53#define RDxR_WOM_MASK (0x7 << RDxR_WOM_S)
54#define RDxR_DOW_S 17
55#define RDxR_DOW_MASK (0x7 << RDxR_DOW_S)
56#define RDxR_HOUR_S 12
57#define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S)
58#define RDxR_MIN_S 6
59#define RDxR_MIN_MASK (0x3f << RDxR_MIN_S)
60#define RDxR_SEC_MASK 0x3f
61
62#define RTSR 0x08
63#define RTTR 0x0c
64#define RDCR 0x10
65#define RYCR 0x14
66#define RDAR1 0x18
67#define RYAR1 0x1c
68#define RTCPICR 0x34
69#define PIAR 0x38
70
71#define rtc_readl(pxa_rtc, reg) \
72 __raw_readl((pxa_rtc)->base + (reg))
73#define rtc_writel(pxa_rtc, reg, value) \
74 __raw_writel((value), (pxa_rtc)->base + (reg))
75
76struct pxa_rtc {
77 struct sa1100_rtc sa1100_rtc;
78 struct resource *ress;
79 void __iomem *base;
80 struct rtc_device *rtc;
81 spinlock_t lock; /* Protects this structure */
82};
83
84
85static u32 ryxr_calc(struct rtc_time *tm)
86{
87 return ((tm->tm_year + 1900) << RYxR_YEAR_S)
88 | ((tm->tm_mon + 1) << RYxR_MONTH_S)
89 | tm->tm_mday;
90}
91
92static u32 rdxr_calc(struct rtc_time *tm)
93{
94 return ((((tm->tm_mday + 6) / 7) << RDxR_WOM_S) & RDxR_WOM_MASK)
95 | (((tm->tm_wday + 1) << RDxR_DOW_S) & RDxR_DOW_MASK)
96 | (tm->tm_hour << RDxR_HOUR_S)
97 | (tm->tm_min << RDxR_MIN_S)
98 | tm->tm_sec;
99}
100
101static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm)
102{
103 tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900;
104 tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1;
105 tm->tm_mday = (rycr & RYxR_DAY_MASK);
106 tm->tm_wday = ((rycr & RDxR_DOW_MASK) >> RDxR_DOW_S) - 1;
107 tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S;
108 tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S;
109 tm->tm_sec = rdcr & RDxR_SEC_MASK;
110}
111
112static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask)
113{
114 u32 rtsr;
115
116 rtsr = rtc_readl(pxa_rtc, RTSR);
117 rtsr &= ~RTSR_TRIG_MASK;
118 rtsr &= ~mask;
119 rtc_writel(pxa_rtc, RTSR, rtsr);
120}
121
122static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask)
123{
124 u32 rtsr;
125
126 rtsr = rtc_readl(pxa_rtc, RTSR);
127 rtsr &= ~RTSR_TRIG_MASK;
128 rtsr |= mask;
129 rtc_writel(pxa_rtc, RTSR, rtsr);
130}
131
132static irqreturn_t pxa_rtc_irq(int irq, void *dev_id)
133{
134 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev_id);
135 u32 rtsr;
136 unsigned long events = 0;
137
138 spin_lock(&pxa_rtc->lock);
139
140 /* clear interrupt sources */
141 rtsr = rtc_readl(pxa_rtc, RTSR);
142 rtc_writel(pxa_rtc, RTSR, rtsr);
143
144 /* temporary disable rtc interrupts */
145 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE);
146
147 /* clear alarm interrupt if it has occurred */
148 if (rtsr & RTSR_RDAL1)
149 rtsr &= ~RTSR_RDALE1;
150
151 /* update irq data & counter */
152 if (rtsr & RTSR_RDAL1)
153 events |= RTC_AF | RTC_IRQF;
154 if (rtsr & RTSR_HZ)
155 events |= RTC_UF | RTC_IRQF;
156 if (rtsr & RTSR_PIAL)
157 events |= RTC_PF | RTC_IRQF;
158
159 rtc_update_irq(pxa_rtc->rtc, 1, events);
160
161 /* enable back rtc interrupts */
162 rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK);
163
164 spin_unlock(&pxa_rtc->lock);
165 return IRQ_HANDLED;
166}
167
168static int pxa_rtc_open(struct device *dev)
169{
170 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
171 int ret;
172
173 ret = request_irq(pxa_rtc->sa1100_rtc.irq_1hz, pxa_rtc_irq, 0,
174 "rtc 1Hz", dev);
175 if (ret < 0) {
176 dev_err(dev, "can't get irq %i, err %d\n",
177 pxa_rtc->sa1100_rtc.irq_1hz, ret);
178 goto err_irq_1Hz;
179 }
180 ret = request_irq(pxa_rtc->sa1100_rtc.irq_alarm, pxa_rtc_irq, 0,
181 "rtc Alrm", dev);
182 if (ret < 0) {
183 dev_err(dev, "can't get irq %i, err %d\n",
184 pxa_rtc->sa1100_rtc.irq_alarm, ret);
185 goto err_irq_Alrm;
186 }
187
188 return 0;
189
190err_irq_Alrm:
191 free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev);
192err_irq_1Hz:
193 return ret;
194}
195
196static void pxa_rtc_release(struct device *dev)
197{
198 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
199
200 spin_lock_irq(&pxa_rtc->lock);
201 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
202 spin_unlock_irq(&pxa_rtc->lock);
203
204 free_irq(pxa_rtc->sa1100_rtc.irq_1hz, dev);
205 free_irq(pxa_rtc->sa1100_rtc.irq_alarm, dev);
206}
207
208static int pxa_alarm_irq_enable(struct device *dev, unsigned int enabled)
209{
210 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
211
212 spin_lock_irq(&pxa_rtc->lock);
213
214 if (enabled)
215 rtsr_set_bits(pxa_rtc, RTSR_RDALE1);
216 else
217 rtsr_clear_bits(pxa_rtc, RTSR_RDALE1);
218
219 spin_unlock_irq(&pxa_rtc->lock);
220 return 0;
221}
222
223static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm)
224{
225 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
226 u32 rycr, rdcr;
227
228 rycr = rtc_readl(pxa_rtc, RYCR);
229 rdcr = rtc_readl(pxa_rtc, RDCR);
230
231 tm_calc(rycr, rdcr, tm);
232 return 0;
233}
234
235static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm)
236{
237 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
238
239 rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm));
240 rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm));
241
242 return 0;
243}
244
245static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
246{
247 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
248 u32 rtsr, ryar, rdar;
249
250 ryar = rtc_readl(pxa_rtc, RYAR1);
251 rdar = rtc_readl(pxa_rtc, RDAR1);
252 tm_calc(ryar, rdar, &alrm->time);
253
254 rtsr = rtc_readl(pxa_rtc, RTSR);
255 alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0;
256 alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0;
257 return 0;
258}
259
260static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
261{
262 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
263 u32 rtsr;
264
265 spin_lock_irq(&pxa_rtc->lock);
266
267 rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time));
268 rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time));
269
270 rtsr = rtc_readl(pxa_rtc, RTSR);
271 if (alrm->enabled)
272 rtsr |= RTSR_RDALE1;
273 else
274 rtsr &= ~RTSR_RDALE1;
275 rtc_writel(pxa_rtc, RTSR, rtsr);
276
277 spin_unlock_irq(&pxa_rtc->lock);
278
279 return 0;
280}
281
282static int pxa_rtc_proc(struct device *dev, struct seq_file *seq)
283{
284 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
285
286 seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR));
287 seq_printf(seq, "update_IRQ\t: %s\n",
288 (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no");
289 seq_printf(seq, "periodic_IRQ\t: %s\n",
290 (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no");
291 seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR));
292
293 return 0;
294}
295
296static const struct rtc_class_ops pxa_rtc_ops = {
297 .read_time = pxa_rtc_read_time,
298 .set_time = pxa_rtc_set_time,
299 .read_alarm = pxa_rtc_read_alarm,
300 .set_alarm = pxa_rtc_set_alarm,
301 .alarm_irq_enable = pxa_alarm_irq_enable,
302 .proc = pxa_rtc_proc,
303};
304
305static int __init pxa_rtc_probe(struct platform_device *pdev)
306{
307 struct device *dev = &pdev->dev;
308 struct pxa_rtc *pxa_rtc;
309 struct sa1100_rtc *sa1100_rtc;
310 int ret;
311
312 pxa_rtc = devm_kzalloc(dev, sizeof(*pxa_rtc), GFP_KERNEL);
313 if (!pxa_rtc)
314 return -ENOMEM;
315 sa1100_rtc = &pxa_rtc->sa1100_rtc;
316
317 spin_lock_init(&pxa_rtc->lock);
318 platform_set_drvdata(pdev, pxa_rtc);
319
320 pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
321 if (!pxa_rtc->ress) {
322 dev_err(dev, "No I/O memory resource defined\n");
323 return -ENXIO;
324 }
325
326 sa1100_rtc->irq_1hz = platform_get_irq(pdev, 0);
327 if (sa1100_rtc->irq_1hz < 0)
328 return -ENXIO;
329 sa1100_rtc->irq_alarm = platform_get_irq(pdev, 1);
330 if (sa1100_rtc->irq_alarm < 0)
331 return -ENXIO;
332
333 pxa_rtc->base = devm_ioremap(dev, pxa_rtc->ress->start,
334 resource_size(pxa_rtc->ress));
335 if (!pxa_rtc->base) {
336 dev_err(dev, "Unable to map pxa RTC I/O memory\n");
337 return -ENOMEM;
338 }
339
340 pxa_rtc_open(dev);
341
342 sa1100_rtc->rcnr = pxa_rtc->base + 0x0;
343 sa1100_rtc->rtsr = pxa_rtc->base + 0x8;
344 sa1100_rtc->rtar = pxa_rtc->base + 0x4;
345 sa1100_rtc->rttr = pxa_rtc->base + 0xc;
346 ret = sa1100_rtc_init(pdev, sa1100_rtc);
347 if (ret) {
348 dev_err(dev, "Unable to init SA1100 RTC sub-device\n");
349 return ret;
350 }
351
352 rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE);
353
354 pxa_rtc->rtc = devm_rtc_device_register(&pdev->dev, "pxa-rtc",
355 &pxa_rtc_ops, THIS_MODULE);
356 if (IS_ERR(pxa_rtc->rtc)) {
357 ret = PTR_ERR(pxa_rtc->rtc);
358 dev_err(dev, "Failed to register RTC device -> %d\n", ret);
359 return ret;
360 }
361
362 device_init_wakeup(dev, 1);
363
364 return 0;
365}
366
367static int __exit pxa_rtc_remove(struct platform_device *pdev)
368{
369 struct device *dev = &pdev->dev;
370
371 pxa_rtc_release(dev);
372 return 0;
373}
374
375#ifdef CONFIG_OF
376static const struct of_device_id pxa_rtc_dt_ids[] = {
377 { .compatible = "marvell,pxa-rtc" },
378 {}
379};
380MODULE_DEVICE_TABLE(of, pxa_rtc_dt_ids);
381#endif
382
383#ifdef CONFIG_PM_SLEEP
384static int pxa_rtc_suspend(struct device *dev)
385{
386 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
387
388 if (device_may_wakeup(dev))
389 enable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm);
390 return 0;
391}
392
393static int pxa_rtc_resume(struct device *dev)
394{
395 struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev);
396
397 if (device_may_wakeup(dev))
398 disable_irq_wake(pxa_rtc->sa1100_rtc.irq_alarm);
399 return 0;
400}
401#endif
402
403static SIMPLE_DEV_PM_OPS(pxa_rtc_pm_ops, pxa_rtc_suspend, pxa_rtc_resume);
404
405static struct platform_driver pxa_rtc_driver = {
406 .remove = __exit_p(pxa_rtc_remove),
407 .driver = {
408 .name = "pxa-rtc",
409 .of_match_table = of_match_ptr(pxa_rtc_dt_ids),
410 .pm = &pxa_rtc_pm_ops,
411 },
412};
413
414module_platform_driver_probe(pxa_rtc_driver, pxa_rtc_probe);
415
416MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>");
417MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)");
418MODULE_LICENSE("GPL");
419MODULE_ALIAS("platform:pxa-rtc");